氦质谱检漏仪原理及使用方法及相关介绍共55页

合集下载

氦质谱仪背压检漏方法_概述及解释说明

氦质谱仪背压检漏方法_概述及解释说明

氦质谱仪背压检漏方法概述及解释说明1. 引言1.1 概述氦质谱仪背压检漏方法是一种常用的无损检测方法,用于检测工业设备及管道系统中可能存在的泄露点。

该方法通过利用氦气的特殊物理性质和气体流动原理,实现对泄漏点进行准确、快速的定位和评估。

背压检漏方法具有非侵入性、高灵敏度和自动化程度高等优势,在工业领域得到了广泛应用。

1.2 文章结构本文将围绕氦质谱仪背压检漏方法展开详细论述,文章结构包括引言、背压检漏方法的原理、背压检漏方法的步骤与实施、背压检漏结果分析与评估以及结论与展望等部分。

首先介绍了本文的概述和目的,然后详细解释了背压检漏方法相关的原理,并探讨其在不同领域中的应用优势。

接下来,阐述了使用该方法进行检测时所需进行的准备工作和步骤,并提供了数据分析与处理方法。

最后,对测试结果进行评估和解读,并分析存在的误差,并提出改进措施。

文章最后总结了本次研究的主要成果,并提出了未来进一步研究的方向。

1.3 目的本文旨在全面概述氦质谱仪背压检漏方法,介绍其原理、优势和应用领域,详细阐述该方法的步骤与实施过程,并提供相关数据分析与处理方法。

同时,通过对实验结果的评估与解读,发现存在的误差并提出改进措施。

通过对氦质谱仪背压检漏方法进行深入研究和分析,期望为工程技术领域中泄漏点检测及预防提供参考和指导,并为后续研究提供基础依据。

2. 背压检漏方法的原理:2.1 氦质谱仪背压检漏原理:氦质谱仪背压检漏是一种常用的方法,该方法基于气体分子的运动特性和质谱检测技术,通过检测目标物体表面的潜在泄漏点来实现泄漏检测。

其原理可以简要概括为以下几个步骤。

首先,将高纯度的氦气作为探测介质注入已密封的被测试系统或设备内部。

由于氦气分子具有很小的尺寸和较高的扩散性能,在目标物体出现泄露时,氦气会从泄漏点逸出到周围环境中。

接下来,使用一个质谱仪进行监测和分析。

质谱仪内部设置了一个称为“零背景样品”的容器,其中充满了监测过程中未受外部干扰影响而得到平衡状态的环境空气样品。

氦质谱检漏仪原理及使用方法及相关介绍

氦质谱检漏仪原理及使用方法及相关介绍

氦质谱检漏仪原理及使用方法及相关介绍一、原理氦质谱检漏仪的原理基于质谱技术。

质谱技术是一种将样品原子或分子离子化并加速到特定质量的仪器分离和检测方法。

在氦质谱检漏仪中,首先将氦气引入被测系统中,然后利用真空泵将系统抽成高真空状态,此时如果系统存在泄漏,氦气会从泄漏点进入真空室。

接下来,仪器将氦气离子化并加速,然后将其通过质谱仪进行分离和检测。

质谱仪按质量对氦离子进行分离,只保留本离子,其他离子则被排除在外。

最后,通过测量离子的电流,就可以确定氦气的浓度,从而判断系统是否有泄漏的情况。

二、使用方法1.准备工作:将氦气瓶连接到仪器中,确保连接紧固,打开氦气瓶阀门。

2.开机操作:按下电源开关,等待仪器启动并进入工作状态。

此时,仪器会进行自检,并显示相关的信息。

3.设置参数:根据需要,设置仪器的工作参数,如离子加速电压、离子电流等。

这些参数的设定会影响仪器的灵敏度和分辨率。

一般来说,根据被测系统的特点和泄漏的排查需求来确定。

4.测试操作:将仪器探头移至被测系统周围,并尽量靠近可能存在泄漏的区域。

慢慢移动探头,直到仪器探测到氦气浓度的变化。

此时,仪器会发出声音或显示信号,以提示泄漏处的位置。

5.结果判断:根据仪器显示的信号确定泄漏点,可以通过仔细观察和移动探头来进一步定位泄漏。

6.数据记录:记录泄漏点的位置、泄漏大小以及检测时间等信息,便于后续处理和跟踪。

三、相关介绍1.灵敏度:氦质谱检漏仪具有非常高的灵敏度,可以检测非常微小的氦气泄漏。

一般来说,它可以检测漏率为10^-9至10^-12毫升/秒的泄漏。

2.应用范围:氦质谱检漏仪广泛应用于各个领域,如航空航天、化学工业、电子、制药等。

在这些领域,确保系统的密封性非常重要,而氦质谱检漏仪的高灵敏度和精确度可以满足这些需求。

3.优点:氦质谱检漏仪的优点包括操作简单、快速、准确,具有高灵敏度和分辨率,可以定位并确定泄漏点。

4.注意事项:在使用氦质谱检漏仪时,需要保证被测系统处于高真空状态,以确保准确的检测结果。

氦质谱检漏仪使用说明资料

氦质谱检漏仪使用说明资料

加压罐压氦装置
图2 加压罐压氦装置的外部接通顺序: 写出设备外部条件的接通先后 顺序,操作方法,具体的参数等。 1、把加压罐、电阻真空计、真空泵、氦气瓶按要求连接。 2、检查加压罐的密封圈是否有损害, 加压罐进出阀门是否关闭不了; 真空泵是否有足够的泵油, 气镇阀旋钮是否处在关闭的位置; 氦气瓶 减压阀是否漏气现象。 3、确认所有应该注意的事项没有问题之后可以接电源通电。 重氟油粗检
图3 1、 查看温度检测线路和加热板线路没有破损。
2、 在油箱中加入适量的重氟油 3、 插上电源线,设定重氟油的温度进行加热处理,打开照明灯。
当温度达到要求即可用来粗检产品。 四、详细操作 启动检漏仪 1、 连接电源插头,打开检漏仪开关。 2、 机械泵开始启动。 3、 面板上的指示灯亮。 4、 液晶屏( LCD )显示如下信息:
化。如果在报废点之内则说明密封性合格, 如若有报警声响则说明该 点密封性不合格需要返修。 4、组件检完之后再按下检漏按钮当待机按钮灯亮之后即可取下组件。 (二)全检(背压法) 1、由于组件在加压罐和检漏盒中会受到一定的压力冲击,因此要用 一张无尘纸包裹住组件以免碰伤和组件内部元件受到冲击。 2、全检是要把产品先放在充满氦气的加压罐中施加绝对压力 0.2Mpa 的压力加压 4h。 加压罐装置如下图所示:
氦质谱检漏仪使用说明书
资产编号:
一、设备组成及工谱检漏仪
重氟油粗检装置 检漏盒
检漏托盘 氦气喷抢
型号: ZQJ-542
双级旋片真空泵 电阻真空计 氦气瓶
2、设备工作原理 检漏仪内部组成:氦质谱检漏仪主要由分子泵、质谱室、组合阀体, 机械泵以及控制电路板等组成。 检漏仪的工作原理: 氦质谱检漏仪是根据质谱仪学原理, 用氦气作为 搜索气体制成的气密性检测仪器。 ZQJ-542 检漏仪采用 180 度磁偏转质谱室, 钨制灯丝发射出来的电子 经过加速进入离化室, 在离化室内与残余气体分子和经被检件漏孔进 入离化室的氦气互相碰撞使其电离成正离子, 这些离子在加速电场作 用下进入磁场,由于洛伦兹力作用产生偏转,由于不同质量数( m/e) 的离子其偏转半径不同, 这样就将不同的离子分离开了。 由于磁场参

氦质谱检漏仪使用方法

氦质谱检漏仪使用方法

氦质谱检漏仪使用方法
一、氦质谱检漏仪的简析:
1、为气体工业名词术语,用氦气或者氢气作示漏气体,以气体分析仪检测氦气而进行检漏的质谱仪。

氦气的本底噪声低,分子量及粘滞系数小,因而易通过漏孔并易扩散。

2、另外,氦系惰性气体,不腐蚀设备,故常用氦作示漏气体。

将这种气体喷到接有气体分析仪(调整到仅对氦气反应的工作状态)的被检容器上,若容器有漏孔,则分析仪即有所反应,从而可知漏孔所在及漏气量大小。

二、氦质谱检漏仪的使用方法:
1、氦质谱检漏技术是真空检漏领域里不可缺少的一种技术,由于检漏效率高,简便易操作,仪器反应灵敏,精度高,不易受其他气体的干扰,在电阻炉检漏中得到了广泛应用。

2、是根据质谱学原理,用氦气作示漏气体制成的气密性检测仪器。

由离子源、分析器、收集器、冷阴极电离规组成的质谱室和抽气系统及电气部分等组成。

3、质谱室里的灯丝发射出来的电子,在室内来回地振荡,并与室内气体和经漏孔进人室内的氦气相互碰撞使其电离成正离子,这些氦离子在加速电场作用下进人磁场。

4、由于洛伦兹力作用产生偏转,形成圆弧形轨道,改变加速电压可使不同质量的离子通过磁场和接收缝到达接收极而被检测。

喷氦法、吸氦法是在电阻炉检漏中常用的两种方法。

总结:氦质谱检漏仪的简析及使用方法,看完本文您就应该有了基本的认识和了解相信大家都明白了吧!总的来说,希望对大家有所帮助。

氦质谱背压检漏

氦质谱背压检漏

氦质谱背压检漏
氦质谱背压检漏是一种常用的检漏方法,主要用于检测气体系统中的微小泄漏。

其基本原理是利用氦气在质谱仪中的高灵敏度检测能力,通过测量系统中的氦气浓度差异来确定泄漏点。

具体操作步骤如下:
1. 确保系统处于关闭状态,并将质谱仪连接到气体系统的出口。

2. 在质谱仪的控制面板上设置合适的检测参数,如扫描速度、灵敏度等。

3. 打开质谱仪的抽气泵,将氦气抽入系统中。

4. 在气体系统中设置适当背压,通常在10-1000 Pa之间。

5. 开始检测,观察质谱仪的显示屏上的氦气峰值图谱。

6. 如果氦气峰值图谱中存在异常的峰值或与背景不一致的波动,表示存在泄漏点。

7. 根据泄漏点的大小和位置,采取相应的修复措施进行处理。

需要注意的是,在进行氦质谱背压检漏时,要确保气体系统的密封性良好,确保检漏结果的准确性。

此外,背压的设置应适当,过高的背压可能影响检测的灵敏度,而过低的背压可能导致系统内氦气稀释不足,也会影响检测的准确性。

氦质谱检漏仪使用说明

氦质谱检漏仪使用说明

氨质谱检漏仪使用说明检漏仪及其真空系统的组成VARIAN959-50检漏仪检漏漏率范围从1X10* (毫升/秒)至lj 2X1 O'10(毫升/秒)(相当于30年漏1毫升),它主要由质谱管、高真空泵、热偶规管、一系列按钮控制的阀、 测试接口、真空和漏率以及电路板等部分组成,其真空系统结构为(分子泵型)图1检漏仪真空系统结构图(分子泵型)指示, TC1V3-n-V6检漏仪开启后,VK V2 . V6阀打开,测试口与质谱管保持真空连接。

如果按下u VENT"键,放气阀V3打开,V1关闭,测试口处于大气状态,同时V2打开,使分子泵、质谱管和机械泵连通。

分子泵运行时,质谱管真空度要达到2X104TORR以上,才能给离子源灯丝加热。

检漏仪工作原理]<■(2340高斯)图2检漏仪工作原理图如果被检系统有微小漏孔,在小孔周围喷氨气时,总有部分氨原子会通过漏孔进入检漏仪接口,通过其真空系统扩散到质谱管。

质谱1%管是检漏仪核心组成部分,参见上图2,在电场和磁场作用下,灯丝 发射电子使气体电离,电离后带正电的离子通过聚焦和孔集中后,进 入分析磁场(磁场强度为2340高斯),由于受洛仑磁力作用,离子 会发生偏转,其它外界条件相同的情况下,偏转半径由带电粒子电量 与质量之比即荷质比决定,荷质比小的离子偏转半径小,荷质比大的 粒子偏转半径大,只有氮离子才能通过抑制小孔到达收集极,信号经 放大后,检漏仪报警。

三、控制和指示器功能说明: 序号 控制、指示器功能Vent Start Hold 和Test 按检漏仪开关时,控制各个阀的 钮 动作顺序显示测试口压力,单位millitorr 显示漏率,单位std cc/sec (标 准立方厘米每秒),超过或低 于测 量量程,分别由上下端两 个发光二极管(LED )“over 55和 “under 乃显示。

随“range 55 和 tfiHi-Lo Sensitivity ”档位选择不 同, X 10指数窗口将显示4、5、6、2 Pressure (压力指示)3 Leak rate (漏率指示)Coarse zero (粗调)Fil. Selector (灯丝选择)Fil. On - Off (灯丝开关)EMIS (发射控制)AUDIO (声音调节)CAL.(校准控制)漏率显示粗调二位开关选择灯丝1或灯丝2开关离子源灯丝通过改变灯丝电流来调节离子源电子发射调节检漏仪板警声音Range (量程选择)Zero (调零)FIL (灯丝指示)Hi vac ok (真空度ok )Main power (主电源)Focus (聚焦)ION (离子源控制)Residual background (残余本底)量程选择共四个档位。

氦质谱检漏仪原理

氦质谱检漏仪原理

氦质谱检漏仪原理
氦质谱检漏仪是一种常用的气体检测设备,它主要用于检测和定位微小的气体泄漏点。

其原理基于气体分子在电场中的电离和加速运动过程,并通过质谱仪进行分析和检测。

具体原理如下:
1. 气体进样:被测气体(通常为氦气)通过进样系统进入质谱仪。

进样方式可以是直接进入或者通过泵抽取。

2. 电离:进入质谱仪的氦气通过电离器(通常为电子轰击电离器)被电子轰击后发生电离,即氦气分子损失一个或多个电子而形成正离子。

这些正离子具有较高的能量。

3. 加速:经过电离的氦气正离子通过加速器被加速到高速,具备足够的动能以便能够进入质谱仪的质量分析区域。

4. 质量分析:加速后的氦气正离子进入质谱仪的磁场区域。

利用磁场的弯曲效应,根据正离子的质量-电荷比进行分离和筛选。

在磁场的作用下,不同质量的正离子会分别偏转到不同的角度,并最终达到质谱仪的离子计数器。

5. 检测与分析:质谱仪的离子计数器对不同质量的氦气正离子进行计数和分析。

通过测量各个质量的氦气正离子的数目和能量,可以确定被测气体中的氦气浓度和泄漏位置。

通过以上步骤,氦质谱检漏仪可以实现对微小气体泄漏的检测
和定位。

由于氦气具有较小的分子尺寸和良好的扩散性能,使得该检漏仪非常灵敏,对于气体泄漏点的检测具有很高的精度和可靠性。

氦质谱检漏仪原理及使用方法及相关介绍精编版

氦质谱检漏仪原理及使用方法及相关介绍精编版

氦质谱检漏仪原理及使用方法及相关介绍精编版一、氦质谱检漏仪的原理1.首先,将待检测的物体使用泵抽真空,将环境中的空气抽去,使之达到一个低压下。

2.然后,将氦气注入被检测物体的周围环境中,此时被检测物体内部存在可能的泄漏点。

3.接下来,利用泵将周围的氦气抽入质谱仪进行分析。

在质谱仪中,氦气会分子破裂形成氦原子以及其他质子和电子组成的离子。

4.最后,利用质谱仪的探测器检测这些离子,并根据离子的种类和数量来确定氦气泄漏的位置和程度。

二、氦质谱检漏仪的使用方法使用氦质谱检漏仪来检测气体泄漏需要以下步骤。

1.连接仪器:首先,将氦质谱检漏仪的各个部分按照说明书连接好,确保仪器正常工作。

2.准备工作:确保被检测物体周围环境处于一定的真空状态,注入氦气之前,将其它气体从被检测物体周围排除出去。

3.注入氦气:将氦气注入被检测物体周围环境中,确保氦气在泄漏点出漏时能进入到被检测物体内部。

4.开始检测:通过操作仪器,将泵启动,将周围环境中的氦气抽入质谱仪中进行分析。

5.分析结果:根据质谱仪输出的数据和显示的曲线,来确定氦气泄漏的位置和程度。

6.维护和记录:检测完成后,对仪器进行维护和清洁,同时将检测过程和结果进行记录。

三、氦质谱检漏仪的应用1.工业领域:氦质谱检漏仪可以用于汽车、空调、制冷设备、容器、管道等工业设备的泄漏检测。

它可以检测到微小的泄漏,避免了潜在的安全隐患。

2.实验室应用:氦质谱检漏仪可以用于实验室的真空系统、气体贮存、气体分析等设备的泄漏检测。

它可以保证实验室设备和实验工作的准确性和安全性。

3.能源设备:氦质谱检漏仪可用于能源设备的泄漏检测,如太阳能光伏系统、风力发电机、核电站等。

它可以提高设备的使用寿命和能源利用效率。

综上所述,氦质谱检漏仪是一种非常有效的气体泄漏检测仪器,具有高灵敏度和准确性。

它的工作原理简单明了,使用方法也相对简单。

在工业和实验室中的广泛应用,保证了设备的安全和工作的正常进行。

氦质谱检漏仪工作原理

氦质谱检漏仪工作原理

氦质谱检漏仪工作原理
氦质谱检漏仪是一种常用的检测设备,用于检测密封系统中的气体泄漏。

其工作原理如下:
1. 氦气供应:质谱检漏仪通过外部连接或内置氦气源供应氦气。

2. 预处理:氦气进入质谱检漏仪后,会经过一系列预处理步骤,包括过滤、压缩和干燥,以去除杂质并保证供应气体的纯净。

3. 充气:经过预处理的氦气会被充入要检测的密封系统中。

密封系统的外部通入被测区域。

4. 探测器:当氦气泄漏进入被测区域后,测量装置中的探测器会迅速检测到氦气的存在。

常用的探测器包括热阴极离子化器、质谱仪和离子检测器。

5. 信号处理:探测器会产生相应的电信号,它们会经过放大和滤波等处理步骤,以提取有用的泄漏信号,并消除背景噪音。

6. 泄漏指示:质谱检漏仪会将处理后的信号转换成泄漏指数或泄漏流量等形式的数据,用于指示和记录被测密封系统的泄漏情况。

通常来说,泄漏率越高,泄漏指数或泄漏流量就越大。

总结:氦质谱检漏仪通过充入被测系统的氦气,利用探测器检测氦气泄漏,并通过信号处理得出泄漏指数或泄漏流量,从而判断被测密封系统的泄漏程度。

氦质谱检漏仪基本原理简介

氦质谱检漏仪基本原理简介

氦质谱检漏仪基本原理简介氦质谱检漏仪是用氦气为示漏气体的专门用于检漏的仪器,它具有性能稳定、灵敏度高的特点。

是真空检漏技术中灵敏度最高,用得最普遍的检漏仪器。

氦质谱检漏仪是磁偏转型的质谱分析计。

单级磁偏转型仪器灵敏度为lO-9~10-12Pam3/s,广泛地用于各种真空系统及零部件的检漏。

双级串联磁偏转型仪器与单级磁偏转型仪器相比较,本底噪声显著减小.其灵敏度可达10-14~10-15Pam3/s,适用于超高真空系统、零部件及元器件的检漏。

逆流氦质谱检漏仪改变了常规型仪器的结构布局,被检件置于检漏仪主抽泵的前级部位,因此具有可在高压力下检漏、不用液氮及质谱室污染小等特点.适用于大漏率、真空卫生较差的真空系统的检漏,其灵敏度可达10-12Pam3/s。

(1)工作原理与结构氦质谱检漏仪由离子源、分析器、收集器、冷阴极电离规组成的质谱室和抽气系统及电气部分等组成。

①单级磁偏转型氦质谱检漏仪现以HZJ—l型仪器为例.介绍单级磁偏转型氦质谱检漏仪。

在质谱室内有:由灯丝、离化室、离子加速极组成离子源;由外加均匀磁场、挡板及出口缝隙组成分析器;由抑制栅、收集极及高阻组成收集器;第一级放大静电计管和冷阴极电离规。

在离化室N内,气体电离成正离子,在电场作用下离子聚焦成束。

并在加速电压作用下以一定的速度经过加速极S1的缝隙进入分析器。

在均匀磁场的作用下,具有一定速度的离子将按圆形轨迹运动,其偏转半径可计算。

可见,当B和U为定值时,不同质荷比me-1的离子束的偏转半径R不同。

仪器的B和R 是固定的,调节加速电压U使氦离子束恰好通过出口缝隙S2,到达收集器D,形成离子流并由放大器放大。

使其由输出表和音响指示反映出来;而不同于氦质荷比的离子束[(me-1)1(me-1)3]因其偏转半径与仪器的R值不同无法通过出口缝隙S2,所以被分离出来。

(me-1)2=4,即He+的质荷比,除He+之外,C卅很少,可忽略。

②双级串联磁偏转型氦质谱检漏仪由于两次分析,减少了非氦离子到达收集器的机率。

氦质谱检漏仪原理

氦质谱检漏仪原理

氦质谱检漏仪原理
氦质谱检漏仪是一种重要的检漏仪,能够准确地检测到液体、气体等的漏损率。

这种检漏仪可以有效地检测出更小的漏损,提高检漏精度。

氦质谱检漏仪原理是基于氦质谱学理论。

氦质谱学是利用氦气和原子的比例来测量和定位气体组成,其发展源于20世纪70年代的质谱技术,但仅限于氦气的检测。

氦质谱技术在检测氦气时,可以比较准确地测量和定位更小的漏损比例。

它们的原理是,采用高速氦气的流动,将漏损的氦气从试样中迅速抽取出来,然后将其进行深度分析,最终测量出漏损比例。

氦质谱检漏仪的优点是准确度比常规检漏仪要高得多,而且可以检测出更小的漏损,例如比常规检漏仪定义的漏损标准更低的5%以下漏损,还可以检测到有害气体的漏损。

另外,氦质谱检漏仪还具有较高的吞吐量,可以有效地检测出大量样品中的漏损,比起传统检漏仪具有更多的优势。

另一方面,氦质谱检漏仪也有一些缺点。

由于它使用的是高速氦气,检漏的过程会产生很大的噪声,影响检漏的质量。

另外,氦质谱检漏仪的成本也比传统检漏仪要高得多,所以可能对一些低成本的检漏项目很难适应。

总的来说,氦质谱检漏仪是一种重要的检漏仪,它能够准确检测漏损,比常规检漏仪具有更高的精度和更好的灵活性,尤其是检测有害气体漏损时,它更具有优势。

但同时也有一些缺点,比如高成本和
较大的噪声等。

因此,在实际应用中,要根据实际情况综合考虑氦质谱检漏仪的各种优缺点,选择最合适的检漏技术。

氦质谱检漏仪工作原理

氦质谱检漏仪工作原理

氦质谱检漏仪工作原理同学们!今天咱们来聊聊一个超厉害的东西——氦质谱检漏仪的工作原理。

大家得知道,氦质谱检漏仪就像是一个超级侦探,专门用来查找那些微小的泄漏点。

那它到底是怎么工作的呢?其实呀,这背后的原理还挺有趣的。

氦质谱检漏仪主要由质谱室、离子源、分析器、收集器和放大器等部分组成。

当我们要检测一个物体是否有泄漏的时候,会先把这个物体放进一个密封的测试环境里,然后往里面充入氦气。

为啥是氦气呢?这是因为氦气在空气中的含量特别少,这样就很容易被检测出来啦。

接下来,离子源会产生一束带电粒子,这些带电粒子会和进入质谱室的氦气分子发生碰撞,使氦气分子变成带电的离子。

然后,分析器就像一个超级筛选器,它会根据离子的质量和电荷比,把氦离子从其他各种离子中筛选出来。

被筛选出来的氦离子就会被收集器收集起来,然后经过放大器放大,最后转化成电信号。

如果被检测的物体没有泄漏,那么收集到的氦离子就会很少,电信号也就很微弱。

但要是这个物体有泄漏的地方,外面的氦气就会钻进去,这时候收集到的氦离子就会变多,电信号也就会变强。

咱们来举个例子吧。

比如说检测一个汽车的空调系统,把空调系统放在密封空间,充入氦气。

如果空调系统密封得很好,那检漏仪给出的信号就很弱,说明没问题。

但要是有哪怕一点点小裂缝,氦气跑进去了,检漏仪的信号就会变强,这就告诉我们有泄漏啦。

再比如说检测一个航天器的密封部件,一点点泄漏都可能造成巨大的问题。

氦质谱检漏仪就能非常灵敏地检测到哪怕极其微小的泄漏,确保航天器的安全。

氦质谱检漏仪就是通过这样一系列神奇的操作,帮助我们发现那些肉眼看不到的泄漏点,是不是超级厉害呀!希望今天的讲解能让大家对氦质谱检漏仪的工作原理有更清楚的了解,以后要是遇到相关的知识,咱们就能轻松应对啦!。

氦质谱检漏仪原理及使用方法及相关介绍

氦质谱检漏仪原理及使用方法及相关介绍

仪器结构
ZhP--30型氦质谱检漏仪由四部分组成 。
真空系统 质谱管 电子学电路 机架
仪器结构图:
真空系统
真空科学发展的历史回顾
人们或许是受翻译国外书刊的影响,通常在回顾真空科 学发展史时,常常误认为1643年托里析利的压力实验和 1650年葛利克发明抽气机是对真空这一现象的最早发现 ,其实早在公元前六世纪我国在冶铁技术中即采用了风 箱鼓风法,那时称风箱为“鞲鞴”。战国时期“老子道 德经”一书说“鞲鞴”是虏而不屈、动而愈出”,这是 利用真空吸气原理的有记载的描述。而欧州到十六世纪 才发明这种设备。因此在我们回顾真空科学发展历程时 ,是不应当忘记我们的祖先、对人类在早期发展真空技 术所做出的贡献。
利用氦质谱检漏仪进行检漏
的方法有:喷吹法、氦罩法
、吸枪法、背压法、辅助真 空系统法等。
检漏的目的是确定被检件漏孔的位置和 漏率,这些目的是通过采用一些标准的 检漏方法实现的。采用什么方法要视被 检件的结构、检漏的经济效益及检漏系 统的性质来决定。根据不同的检漏目的 ,基本有以下几种检漏方法:
1.喷吹法
二 、 真空及其应用
真空的含义
在真空科学中,真空的含义是指在给 定的空间内低于一个大气压力的气体 状态。人们通常把这种稀薄的气体状 态称为真空状况。
不同 真空状态下的真空工艺
技术
随着气态空间中气体分子 密度的减小,气体的物理性质 发生了明显的变化,人们就是基 于气体性质的这一变化 ,在不同的 真空状态下、应用各种不同的真空工艺、达 到为生产及科学研究服务的目的 。 目前 , 可以说 , 从每平方厘米表面上有上百个电子元件的超大规模集成 电路的制造,到几公里长的大型加 速器的运转,从民用 装饰品的生产到受控核聚变、人造卫 星、航天飞机的问 世,都与真空工艺技术密切相关。不同真空状态下 所引 发出来的各种真空 工艺技术的应用概况如下表 所示。

氦质谱检漏仪基本原理简介

氦质谱检漏仪基本原理简介

氦质谱检漏仪基本原理简介氦质谱检漏仪是用氦气为示漏气体的专门用于检漏的仪器,它具有性能稳定、灵敏度高的特点。

是真空检漏技术中灵敏度最高,用得最普遍的检漏仪器。

氦质谱检漏仪是磁偏转型的质谱分析计。

单级磁偏转型仪器灵敏度为lO-9~10-12Pam3/s,广泛地用于各种真空系统及零部件的检漏。

双级串联磁偏转型仪器与单级磁偏转型仪器相比较,本底噪声显著减小.其灵敏度可达10-14~10-15Pam3/s,适用于超高真空系统、零部件及元器件的检漏。

逆流氦质谱检漏仪改变了常规型仪器的结构布局,被检件置于检漏仪主抽泵的前级部位,因此具有可在高压力下检漏、不用液氮及质谱室污染小等特点.适用于大漏率、真空卫生较差的真空系统的检漏,其灵敏度可达10-12Pam3/s。

(1)工作原理与结构氦质谱检漏仪由离子源、分析器、收集器、冷阴极电离规组成的质谱室和抽气系统及电气部分等组成。

①单级磁偏转型氦质谱检漏仪现以HZJ—l型仪器为例.介绍单级磁偏转型氦质谱检漏仪。

在质谱室内有:由灯丝、离化室、离子加速极组成离子源;由外加均匀磁场、挡板及出口缝隙组成分析器;由抑制栅、收集极及高阻组成收集器;第一级放大静电计管和冷阴极电离规。

在离化室N内,气体电离成正离子,在电场作用下离子聚焦成束。

并在加速电压作用下以一定的速度经过加速极S1的缝隙进入分析器。

在均匀磁场的作用下,具有一定速度的离子将按圆形轨迹运动,其偏转半径可计算。

可见,当B和U为定值时,不同质荷比me-1的离子束的偏转半径R不同。

仪器的B和R是固定的,调节加速电压U使氦离子束恰好通过出口缝隙S2,到达收集器D,形成离子流并由放大器放大。

使其由输出表和音响指示反映出来;而不同于氦质荷比的离子束[(me-1)1(me-1)3]因其偏转半径与仪器的R值不同无法通过出口缝隙S2,所以被分离出来。

(me-1)2=4,即He+的质荷比,除He+之外,C卅很少,可忽略。

②双级串联磁偏转型氦质谱检漏仪由于两次分析,减少了非氦离子到达收集器的机率。

氦质谱仪文档

氦质谱仪文档

氦质谱仪引言氦质谱仪(Helium Mass Spectrometer)是一种利用质谱原理来检测氦气泄漏的仪器。

它具有高灵敏度、高精确度和快速响应的特点。

氦质谱仪广泛应用于各个行业中,特别是在气体工业、核能行业和航空航天领域。

本文将介绍氦质谱仪的工作原理、应用场景以及一些注意事项。

工作原理氦质谱仪的工作原理基于质谱法,即利用气体分子的质量-电荷比进行分析。

下面是氦质谱仪的基本工作原理:1.抽气系统:氦质谱仪通常配备有真空系统,用于将被测物体周围的气体抽出。

这样可以降低背景气体对测量结果的影响。

2.氦离子源:氦气通过电离源被电离成氦离子。

3.加速器:氦离子经过加速器加速,形成高能氦离子束。

4.分析器:高能氦离子经过磁场分析器,不同质量的氦分子会以不同的轨迹弯曲度通过,从而实现质量选择。

5.检测器:通过检测器对质谱图谱进行记录和分析,最终获得样品中氦气的含量。

应用场景氦质谱仪在以下场景中具有广泛的应用:1.气体工业:氦质谱仪被广泛用于检测气体管道、气体设备和密封系统的泄漏。

由于氦气具有很小的分子尺寸和较高的扩散速率,所以常常被用作探测气体泄漏的追踪气体。

2.核能行业:在核能行业中,氦质谱仪也被广泛用于检测核反应堆的泄漏问题。

由于氦气对环境影响较小且不易受到局限,所以可以快速、准确地定位和检测可能存在的泄漏点。

3.航空航天领域:氦质谱仪被广泛用于航空航天领域中的真空系统和航天器密封测试。

通过对真空系统和航天器进行泄漏检测,可以确保系统的正常运行和安全性。

注意事项在使用氦质谱仪时,需要注意以下几点:1.安全操作:氦气是一种无色、无味、无毒但是易燃且高压的气体,所以在操作过程中需要注意安全。

确保实验室或使用场所有良好的通风系统,并遵循相关的安全操作规程。

2.校准和维护:定期对氦质谱仪进行校准和维护,以确保其精确性和可靠性。

校准需要使用已知氦气浓度的样品进行比对,维护则包括定期清洁仪器、更换部件等。

3.操作技巧:熟悉氦质谱仪的操作步骤和参数设置,合理选择分析方法,并根据样品的特性进行合理调整。

氦质谱检漏仪基本原理简介

氦质谱检漏仪基本原理简介

氦质谱检漏仪基本原理简介氦质谱检漏仪是用氦气为示漏气体的专门用于检漏的仪器,它具有性能稳定、灵敏度高的特点。

是真空检漏技术中灵敏度最高,用得最普遍的检漏仪器。

氦质谱检漏仪是磁偏转型的质谱分析计。

单级磁偏转型仪器灵敏度为lO-9~10-12Pam3/s,广泛地用于各种真空系统及零部件的检漏。

双级串联磁偏转型仪器与单级磁偏转型仪器相比较,本底噪声显著减小.其灵敏度可达10-14~10-15Pam3/s,适用于超高真空系统、零部件及元器件的检漏。

逆流氦质谱检漏仪改变了常规型仪器的结构布局,被检件置于检漏仪主抽泵的前级部位,因此具有可在高压力下检漏、不用液氮及质谱室污染小等特点.适用于大漏率、真空卫生较差的真空系统的检漏,其灵敏度可达10-12Pam3/s。

(1)工作原理与结构氦质谱检漏仪由离子源、分析器、收集器、冷阴极电离规组成的质谱室和抽气系统及电气部分等组成。

①单级磁偏转型氦质谱检漏仪现以HZJ—l型仪器为例.介绍单级磁偏转型氦质谱检漏仪。

在质谱室内有:由灯丝、离化室、离子加速极组成离子源;由外加均匀磁场、挡板及出口缝隙组成分析器;由抑制栅、收集极及高阻组成收集器;第一级放大静电计管和冷阴极电离规。

在离化室N内,气体电离成正离子,在电场作用下离子聚焦成束。

并在加速电压作用下以一定的速度经过加速极S1的缝隙进入分析器。

在均匀磁场的作用下,具有一定速度的离子将按圆形轨迹运动,其偏转半径可计算。

可见,当B和U为定值时,不同质荷比me-1的离子束的偏转半径R不同。

仪器的B和R是固定的,调节加速电压U使氦离子束恰好通过出口缝隙S2,到达收集器D,形成离子流并由放大器放大。

使其由输出表和音响指示反映出来;而不同于氦质荷比的离子束[(me-1)1(me-1)3]因其偏转半径与仪器的R值不同无法通过出口缝隙S2,所以被分离出来。

(me-1)2=4,即He+的质荷比,除He+之外,C卅很少,可忽略。

②双级串联磁偏转型氦质谱检漏仪由于两次分析,减少了非氦离子到达收集器的机率。

氦质谱检漏仪操作规程

氦质谱检漏仪操作规程

氦质谱检漏仪操作规程《氦质谱检漏仪操作规程》一、引言氦质谱检漏仪是一种专业用于检测密闭容器和管道系统泄漏的仪器。

它利用氦气作为探测气体,通过质谱分析技术来检测微小泄漏。

正确的操作规程能够确保检测的准确性和可靠性,提高工作效率。

二、操作规程1. 准备工作:检测前需要确认被检测系统已断开氦气供应,并且处于密闭状态。

检测仪器也需要连接好电源和氦气供应管路。

同时,在进行实际操作之前,需要对界面软件进行启动和设置。

2. 仪器校准:启动检测仪器后,需要进行系统的自动校准,确保各项参数的正常工作。

包括氦气流量、真空泵运转状态、质谱仪的灵敏度等。

同时还需要对氦气的纯度进行测试,并记录相关数据。

3. 检测操作:将检测仪器放置在被检测系统附近,打开氦气供应阀门,开始充入氦气。

在氦气充入的过程中,观察质谱仪的数据显示,一旦出现氦气浓度异常升高的现象,即可判定系统存在泄漏。

并且质谱仪会自动记录并报警。

4. 结果分析:当检测结束后,需要对检测仪器的数据进行分析。

包括泄漏位置、泄漏程度等情况。

同时也需要对数据进行记录和存档。

5. 整理仪器:检测完成后,及时关闭氦气供应管路,关闭仪器电源,并对仪器进行整理清洁。

同时还需要进行定期的维护和保养。

三、注意事项1. 操作人员需要经过专业培训,并严格按照操作规程进行操作。

2. 在使用时,需要对仪器进行定期的校准。

3. 在检测过程中需要保持现场通风良好,避免仪器受到污染。

4. 检测仪器需放置在平稳的工作台上,避免因振动引起误差。

通过严格按照《氦质谱检漏仪操作规程》进行操作,能够有效提高检测的准确性和可靠性,保障设备和系统的正常运行。

氦质谱检漏仪

氦质谱检漏仪
氦质谱检漏仪
一、工作原理
灯丝 加热 电子 电离 室内残气和漏孔 氦气 进入 均匀电场 别离放大 测量
加热:产生电子 电压:给电子加速 碰撞:电离气体 均匀磁场:离子圆周运动,半径不同,离子
别离
核心公式:
R为离子偏转轨道半径; B为磁场强度; M/Z为 离子的质量与电荷之比; U 为离子的加速电 压 信息:当B,U不变时,不同核质比M/Z的离子, 圆周半径不同,不同离子被别离;当R, B为 固定值时,改变加速电压,可使不同质量的离 子通过磁场和接收缝到达接收极而被检测到。
以下图所示为不同压力下的粒子流强度 我们需要的粒子流强度
二、氦质谱检漏方法
▪ 漏点型〔定性〕:确定要检部件的具体漏点 或漏孔的位置—喷氦法〔抽真空 喷氮 检 测〕--注意方向
▪ 漏率型〔定量〕:不确定检测器件的漏点或 漏孔的位置和数量,只是计算漏率〔在漏泄 处两侧压差的情况下,单位时间内流过漏泄 处的给定温度的枯燥气体量 〕
三、常见的两种检漏仪
▪ 单级磁偏转型氦质谱检漏仪 ▪ 双级串联磁偏转型氦质谱检漏仪
单级磁偏转型氦质度〕<10-6MPa 时,电离室中由钨丝制成的灯丝启动,加 热后产生高速电子轰击离子源中的气体分 子,使分子电离
大局部的气体分子都能变成离子,离子在电 场中被〔加速电压〕加速,从而进入与其 垂直的偏转磁场,不同质量数的离子其偏 转半径不同
加速电压使得氦离子可以打到放大器的入口 〔电子倍增器〕,从而检测出氦离子流的 强度,氦离子流与容器内的氦分压成正比,
双级串联磁偏转型氦质谱检漏仪
与单级磁偏转型氦质谱检漏仪相比较: 离子在进入第二个分析器前再次被加速 ,减
少了非氦离子到达收集器的机率
仪器本底及本底噪声显著地减小,同时提高 了仪器灵敏度
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档