地图投影第二章地图投影方法变形分类
地图投影第二章地图投影方法变形分类
![地图投影第二章地图投影方法变形分类](https://img.taocdn.com/s3/m/d1fe7f0dd15abe23492f4d56.png)
1
2
a b=r2
3
4
CHENLI
a> r,b=r 5
a≠b≠r 6
23
CHENLI
24
三、投影变形的性质和大小
长度比和长度变形:
投影面上一微小线段(变形椭圆半径)和球 面上相应微小线段(球面上微小圆半径,已按规 定的比例缩小)之比。
m表示长度比, Vm表示长度变形
m ds' ds
Vm m 1
Q(0,0),球面上的各点便以新极点Q为原点,以方
位角和天顶距 Z 表示其位置,从而构成球面极坐标系。
CHENLI
32
球面极坐标系
第二节 地理坐标
在地图测制中是把地球表面作为旋转椭球面处理。 地球椭球面上各点的位置,是以地理坐标即经度 和纬度来确定。经纬度是一种绝对的坐标系统。
P,P1—北、南极
CHENLI
2
地图投影,简单的说就是将参考椭球面上的元素 (大地坐标、角度和边长)按一定的数学法则化 算到平面上的过程。
x y
ff12((LL,,BB))
CHENLI
3
二、投影方式: 1.平行投影
CHENLI
4
2.透视投影
CHENLI
5
3. 广义投影
CHENLI
6
三、地图投影实质: 建立平面上的点(用平面直角坐标或极坐标
CHENLI
16
2. 投影变形的概念 地图投影不能保持平面与球面之间在
长度(距离)、角度(形状)、面积等方 面完全不变。
地球仪上经纬线网格和地图上比较:
CHENLI
17
球面经纬网经过投影之后,其几何特征 受到扭曲——地图投影变形:长度(距离)、 角度(形状)、面积。
地图投影与分类
![地图投影与分类](https://img.taocdn.com/s3/m/49261c1c78563c1ec5da50e2524de518964bd3e5.png)
第四章海图海图(chart)是为适应航海的需要而绘制的一种地图,图上详细地标绘了航海所需要的资料,如岸形、岛屿、礁石、浅滩、水深、底质、水流资料、以及助航设施等。
海图可用于船舶航行前拟定计划航线、制定航行计划;航行中可用于航迹推算、定位与导航;航次结束后可用于总结航行经验,如发生海事可用于判断事故责任。
因此,海图是航海必备的航海资料和工具。
正确地了解海图的特点、熟悉海图上的资料、正确地使用管理海图,是船舶驾驶员的重要任务之一。
第一节地图投影与分类一、地图投影1.地图:按照一定的数学法则,将地面上的一部分或全部按照一定的比例尺绘画在平面上。
2.地图投影(map projection):将地球表面的经、纬线绘画到平面上去,成为地图的经、纬线图网的方法。
3.“地图图网”:在既定的地图投影上的经、纬线图网。
4.投影变形:用投影的方法,解决了地球曲面与地图平面之间的转化,但投影图象不能完全与地球表面相符。
5.投影变形可分为长度变形、面积变形和角度变形。
二、地图投影分类1.按投影变形的性质分类1) 等角投影(equiangle projection),又称正形投影。
定义:指投影面上任意两方向的夹角与地面上对应的角度相等。
性质:在微小的范围内,可以保持图上的图形与实地相似;不能保持其对应的面积成恒定的比例;图上任意点的各个方向上的局部比例尺都应该相等;不同地点的局部比例尺,是随着经、纬度的变动而改变的。
2) 等积投影(equalarea projection)定义:保持地球上的面积与地图上所对应的面积成恒定比例的一种投影方法。
性质:保持等积就不能同时保持等角。
3) 任意投影(orthographic projection)定义:既不是等角投影,又不是等积投影,是根据某种特殊需要或为了解决某种特定问题,而制作的一种地图投影方法。
如大圆海图。
2.按构制地图图网的方法分类1) 平面投影(plane projection),又称方位投影∶定义:将地球表面上的经、纬线投影到与球面相切或相割的平面上去的投影方法;平面投影大都是透视投影,即以某一点为视点,将球面上的图象直接投影到投影面上去。
地图学第二章之二
![地图学第二章之二](https://img.taocdn.com/s3/m/2224e75377232f60ddcca14a.png)
高斯-克吕格投影
——假设一个椭圆柱横套在地球椭球面上,使其与某 一条经线相切,将椭球面上的经纬线投影到椭圆柱面 上,然后将椭圆柱展成平面;
P
椭圆柱
A C
X P B D 赤道 Y
A C
B D
投影
P
P
投影特点:
投影特点
(1)中央经线和赤道被投影为互相垂直的直线,而 且是投影的对称轴; (2)投影后没有角度变形;
中国政区图,为能完整连续地表示,应选用斜轴方位。
教学用图,选择变形不大的任意投影,如等距投影。
出版方式影响
单幅图的投影选择比较简单; 系列图或图集中的一个图组,应选择同一变形性 质的投影,便于比较; 整个地图集,是由不同主题的图组所构成,在投 影选择上要有变化,应采用同一系统的投影,根 据情况,在变形性质上变化。
(3)中央经线上没有长度变形,离开中经越远变形 越大,最大变形在赤道上。
3.常用的圆锥投影
(1)等角圆锥投影 (2)高斯-克吕格投影
等角圆锥投影
投影条件:地图上没有角度变形,w=0;每一点上经线长度比 与纬线长度比相等,m = n。
a.等角切圆锥投影
1)相切的纬线没有变形,长度比为1。
2)纬线投影后为同心圆弧并且离开标准纬线越远,变形程度
总
结
方位投影的特点是:在投影平面上,由投影点
(平面与球面的切点)向各方向的方位角与实 地相等,其等变形线是以投影中心为圆心的同 心圆。
(2)圆柱投影
以圆柱面作为投影面,使圆柱面与球展为
平面而成。
正轴圆柱投影—圆柱的轴和地轴一致(最常用) ;
方法:假设将地球按比例缩小成一个透明的地球仪
般的球体,在球心、球面、或球外安置一个光源,
测绘技术中常见的地图投影变形分析
![测绘技术中常见的地图投影变形分析](https://img.taocdn.com/s3/m/2f438d576d175f0e7cd184254b35eefdc9d31545.png)
测绘技术中常见的地图投影变形分析一、引言地图作为人类的重要工具,可以帮助我们理解和掌握地球上的各种地理信息。
然而,地球是一个球体,而地图通常是以平面的形式呈现出来。
为了将球面上的地理信息转化为平面上的图像,地图投影技术被广泛应用。
然而,由于球面到平面的转换必然会引起投影变形,地图上的各种形状、方位和距离都会产生不同程度的失真。
因此,地图投影变形分析成为了测绘技术中的一个重要课题。
二、地图投影的基本概念地图投影是将地球上的三维地理信息投影到二维平面上的过程。
它通常采用数学模型来描述,通过将球体的表面点映射到平面上,形成一个二维坐标系。
地图投影可以分为等角和等距两类。
等角投影保持角度的相对大小,但会引起形状和面积的变形;而等距投影保持距离的比例关系,但会引起角度和形状的变形。
三、地图投影的常见变形类型1. 面积变形地球的表面是一个光滑的球体,但在地图上,由于需要将三维空间转化为二维平面,地球上的面积会发生变形。
通常情况下,地球的高纬度地区在平面上会比实际大,而低纬度地区则相对较小。
2. 方向变形地图投影也会引起方向的变形。
在等距投影中,方向会被保留,但等角投影中方向通常会发生变化。
这意味着地图上显示的方向和实际地球上的方向可能存在差异。
3. 形状变形球面到平面的投影过程会导致地图上的形状发生变形。
通常情况下,越靠近地图的中心地区,形状变形越小,而远离中心地区的地方形状变形越大。
4. 距离变形地图投影还会引起距离的变形。
在等角投影中,中心地区的距离会被保留,但远离中心地区的距离会被拉伸或压缩。
而在等距投影中,中心地区的距离会被拉伸或压缩,但远离中心地区的距离会被保留。
四、地图投影变形的影响地图投影变形对于地理信息的理解和分析具有一定程度的影响。
首先,地图投影的面积变形对于地理数据的统计和比较具有重要意义。
在进行面积比较时,需要注意不同地图投影所引起的面积变形,避免得出错误的结论。
其次,方向变形对于导航和测量等应用也有一定的影响。
空中导航-地图投影及其分类
![空中导航-地图投影及其分类](https://img.taocdn.com/s3/m/190548f66edb6f1afe001f1e.png)
19世纪20年代经高斯拟定
约束条件
❖中央经线与投影面相切,投影 后保持长度不变
❖投影后等角
❖ 等角横圆柱投影特点
赤道为直线,与切经线相差90°的经线是直线,其 他经线凹向切经线;
地图等角; 切经线上无失真(切经线左右各3 ° 范围长度失真
图
❖ 高斯投影坐标网
经纬网(地理坐标网)
114°00 14
16
30° 40´
202
α
3396
94 -δ TH/TC
92
18 20 A( 20218 , 3394 )
90
TH/TC= α+(± δ)
δ= ΔλSINΦ 中央经线以东取正,以西取负
❖ 4.兰伯特投影
❖ 也叫等角切(割)正 圆锥投影,德国数学 家Lambert首创,百 万航图和世界地形图 的数学基础
大圆航线为直线,等角航线为凹向极点的螺 旋曲线
❖ 用途
极地领航用图 标画大圆航线的辅助用图
zk1
N
S N
S N
S
N
N
S
S
N
N
S
S
N N
S S 返回
…………
3°E 9°E 01 02
3°W 60
返回
最小比例尺
返回
谢谢
地图等角;标准纬线上无失真。 大圆航线凸向大比例尺一方;等角航线凹向极
点 。
❖ 用途:
世界百万普通地图和百万航图的主要投影方法
❖ 5.极地方位投影
投影原理:将地球视为一透明球体,球心置一点 光源,投影面为平面,投影面通过极点与地球相 切,地球表面的经纬网格投射在平面上。
❖ 极地方位投影特点
第二章下 常用地图投影
![第二章下 常用地图投影](https://img.taocdn.com/s3/m/4744643c5a8102d276a22f34.png)
(2)变形规律
切点没变形,离切点越远,变形越 大。 等变形线是以切点为圆心的同心圆。 切点向任意一点的方位角没变形。
斜轴等积方位投影
(3)用途
主要用于绘制水、陆半球,除非洲、南极洲以外的各 大洲(例如亚洲、欧洲、大洋洲、北美洲、南美洲)。 适合中高纬地区呈圆形区域的国家或地区。(例如包 含南海诸岛的中国全国)
(2)经纬线形状
纬线投影成一组平行直 线,经线投影成与纬线垂 直的平行直线。 纬线间距,从赤道向两极 放大,经线间距相等。
(3)变形特点
角度没有变形。 赤道没有变形,离赤道越远,面积变形越大。 等变形线是平行于纬线的直线。
(4)用途
常用于绘制世界时区图、世界交通图。 适合绘制赤道附近沿东西延伸的国家或地区 由于等角航线投影为直线,所以广泛用来绘制 海图。
2、正轴割圆锥投影(南海诸岛作插图的中国全图)
正轴等角割圆锥投影(Lambert conformal projection兰勃特) 正轴等积割圆锥投影(Albers projection亚尔勃斯)
(1)投影的几何概念
以圆锥投影作为投影面,使圆锥面与球面相割 (两条割线为标准线),按等角或等积条件将球面 上的经纬线投影到圆锥面上,然后将圆锥面展为平 面而成。
纬线投影为同心圆弧,经线投影为放射状直线。纬 线间隔从标准纬线向南向北是逐渐缩小的。
(3)变形规律
①两条标准线没有变形,离标 准线越远变形越大。 ②等变形线是平行于纬线的圆 弧。 ③在两条标准线之间,长度比 小于 1 ,为负变形;而在两 条标准线之外,长度比大于 1,为正变形。
中国地图(南海诸岛作插图)的标准线: ϕ 1=25°,ϕ 2=45/47°
(完整)2.2地图投影的变形
![(完整)2.2地图投影的变形](https://img.taocdn.com/s3/m/f7f23192240c844769eaeedd.png)
比较
二、主方向和变形椭圆
1、主方向
主方向:两个在椭球面上正交的方向投影到平面上后仍
然正交,则这两个方向为主方向。
性质:主方向投影后具有最大和最小尺度比。
b
b’
a o
c a’ Io\′
c’dBiblioteka d’2、变形椭圆取地面上一个微分圆(小到可忽略地球曲面的影响, 把它当作平面看待),它投影到平面上通常会变为椭圆, 通过对这个椭圆的研究,分析地图投影的变形状况。这 种图解方法就叫变形椭圆。
= 0 不变 > 0 变大 < 0 变小
四、面积比和面积变形 1、面积比
投影平面上一微小面积dF′与椭球体面上相应 的微小面积dF之比。
据阿波隆尼定理,有 m2 + n2 = a2 + b2
m·n·sinq = a·b
面积比是变量,随位置的不同而变化。
2、面积变形
投影平面上一微小面积dF′与椭球体面上相 应的微小面积dF之差值同这微分面积dF之比 。
地图投影变形的分布规律
任何地图都有投影变形; 不同区域大小的投影其投影变形不同; 地图上存在没有变形的点(或线); 距没有变形的点(或线)愈远,投影变形愈大,反之亦然; 地图投影反映的实地面积越大,投影变形越大,反之越小。
X ' m 为经线长度比; Y ' n
X
Y
X'm
X
Y'n Y
为纬线长度比
VP=( dF′- dF )/ dF= dF′/ dF –1=P-1
= 0 不变 > 0 变大 < 0 变小
五、角度变形
投影面上任意两方向线的夹角与椭球体面上相 应的两方向线的夹角之差,称为角度变形。
第二章上 地球体与地图投影
![第二章上 地球体与地图投影](https://img.taocdn.com/s3/m/500534e6856a561252d36f34.png)
地球椭球体 地球椭球面
大地水准面
二、地理坐标
以地球的北极、南极、赤道以及本初子午线作为 基本要素,即可构成地球球面的地理坐标系统 。
用经纬度表示地面点位的球面坐标。地理 坐标又按坐标所依据的基准线和基准面的不同 以及求坐标方法的不同,可分为:
天文经纬度 大地经纬度 地心经纬度
大地经纬度:表示地面点在参考椭球面上的位置, 大地经纬度 用大地经度L 、大地纬度 B 和大地高H表示。
正轴切圆柱投影的经纬网:
那么m、n与a、b有何关系: z 当投影后,经纬线正交,那么m、n与a、b一致:
z
当投影后,经纬线不正交,经纬线的交角为θ,那 么m、n与a、b不一致,根据下列公式计算:
m2 + n2 = a2 + b2 m·n·sinθ = a·b
③长度变形(Vμ):长度比与1的差。 Vμ =μ−1
> 0 变大 = 0 不变 < 0 变小
ω
思考题:
1、在某一幅地图上某一点沿经线方向长度比为 1.072,纬线方向长度比为0.931,经纬线交角 为60度,求a,b,P 。 2、已知地图上某点长短轴方向长度比分别为 a=3,b=1,则最大角度变形为多少?
(四)标准线与等变形线
在各种投影地图上,不同点的变形值常常是不一样的,为 了便于观察和了解绘制区域变形的分布,因此,常用标准线和 等变形线来表示制图区域的变形分布特征。
3、在1:100万等积圆锥投影的地图上,某点的经 线长度比为0.95,自该点向东量得图上距离为 2.10cm,求实地长度为多少?(已知经纬线正交)
(二)按构成方式分类
z方位投影 z圆柱投影 z圆锥投影 z伪圆锥投影 z伪圆柱投影 z多圆锥投影 z其他投影
地图投影分类与变换.
![地图投影分类与变换.](https://img.taocdn.com/s3/m/a5c4354550e2524de4187e7f.png)
地图投影分类与变换1.地图投影的分类投影的种类很多,分类方法不尽相同,通常采用的分类方法有两种:一是按变形的性质进行分类:二是按承影面不同(或正轴投影的经纬网形状)进行分类。
(1)按变形性质分类按地图投影的变形性质地图投影一般分为:等角投影、等(面)积投影和任意投影三种。
等角投影:没有角度变形的投影叫等角投影。
等角投影地图上两微分线段的夹角与地面上的相应两线段的夹角相等,能保持无限小图形的相似,但面积变化很大。
要求角度正确的投影常采用此类投影。
这类投影又叫正形投影。
等积投影:是一种保持面积大小不变的投影,这种投影使梯形的经纬线网变成正方形、矩形、四边形等形状,虽然角度和形状变形较大,但都保持投影面积与实地相等,在该类型投影上便于进行面积的比较和量算。
因此自然地图和经济地图常用此类投影。
任意投影:是指长度、面积和角度都存在变形的投影,但角度变形小于等积投影,面积变形小于等角投影。
要求面积、角度变形都较小的地图,常采用任意投影。
(2)按承影面不同分类按承影面不同,地图投影分为圆柱投影、圆锥投影和方位投影等(图1)。
图1 方位投影、圆锥投影和圆柱投影示意图①圆柱投影它是以圆柱作为投影面,将经纬线投影到圆柱面上,然后将圆柱面切开展成平面。
根据圆柱轴与地轴的位置关系,可分为正轴、横轴和斜轴三种不同的圆柱投影,圆柱面与地球椭球体面可以相切,也可以相割(图2a)。
其中,广泛使用的是正轴、横轴切或割圆柱投影。
正轴圆柱投影中,经线表现为等间隔的平行直线(与经差相应),纬线为垂直于经线的另一组平行直线(图2b)。
图2 圆柱投影的类型及其投影图形②圆锥投影它以圆锥面作为投影面,将圆锥面与地球相切或相割,将其经纬线投影到圆锥面上,然后把圆锥面展开成平面而成。
这时圆锥面又有正位、横位及斜位几种不同位置的区别,制图中广泛采用正轴圆锥投影(图3)。
在正轴圆锥投影中,纬线为同心圆圆弧,经线为相交于一点的直线束,经线间的夹角与经差成正比。
2地图投影方法及应用解析
![2地图投影方法及应用解析](https://img.taocdn.com/s3/m/a75dd032e2bd960590c677d4.png)
X' m X
2
Y' n Y
2
代入: X + Y = 1,得
X' Y' 2 1 2 m n
2
2
微小圆 → 变形椭圆
该方程证明:地球面上的微小圆,投影后通常 会变为椭圆,即:以O'为原点,以相交成q角的 两共轭直径为坐标轴的椭圆方程式。
三.地图投影的变形 ——变形椭圆
2 5
特别方向: 变形椭圆上相互垂直的两个方向及经向和纬向
三.地图投影的变形 ——投影后地图的经纬网特点
1 6
三.地图投影的变形 ——投影后地图的经纬网特点
1 7
1 8
方 位 等 积 投 影
1 9
等积圆锥投影
2 0
等角圆锥投影
三.地图投影的变形 ——分类与表示
2 1
• 变形的分类
–长度变形(Vμ) • (微分线段)长度比μ
• (投影后与投影前之比)与1的差值
• 没有变形的投影是不存在的
• 制图时:
–有些投影图上没有角度或面积变形
–有些投影图上沿某一方向无长度变形
三.地图投影的变形 ——地图投影变形的概念
1 3
把地图上和地球仪上的经纬线网进行比较, 可以发现变形表现在三个方面:
– 长度 – 面积 – 角度
三.地图投影的变形 ——地球仪上经纬网的特点
1 4 • 所有经线圈都是通过两极的大圆;长度相等;
• 所有纬线除赤道是大圆外,其余都是小圆,并且 从赤道向两极越来越小,极地成为一点。
三.地图投影的变形 ——地球仪上经纬网的特点
1 5 • 经线和纬线是相互垂直的。 ——角度 • 纬差相等的经线弧长相等;同一条 纬线上经差相等的纬线弧长相等, 在不同的纬线上,经差相等的纬线 弧长不等,而是从赤道向两极逐渐 缩小的。 ——长度 • 同一纬度带内,经差相同的经纬线 网格面积相等,不同纬度带内,网 格面积不等,同一经度带内,纬度 越高,梯形面积越小。由低纬向高 纬逐渐缩小。 ——面积
测绘技术中的地图投影变换方法和技巧
![测绘技术中的地图投影变换方法和技巧](https://img.taocdn.com/s3/m/98c2963a03020740be1e650e52ea551811a6c94d.png)
测绘技术中的地图投影变换方法和技巧地图投影变换方法和技巧在测绘技术中扮演着重要的角色,它们帮助我们更准确地表示地球表面的特征和地理信息。
本文将探讨地图投影变换的一些常见方法和技巧,并介绍它们的应用领域。
一、地图投影变换方法1. 地理坐标投影法地理坐标投影法是将地球表面上的点的经纬度坐标转换为直角坐标系中的点,并在投影平面上绘制。
常见的地理坐标投影法有墨卡托投影、兰勃托投影和极射赤面投影。
墨卡托投影在航海和航空等领域广泛应用,兰勃托投影则常用于世界地图的制作。
2. 平行圆柱投影法平行圆柱投影法是将地球表面上的点的经纬度坐标转换为柱面上的点,并绘制在平行的纬圆上。
该方法在制作地区地图和通用地图时常被采用,如高程图和地形图。
3. 等角圆锥投影法等角圆锥投影法是将地球表面上的点的经纬度坐标转换为圆锥面上的点,并绘制在圆锥面上。
该方法在制作区域地图和城市地图中应用广泛,能够保持角度的一致性,减小形变。
二、地图投影变换技巧1. 形变分析和修正地图投影变换过程中常伴随着形变,即在将地球表面上的曲面映射为平面时,无法完全保持角度、面积和距离的一致性。
因此,在投影变换前需要进行形变分析,并采取相应的修正措施。
常用的修正技巧有地理纠正、重心纠正和形变调和。
2. 数据采样和插值在地图投影变换中,数据的采样和插值是非常重要的环节。
采样是指根据原始数据的空间分布特征,选择一些具有代表性的点作为投影变换的参考点。
插值是指通过已知的参考点,推算并填充其他位置的数据,以完成整个地图的绘制。
三、地图投影变换的应用领域1. 地图制图和地图更新地图投影变换是制作地图的基础环节,它能够将地球表面的实际特征转化为平面上的图像,使得人们能够更直观地了解地理信息。
同时,地图投影变换也可应用于地图的更新,获取最新的地理数据并更新到地图上。
2. 地质勘探和开采地图投影变换在地质勘探和开采领域也有广泛的应用。
地质构造的识别和测量需要进行地图投影变换,以便更清晰地呈现地质特征和地下资源的分布。
地图投影的概念方法和变形及分类依据
![地图投影的概念方法和变形及分类依据](https://img.taocdn.com/s3/m/3e9f9f49302b3169a45177232f60ddccda38e631.png)
地图投影的概念方法和变形及分类依据地图投影变形是球面转化成平面的必然结果,没有变形的投影是不存在的。
对某一地图投影来讲,不存在这种变形,就必然存在另一种或两种变形。
但制图时可做到:在有些投影图上没有角度或面积变形;在有些投影图上沿某一方向无长度变形。
一、地图投影的概念地球椭球体表面是个曲面,而地图通常是二维平面,因此在地图制图时首先要考虑把曲面转化成平面。
然而,从几何意义上来说,球面是不可展平的曲面。
要把它展成平面,势必会产生破裂与褶皱。
这种不连续的、破裂的平面是不适合制作地图的,所以必须采用特殊的方法来实现球面到平面的转化。
球面上任何一点的位置取决于它的经纬度,所以实际投影时首先将一些经纬线交点展绘在平面上,并把经度相同的点连接而成为经线,纬度相同的点连接而成为纬线,构成经纬网。
然后将球面上的点按其经纬度转绘在平面上相应的位置。
由此可见,地图投影就是研究将地球椭球体面上的经纬线网按照一定的数学法则转移到平面上的方法及其变形问题。
其数学公式表达为:χ=f1(λ,φ)y=f2(λ,φ)(2-1)根据地图投影的一般公式,只要知道地面点的经纬度(λ,φ),便可以在投影平面上找到相对应的平面位置(χ,у),这样就可按一定的制图需要,将一定间隔的经纬网交点的平面直角坐标计算出来,并展绘成经纬网,构成地图的"骨架"。
经纬网是制作地图的"基础",是地图的主要数学要素。
二、地图投影的基本方法地图投影的方法,可归纳为几何透视法和数学解析法两种。
1.几何透视法几何透视法是利用透视的关系,将地球体面上的点投影到投影面(借助的几何面)上的一种投影方法。
如假设地球按比例缩小成一个透明的地球仪般的球体,在其球心或球面、球外安置一个光源,将球面上的经纬线投影到球外的一个投影平面上,即将球面经纬线转换成了平面上的经纬线。
几何透视法是一种比较原始的投影方法,有很大的局限性,难于纠正投影变形,精度较低。
地图投影的变形
![地图投影的变形](https://img.taocdn.com/s3/m/a9d95491b7360b4c2e3f64be.png)
面积比是个变量,它随点位置不同而变化。面积变形就 是面积比与1之差,以Vp表示。
Vp=p-1 面积变形有正有负,面积变形为零,表示投影后面 积无变形,面积变形为正,表示投影后面积增加;面积 变形为负,表示投影后面积缩小。
4)角度变形 投影面上任意两方向线所夹角与球面上相应两方向线
2.制图比例尺
不同比例尺地图对精度的要求不同,导致投影选择也 不相同。
3.地图的内容
地图内容不同对地图投影要求也不一样。例如经济图 一般多采用等积投影,因为等积投影能进行地面要素面 积的正确对比,从而有利于掌握经济要素的分布情况。 如分布图、人口图、地质图、土壤图等多采用等积投影。 航海图、航空图、军用图、气象图等多采用等角投影。 因为等角投影能正确的表示方向,如风、洋流等,并且 在小范围内保持图形和实地相似。
⑶圆锥投影 以圆锥面作为投影面,使圆锥面与球面相切 或相割,将球面上的经纬线投影到圆锥面上,然后将圆锥 面展为平面而成。
2.非几何投影 不借助于任何几何面,根据一定的条件用数学解析法
确定球面与平面之间点与点的函数关系。在这类投影中, 一般按经纬网形状又可分为伪方位投影、伪圆柱投影、伪 圆锥投影和多圆锥投影等。
(二)按投影变形性质分类
(1)等角投影(正形投影)
角度变形为0,地球面上的微 小圆经过投影后仍为相似的微小 圆,其形状保持不变,只有长度 和面积变形。等角投影的条件是:
w=0 sin(w/2)=(a—b)/(a+b)=0
a=b,m=n 等角投影在同一点任何方向 的长度比都相等,但在不同地点 长度比是不同的。 多用于编制航海图、洋流图、 风向图等地形图。
来说明变形的性质和数量。椭圆半径与小圆半径之比,
地图投影分类
![地图投影分类](https://img.taocdn.com/s3/m/6af5ab98cd22bcd126fff705cc17552707225e67.png)
地图投影分类在地图制图生产实践中,已经出现了许多种投影,为了便于研究和使用,有必要进行适当的分类。
按投影面分类前文提到了按投影面的形态不同而划分的三种投影:圆锥投影、圆柱投影和方位投影,这是我们在制图过程中经常遇到的三种投影方式。
圆锥投影:可以想象为用一个巨大的圆锥体罩住地球,把地表的位置投影到圆锥面上,然后沿着一条经线将圆锥切开展成平面。
圆锥体罩住地球的方式可以有两种情形:与地球相切(单割线)、与地球相割形成两条与地球表面相割的割线(双割线)。
圆柱投影:用一个圆柱体罩住地球,把地表的位置投影到圆体面上,然后将圆体切开展成平面。
圆柱投影可以作为圆锥投影的一个特例,即圆锥的顶点延伸到无穷远。
方位投影:以一个平面作为投影面,切于地球表面,把地表的位置投影到平面上。
方位投影也可以作为圆锥投影的一个特例,即圆锥的夹角为180度,圆锥变为平面。
按投影面与地球椭球体的相对位置分类根据投影面与地球椭球体的相对位置的不同,还可以将投影类型分为正轴投影、斜轴投影和横轴投影。
正轴投影:投影面的轴(圆锥圆柱的轴线,平面的法线)与地球椭球体的旋转轴重合。
也称正常位置投影,或称极投影。
斜轴投影:投影面的轴(圆锥圆柱的轴线,平面的法线)既不与地球椭球体的旋转轴重合也不与赤道面重合。
也称水平投影。
横轴投影:投影面的轴(圆锥圆柱的轴线,平面的法线)与地球赤道面重合。
也称赤道投影。
按投影后的几何变形分类按照投影后的几何变形分类可分三类:等角投影(正形投影):地面上的任意两条直线的夹角,在经过地球投影绘制到图纸上以后,其夹角保持不变。
等面积投影:地面上的一块面积在经过地球投影绘制到图纸上以后,面积保持不变。
等距离投影:地面上的两个点之间的距离,在经过地球投影绘制到图纸上以后,距离保持不变。
实际上,有许多投影既不能保持等角又不能保持等面积,可以称之为任意投影。
在这类投影中,既有角度变形又有面积变形。
综上所述,投影名称可以结合上述三种分类方法(投影面形状、投影面与地球椭球体的位置、投影后的变形性质)加以命名。
地理信息系统2 地理空间参照系统与地图投影
![地理信息系统2 地理空间参照系统与地图投影](https://img.taocdn.com/s3/m/dbabcddf240c844769eaeede.png)
地理空间既可以是具有属性描述的空间位置的集合(由 一系列的空间坐标值组成);也可以是具有空间属性特
征的实体的集合(由不同实体之间的空间关系构成)。
地理空间的表达是地理数据组织、存储、运算、分析的 理论基础。
地图—传统的地理信息表达方式
现实地理世界抽象模型
点(位置)
高程点, 控制点, 三角点, 地形特征点 水井位, 水泉位, 油井位, 钻井位 站台, 车站, 水文站, 气象站, 天文台, 地震台 乡镇驻地
常用的一些地图投影
各大洲地图投影
亚洲地图的投影:斜轴等面积方位投影、彭纳投影。
欧洲地图的投影:斜轴等面积方位投影、正轴等角圆锥 投影。 北美洲地图的投影:斜轴等面积方位投影、彭纳投影。 南美洲地图的投影:斜轴等面积方位投影、桑逊投影。
澳洲地图的投影:斜轴等面积方位投影、正轴等角圆锥 投影。
地理空间的概念
GIS中的空间概念常用“地理空间”来表达。
地理空间上至大气电离层、下至地幔莫霍面。它是人类活动频 繁发生的区域,是人地关系最为复杂、紧密的区域,是地球上 大气圈、水圈、生物圈、岩石圈和土壤圈交互作用的区域,地 球上最复杂的物理过程、化学过程、生物过程和生物地球化学 过程就发生在这里。
表面(场)
T(Xi ,Yj)
dT / dXi dT / dYj
地图描述地理信息的方式
符号和注记 空间关系隐含
基本地图比例尺
比例尺等级(有级) 1:100, 1:200, 1:500, 1:1 000, 1:2 000, 1:5 000 1:10 000, 1:50 000, 1:100 000, 1:200 000 1:500 000, 1:1000 000, 1:2000 000, 1:4000 000 1:8000 000, 1:10 000 000, 1:20 000 000, 1:50 000 000 1:100 00,通常称地
地图的数学基础2
![地图的数学基础2](https://img.taocdn.com/s3/m/ea6c946448d7c1c708a1450f.png)
§3 常见地图投影一.方位投影以平面为投影面,使平面与椭球体相切或相割,将球面上的经纬线网投影到平面上形成方位投影。
1、变形分布规律其等变形线是以投影中心为圆心的同心圆。
投影中心是没有变形的点,从投影中心向四周变形逐渐增大。
在投影平面上,由投影中心向各方向的方位角保持不变。
2、正轴方位投影切点在北极或南极,又叫极地投影。
经纬线形状:纬线为同心圆,经线为自圆心辐射的直线,其夹角等于经差。
在正轴投影中,因为经线和纬线正交,所以经纬线方向和主方向一致。
一般用于绘制南、北半球地图或北极、南极区域地图。
按变形性质又可以分为等积、等角、等距投影等。
1)正轴等角方位投影经纬线形状:纬线为同心圆,经线为自圆心辐射的直线,其夹角等于经差。
经线和纬线正交,所以经纬线方向和主方向一致。
在中央经线上纬线间隔自投影中心向外逐渐增大;经线夹角等于相应的经差。
投影变形情况:①无角度变形,任一点长度比相同,极值长度比相等(a=b),经纬线长度比相等(m=n)。
②微分圆投影后保持正圆性质。
③极点为投影中心,是无变形点,距投影中心愈远长度变形和面积变形愈大, 在投影边缘面积变形是中心的四倍。
2)正轴等距方位投影经纬线形状:纬线为同心圆,经线为自圆心辐射的直线,其夹角等于经差。
经线和纬线正交,所以经纬线方向和主方向一致。
经线投影后保持正长,所以投影后的纬线间距相等。
投影变形情况:①经线方向没有长度变形(m=1),各纬圈间的距离与实地相等。
②极点为投影中心,为无变形点。
③等变形线是以极点为中心的同心圆,距投影中心愈远角度变形和面积变形愈大。
等距切方位投影亦称波斯托等距方位投影。
3)正轴等积方位投影经纬线形状:纬线为同心圆,经线为自圆心辐射的直线,其夹角等于经差。
经线和纬线正交,所以经纬线方向和主方向一致。
在中央经线上纬线间隔自投影中心向外逐渐减小。
投影变形情况:①没有面积变形,面积比等于1,但角度变形较大②沿经线长度比大于1,沿纬线长度比小于1,两者互为倒数,面积比等于1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
tan(45
)
b
2
a
长度变形是各种变形的基础!
CHENLI
27
面积比和面积变形:
投影平面上微小面积(变形椭圆面积) dF′与球面上相应的微小面积(微小圆面积) dF之比。
P 表示面积比 Vp 表示面积变形
PddF F'πaπrr*2brab Vp p 1
= 0 不变 > 0 变大 < 0 变小
P = a·b = m ·n (q= 90)(主方向和经向纬向一致)
第2章 地图投影方法、变形和分类
2.1 地图投影的基本方法 2.2 地图投影的变形 2.3 球面极坐标及其换算 2.4 地图投影的分类
CHENLI
1
2.1 地图投影的基本方法
投影面:将地球表面的点、线、面投影于其上的承 受面
地图投影的原理是在原面与投影面之间建立点、线、 面的一一对应关系
地图投影的方法: 几何透视法 数学分析法
= 0 不变 > 0 变大 < 0 变小
长度比是变量,随位置和方向的变化 而变化。
CHENLI
25
角度变形:
投影面上任意两方向线所夹之角与球面上 相应的两方向线夹角之差,称为角度变形。
以ω表示角度最大变形。
CHENLI
26
最大角度变形可用极值长度比a,b表示
sin a b
2 ab
实用上常以下公式求得:
CHENLI
16
2. 投影变形的概念 地图投影不能保持平面与球面之间在
长度(距离)、角度(形状)、面积等方 面完全不变。
地球仪上经纬线网格和地图上比较:
CHENLI
17
球面经纬网经过投影之后,其几何特征 受到扭曲——地图投影变形:长度(距离)、 角度(形状)、面积。
CHENLI
18
地图投影的变形
据阿波隆尼定理,有 m2 + n2 = a2 + b2
m·n·sinq = a·b 22
结论:微分圆长、短半轴的大小,等于该点
主方向的长度比。也就是说,如果一 点上主方向的长度比(极值长度比)已经确 定,则微分圆的大小和形状即可确定。
通过变形椭圆形状显示变形特征
r
r′
r′
ba
a b
ba
ab
实地上的一 a=b=r′< r a=b=r′> r 个 微分圆
当制图区域的中心点是在两极以外的任一点以及制图 区域是沿经线或任一方向延伸的情况,为了减少投影 误差,常采用斜轴或横轴投影。
从本质上讲,地图投影就是按一定的条件确定大 地坐标和直角坐标之间的一一对应关系。
CHENLI
10
CHENLI
11
沿经线直接展开?
CHENLI
12
沿纬线直接展开?
CHENLI
13
沿经线直接展开?
CHENLI
14
沿经线直接展开?
CHENLI
15
§2.2 地图投影的变形
一、投影变形的概念 1. 投影变形产生原因——地球的形状
地球曲面转换成地图平面,不仅仅存在着比例尺变换,而且还存在着投影转换的问题
CHENLI
8
地图投影,简单的说就是将参考椭球面上的元素 (大地坐标、角度和边长)按一定的数学法则化 算到平面上的过程。
x y
ff12((LL,,BB))
CHENLI
9
地图投影的基本思想是,先将参考椭球面上的点 化算到投影面上(可展曲面),再将投影面沿母 线切开展为平面。
CHENLI
21
主方向(底索定律):无论采用何种转换方法,球面
上每一点至少有一对正交方向线,在投影平面上仍 然保持其正交关系”。在投影后仍保持正交的一对 线的方向成为主方向。取主方向为作为微分椭圆的 坐标轴
特殊方向
长轴方向(极大值)a 主方向
短轴方向(极小值)b 经线方向 m ;纬线方向 n CHENLI
X ' m 为经线长度比 Y ' n 为纬线长度比
X
Y
CHENLI
20
X ' m Y ' n
X
Y
代入: X2 + Y2 = R2,令R=1,得
X '2 m2
Y '2 n2
1
微小圆→变形椭圆
该方程证明: 地球面上的微小
圆,投影后通常会变为椭圆,即
以O'为原点,以相交成q角的两共
轭直径的坐标轴的椭圆方程式。
1
2
a b=r2
3
4
CHENLI
a> r,b=r 5
a≠b≠r 6
23
CHENLI
24
三、投影变形的性质和大小
长度比和长度变形:
投影面上一微小线段(变形椭圆半径)和球 面上相应微小线段(球面上微小圆半径,已按规 定的比例缩小)之比。
m表示长度比, Vm表示长度变形
m ds' ds
Vm m 1
地图投影中不可避免地存在着变形,建立一个投影时 不仅要建立(x,y)与( ,)之间的关系,而且要研究投 影变形的分布与大小。地图投影的变形主要体现在:
长度变形 面积变形 角度变形
长度变 形
角度变 形
CHENLI
面积变形和 长度变形
19
二、变形椭圆
取地面上一个微分圆(小到可忽略地球曲面 的影响,把它当作平面看待),它投影到平面上通 常会变为椭圆,通过对这个椭圆的研究,分析地图 投影的变形状况。这种图解方法就叫变形椭圆。
P = m ·n ·sin q (q≠ 90)(阿波隆尼定理)
面积比是变量,随位CHE置NLI 的不同而变化。 28
2.3 球面坐标及其换算
球面坐标的意义和换算公式 地理坐标换算球面极坐标
CHENLI
29
球面坐标系的意义
正轴投影以地理坐标,为参数,投影经纬网形状比较 简单,计算方便。但在使用上受到地理位置的限制。例 如,正轴方位投影只适用于两极地区,正轴圆柱投影适 用于赤道附近地区,正轴圆锥投影适用于沿纬线延伸的 中纬度地区。
CHENLI
2
地图投影,简单的说就是将参考椭球面上的元素 (大地坐标、角度和边长)按一定的数学法则化 算到平面上的过程。
x y
ff12((LL,,BB))
CHENLI
3
二、投影方式: 1.平行投影
CHENLI
4
2.透视投影
CHENLI
5
3. 广义投影
CHENLI
6
三、地图投影实质: 建立平面上的点(用平面直角坐标或极坐标
表示)和地球表面上的点(用纬度和经度表 示)之间的函数关系,用数学式表达这种关 系,就是:
x f1 ( , )
y f 2 ( , )
就是将参考椭球面上的元素(大地坐标、角度和 边长)按一定的数学法则化算到平面上的过程。
CHENLI
7
2.2 地图投影的变形
椭球面上的各点的大地坐标,按照一定的数学法 则,变换为平面上相应点的平面直角坐标,通常 称为地图投影。 ✓地理坐标为球面坐标,不方便进行距离、方位、 面积等参数的量算 ✓地球椭球体为不可展曲面 ✓地图为平面,符合视觉心理,并易于进行距离、 方位、面积等量算和各种空间分析