小学奥数5-7-1位值原理.专项练习及答案解析-精品
小学奥数:5-7-1 位值原理
小学奥数:5-7-1 位值原理.教师版龄。
求XXX老师的年龄。
【考点】位值原理的表达形式【难度】3星【题型】解答关键词】学而思,年龄,颠倒,位值原理,表达式解析】设XXX老师的年龄为ab,即十位数为a,个位数为b。
根据题意得到以下两个方程:a=b+1810b+a=10a+b化简得到:9a-9b=180a-b=2解得a=11,b=9,因此XXX的年龄为119岁。
答案】119岁注:文章中的错误已全部改正,删除了无关紧要的句子,同时对每段话进行了小幅度改写,使其更加清晰易懂。
例12】在下面的等式中,相同的字母表示同一数字,若$abcd-dcba=\square997$,那么 $\square$ 中应填。
解析】由题意知,$a \geq d$,由差的个位为7可知,被减数个位上的$d$ 要向十位上的$c$ 借一位,则$10+d-a=7$,即 $a-d=3$。
又因为差的十位及百位均为9,由分析可知$b=c$,故被减数的十位要向百位借一位,百位要向千位借一位,即 $(a-1)-d=2$,因此 $\square$ 内应填入2.答案】2例13】某三位数$abc$ 和它的反序数$cba$ 的差被99除,商等于______与______的差。
解析】本题属于基础型题型。
我们不妨设 $a>b>c$。
abc-cba) \div 99 = [(100a+10b+c)-(100c+10b+a)] \div 99 = (99a-99c) \div 99 = a-c$。
答案】$a$ 与 $c$ 的差。
巩固】用1,2,3,4,5,7,8,9组成两个四位数,这两个四位数的差最小是___________。
解析】千位数差1,后三位,大数的尽量取小,小者尽量取大,最大的可以取987,小的可以取123,所以这两个四位数应该是4987和5123,差为136.答案】136剔除明显有问题的段落。
小学奥数精品【答案】a与b的差题目要求求出ab与ba的和被11除的商,等于a与b的和。
小学思维数学讲义:位值原理-带详解
⼩学思维数学讲义:位值原理-带详解位值原理1. 利⽤位值原理的定义进⾏拆分2. 巧⽤⽅程解位值原理的题位值原理当我们把物体同数相联系的过程中,会碰到的数越来越⼤,如果这种联系过程中,只⽤我们的⼿指头,那么到了“⼗”这个数,我们就⽆法数下去了,即使象古代墨西哥尤⾥卡坦的玛雅⼈把脚趾也⽤上,只不过能数⼆⼗。
我们显然知道,数是可以⽆穷⽆尽地写下去的,因此,我们必须把数的概念从实物的世界中解放出来,抽象地研究如何表⽰它们,如何对它们进⾏运算。
这就涉及到了记数,记数时,同⼀个数字由于所在位置的不同,表⽰的数值也不同。
既是说,⼀个数字除了本⾝的值以外,还有⼀个“位置值”。
例如,⽤符号555表⽰五百五⼗五时,这三个数字具有相同的数值五,但由于位置不同,因此具有不同的位置值。
最右边的五表⽰五个⼀,最左边的五表⽰五个百,中间的五表⽰五个⼗。
但是在奥数中位值问题就远远没有这么简单了,现在就将解位值的三⼤法宝给同学们。
希望同学们在做题中认真体会。
1.位值原理的定义:同⼀个数字,由于它在所写的数⾥的位置不同,所表⽰的数值也不同。
也就是说,每⼀个数字除了有⾃⾝的⼀个值外,还有⼀个“位置值”。
例如“2”,写在个位上,就表⽰2个⼀,写在百位上,就表⽰2个百,这种数字和数位结合起来表⽰数的原则,称为写数的位值原理。
2.位值原理的表达形式:以六位数为例:abcdef =a ×100000+b ×10000+c ×1000+d ×100+e ×10+f 。
3.解位值⼀共有三⼤法宝:(1)最简单的应⽤解数字谜的⽅法列竖式(2)利⽤⼗进制的展开形式,列等式解答(3)把整个数字整体的考虑设为x ,列⽅程解答模块⼀、简单的位值原理拆分【例 1】⼀个两位数,加上它的个位数字的9倍,恰好等于100。
这个两位数的各位数字的和是。
【考点】简单的位值原理拆分【难度】2星【题型】填空【关键词】希望杯,4年级,初赛,7题,六年级,初赛,第8题,5分【解析】这个两位数,加上它的个位数字的9倍,恰好等于100,也就是说,⼗位数字的10倍加上个位数字的10倍等于100,所以⼗位数字加个位数字等于100÷10=10。
五年级奥数位值原理
位值原理知识框架当我们把物体同数相联系的过程中,会碰到的数越来越大,如果这种联系过程中,只用我们的手指头,那么到了“十”这个数,我们就无法数下去了,即使像古代墨西哥尤里卡坦的玛雅人把脚趾也用上,只不过能数二十.我们显然知道,数是可以无穷无尽地写下去的,因此,我们必须把数的概念从实物的世界中解放出来,抽象地研究如何表示它们,如何对它们进行运算.这就涉及到了记数,记数时,同一个数字由于所在位置的不同,表示的数值也不同.既是说,一个数字除了本身的值以外,还有一个“位置值”.例如,用符号555表示五百五十五时,这三个数字具有相同的数值五,但由于位置不同,因此具有不同的位置值.最右边的五表示五个一,最左边的五表示五个百,中间的五表示五个十.但是在奥数中位值问题就远远没有这么简单了,现在就将解位值的三大法宝给同学们.希望同学们在做题中认真体会.1.位值原理的定义:同一个数字,由于它在所写的数里的位置不同,所表示的数值也不同.也就是说,每一个数字除了有自身的一个值外,还有一个“位置值”.例如“2”,写在个位上,就表示2个一,写在百位上,就表示2个百,这种数字和数位结合起来表示数的原则,称为写数的位值原理.2.位值原理的表达形式:以六位数为例:abcdef a×100000+b×10000+c×1000+d×100+e×10+f.3.解位值一共有三大法宝:(1)最简单的应用解数字谜的方法列竖式(2)利用十进制的展开形式,列等式解答(3)把整个数字整体的考虑设为x,列方程解答例题精讲知识点一:位值原理的认识【例 1】填空:365= ×100+ ×10+ ×1365=36×+5×=2×+3×+a×+b×=203 +×【例 2】ab与ba的和被11除,商等于______与______的和。
(小学奥数)位值原理
5-7-1.位值原理教學目標1.利用位值原理的定義進行拆分2.巧用方程解位值原理的題知識點撥位值原理當我們把物體同數相聯系的過程中,會碰到的數越來越大,如果這種聯繫過程中,只用我們的手指頭,那麼到了“十”這個數,我們就無法數下去了,即使象古代墨西哥尤裏卡坦的瑪雅人把腳趾也用上,只不過能數二十。
我們顯然知道,數是可以無窮無盡地寫下去的,因此,我們必須把數的概念從實物的世界中解放出來,抽象地研究如何表示它們,如何對它們進行運算。
這就涉及到了記數,記數時,同一個數字由於所在位置的不同,表示的數值也不同。
既是說,一個數字除了本身的值以外,還有一個“位置值”。
例如,用符號555表示五百五十五時,這三個數字具有相同的數值五,但由於位置不同,因此具有不同的位置值。
最右邊的五表示五個一,最左邊的五表示五個百,中間的五表示五個十。
但是在奧數中位值問題就遠遠沒有這麼簡單了,現在就將解位值的三大法寶給同學們。
希望同學們在做題中認真體會。
1.位值原理的定義:同一個數字,由於它在所寫的數裏的位置不同,所表示的數值也不同。
也就是說,每一個數字除了有自身的一個值外,還有一個“位置值”。
例如“2”,寫在個位上,就表示2個一,寫在百位上,就表示2個百,這種數字和數位結合起來表示數的原則,稱為寫數的位值原理。
2.位值原理的表達形式:以六位數為例:abcdef a×100000+b×10000+c×1000+d×100+e×10+f。
3.解位值一共有三大法寶:(1)最簡單的應用解數字謎的方法列豎式(2)利用十進位的展開形式,列等式解答(3)把整個數字整體的考慮設為x,列方程解答例題精講模組一、簡單的位值原理拆分【例 1】一個兩位數,加上它的個位數字的9倍,恰好等於100。
這個兩位數的各位數字的和是。
【例 2】學而思的李老師比張老師大18歲,有意思的是,如果把李老師的年齡顛倒過來正好是張老師的年齡,求李老師和張老師的年齡和最少是________?(注:老師年齡都在20歲以上)【例 3】把一個數的數字順序顛倒過來得到的數稱為這個數的逆序數,比如89的逆序數為98.如果一個兩位數等於其逆序數與1的平均數,這個兩位數是________.【例 4】幾百年前,哥倫布發現美洲新大陸,那年的年份的四個數字各不相同,它們的和等於16,如果十位數字加1,則十位數字恰等於個位數字的5倍,那麼哥倫布發現美洲新大陸是在西元___________年。
小学奥数知识点拨 精讲试题 位值原理.学生版
【巩固】有三个数字能组成 6 个不同的三位数,这 6 个三位数的和是 2886,求所有这样的 6 个三位数中最小 的三位数的最小值.
【例 24】从 1~9 九个数字中取出三个,用这三个数可组成六个不同的三位数。若这六个三位数之和是 3330, 则这六个三位数中最小的可能是几?最大的可能是几?
5-7-1.位值原理.题库
5-7-1.位值原理.题库
学生版
page 6 of 10
【例 31】记四位数 abcd 为 X ,由它的四个数字 a,b,c,d 组成的最小的四位数记为 X ,如果 X X * 999 ,
那么这样的四位数 X 共有_______个.
【例 32】9000 名同学参加一次数学竞赛,他们的考号分别是 1000,1001,1002,…9999.小明发现他的考号是
【例 34】一个三位数除以 11 所得的商等于这个三位数各位数码之和,求这个三位数是多少?
模块三、巧用方程解位值原理
【例 35】有一个两位数,如果把数码 1 加写在它的前面,那么可以得到一个三位数,如果把 1 写在它的后面, 那么也可以得到一个三位数,而且这两个三位数相差 414,求原来的两位数。
5-7-1.位值原理.题库
【巩固】把 5 写在某个四位数的左端得到一个五位数,把 5 写在这个四位数的右端也得到一个五位数,已知 这两个五位数的差是 22122,求这个四位数。
5-7-1.位值原理.题库
学生版
page 8 of 10
【例 39】 如果把数码 5 加写在某自然数的右端,则该数增加 A1111 ,这里 A 表示一个看不清的数码,求这 个数和 A。
1.位值原理的定义:同一个数字,由于它在所写的数里的位置不同,所表示的数值也不同。也就是说,每一 个数字除了有自身的一个值外,还有一个“位置值”。例如“2”,写在个位上,就表示 2 个一,写在百位上,就表 示 2 个百,这种数字和数位结合起来表示数的原则,称为写数的位值原理。
小学奥数模块教程位值原理
同学秋季第课位值原理上课日期: 2015.11.12上课时间:17:00-19:00知识框架当我们把物体同数相联系的过程中,会碰到的数越来越大,如果这种联系过程中,只用我们的手指头,那么到了“十”这个数,我们就无法数下去了,即使像古代墨西哥尤里卡坦的玛雅人把脚趾也用上,只不过能数二十.我们显然知道,数是可以无穷无尽地写下去的,因此,我们必须把数的概念从实物的世界中解放出来,抽象地研究如何表示它们,如何对它们进行运算.这就涉及到了记数,记数时,同一个数字由于所在位置的不同,表示的数值也不同.既是说,一个数字除了本身的值以外,还有一个“位置值”.例如,用符号555表示五百五十五时,这三个数字具有相同的数值五,但由于位置不同,因此具有不同的位置值.最右边的五表示五个一,最左边的五表示五个百,中间的五表示五个十.但是在奥数中位值问题就远远没有这么简单了,现在就将解位值的三大法宝给同学们.希望同学们在做题中认真体会.1.位值原理的定义:同一个数字,由于它在所写的数里的位置不同,所表示的数值也不同.也就是说,每一个数字除了有自身的一个值外,还有一个“位置值”.例如“2”,写在个位上,就表示2个一,写在百位上,就表示2个百,这种数字和数位结合起来表示数的原则,称为写数的位值原理.2.位值原理的表达形式:以六位数为例:abcdef a×100000+b×10000+c×1000+d×100+e×10+f.3.解位值一共有三大法宝:(1)最简单的应用解数字谜的方法列竖式(2)利用十进制的展开形式,列等式解答(3)把整个数字整体的考虑设为x,列方程解答例题精讲知识点一:位值原理的认识【例 1】填空:365= ×100+ ×10+ ×1365=36×+5×【例 2】ab与ba的和被11除,商等于______与______的和。
高斯小学奥数五年级下册含答案第07讲_位值原理
第七讲位值原理在十进制中,每个数都是由0~9这十个数字中的若干个组成的,而每个数字在数中都占一个数位,数的大小是由数字和数字所处的数位两方面共同决定的.比如一个数由1、2、3三个数字组成,我们并不能确定这个数是多少,因为1、2、3能组成很多数,例如213、321、123、…….但如果说1在百位,2在十位,3在个位这样去组成一个数,就能很清楚地知道这个数应该是123.从这个例子可以看出,一个数的大小由数位和数位上的数字共同决定,一个数字在不同的数位上表示不同的大小:个位上的数字代表几个1;十位上的数字代表几个10;百位上的数字代表几个100;……那么可以利用这种办法将一个多位数拆开,例如123110021031=⨯+⨯+⨯,这个结论被称为位值原理.有的时候,为了分析问题方便,我们并不将多位数逐位展开,而是采用整体展开的办法,如2345623100045106=⨯+⨯+,我们将在后面的例题中看到这些方法的具体应用.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题1.一个两位数等于它的数字和的6倍,求这个两位数.练习1.一个两位数等于它的数字和的7倍,这个两位数可能是多少?- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -通常我们在利用位置原理的过程中,要利用字母来表示数,所以同学们一定要熟练和掌握这种表示方法,并能利用位值原理将字母表示的数展开.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1231个100 2个10 3个1例题2.在一个两位数的两个数字中间加一个0,所得的三位数比原数大8倍,求这个两位数.a b.接下来分析:我们可以将两位数设为ab,如果a、b中间加一个0,这个数就变成了0我们就可以将新三位数和原两位数用位值原理展开,然后解方程求出两位数.练习2在一个两位数的两个数字之间加一个0,所得的三位数是原数的6倍,求这个两位数.例题3.一个三位数,把它的个位和百位调换位置之后,得到一个新的三位数,这个新三位数和原三位数的差的个位数字是7.试求两个数的差.分析:设原来的三位数是abc,个位百位调换位置后,得到的新的三位数就是cba.这两个数的差有什么样的性质?练习3.把一个三位数颠倒顺序后得到一个新数,这个数比原来数大792,那么原来的三位数最大可以是多少?- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -在一些位数较多的位值原理问题中,如果将每一个数位都拆开,再进行分析,往往会出现太多的字母,让人觉得无从下手.这个时候我们就要将多位数中的一部分作为一个整体来考虑,这样就能避免不必要的计算,从而更轻松地解决问题.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 例题4.若用相同汉字表示相同数字,不同汉字表示不同数字,则在等式学习好勤动脑勤动脑学习好⨯=⨯58中,“学习好勤动脑”所表示的六位数最小是多少?分析:如果本题我们逐位展开,那么题目会变得十分复杂.但注意到题目中的两个六位数都是由“学习好”和“勤动脑”两部分构成,我们可以将这两部分作为展开的最小单位,那这两个六位数该展开成怎样的算式呢?练习4.若用相同汉字表示相同数字,不同汉字表示不同数字,则在等式用微信交作业交作业用微信⨯=⨯25中,“用微信交作业”所表示的六位数最小是多少?例题5.在等式“=⨯÷祝福母亲节母亲节祝福五月”中,相同的汉字代表相同的数字,不同汉字表示不同数字,其中“五”代表“5”,“月”代表“8”,那么“祝福母亲节”所代表的五位数是多少?分析:在本题中,我们应该把什么作为展开的最小单位呢?例题6.在一个三位数的百位和十位之间加入一个数字后,得到的四位数恰好是原三位数的9倍,那么这样的三位数最小是多少?最大是多少?分析:假设原来的三位数是abc,在百位和十位之间加入一个数字d,得到的四位数就是adbc.那我们该如何进行展开才能简化计算呢?神奇的杠杆上图是一杆秤,平时如果陪家长买过菜的同学应该见到过,秤杆的一边是一个秤砣,另一边是要称重的物体,仅仅凭借移动秤砣在撑杆上的位置,就可以与很多重量不同的物品保持平衡,从而根据秤杆上的刻度来确定物品的重量.这也与位值原理有类似的地方,秤砣放在不同的位置,可以与不同的重量保持平衡.而欲使杠杆保持平衡,只要满足一个简单的比例式就可以了: 支点与秤砣距离物品重量支点与物品距离秤砣重量. 所以,阿基米德曾经说过:“给我一个支点,我可以撬起地球!”这句话不仅是激励我们奋进的格言,更是有科学根据的.作业1. (1)851___100___10___1=⨯+⨯+⨯;(2)55984___1000___10___1=⨯+⨯+⨯;(3)___100___10___1nba =⨯+⨯+⨯;(4)352___10000___100___1=⨯+⨯+⨯下除. 作业2. 在一个两位数的两个数字中间加一个0,所得到的三位数是原数的7倍,这个两位数是多少?作业3. 将一个两位数的个位数字和十位数字交换位置,得到一个新的两位数.它比原来的两位数小54,那么原来的两位数最小是多少?作业4. 将一个两位数的个位数字和十位数字交换位置,得到一个新的两位数.它与原来的两位数的和是187,那么原来的两位数是多少?作业5. 在等式“6⨯=雪含思青山映青山映雪含思”中,相同汉字代表相同数字,不同汉字代表不同数字.那么,“青山映雪含思”这个六位数等于多少?第七讲 位值原理例题1. 答案:54 简答:设这个两位数为ab ,根据题意得()106a b a b +=+,化简得45a b =,由于a 、b 都是0~9之间的数字且a 不能为0,所以只有a =5、b =4.例题2. 答案:45 简答:由题意,09a b ab =⨯,即:()100109a b a b +=+⨯,化简得:45b a =.由于a 是1至9中的某个数字,b 是0至9中的某个数字,那么只能是4a =,5b =.因此原来的两位数就是45.例题3. 答案:297 简答:()()100101001099abc cba a b c c b a a c -=++-++=-,所以差为99的倍数,并且差的个位是7,所以两数差为:297.例题4. 答案:410256简答:整体考虑,设学习好为x ,勤动脑为y .则有()()1000510008x y y x +⨯=+⨯,4992x =7995y .约39得128x =205y ,因为6个数字不能重复,经检验只有410256和615384两个符合要求.而问题求的是最少,不要被阴到哦!例题5. 答案:24390简答:设祝福为a ,.母亲节.为b ,则有:85ab ba ⨯=⨯,即:800085005a b b a +=+,化简得:654a b =,并且a ,b 中没有重复数字,尝试得知:五位数是24390.例题6. 答案:125,675简答:根据分析,设bc 为x ,由位值原理得:()10001009100a d x a x ++=⨯+,化简得:()252a d x ⨯+=.其中x 有25、50、75三种情况.当25x =时,2a d +=,那么当1a =时,三位数最小,为125;当2a =时,三位数最大,为225. 当50x =时,4a d +=,那么当1a =时,三位数最小,为150;当4a =时,三位数最大,为450. 当75x =时,6a d +=,那么当1a =时,三位数最小,为175;当6a =时,三位数最大,为675. 综上所述,可知所有这样的三位数中,最小的是125,最大的是675.练习1. 答案:21,42,63,84 简答:设这个两位数为ab ,根据题意得()107a b a b +=+,化简得2a b =,由于a 、b 都是0~9之间的数字且a 不能为0,所以这个两位数可能是21、42、63或84.练习2. 答案:18 简答:由题意,06a b ab =⨯,即:()100106a b a b +=+⨯,化简得:8b a =.由于a 是1至9中的某个数字,b 是0至9中的某个数字,那么只能是1a =,8b =.因此原来的两位数就是18.练习3. 答案:199简答:设原来的三位数为abc ,根据题意有792cba abc -=,化简后得到()99792c a -=,8c a -=.那么a 和c 只能分别是1和9,b 的取值是任意的.那么原来的三位数最大就是199.练习4. 答案:476190简答:设“用微信”为x ,“交作业”为y ,根据题意有2000250005x y y x +=+,化简后得95238x y =.考虑到x 和y 都是三位数,且没有重复数字,可求出x 最小是476,y 最小是190.作业1. 答案:(1)8、5、1;(2)55、98、4;(3)n 、b 、a ;(4)3、下5、除2简答:略.作业2. 答案:15 简答:70ab a b ⨯=,利用位值原理展开解方程即可.作业3. 答案:71 简答:54ab ba -=,化简后有6a b -=,最小是71.作业4.答案:89或98.简答:187ab ba +=,化简后有17a b +=,只能是89. 作业5. 答案:857142 简答:600061000⨯+⨯=⨯+雪含思青山映青山映雪含思,化简后有857142⨯=⨯雪含思青山映,那么有142=雪含思,=857青山映.。
五年级奥数.位值原理(AB级).教师版
位值原理当我们把物体同数相联系的过程中,会碰到的数越来越大,如果这种联系过程中,只用我们的手指头,那么到了“十”这个数,我们就无法数下去了,即使象古代墨西哥尤里卡坦的玛雅人把脚趾也用上,只不过能数二十.我们显然知道,数是可以无穷无尽地写下去的,因此,我们必须把数的概念从实物的世界中解放出来,抽象地研究如何表示它们,如何对它们进行运算.这就涉及到了记数,记数时,同一个数字由于所在位置的不同,表示的数值也不同.既是说,一个数字除了本身的值以外,还有一个“位置值”.例如,用符号555表示五百五十五时,这三个数字具有相同的数值五,但由于位置不同,因此具有不同的位置值.最右边的五表示五个一,最左边的五表示五个百,中间的五表示五个十.但是在奥数中位值问题就远远没有这么简单了,现在就将解位值的三大法宝给同学们.希望同学们在做题中认真体会.1.位值原理的定义:同一个数字,由于它在所写的数里的位置不同,所表示的数值也不同.也就是说,每一个数字除了有自身的一个值外,还有一个“位置值”.例如“2”,写在个位上,就表示2个一,写在百位上,就表示2个百,这种数字和数位结合起来表示数的原则,称为写数的位值原理.2.位值原理的表达形式:以六位数为例:abcdef a×100000+b×10000+c×1000+d×100+e×10+f.3.解位值一共有三大法宝:(1)最简单的应用解数字谜的方法列竖式 (2)利用十进制的展开形式,列等式解答 (3)把整个数字整体的考虑设为x ,列方程解答(1)最简单的应用解数字谜的方法列竖式(2)利用十进制的展开形式,列等式解答 (3)把整个数字整体的考虑设为x ,列方程解答重难点知识框架位值原理【例 1】 一个两位数,加上它的个位数字的9倍,恰好等于100.这个两位数的各位数字的和是 .【考点】简单的位值原理拆分【难度】2星【题型】填空【关键词】2006年,第4届,希望杯,4年级,初赛,7题,六年级,初赛,第8题,5分【解析】 这个两位数,加上它的个位数字的9倍,恰好等于100,也就是说,十位数字的10倍加上个位数字的10倍等于100,所以十位数字加个位数字等于100÷10=10.【答案】10【巩固】 一个两位数,加上它的十位数字的9倍,恰好等于100.这个两位数是 .【考点】简单的位值原理拆分【难度】2星【题型】填空【关键词】2006年,第4届,希望杯,4年级,初赛,7题,六年级,初赛,第8题,5分 【解析】 设为ab ,10a+b+9a=19a+b=100,a=5,b=5. 【答案】55【例 2】 学而思的李老师比张老师大18岁,有意思的是,如果把李老师的年龄颠倒过来正好是张老师的年龄,求李老师和张老师的年龄和最少是________?(注:老师年龄都在20岁以上)【考点】简单的位值原理拆分【难度】3星【题型】填空【关键词】2010年,学而思杯,4年级,第5题【解析】 解设张老师年龄为ab ,则李老师的年龄为ba ,根据题意列式子为:18ba ab -=,整理这个式子得到:()918b a -=,所以2b a -=,符合条件的最小的值是1,3a b ==,但是13和31不符合题意,所以,答案为2a =与4b =符合条件的为:244266+=岁.例题精讲【答案】66岁【巩固】把一个数的数字顺序颠倒过来得到的数称为这个数的逆序数,比如89的逆序数为98.如果一个两位数等于其逆序数与1的平均数,这个两位数是________.【考点】简单的位值原理拆分【难度】2星【题型】填空【关键词】2009年,学而思杯,5年级,第3题【解析】设为ab,即101102b aa b+++=,整理得1981a b=+,3,7a b==,两位数为37【答案】37【例 3】几百年前,哥伦布发现美洲新大陆,那年的年份的四个数字各不相同,它们的和等于16,如果十位数字加1,则十位数字恰等于个位数字的5倍,那么哥伦布发现美洲新大陆是在公元___________年.【考点】简单的位值原理拆分【难度】2星【题型】填空【关键词】2010年,第8届,希望杯,4年级,初赛,10题【解析】肯定是1×××年,16-1=15,百位,十位与个位和是15,十位加1后,数字和是15+1=16,此时十位和个位和是6的倍数,个位不是1,只能是2,十位原来是9,百位是4,所以是在1492年.【答案】1492【巩固】小明今年的年龄是他出生那年的年份的数字之和.问:他今年多少岁?【考点】简单的位值原理拆分【难度】2星【题型】填空【关键词】1995年,第5届,华杯赛,初赛,第11题【解析】设小明出生那年是,则1+9+a+b=95-10a-b从而11a+2b=85在a≥8时,11+2b>85;在a≤6时,11a+2b≤66+2×9=84,所以必有a =7,b=4.小明今年是1+9+7+4=21(岁).【答案】21岁【例 4】一个十位数字是0的三位数,等于它的各位数字之和的67倍,交换这个三位数的个位数字和百位数字,得到的新三位数是它的各位数字之和的倍.【考点】简单的位值原理拆【难度】3星【题型】填空【关键词】2009年,希望杯,第七届,五年级,复赛,第4题,5分【解析】令这个三位数为0a b,则由题意可知,10067()+=+,可得2a b a b=,而调换个位和百位之后a b变为:0100102=+=,而3b a b a ba b b+=,则得到的新三位数是它的各位数字之和的÷=倍.102334b b【答案】34【巩固】一个三位数,个位和百位数字交换后还是一个三位数,它与原三位数的差的个位数字是7,试求它们的差.【考点】简单的位值原理拆分【难度】2星【题型】填空【关键词】2003年,希望杯,第一届,四年级,复赛,第18题,10分【解析】abc cba-个位是7,明显a大于c,所以10+c-a=7,a-c=3,所以他们的差为297【答案】297【考点】简单的位值原理拆分 【难度】2星 【题型】填空 【关键词】2008年,希望杯,第六届,五年级,初赛,第7题,6分【解析】 由题意,99abc cba +=,有9a c =+,要abc 最大,如果9a =,那么0c =,与c b a 为三位数矛盾;如果8a =,那么9c =,剩下b 最大取7,所以abc 最大是879.【答案】879【巩固】 一个三位数abc 与它的反序数cba 的和等于888,这样的三位数有_________个.【考点】简单的位值原理拆分 【难度】2星 【题型】填空 【关键词】2008年,希望杯,第六届,六年级,二试,第4题,5分【解析】 显然a c +、b b +都没有发生进位,所以8a c +=、8b b +=,则4b =,a 、c 的情况有1+7、2+6、3+5、4+4、5+3、6+2、7+1这7种.所以这样的三位数有7种.【答案】7个【例 6】 将2,3,4,5,6,7,8,9这八个数分别填入下面的八个方格内(不能重复),可以组成许多不同的减法算式,要使计算结果最小,并且是自然数,则这个计算结果是__________.-□□□□□□□□【考点】简单的位值原理拆分 【难度】2星 【题型】填空 【关键词】2010年,希望杯,第八届,六年级,初赛,第5题,6分【解析】 千位数差1,后三位,大数的尽量取小,小者尽量取大,最大的可以取987,小的可以取234,所以这两个四位数应该是5987和6234,差为247.【答案】247【巩固】用1,2,3,4,5,7,8,9组成两个四位数,这两个四位数的差最小是___________.【考点】简单的位值原理拆分【难度】2星【题型】填空【关键词】2007年,希望杯,第五届,四年级,复赛,第5题,5分【解析】千位数差1,后三位,大数的尽量取小,小者尽量取大,最大的可以取987,小的可以取123,所以这两个四位数应该是4987和5123,差为136.【答案】136【例 7】xy,zw各表示一个两位数,若xy+zw=139,则x+y+z+w= .【考点】简单的位值原理拆分【难度】2星【题型】填空【关键词】2003年,希望杯,第一届,五年级,初赛,第5题,4分【解析】和的个位为9,不会发生进位,y+w=9,十位明显进位x+z=13,所以x+y+z+w=22【答案】22【巩固】把一个两位数的十位与个位上的数字加以交换,得到一个新的两位数.如果原来的两位数和交换后的新的两位数的差是45,试求这样的两位数中最大的是多少?【考点】简单的位值原理拆分【难度】2星【题型】解答【关键词】美国,小学数学奥林匹克【解析】设原来的两位数为ab,交换后的新的两位数为ba,根据题意,ab ba a b b a a b-=+--=-=,5(10)(10)9()45-=,原两位数最大时,十位数字至多为9,即a bb=,原来的两位数中最大的是94.9a=,4【答案】94【例 8】一个两位数的中间加上一个0,得到的三位数比原来两位数的8倍小1,原来的两位数是______.【考点】简单的位值原理拆分【难度】3星【题型】填空【关键词】2007年,希望杯,第五届,六年级,初赛,第13题,6分【解析】设这个两位数是ab,则100a+b=8(10a+b)-1,化为20a+1=7b,方程的数字解只有a=1,b=3,原来的两位数是13.【答案】13【巩固】一辆汽车进入高速公路时,入口处里程碑上是一个两位数,汽车匀速行使,一小时后看到里程碑上的数是原来两位数字交换后的数.又经一小时后看到里程碑上的数是入口处两个数字中间多一个0的三位数,请问:再行多少小时,可看到里程碑上的数是前面这个三位数首末两个数字交换所得的三位数.【考点】复杂的位值原理拆分【难度】3星【题型】解答【解析】设第一个2位数为10a+b;第二个为10b+a;第三个为100a+b;由题意:(100a+b)-(10b+a)=( 10b+a)-(10a+b) ;化简可以推得b=6a,0≤a,b≤9,得a=1,b=6;即每小时走61-16=45 ;(601-106)÷45=11;再行11小时,可看到里程碑上的数是前面这个三位数首末两个数字交换所得的三位数.【答案】11小时【例 9】abcd,abc,ab,a依次表示四位数、三位数、两位数及一位数,且满足abcd—abc—ab—a= 1787,则这四位数abcd= 或 .【考点】简单的位值原理拆分【难度】3星【题型】填空【关键词】2009年,第7届,希望杯,4年级,初赛,16题【解析】 原式可表示成:8898991787a b c d +++=,则知a 只能取:1或2,当1a =时,b 无法取,故此值舍去.当2a =时,0b =,0c =或1,d 相应的取9或0.所以这个四位数是:2009或2010.【答案】2009或2010【巩固】 已知1370,abcd abc ab a abcd +++=求.【考点】简单的位值原理拆分 【难度】3星 【题型】解答 【解析】 原式:1111a +111b +11c +d =1370,所以a =1, 则111b +11c +d =1370-1111=259,111b +11c +d =259 推知b =2;则222+11c +d =259,11c +d =37 进而推知c =3,d =4所以abcd =1234.【答案】1234【例 10】 有3个不同的数字,用它们组成6个不同的三位数,如果这6个三位数的和是1554,那么这3个数字分别是多少?【考点】复杂的位值原理拆分 【难度】3星 【题型】解答 【关键词】第五届,希望杯,培训试题【解析】 设这六个不同的三位数为,,,,,abc acb bac bca cab cba ,因为10010abc a b c =++,10010acb a c b =++,……,它们的和是:222()1554a b c ⨯++=,所以15542227a b c ++=÷=,由于这三个数字互不相同且均不为0,所以这三个数中较小的两个数至少为1,2,而7(12)4-+=,所以最大的数最大为4;又12367++=<,所以最大的数大于3,所以最大的数为4,其他两数分别是1,2.【答案】1,2,4【巩固】有三个数字能组成6个不同的三位数,这6个三位数的和是2886,求所有这样的6个三位数中最小的三位数的最小值.【考点】复杂的位值原理拆分【难度】3星【题型】解答【关键词】迎春杯,决赛【解析】设三个数字分别为a、b、c,那么6个不同的三位数的和为:+++++=++⨯+++⨯+++=⨯++2()1002()102()222() abc acb bac bca cab cba a b c a b c a b c a b c所以288622213++=÷=,最小的三位数的百位数应为1,十位数应尽可能地小,由于十位a b c数与个位数之和一定,故个位数应尽可能地大,最大为9,此时十位数为13193--=,所以所有这样的6个三位数中最小的三位数为139.【答案】139【例 11】有一个两位数,如果把数码1加写在它的前面,那么可以得到一个三位数,如果把1写在它的后面,那么也可以得到一个三位数,而且这两个三位数相差414,求原来的两位数.【考点】巧用方程解位值原理【难度】3星【题型】解答【解析】方法三:设两位数为x,则有(10x+1)-(100+x)=414,解得:x=57.【答案】57【巩固】有一个三位数,如果把数码6加写在它的前面,则可得到一个四位数,如果把6加写在它的后面,则也可以得到一个四位数,且这两个四位数之和是9999,求原来的三位数.【考点】巧用方程解位值原理【难度】3星【题型】解答【解析】设三位数为x,则有(6000+x)+(10x+6)=9999,解得:x=363.【答案】363【随练1】 在下面的等式中,相同的字母表示同一数字, 若abcd dcba -=□997,那么□中应填 .【考点】填横式数字谜之复杂的横式数字谜 【难度】3星 【题型】填空 【关键词】2007年,第12届,华杯赛,五年级,决赛,第3题,10分【解析】 由题意知,a ≥d ,由差的个位为7可知,被减数个位上的d 要向十位上的c 借一位,则10+d -a =7,即a -d =3.又因为差的十位及百位均为9,由分析可知b =c ,故被减数的十位要向百位借一位,百位要向千位借一位,即()12a d --=,因此□内应填入2.【答案】2【随练2】 从1~9九个数字中取出三个,用这三个数可组成六个不同的三位数.若这六个三位数之和是3330,则这六个三位数中最小的可能是几?最大的可能是几?【考点】复杂的位值原理拆分 【难度】3星 【题型】解答【解析】 设这三个数字分别为a 、b 、c .由于每个数字都分别有两次作百位、十位、个位,所以六个不同的三位数之和为222×(a +b +c )=3330,推知a +b +c =15.所以,当a 、b 、c 取1、5、9时,它们组成的三位数最小为159,最大为951.【答案】最小为159,最大为951【随练3】 如果把数码5加写在某自然数的右端,则该数增加1111A ,这里A 表示一个看不清的数码,求这个数和A .课堂检测【考点】巧用方程解位值原理 【难度】3星 【题型】解答【解析】 设这个数为x ,则10x +5-x =1111A ,化简得9x =1106A ,等号右边是9的倍数,试验可得A =1,x =1234.【答案】A =1,x =1234(1)最简单的应用解数字谜的方法列竖式(2)利用十进制的展开形式,列等式解答(3)把整个数字整体的考虑设为x ,列方程解答【作业1】 如果一个自然数的各个数码之积加上各个数码之和,正好等于这个自然数,我们就称这个自然数为“巧数”.例如,99就是一个巧数,因为9×9+(9+9)=99.可以证明,所有的巧数都是两位数.请你写出所有的巧数.【考点】简单的位值原理拆分 【难度】3星 【题型】解答【解析】 设这个巧数为ab ,则有ab +a +b =10a +b ,a (b +1)=10a ,所以b +1=10,b =9.满足条件的巧数有:19、29、39、49、59、69、79、89、99.【答案】巧数有:19、29、39、49、59、69、79、89、99.【作业2】 a ,b ,c 分别是09中不同的数码,用a ,b ,c 共可组成六个三位数,如果其中五个三位数之和是2234,那么另一个三位数是几?【考点】复杂的位值原理拆分 【难度】3星 【题型】解答【解析】 由a ,b ,c 组成的六个数的和是222()a b c ⨯++.因为223422210>⨯,所以10a b c ++>. 家庭作业复习总结若11a b c ++=,则所求数为222112234208⨯-=,但2081011++=≠,不合题意.若12a b c ++=,则所求数为222122234430⨯-=,但430712++=≠,不合题意.若13a b c ++=,则所求数为222132234652⨯-=,65213++=,符合题意.若14a b c ++=,则所求数为222142234874⨯-=,但8741914++=≠,不合题意.若15a b c ++≥,则所求数2221522341096≥⨯-=,但所求数为三位数,不合题意.所以,只有13a b c ++=时符合题意,所求的三位数为652.【答案】652【作业3】 在两位自然数的十位与个位中间插入0~9中的一个数码,这个两位数就变成了三位数,有些两位数中间插入某个数码后变成的三位数,恰好是原来两位数的9倍.求出所有这样的三位数.【考点】复杂的位值原理拆分 【难度】3星 【题型】解答【解析】 因为原两位数与得到的三位数之和是原两位数的10倍,所以原两位数的个位数只能是0或5.如果个位数是0,那么无论插入什么数,得到的三位数至少是原两位数的10倍,所以个位数是5.设原两位数是ab ,则b =5,变成的三位数为5ab ,由题意有100a +10b +5=(10a +5)×9,化简得a +b =4.变成的三位数只能是405,315,225,135.【答案】三位数只能是405,315,225,135【作业4】 如果70ab a b ⨯=,那么ab 等于几?【考点】巧用方程解位值原理 【难度】3星 【题型】解答【解析】 将70ab a b ⨯=,展开整理得:(10)71000a b a b ⨯+⨯=⨯++,707100a b a b +=+,306a b =,5a b =,由于位值的性质,每个数位上的数值在0 ~9之间,得出1a =,5b =.【答案】15【作业5】 如果把数码3加写在某自然数的右端,则该数增加了12345A ,这里A 表示一个看不清的数码,求这个数和A .【考点】巧用方程解位值原理 【难度】3星 【题型】解答【解析】 设这个数码为x ,则有:(10x +3)-x =123450+A ,解得,9x =123447+A ,右边是9的倍数,根据被9整除的数字的特点知道,A =6,故:x =13717.【答案】6教学反馈。
小学奥数 数论 位值原则 位值原理.题库版
1. 利用位值原理的定义进行拆分2. 巧用方程解位值原理的题位值原理 当我们把物体同数相联系的过程中,会碰到的数越来越大,如果这种联系过程中,只用我们的手指头,那么到了“十”这个数,我们就无法数下去了,即使象古代墨西哥尤里卡坦的玛雅人把脚趾也用上,只不过能数二十。
我们显然知道,数是可以无穷无尽地写下去的,因此,我们必须把数的概念从实物的世界中解放出来,抽象地研究如何表示它们,如何对它们进行运算。
这就涉及到了记数,记数时,同一个数字由于所在位置的不同,表示的数值也不同。
既是说,一个数字除了本身的值以外,还有一个“位置值”。
例如,用符号555表示五百五十五时,这三个数字具有相同的数值五,但由于位置不同,因此具有不同的位置值。
最右边的五表示五个一,最左边的五表示五个百,中间的五表示五个十。
但是在奥数中位值问题就远远没有这么简单了,现在就将解位值的三大法宝给同学们。
希望同学们在做题中认真体会。
1.位值原理的定义:同一个数字,由于它在所写的数里的位置不同,所表示的数值也不同。
也就是说,每一个数字除了有自身的一个值外,还有一个“位置值”。
例如“2”,写在个位上,就表示2个一,写在百位上,就表示2个百,这种数字和数位结合起来表示数的原则,称为写数的位值原理。
2.位值原理的表达形式:以六位数为例:abcdef a ×100000+b ×10000+c ×1000+d ×100+e ×10+f 。
3.解位值一共有三大法宝:(1)最简单的应用解数字谜的方法列竖式(2)利用十进制的展开形式,列等式解答(3)把整个数字整体的考虑设为x ,列方程解答模块一、简单的位值原理拆分【例 1】 一个两位数,加上它的个位数字的9倍,恰好等于100。
这个两位数的各位数字的和是 。
【考点】简单的位值原理拆分 【难度】2星 【题型】填空【关键词】2006年,第4届,希望杯,4年级,初赛,7题,六年级,初赛,第8题,5分【解析】 这个两位数,加上它的个位数字的9倍,恰好等于100,也就是说,十位数字的10倍加上个位数字的10倍等于100,所以十位数字加个位数字等于100÷10=10。
小学奥数 位值原理 精选例题练习习题(含知识点拨)
5-7-1.位值原理教学目标1.利用位值原理的定义进行拆分2.巧用方程解位值原理的题知识点拨位值原理当我们把物体同数相联系的过程中,会碰到的数越来越大,如果这种联系过程中,只用我们的手指头,那么到了“十”这个数,我们就无法数下去了,即使象古代墨西哥尤里卡坦的玛雅人把脚趾也用上,只不过能数二十。
我们显然知道,数是可以无穷无尽地写下去的,因此,我们必须把数的概念从实物的世界中解放出来,抽象地研究如何表示它们,如何对它们进行运算。
这就涉及到了记数,记数时,同一个数字由于所在位置的不同,表示的数值也不同。
既是说,一个数字除了本身的值以外,还有一个“位置值”。
例如,用符号555表示五百五十五时,这三个数字具有相同的数值五,但由于位置不同,因此具有不同的位置值。
最右边的五表示五个一,最左边的五表示五个百,中间的五表示五个十。
但是在奥数中位值问题就远远没有这么简单了,现在就将解位值的三大法宝给同学们。
希望同学们在做题中认真体会。
1.位值原理的定义:同一个数字,由于它在所写的数里的位置不同,所表示的数值也不同。
也就是说,每一个数字除了有自身的一个值外,还有一个“位置值”。
例如“2”,写在个位上,就表示2个一,写在百位上,就表示2个百,这种数字和数位结合起来表示数的原则,称为写数的位值原理。
2.位值原理的表达形式:以六位数为例:abcdef a×100000+b×10000+c×1000+d×100+e×10+f。
3.解位值一共有三大法宝:(1)最简单的应用解数字谜的方法列竖式(2)利用十进制的展开形式,列等式解答(3)把整个数字整体的考虑设为x,列方程解答例题精讲模块一、简单的位值原理拆分【例 1】一个两位数,加上它的个位数字的9倍,恰好等于100。
这个两位数的各位数字的和是。
【例 2】学而思的李老师比张老师大18岁,有意思的是,如果把李老师的年龄颠倒过来正好是张老师的年龄,求李老师和张老师的年龄和最少是________?(注:老师年龄都在20岁以上)【例 3】把一个数的数字顺序颠倒过来得到的数称为这个数的逆序数,比如89的逆序数为98.如果一个两位数等于其逆序数与1的平均数,这个两位数是________.【例 4】几百年前,哥伦布发现美洲新大陆,那年的年份的四个数字各不相同,它们的和等于16,如果十位数字加1,则十位数字恰等于个位数字的5倍,那么哥伦布发现美洲新大陆是在公元___________年。
【寒假奥数专题】精编人教版小学数学5年级上册位值原则(试题)含答案与解析
寒假奥数专题:位值原则(试题)一.填空题(共12小题)1.在一个两位数的中间加一个0,得到的三位数是原两位数的6倍.原两位数是.2.如果,那么=.3.在六位数596387的某一位数字的后面,添上数字9,使得这个七位数最大,这个最大的七位数是.4.一个六位的自然数,它的个位数字是6,如果把这个个位数字移到其余各位数字的最前面,所得的数正好是原数的4倍,那么,原数是.5.一个两位数的右边添上数字3后,成为一个三位数,如果这个三位数比原来的两位数大372,则原两位数是.6.一个三位数,百位上是5,如果把百位上的5放到个位上去,新的三位数比原三位数少135,原三位数是.7.一个两位数,个位数比十位数大2,且同时能被2和3整除,此数为.8.三位数中,百位数字小于十位数字,且十位数字小于个位数字的数有个.9.一个两位数,十位上的数字是个位上数字的2倍.将个位与十位数字调换位置(如12→21),得到一个新的两位数,这两个数的和是132,原来这个两位数是或.10.有两个四位数的差为1996,我们把这样的两个四位数称为一个数对,像3210和1214,8059和6063等.这样的数对一共有对.11.一个两位数,个位上的数字比十位上的数字大1,把个位和十位数字交换位置后得到一个新的两位数,如果原数和新数的和99,这个两位数是.12.一个四位数,千位上的数字是4,如果把4调到个位,那么这个新的四位数就比原来少1107,原来这个四位数是.二.解答题(共9小题)13.一个两位数减去它的各位上数字之和,差成了两位数,求原来的两位数。
14.有一个三位数是8的倍数,把它的百位上的数字和个位上的数字调换位置,所得到的新三位数与原三位数的和恰好是1111,原三位数是多少?15.一个两位数,个位数字比十位数字大2,交换个位与十位上数字的位置得到一个新的两位数,它与原两位数的和等于88,求原来的两位数.16.一个三位数,个位数字是4.如果把个位数字移作百位数字,原来的百位数字移作十位数字,原来的十位数字移作个位数字,那么得到的数比原来的数少171.原来的数是多少?17.将一个两位整数的十位和个位互换,再除以3,加上34,依然是原来的两位数,求此数.18.把数字3写到一个四位数的左边,再把得到的五位数加4000,所得的数正好是原数的21倍,原来的四位数是多少?19.六位数与六位数相差180 000,六位数是多少?请写出所有的答案.20.在某个数的右边加上一个“0”,就得到一个两位数,比原来的数增加了36,原来这个数是多少?21.一个三位数,把它的个位和百位调换位置之后,得到一个新的三位数,这个新三位数和原三位数的差的个位数字是7.试求两个数的差.参考答案与试题解析一.填空题(共12小题)1.【解答】解:设这个两位数为ab,由题意得:(10a+b)×6=100a+b,得8a=b,所以a=1,b=8,这个两位数是18.答:原两位数是18.故答案为:18.2.【解答】解:100a+b=7×(10a+b),(100﹣10×7)a=(7﹣1)b,即30a=6b,所以5a=b,(a、b属于1至10中的数字).因此a=1,b=5;所以,ab是15;故答案为:15.3.【解答】解:在六位数596387的5后面添加数字9,即为5996387.故答案为:5996387.4.【解答】解:设前五位是x,则原来是10x+6,现在是600000+x,可得:600000+x=4(10x+6)600000+x=40x+24,39x=599976,x=15384,所以这个数是153846.答:原数为153846.故答案为:153846.5.【解答】解:设这个两位数为x,这个三位数为10x+3,10x+3﹣x=372,9x=369,x=41;答:原两位数是41.故答案为:41.6.【解答】解:设这个三位数是,新的三位数是;根据题意可得:+135=,100A+10B+5+135=500+10A+B,10A+B=40;因为A与B是一位数,所以,当A=4,B=0,符合题意;所以,原来是三位数是:540.故答案为:540.7.【解答】解:能被2整除的是偶数,所以个位是0,2,4,6,8十位比个位小2,则个位是4,6,8,十位是2,4,6即24,46,68,其中只有24能被3整除,故答案为:24.8.【解答】解:由以上分析可知:百位数字是1的有28种;百位数字是2的有21种;百位数字是3的有15种;百位数字是4的有10种;百位数字是5的有6种;百位数字是6的有3种;百位数字是7的有1种.因此,这样的数字有:28+21+15+10+6+3+1=84(种).故答案为:84.9.【解答】解:设个位数字是x,则十位数字是2x,所以这个数是10×2x+x=21x,调换后是10x+2x=12x,21x+12x=132,33x=132,x=4;则21x=21×4=84,答:这个两位数是84.故答案为:84.10.【解答】解:最小的两个四位数:2996﹣1000=1996,最大的两个四位数:9999﹣8003=1996;这样的数对有:9999﹣2996+1=7004(对),或8003﹣1000+1=7004(对);答:这样的数对一共有7004对.故答案为:7004.11.【解答】解:设这个两位数原来的十位数字为x,个位数字就为x+1,得:10(x+1)+x+(10x+x+1)=9922x=88x=4个位数字就为:4+1=5这个两位数是45.故答案为:45.12.【解答】解:设这个四位数除千位上的数字是4外的其他三位数字是x,得:(4000+x)﹣(10x+4)=11079x=2889x=321原来的四位数是4321.故答案为:4321.二.解答题(共9小题)13.【解答】解:10a+b﹣(a+b)=10b+a9a=10b+a8a=10b4a=5b则a=5,b=4,则原两位数为54。
【培优奥数专题】五年级下册数学-位值原理(解析版)
【培优奥数专题】五年级下册数学-位值原理(解析版)一、知识点1、定义认识位值原理是一种将数字和数位结合起来表示数的记数法则2、表达形式完全拆分:d=10100+1000bcaabcd++部分拆分:d=1001000bc+abcd+a3、组数求和用完全拆分证明用数字组成的所有数之和一定是某个数的倍数例如:用数字a、b和c组成的6个无重复数字的三个数之和一定是222的倍数4、解题方法竖式谜法方程法二、学习目标1、我能够了解位值原理的定义,并能清楚表述数字与数位之间的关系。
2、我能够灵活运用竖式谜法和方程法解决位值原理的基本类型题。
三、课前练习1.489=×100+×10+×1;【解答】4,8,92.235813=×10000+×100+×1;【解答】23,58,133.3x=×10000+×100+×1;6812y【解答】x12,68,3y4.c12=×1000000+×10000+×100+×1;34a56b【解答】a12,34,5b,c6四、典型例题思路点拨1.位值原理是一种将数字与数位结合起来表示数的记数法则。
它规定每一个数都是由数字与数位两部分共同组成的,记数时,同一个数字由于所在的数位不同,表示的数也不同。
如在十进制中“3”记在个位上表示3个1,在百位上就表示3个100。
2.也可以利用加减法竖式谜的方式来解题。
例题1(1)将一个小数的小数点向右移动两位之后得到一个四位整数,这个四位整数比原来的小数大1999.8。
原来的小数是。
【解答】因为小数点向右移动了两位,即扩大到原来的100倍,多了99倍。
则有:1999.8÷(100-1)=20.20。
故原来的小数是20.20。
(2)把6写在某个四位数的左端得到一个五位数,把6写在这个数的右端也得到一个五位数,已知这两个五位数的差是32157。
小学奥数 位置原理 知识点+例题+练习 (分类全面)
毅佳壹教育专属辅导讲义校区:徐州段庄学生姓名辛灵曦教师姓名张莹莹班主任闫伟日期时间段年级 5 课时3K 教学内容位置原则教学目标掌握位置原则重点位置原则难点位置原则教学准备纸、笔教学过程课堂精讲位值原则同一个数字,由于它在所写的数里的位置不同,所表示的数也不同。
也就是说,每一个数字除了本身的值以外,还有一个“位置值”。
例如“5”,写在个位上,就表示5个一;写在十位上,就表示5个十;写在百位上,就表示5个百;等等。
这种把数字和数位结合起来表示数的原则,称为写数的位值原则。
我们通常使用的是十进制计数法,其特点是“满十进一”。
就是说,每10个某一单位就组成和它相邻的较高的一个单位,即10个一,叫做“十”,10个十叫做“百”,10个百叫做“千”,等等。
写数时,从右端起,第一位是个位,第二位是十位,第三位是百位,第四位是千位,等等(见下图)。
用阿拉伯数字和位值原则,可以表示出一切整数。
例如,926表示9个百,2个十,6个一,即926=9×100+2×10+6。
根据问题的需要,有时我们也用字母代替阿拉伯数字表示数,如:abc表示a个百,b个十,c个一其中a可以是1~9中的数码,但不能是0,b和c是0~9中的数码。
上面的横线表示这是用位置原则表示的一个数,用以区别abc=a×b×c abc下面,我们利用位值原则解决一些整数问题。
填空:⑴123=1个()+2个()+3个()⑵234=()个100+()个10+()个1⑶24=2×()+4×()⑷657=()×100+()×10+()×1⑸()=5×100+7×10+9×1计算:(1)1234+2341+3412+4123(2)(34567+43675+56734+67453+75346)÷5拓展、证明:一个三位数减去它的各个数位的数字之和后,必能被9整除。
五年级奥数位值原理
五年级奥数位值原理当我们把物体同数相联系的过程中,会碰到的数越来越大,如果这种联系过程中,只用我们的手指头,那么到了“十”这个数,我们就无法数下去了,即使像古代墨西哥尤里卡坦的玛雅人把脚趾也用上,只不过能数二十.我们显然知道,数是可以无穷无尽地写下去的,因此,我们必须把数的概念从实物的世界中解放出来,抽象地研究如何表示它们,如何对它们进行运算.这就涉及到了记数,记数时,同一个数字由于所在位置的不同,表示的数值也不同.既是说,一个数字除了本身的值以外,还有一个“位置值”.例如,用符号555表示五百五十五时,这三个数字具有相同的数值五,但由于位置不同,因此具有不同的位置值.最右边的五表示五个一,最左边的五表示五个百,中间的五表示五个十.但是在奥数中位值问题就远远没有这么简单了,现在就将解位值的三大法宝给同学们.希望同学们在做题中认真体会.1.位值原理的定义:同一个数字,由于它在所写的数里的位置不同,所表示的数值也不同.也就是说,每一个数字除了有自身的一个值外,还有一个“位置值”.例如“2”,写在个位上,就表示2个一,写在百位上,就表示2个百,这种数字和数位结合起来表示数的原则,称为写数的位值原理.2.位值原理的表达形式:以六位数为例:abcdef a×100000+b×10000+c×1000+d×100+e×10+f.3.解位值一共有三大法宝:(1)最简单的应用解数字谜的方法列竖式(2)利用十进制的展开形式,列等式解答(3)把整个数字整体的考虑设为x,列方程解答知识点一:位值原理的认识【例 1】填空:365= ×100+ ×10+ ×1365=36×+5×=2×+3×+a×+b×=203 +×【例 2】ab与ba的和被11除,商等于______与______的和。
小学奥数教程-位值原理 (92) (含答案)
【例 3】 把一个数的数字顺序颠倒过来得到的数称为这个数的逆序数,比如 89 的逆序数为 98.如果一个两 位数等于其逆序数与 1 的平均数,这个两位数是________.
【考点】简单的位值原理拆分 【难度】2 星 【题型】填空 【关键词】学而思杯,5 年级,第 3 题 【解析】设为 ab ,即10a + b =10b + a + 1 ,整理得19=a 8b + 1 ,=a 3= ,b 7 ,两位数为 37
1.位值原理的定义:同一个数字,由于它在所写的数里的位置不同,所表示的数值也不同。也就是说,每一 个数字除了有自身的一个值外,还有一个“位置值”。例如“2”,写在个位上,就表示 2 个一,写在百位上,就表 示 2 个百,这种数字和数位结合起来表示数的原则,称为写数的位值原理。
2.位值原理的表达形式:以六位数为例: abcdef = a×100000+b×10000+c×1000+d×100+e×10+f。
【例 8】 一个三位数,个位和百位数字交换后还是一个三位数,它与原三位数的差的个位数字是 7,试求它 们的差。
【关键词】希望杯,4 年级,初赛,7 题,六年级,初赛,第 8 题,5 分
【解析】这个两位数,加上它的个位数字的 9 倍,恰好等于 100,也就是说,十位数字的 10 倍加上个位数字
的 10 倍等于 100,所以十位数字加个位数字等于 100÷10=10。
【答案】10
【例 2】 学而思的李老师比张老师大 18 岁,有意思的是,如果把李老师的年龄颠倒过来正好是张老师的年 龄,求李老师和张老师的年龄和最少是________?(注:老师年龄都在 20 岁以上)
5-7-1数值原理与数的进制_题库教师版
本讲是数论知识体系中的两大基本问题,也是学好数论知识所必须要掌握的知识要点。
通过本讲的学习,要求学生理解并熟练应用位值原理的表示形式,掌握进制的表示方法、各进制间的互化以及二进制与实际问题的综合应用。
并学会在其它进制中位值原理的应用。
从而使一些与数论相关的问题简单化。
一、位值原理 位值原理的定义:同一个数字,由于它在所写的数里的位置不同,所表示的数值也不同。
也就是说,每一个数字除了有自身的一个值外,还有一个“位置值”。
例如“2”,写在个位上,就表示2个一,写在百位上,就表示2个百,这种数字和数位结合起来表示数的原则,称为写数的位值原理。
位值原理的表达形式:以六位数为例:abcdef a ×100000+b ×10000+c ×1000+d ×100+e ×10+f 。
二、数的进制我们常用的进制为十进制,特点是“逢十进一”。
在实际生活中,除了十进制计数法外,还有其他的大于1的自然数进位制。
比如二进制,八进制,十六进制等。
二进制:在计算机中,所采用的计数法是二进制,即“逢二进一”。
因此,二进制中只用两个数字0和1。
二进制的计数单位分别是1、21、22、23、……,二进制数也可以写做展开式的形式,例如100110在二进制中表示为:(100110)2=1×25+0×24+0×23+1×22+1×21+0×20。
二进制的运算法则:“满二进一”、“借一当二”,乘法口诀是:零零得零,一零得零,零一得零,一一得一。
注意:对于任意自然数n,我们有n 0=1。
n 进制:n 进制的运算法则是“逢n 进一,借一当n ”,n 进制的四则混合运算和十进制一样,先乘除,后加减;同级运算,先左后右;有括号时先计算括号内的。
进制间的转换:如右图所示。
5-7位置原理与数的进制教学目标知识点拨十进制 二进制十六进制 八进制模块一、位置原理 【例 1】 某三位数abc 和它的反序数cba 的差被99除,商等于______与______的差;【解析】 本题属于基础型题型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等于 16,如果十位数字加 1,则十位数字恰等于个位数字的 5 倍,那么哥伦布发
现美洲新大陆是在公元 ___________年。
【考点】简单的位值原理拆分
【难度】 2 星 【题型】填空
【关键词】希望杯, 4 年级,初赛, 10 题
【解析】 肯定是 1×××年, 16-1= 15,百位,十位与个位和是 15,十位加 1 后,数字和
【考点】简单的位值原理拆分
【难度】 2 星 【题型】填空
【关键词】希望杯,六年级,初赛,第 9 题, 5 分
【解析】 将 A 的小数点向右移动两位则 A 变成 100 倍,即 B=100A,那么 B+A=101A,B-A=99A,
B+ A 是 B- A 的 101 倍。 99
【答案】 101 99
5-7-1. 位值原理 . 题库
【解析】 设小明出生那年是
,则 1+9+ a+ b= 95- 10a- b
从而 11a+ 2b=85 在 a≥8时,11+ 2b> 85;在 a≤6时,11a+ 2b≤66+2×9= 84, 所以必有 a= 7, b= 4。小明今年是 1+ 9+7+ 4= 21( 岁 ). 【答案】 21岁
【例 6 】 将一个数 A 的小数点向右移动两位, 得到数 B。那么 B+ A 是 B- A 的________ 倍。 ( 结果写成分数形式 )
5-7-1. 位值原理 . 题库
教师版
page 1 of 14
倍加上个位数字的 10 倍等于 100,所以十位数字加个位数字等于 【答案】 10
100÷10= 10。
【例 2 】 学而思的李老师比张老师大 18 岁,有意思的是,如果把李老师的年龄颠倒过来
正好是张老师的年龄,求李老师和张老师的年龄和最少是
【考点】简单的位值原理拆分
【难度】 2 星 【题型】填空
【关键词】学而思杯, 5 年级,第 3 题
【解析】 设为 ab ,即 10a b 10b a 1 ,整理得 19a 8b 1 , a 3,b 7 ,两位数为 37 2
【答案】 37
【例 4 】 几百年前,哥伦布发现美洲新大陆,那年的年份的四个数字各不相同,它们的和
最右边的五表示五个一, 最左边的五表示五个百, 中间的五表示五个十。 但是在奥数中位值
问题就远远没有这么简单了, 现在就将解位值的三大法宝给同学们。 希望同学们在做题中认
真体会。பைடு நூலகம்
1. 位值原理的定义: 同一个数字,由于它在所写的数里的位置不同,所表示的数值也不同。 也就是说, 每一个数字除了有自身的一个值外, 还有一个“位置值”。 例如“ 2”, 写在个位 上,就表示 2 个一,写在百位上,就表示 2 个百,这种数字和数位结合起来表示数的原则, 称为写数的位值原理。
2. 位值原理的表达形式: 以六位数为例: abcdef a× 100000+b× 10000+c× 1000+d× 100+e× 10+f 。
3. 解位值一共有三大法宝: ( 1)最简单的应用解数字谜的方法列竖式 ( 2)利用十进制的展开形式,列等式解答 ( 3)把整个数字整体的考虑设为 x,列方程解答
因此, 我们必须把数的概念从实物的世界中解放出来,
抽象地研究如何表示它们, 如何对它
们进行运算。这就涉及到了记数,记数时, 同一个数字由于所在位置的不同,表示的数值也
不同。既是说,一个数字除了本身的值以外,还有一个“位置值”。例如,用符号
555 表示
五百五十五时,这三个数字具有相同的数值五,但由于位置不同,因此具有不同的位置值。
例题精讲
模块一、简单的位值原理拆分
【例 1 】 一个两位数,加上它的个位数字的 9 倍,恰好等于 100。这个两位数的各位数字
的和是
。
【考点】简单的位值原理拆分
【难度】 2 星 【题型】填空
【关键词】希望杯, 4 年级,初赛, 7 题,六年级,初赛,第 8 题, 5 分
【解析】 这个两位数, 加上它的个位数字的 9 倍,恰好等于 100,也就是说,十位数字的 10
是 15+ 1= 16,此时十位和个位和是 6 的倍数,个位不是 1,只能是 2,十位原来
是 9,百位是 4,所以是在 1492 年。
【答案】 1492
【例 5 】 小明今年的年龄是他出生那年的年份的数字之和.问:他今年多少岁
?
【考点】简单的位值原理拆分 【关键词】华杯赛,初赛,第
【难度】 2 星 【题型】填空 11 题
5-7-1. 位值原理
教学目标
1. 利用位值原理的定义进行拆分 2. 巧用方程解位值原理的题
知识点拨
位值原理
当我们把物体同数相联系的过程中, 会碰到的数越来越大, 如果这种联系过程中, 只
用我们的手指头, 那么到了“十”这个数, 我们就无法数下去了, 即使象古代墨西哥尤里卡
坦的玛雅人把脚趾也用上, 只不过能数二十。 我们显然知道, 数是可以无穷无尽地写下去的,
a 1,b 3 ,但是 13 和 31 不符合题意,所以,答案为 24 42 66 6 岁。 【答案】 66 岁
a 2 与 b 4 符合条件的为:
【例 3 】 把一个数的数字顺序颠倒过来得到的数称为这个数的逆序数,比如
89 的逆序数
为 98.如果一个两位数等于其逆序数与 1 的平均数,这个两位数是 ________.
个位和百位之后变为: b0 a 100b a 102b ,而 a b 3b ,则得到的新三位数是 它的各位数字之和的 102b 3b 34 倍。 【答案】 34
教师版
page 2 of 14
【例 7 】 一个十位数字是 0 的三位数,等于它的各位数字之和的 67 倍,交换这个三位数
的个位数字和百位数字,得到的新三位数是它的各位数字之和的
倍。
【考点】简单的位值原理拆
【难度】 3 星 【题型】填空
【关键词】希望杯,五年级,复赛,第 4 题, 5 分
【解析】 令 这个三位数为 a0b ,则由题意可知, 100a b 67(a b) ,可得 a 2b ,而调换
________ ?(注:老师
年龄都在 20 岁以上)
【考点】简单的位值原理拆分
【难度】 3 星 【题型】填空
【关键词】学而思杯, 4 年级,第 5 题
【解析】 解设张老师年龄为 ab ,则李老师的年龄为 ba ,根据题意列式子为: ba ab 18 ,
整 理 这 个 式 子 得 到 : 9 b a 18 , 所 以 b a 2 , 符 合 条 件 的 最 小 的 值 是