最新乘法公式(平方差公式,完全平方公式)题
(完整版)平方差完全平方公式提高练习题
平方差公式专项练习题一、选择题1.平方差公式(a+b)(a-b)=a2-b2中字母a,b表示()A.只能是数B.只能是单项式C.只能是多项式D.以上都可以2.下列多项式的乘法中,可以用平方差公式计算的是()A.(a+b)(b+a)B.(-a+b)(a-b)C.(13a+b)(b-13a)D.(a2-b)(b2+a)3.下列计算中,错误的有()①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;③(3-x)(x+3)=x2-9;④(-x+y)·(x+y)=-(x-y)(x+y)=-x2-y2.A.1个B.2个C.3个D.4个4.若x2-y2=30,且x-y=-5,则x+y的值是()A.5 B.6 C.-6 D.-5二、填空题5.(-2x+y)(-2x-y)=______.6.(-3x2+2y2)(______)=9x4-4y4.7.(a+b-1)(a-b+1)=(_____)2-(_____)2.8.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.三、计算题9.利用平方差公式计算:2023×2113.10.计算:(a+2)(a2+4)(a4+16)(a-2).(1)(2+1)(22+1)(24+1)…(22n+1)+1(n是正整数);(2)(3+1)(32+1)(34+1)…(32008+1)-401632.2.(一题多变题)利用平方差公式计算:2009×2007-20082.(1)一变:利用平方差公式计算:22007200720082006-⨯.(2)二变:利用平方差公式计算:22007200820061⨯+.二、知识交叉题3.(科内交叉题)解方程:x(x+2)+(2x+1)(2x-1)=5(x2+3).C卷:课标新型题1.(规律探究题)已知x≠1,计算(1+x)(1-x)=1-x2,(1-x)(1+x+x2)=1-x3,(1-x)(•1+x+x2+x3)=1-x4.(1)观察以上各式并猜想:(1-x)(1+x+x2+…+x n)=______.(n为正整数)(2)根据你的猜想计算:①(1-2)(1+2+22+23+24+25)=______.②2+22+23+…+2n=______(n为正整数).③(x-1)(x99+x98+x97+…+x2+x+1)=_______.(3)通过以上规律请你进行下面的探索:①(a-b)(a+b)=_______.②(a-b)(a2+ab+b2)=______.③(a-b)(a3+a2b+ab2+b3)=______.完全平方公式变形的应用完全平方式常见的变形有:ab b a b a 2)(222-+=+,ab b a b a 2)(222+-=+ab b a b a 4)(22=--+)(,bc ac ab c b a c b a 222)(2222---++=++ 练一练 A 组: 1.已知()5,3a b ab -==求2()a b +与223()a b +的值。
平方差公式与完全平方公式试题(含答案)
乘法公式的复习一、复习:(a+b)(a-b)=a 2-b 2(a+b)2=a 2+2ab+b 2(a-b)2=a 2-2ab+b 2(a+b)(a 2-ab+b 2)=a 3+b 3(a-b)(a 2+ab+b 2)=a 3-b 3归纳小结公式的变式,准确灵活运用公式: ① 位置变化,x y y x x 2y 2 ② 符号变化,x y x yx2y 2 x 2y 2③ 指数变化,x 2y 2x 2y 2x 4y 4 ④ 系数变化,2ab 2ab 4a2b 2 ⑤ 换式变化,xy zmxyzmxy 2zm 2x 2y 2z m z m x 2y 2z 2zmzm m 2x 2y 2z 22zmm 2 ⑥ 增项变化,x yz xyzx y 2z 2 x y xy z 2 x 2xyxy y 2z 2x 22xyy 2z 2 ⑦ 连用公式变化,x yxy x 2y 2x 2y 2x 2y 2x 4y 4 ⑧ 逆用公式变化,xy z 2x y z 2xyzxyzx y z x y z2x 2y 2z4xy4xz例1.已知2=+b a ,1=ab ,求22b a +的值。
解:∵=+2)(b a222b ab a ++ ∴22b a +=ab b a 2)(2-+∵2=+ba ,1=ab ∴22b a +=21222=⨯-例2.已知8=+b a ,2=ab ,求2)(b a -的值。
解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +- ∴-+2)(b a=-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a -∵8=+ba ,2=ab ∴=-2)(b a 562482=⨯-例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。
解:19992-2000×1998 =19992-(1999+1)×(1999-1) =19992-(19992-12)=19992-19992+1 =1例4:已知a+b=2,ab=1,求a 2+b 2和(a-b)2的值。
(完整)平方差和完全平方公式经典例题
典例剖析专题一:平方差公式例1:计算下列各整式乘法。
①位置变化(73)(37)x y y x +- ②符号变化(27)(27)m n m n ---③数字变化98102⨯ ④系数变化(4)(2)24n n m m +-⑤项数变化(32)(32)x y z x y z ++-+⑥公式变化2(2)(2)(4)m m m +-+◆变式拓展训练◆【变式1】2244()()()()y x x y x y x y ---+++【变式2】22(2)(4)33bba a ---【变式3】22222210099989721-+-++-…专题二:平方差公式的应用例2:计算22004200420052003-⨯的值为多少?◆变式拓展训练◆【变式1】22()()x y z x y z -+-+-【变式2】2301(3021)(3021)⨯+⨯+【变式3】(25)(25)x y z x y z +-+-++【变式4】已知a 、b 为自然数,且40a b +=, (1)求22a b +的最大值;(2)求ab 的最大值。
专题三:完全平方公式例3:计算下列各整式乘法.①位置变化:22()()x y y x --+②符号变化:2(32)a b --③数字变化:2197④方向变化:2(32)a -+⑤项数变化:2(1)x y +-⑥公式变化22(23)(46)(23)(23)x y x y x y x y -+-+++◆变式拓展训练◆【变式1】224,2a b a ab b +=++则的值为( )A 。
8 B.16 C 。
2 D.4【变式2】已知221() 4.,()_____2a b ab a b -==+=则 【变式3】已知225.6,x y xy x y +=-=+则的值为( )A 。
1 B.13 C 。
17 D 。
25【变式4】已知222(1)()32x x x y x y xy ---=-+-,求的值专题四:完全平方公式的运用例4:已知:4,2x y xy +==,求:①22x y +; ②44x y +; ③2()x y -◆变式拓展训练◆【变式1】2242411310,;x x x x x x-+=++已知求①②【变式2】225,2,4xy x y x y x y x y ++=++已知满足求的值。
(完整版)实用版平方差、完全平方公式专项练习题(精品)
其中 x=1.5
1.平方差公式( a+b)(a- b) =a2- b2 中字母 a, b 表示( )
A .只能是数
B.只能是单项式
C.只能是多项式 D.以上都可以
2.下列多项式的乘法中,可以用平方差公式计算的是(
)
(3) (2a b) 2
(2a b)(a b) 2(a
2b )( a
2b) ,其中 a
2、已知 (a b)2 16, ab 4, 求 a2 b2 与 (a b)2 的值。 3
- 3-
练一练 1 .已知 (a b) 5, ab 3 求 (a b)2 与 3(a2 b2) 的值。 2 .已知 a b 6, a b 4 求 ab 与 a2 b2 的值。
3、已知 a b 4, a2 b2 4 求 a2b 2 与 (a b)2 的值。
2.利用平方差公式计算: (1)2009 ×2007- 20082.
2007
20072
.
2008 2006
20072
.
2008 2006 1
502 49 2 48 2 47 2
2 2 12ຫໍສະໝຸດ 3.解方程: x (x+2) +(2x+1 )( 2x- 1) =5( x2+3).
三、实际应用题
4.广场内有一块边长为 2a 米的正方形草坪,经统一规划后,南北方向要缩短
4a2
b2 (
)( 2)
1 x
1
1 x1
2
2
1 x2 1 ( ) 2
( 3) 3x y 3x y 9x 2 y 2 ( )( 4) 2x y 2x y 4x 2 y 2 ( )
( 5) a 2 a 3 a2 6 ( ) ( 6) x 3 y 3 xy 9 ( )
平方差公式与完全平方公式试题含答案
乘法公式的复习一、复习:(a+b)(a-b)=a 2-b 2 (a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2 归纳小结公式的变式,准确灵活运用公式:① 位置变化,(x +y )(-y +x )=x 2-y 2 ② 符号变化,(-x +y )(-x -y )=(-x )2-y 2= x 2-y 2 ③ 指数变化,(x 2+y 2)(x 2-y 2)=x 4-y 4 ④ 系数变化,(2a +b )(2a -b )=4a 2-b 2⑤ 换式变化,[xy +(z +m )][xy -(z +m )]=(xy )2-(z +m )2= x 2y 2-(z 2+2zm +m 2)=x 2y 2-z 2-2zm -m 2 ⑥ 增项变化,(x -y +z )(x -y -z )=(x -y )2-z 2 =x 2-2xy +y 2-z 2 ⑦ 连用公式变化,(x +y )(x -y )(x 2+y 2)=(x 2-y 2)(x 2+y 2)=x 4-y 4⑧ 逆用公式变化,(x -y +z )2-(x +y -z )2=[(x -y +z )+(x +y -z )][(x -y +z )-(x +y -z )] =2x (-2y +2z ) =-4xy +4xz 例1.已知2=+b a ,1=ab ,求22b a +的值。
解:∵=+2)(b a 222b ab a ++ ∴22b a +=ab b a 2)(2-+ ∵2=+b a ,1=ab ∴22b a +=21222=⨯- 例2.已知8=+b a ,2=ab ,求2)(b a -的值。
解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +- ∴-+2)(b a =-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a - ∵8=+b a ,2=ab ∴=-2)(b a 562482=⨯- 例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。
平方差公式与完全平方公式试题含答案
乘法公式的复习一、复习:(a+b)(a-b)=a 2-b 2 (a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2 归纳小结公式的变式,准确灵活运用公式:① 位置变化,(x +y )(-y +x )=x 2-y 2 ② 符号变化,(-x +y )(-x -y )=(-x )2-y 2= x 2-y 2 ③ 指数变化,(x 2+y 2)(x 2-y 2)=x 4-y 4 ④ 系数变化,(2a +b )(2a -b )=4a 2-b 2⑤ 换式变化,[xy +(z +m )][xy -(z +m )]=(xy )2-(z +m )2= x 2y 2-(z 2+2zm +m 2)=x 2y 2-z 2-2zm -m 2 ⑥ 增项变化,(x -y +z )(x -y -z )=(x -y )2-z 2 =x 2-2xy +y 2-z 2 ⑦ 连用公式变化,(x +y )(x -y )(x 2+y 2)=(x 2-y 2)(x 2+y 2)=x 4-y 4⑧ 逆用公式变化,(x -y +z )2-(x +y -z )2=[(x -y +z )+(x +y -z )][(x -y +z )-(x +y -z )] =2x (-2y +2z ) =-4xy +4xz 例1.已知2=+b a ,1=ab ,求22b a +的值。
解:∵=+2)(b a 222b ab a ++ ∴22b a +=ab b a 2)(2-+ ∵2=+b a ,1=ab ∴22b a +=21222=⨯- 例2.已知8=+b a ,2=ab ,求2)(b a -的值。
解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +- ∴-+2)(b a =-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a - ∵8=+b a ,2=ab ∴=-2)(b a 562482=⨯- 例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。
平方差公式与完全平方公式试题(含答案)
乘法公式的复习一、复习:(a+b)(a-b)=a 2-b 2(a+b)2=a 2+2ab+b 2(a-b)2=a 2-2ab+b 2(a+b)(a 2-ab+b 2)=a 3+b 3(a-b)(a 2+ab+b 2)=a 3-b 3归纳小结公式的变式,准确灵活运用公式: ① 位置变化,x y y x x 2y 2 ② 符号变化,x y x yx2y 2 x 2y 2③ 指数变化,x 2y 2x 2y 2x 4y 4 ④ 系数变化,2ab 2ab 4a2b 2 ⑤ 换式变化,xy zmxyzmxy 2zm 2x 2y 2z m z m x 2y 2z 2zmzm m 2x 2y 2z 22zmm 2 ⑥ 增项变化,x yz xyzx y 2z 2 x y xy z 2 x 2xyxy y 2z 2x 22xyy 2z 2 ⑦ 连用公式变化,x yxy x 2y 2x 2y 2x 2y 2x 4y 4 ⑧ 逆用公式变化,xy z 2x y z 2xyzxyzx y z x y z2x 2y 2z4xy4xz例1.已知2=+b a ,1=ab ,求22b a +的值。
解:∵=+2)(b a222b ab a ++ ∴22b a +=ab b a 2)(2-+∵2=+ba ,1=ab ∴22b a +=21222=⨯-例2.已知8=+b a ,2=ab ,求2)(b a -的值。
解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +- ∴-+2)(b a=-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a -∵8=+ba ,2=ab ∴=-2)(b a 562482=⨯-例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。
解:19992-2000×1998 =19992-(1999+1)×(1999-1) =19992-(19992-12)=19992-19992+1 =1例4:已知a+b=2,ab=1,求a 2+b 2和(a-b)2的值。
平方差公式与完全平方公式试题含答案
乘法公式的复习一、复习:(a+b)(a-b)=a 2-b 2 (a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2归纳小结公式的变式,准确灵活运用公式:① 位置变化,xyyxx 2y 2 ② 符号变化,xyxyx 2y 2 x 2y 2③ 指数变化,x 2y 2x 2y 2x 4y 4 ④ 系数变化,2ab 2ab 4a 2b 2⑤ 换式变化,xyzmxyzmxy 2zm 2 x 2y 2z 22zm +m 2x 2y 2z 22zmm 2⑥ 增项变化,xyzxyzxy 2z 2 x 22xy y 2z 2⑦ 连用公式变化,xyxyx 2y 2x 2y 2x 2y 2x 4y 4⑧ 逆用公式变化,xyz 2xyz 2xyzxyzxyzxyz2x 2y 2z 4xy 4xz例1.已知2=+b a ,1=ab ,求22b a +的值。
解:∵=+2)(b a 222b ab a ++ ∴22b a +=ab b a 2)(2-+∵2=+b a ,1=ab ∴22b a +=21222=⨯-例2.已知8=+b a ,2=ab ,求2)(b a -的值。
解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +-∴-+2)(b a =-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a -∵8=+b a ,2=ab ∴=-2)(b a 562482=⨯-例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。
解:19992-2000×1998 =19992-(1999+1)×(1999-1)=19992-(19992-12)=+1 =1例4:已知a+b=2,ab=1,求a 2+b 2和(a-b)2的值。
〖解析〗此题可用完全平方公式的变形得解。
平方差公式和完全平方公式(习题及答案)
平方差公式和完全平方公式(习题)例题示范例1:计算:23(1)(1)2(1)a a a -+---+.【操作步骤】(1)观察结构划部分:23(1)(1)2(1)a a a -+---+①②(2)有序操作依法则:辨识运算类型,依据对应的法则运算.第一部分:a -和a -符号相同,是公式里的“a ”,1和-1符号相反,是公式里的“b ”,可以用平方差公式;第二部分:可以用完全平方公式,利用口诀得出答案.(3)每步推进一点点.【过程书写】解:原式2223()12(21)a a a ⎡⎤=---++⎣⎦223(1)242a a a =----2233242a a a =----245a a =-- 巩固练习1.下列多项式乘法中,不能用平方差公式计算的是()A .()()x y y x ---+B .()()xy z xy z +-C .(2)(2)a b a b --+D .1122x y y x ⎛⎫⎛⎫--- ⎪⎪⎝⎭⎝⎭2.下列各式一定成立的是()A .222(2)42x y x xy y -=-+B .22()()a b b a -=-C .2221124a b a ab b ⎛⎫-=++ ⎪⎝⎭D .222(2)4x y x y +=+3.若2222(23)412x y x xy n y +=++,则n =__________.4.若222()44ax y x xy y -=++,则a =________.5.计算:①112233m n n m ⎛⎫⎛⎫--- ⎪⎪⎝⎭⎝⎭;②22()()()y x x y x y -++;③22(32)4x y y ---;④2()a b c +-;⑤296;⑥2112113111-⨯.6.运用乘法公式计算:①2(2)(2)(2)x y x y x y -+-+;②22(1)2(24)a a a +--+;③(231)(231)x y x y +--+;④3()a b -;⑤222233m m ⎛⎫⎛⎫+-- ⎪ ⎪⎝⎭⎝⎭;⑥2210199-.思考小结1.在利用平方差公式计算时要找准公式里面的a 和b ,我们把完全相同的“项”看作公式里的“_____”,只有符号不同的“项”看作公式里的“_____”,比如()()+---,_______是公式里的“a”,_______是公式里的“b”;同样x y z x y z在利用完全平方公式的时候,如果底数首项前面有负号,要把底数转为它的______去处理,比如22a b--=()(_______)2.根据两大公式填空:【参考答案】巩固练习1.C2.B3.±3。
平方差公式与完全平方公式练习题含答案
平方差公式一、填空题 1.(x+6)(6-x)= ,11()()22x x -+--= . 2.⋅--)52(b a ( )22254b a -=3.(x-1)(2x +1)( )=4x -1.4.(a+b+c)(a-b-c)=[a+( )][a-( )].5. 18201999⨯= ,403×397= . 二、选择题1.下列式中能用平方差公式计算的有( )①(x-12y)(x+12y), ②(3a-bc)(-bc-3a), ③(3-x+y)(3+x+y), ④(100+1)-(100-1)A.1个B.2个C.3个D.4个2、下列式中,运算正确的是( )①222(2)4a a =, ②2111(1)(1)1339x x x -++=-, ③235(1)(1)(1)m m m --=-, ④232482a b a b ++⨯⨯=.A.①②B.②③C.②④D.③④3.乘法公式中的字母a 、b 表示( )A.只能是数B.只能是单项式C.只能是多项式D.数字、单项式、•多项式都可以二、解答题1、(2x+3y)(2x-3y)2、a(a -5)-(a+6)(a -6)3、 ( x+y)( x -y)( x 2+y 2)4、 9982-4完全平方公式一、填空1. (a +2b )2=a 2+ +4b 2.2. (3a -5)2=9a 2+25- .3. a 2-4ab+( )=(a-2b)24. (a+b)2-( )=(a-b)25. (3x+2y)2-(3x-2y)2=6. 49a 2- +81b 2=( +9b )2.7. (-2m -3n )2= .8. (a -b +c )2= .二、选择题1、在括号内选入适当的代数式使等式(5x-y)·( )=25x 2-5xy+y 2成立.A.5x-yB.5x+yC.-5x+yD.-5x-y2、下列等式能成立的是( ).A.(a-b)2=a 2-ab+b 2B.(a+3b)2=a 2+9b 2C.(a+b)2=a 2+2ab+b 2D.(x+9)(x-9)=x 2-93、如果x 2+kx+81是一个完全平方式,那么k 的值是( ).A.9B.18C.9或-9D.18或-184、边长为m 的正方形边长减少n(m >n)以后,所得较小正方形的面积比原正方形面积减少了( )A.n 2B.2mnC.2mn-n 2D.2mn+n 2三、解答题1.(1)(-2a +5b )2; (2)(x -3y -2)(x +3y -2);(3)(2a +3)2+(3a -2)2;2.用简便方法计算:(1)972; (2)20022;(3)992-98×100; (4)49×51-2499214121212121平方差公式参考答案一.填空题1、236x -2、b a 52+-3、1+x4、)(c b +,)(c b +5、8180399,159991 二、选择题1-3 DCD三、解答题(1)2294y x - (2)、a 536- (3)44y x - (4)、996000 完全平方公式参考答案一、填空1、ab 42、a 303、24b4、ab 45、xy 246、ab 126- ,a 77、229124n mn m ++8、bc ab ac c b a 222222--+++二、选择题 1-4 ACDC三、解答题1、(1)2225204b ab a +- (2) 49422++-y x x (3) 13132+a2、(1)9409 (2)4008004 (3)1 (4)0。
平方差公式与完全平方公式试题含答案
乘法公式的复习一、复习:(a+b)(a-b)=a 2-b 2 (a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2 归纳小结公式的变式,准确灵活运用公式:① 位置变化,(x +y )(-y +x )=x 2-y 2 ② 符号变化,(-x +y )(-x -y )=(-x )2-y 2= x 2-y 2 ③ 指数变化,(x 2+y 2)(x 2-y 2)=x 4-y 4 ④ 系数变化,(2a +b )(2a -b )=4a 2-b 2⑤ 换式变化,[xy +(z +m )][xy -(z +m )]=(xy )2-(z +m )2= x 2y 2-(z 2+2zm +m 2)=x 2y 2-z 2-2zm -m 2 ⑥ 增项变化,(x -y +z )(x -y -z )=(x -y )2-z 2 =x 2-2xy +y 2-z 2 ⑦ 连用公式变化,(x +y )(x -y )(x 2+y 2)=(x 2-y 2)(x 2+y 2)=x 4-y 4⑧ 逆用公式变化,(x -y +z )2-(x +y -z )2=[(x -y +z )+(x +y -z )][(x -y +z )-(x +y -z )] =2x (-2y +2z ) =-4xy +4xz 例1.已知2=+b a ,1=ab ,求22b a +的值。
解:∵=+2)(b a 222b ab a ++ ∴22b a +=ab b a 2)(2-+ ∵2=+b a ,1=ab ∴22b a +=21222=⨯- 例2.已知8=+b a ,2=ab ,求2)(b a -的值。
解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +- ∴-+2)(b a =-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a - ∵8=+b a ,2=ab ∴=-2)(b a 562482=⨯- 例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。
平方差公式与完全平方公式试题含答案
平方差公式与完全平方公式试题含答案TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-乘法公式的复习一、复习:(a+b)(a-b)=a 2-b 2 (a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2归纳小结公式的变式,准确灵活运用公式:① 位置变化,xyyxx 2y 2 ② 符号变化,xyxyx 2y 2 x 2y 2③ 指数变化,x 2y 2x 2y 2x 4y 4 ④ 系数变化,2ab 2ab 4a 2b 2⑤ 换式变化,xyzmxyzmxy 2zm 2 x 2y 2z 22zm +m 2x 2y 2z 22zmm 2⑥ 增项变化,xyzxyzxy 2z 2 x 22xy y 2z 2⑦ 连用公式变化,xyxyx 2y 2x 2y 2x 2y 2x 4y 4⑧ 逆用公式变化,xyz 2xyz 2xyzxyzxyzxyz2x 2y 2z 4xy 4xz例1.已知2=+b a ,1=ab ,求22b a +的值。
解:∵=+2)(b a 222b ab a ++ ∴22b a +=ab b a 2)(2-+∵2=+b a ,1=ab ∴22b a +=21222=⨯-例2.已知8=+b a ,2=ab ,求2)(b a -的值。
解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +-∴-+2)(b a =-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a -∵8=+b a ,2=ab ∴=-2)(b a 562482=⨯-例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。
解:19992-2000×1998 =19992-(1999+1)×(1999-1)=19992-(19992-12)=+1 =1例4:已知a+b=2,ab=1,求a 2+b 2和(a-b)2的值。
平方差、完全平方公式专项练习题(精品)
平方差公式专项练习题A卷:基础题一、选择题1.平方差公式(a+b)(a-b)=a2-b2中字母a,b表示()A.只能是数B.只能是单项式C.只能是多项式D.以上都可以2.下列多项式的乘法中,可以用平方差公式计算的是()A.(a+b)(b+a)B.(-a+b)(a-b)C.(13a+b)(b-13a)D.(a2-b)(b2+a)3.下列计算中,错误的有()①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;③(3-x)(x+3)=x2-9;④(-x+y)·(x+y)=-(x-y)(x+y)=-x2-y2.A.1个B.2个C.3个D.4个4.若x2-y2=30,且x-y=-5,则x+y的值是()A.5 B.6 C.-6 D.-5二、填空题5.(-2x+y)(-2x-y)=______.6.(-3x2+2y2)(______)=9x4-4y4.7.(a+b-1)(a-b+1)=(_____)2-(_____)2.8.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.三、计算题9.利用平方差公式计算:2023×2113.10.计算:(a+2)(a2+4)(a4+16)(a-2).B卷:提高题一、七彩题1.(多题-思路题)计算:(1)(2+1)(22+1)(24+1)…(22n+1)+1(n是正整数);(2)(3+1)(32+1)(34+1)…(32008+1)-401632.2.(一题多变题)利用平方差公式计算:2009×2007-20082.(1)一变:利用平方差公式计算:22007200720082006-⨯.(2)二变:利用平方差公式计算:22007 200820061⨯+.二、知识交叉题3.(科内交叉题)解方程:x(x+2)+(2x+1)(2x-1)=5(x2+3).三、实际应用题4.广场内有一块边长为2a米的正方形草坪,经统一规划后,南北方向要缩短3米,东西方向要加长3米,则改造后的长方形草坪的面积是多少?四、经典中考题5.(2007,泰安,3分)下列运算正确的是()A.a3+a3=3a6B.(-a)3·(-a)5=-a8C.(-2a2b)·4a=-24a6b3D.(-13a-4b)(13a-4b)=16b2-19a26.(2008,海南,3分)计算:(a+1)(a-1)=______.C卷:课标新型题1.(规律探究题)已知x≠1,计算(1+x)(1-x)=1-x2,(1-x)(1+x+x2)=1-x3,(1-x)(•1+x+x2+x3)=1-x4.(1)观察以上各式并猜想:(1-x)(1+x+x2+…+x n)=______.(n为正整数)(2)根据你的猜想计算:①(1-2)(1+2+22+23+24+25)=______.②2+22+23+…+2n=______(n为正整数).③(x-1)(x99+x98+x97+…+x2+x+1)=_______.(3)通过以上规律请你进行下面的探索:①(a-b)(a+b)=_______.②(a-b)(a2+ab+b2)=______.③(a-b)(a3+a2b+ab2+b3)=______.2.(结论开放题)请写出一个平方差公式,使其中含有字母m,n和数字4.3.从边长为a的大正方形纸板中挖去一个边长为b的小正方形纸板后,•将剩下的纸板沿虚线裁成四个相同的等腰梯形,如图1-7-1所示,然后拼成一个平行四边形,如图1-7-2所示,分别计算这两个图形阴影部分的面积,结果验证了什么公式?请将结果与同伴交流一下.完全平方公式变形的应用完全平方式常见的变形有:ab b a b a 2)(222-+=+ab b a b a 2)(222+-=+ab b a b a 4)(22=--+)(bc ac ab c b a c b a 222)(2222---++=++1、已知m 2+n 2-6m+10n+34=0,求m+n 的值2、已知0136422=+-++y x y x ,y x 、都是有理数,求y x 的值。
乘法公式(平方差公式,完全平方公式)题
一、选择题1、计算的结果是()A.B.1000C.5000 D.5002、计算(x4+y4)(x2+y2)(x+y)(y-x)的结果是()A.x8-y8B.x6-y6C.y8-x8D.y6-x63、下列计算,结果错误的是()A.x(4x+1)+(2x+y)(y-2x)=x+y2B.(3a+1)(3a-1)+9=0C.x2-(5x+3y)(5x-3y)+6(2x-y)(y+2x)=3y2D.=-54x3y4、下列算式中不正确的有()①(3x3-5)(3x3+5)=9x9-25②(a+b+c+d)(a+b-c-d)=(a+b)2-(c+d)2③④2(2a-b)2·(4a+2b)2=(4a-2b)2(4a+2b)2=(16a2-4b2)2A.0个B.1个C.2个D.3个5、下列说法中,正确的有()①如果(x+y-3)2+(x-y+5)2=0,则x2-y2的值是-15;②解方程(x+1)(x-1)=x2+x的结果是x=-1;③代数式的值与n无关.A.0个B.1个C.2个D.3个B 卷二、填空题6、已知,则=___________.7、如果x2+kx+81是一个完全平方式,则k=___________.8、如果a2-b2=20,且a+b=-5,则a-b=___________.9、代数式与代数式的差是___________.10、已知m2+n2-6m+10n+34=0,则m+n=___________.隐藏答案答案:6、77、±188、-49、xy 10、-2提示:6、∵,∴,∴,∴.7、∵x2+kx+(±9)2是完全平方式.∴k=2×(±9)=±18.8、∵a2-b2=20,∴(a+b)(a-b)=20.又∵a+b=-5,∴a-b=-4.10、[m2+2·m·(-3)+(-3)2]+(n2+2·n·5+52)=0,(m-3)2+(n+5)2=0.∴∴∴m+n=-2.三、解答题11、计算下列各题:(1)(2a+3b)(4a+5b)(2a-3b)(5b-4a);(2)(x+y)(x-y)+(y-z)(y+z)+(z-x)(z+x);(3)(3m2+5)(-3m2+5)-m2(7m+8)(7m-8)-(8m)2.隐藏答案(1) 解:原式=(2a+3b)(2a-3b)(4a+5b)(5b-4a)=(4a2-9b2)(25b2-16a2)=100a2b2-64a4-225b4+144a2b2=-64a4+244a2b2-225b4(2) 解:原式=x2-y2+y2-z2+z2-x2=0(3) 解:原式=25-9m4-m2(49m2-64)-64m2=-58m4+2512、化简求值:(1)4x(x2-2x-1)+x(2x+5)(5-2x),其中x=-1.(2)(3x+2y)(3x-2y)-(3x+2y)2+(3x-2y)2,其中x=,y=-.隐藏答案(1) 解:原式=4x3-8x2-4x+x(25-4x2)=4x3-8x2-4x+25x-4x3=-8x2+21x.当x=-1时,原式=-8×(-1)2+21×(-1)=-8-21=-29.(2) 解:原式=9x2-4y2-9x2-12xy-4y2+9x2-12xy+4y2=9x2-24xy-4y2.当x=,y=-时,原式=9×()2-24××(-)-4×(-)2=1+4-1=4.13、著名数学教育家G.波利亚有句名言:“发现问题比解决问题更重要”,这句话启发我们:要想学会数学,就需要观察,发现问题,探索问题的规律性东西,要有一双敏锐的眼睛.请先观察下列算式,再填空.32-1=8×1,52-32=8×2(1)72-52=8×________;(2)92-72=8×________;1=1+2(2005-n)(n-2004),∴(2005-n)(n-2004)=0.。
最新平方差公式与完全平方公式试题(含答案)1[1]-2
乘法公式的复习一、复习:(a+b)(a-b)=a2-b2 (a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2 (a+b)(a2-ab+b2)=a3+b3 (a-b)(a2+ab+b2)=a3-b3归纳小结公式的变式,准确灵活运用公式:①位置变化,(x+y)(-y+x)=x2-y2②符号变化,(-x+y)(-x-y)=(-x)2-y2= x2-y2③指数变化,(x2+y2)(x2-y2)=x4-y4④系数变化,(2a+b)(2a-b)=4a2-b2⑤换式变化,[xy+(z+m)][xy-(z+m)]=(xy)2-(z+m)2=x2y2-(z+m)(z+m)=x2y2-(z2+zm+zm+m2)=x2y2-z2-2zm-m2⑥增项变化,(x-y+z)(x-y-z)=(x-y)2-z2=(x-y)(x-y)-z2=x2-xy-xy+y2-z2=x2-2xy+y2-z2⑦连用公式变化,(x+y)(x-y)(x2+y2)=(x 2-y 2)(x 2+y 2)=x 4-y 4⑧ 逆用公式变化,(x -y +z )2-(x +y -z )2=[(x -y +z )+(x +y -z )][(x -y +z )-(x +y -z )] =2x (-2y +2z )=-4xy +4xz例1.已知2=+b a ,1=ab ,求22b a +的值。
解:∵=+2)(b a 222b ab a ++ ∴22b a +=ab b a 2)(2-+∵2=+b a ,1=ab ∴22b a +=21222=⨯-例2.已知8=+b a ,2=ab ,求2)(b a -的值。
解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +-∴-+2)(b a =-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a -∵8=+b a ,2=ab ∴=-2)(b a 562482=⨯-例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题
1、计算的结果是()
A.B.1000
C.5000 D.500
2、计算(x4+y4)(x2+y2)(x+y)(y-x)的结果是()
A.x8-y8B.x6-y6
C.y8-x8D.y6-x6
3、下列计算,结果错误的是()
A.x(4x+1)+(2x+y)(y-2x)=x+y2
B.(3a+1)(3a-1)+9=0
C.x2-(5x+3y)(5x-3y)+6(2x-y)(y+2x)=3y2
D.=-54x3y
4、下列算式中不正确的有()
①(3x3-5)(3x3+5)=9x9-25
②(a+b+c+d)(a+b-c-d)=(a+b)2-(c+d)2
③
④2(2a-b)2·(4a+2b)2=(4a-2b)2(4a+2b)2=(16a2-4b2)2
A.0个B.1个
C.2个D.3个
5、下列说法中,正确的有()
①如果(x+y-3)2+(x-y+5)2=0,则x2-y2的值是-15;
②解方程(x+1)(x-1)=x2+x的结果是x=-1;
③代数式的值与n无关.
A.0个B.1个
C.2个D.3个
B 卷
二、填空题
6、已知,则=___________.
7、如果x2+kx+81是一个完全平方式,则k=___________.
8、如果a2-b2=20,且a+b=-5,则a-b=___________.
9、代数式与代数式的差是___________.
10、已知m2+n2-6m+10n+34=0,则m+n=___________.
隐藏答案
答案:
6、7
7、±18
8、-4
9、xy 10、-2
提示:
6、∵,∴,
∴,∴.
7、∵x2+kx+(±9)2是完全平方式.
∴k=2×(±9)=±18.
8、∵a2-b2=20,∴(a+b)(a-b)=20.
又∵a+b=-5,∴a-b=-4.
10、[m2+2·m·(-3)+(-3)2]+(n2+2·n·5+52)=0,
(m-3)2+(n+5)2=0.
∴
∴
∴m+n=-2.
三、解答题
11、计算下列各题:
(1)(2a+3b)(4a+5b)(2a-3b)(5b-4a);
(2)(x+y)(x-y)+(y-z)(y+z)+(z-x)(z+x);
(3)(3m2+5)(-3m2+5)-m2(7m+8)(7m-8)-(8m)2.
隐藏答案
(1) 解:原式=(2a+3b)(2a-3b)(4a+5b)(5b-4a)
=(4a2-9b2)(25b2-16a2)
=100a2b2-64a4-225b4+144a2b2
=-64a4+244a2b2-225b4
(2) 解:原式=x2-y2+y2-z2+z2-x2=0
(3) 解:原式=25-9m4-m2(49m2-64)-64m2=-58m4+25
12、化简求值:
(1)4x(x2-2x-1)+x(2x+5)(5-2x),其中x=-1.
(2)(3x+2y)(3x-2y)-(3x+2y)2+(3x-2y)2,其中x=,y=-.
隐藏答案
(1) 解:原式=4x3-8x2-4x+x(25-4x2)
=4x3-8x2-4x+25x-4x3
=-8x2+21x.
当x=-1时,
原式=-8×(-1)2+21×(-1)
=-8-21=-29.
(2) 解:原式=9x2-4y2-9x2-12xy-4y2+9x2-12xy+4y2
=9x2-24xy-4y2.
当x=,y=-时,
原式=9×()2-24××(-)-4×(-)2
=1+4-1
=4.
13、著名数学教育家G.波利亚有句名言:“发现问题比解决问题更重要”,这句话启发我们:要想学会数学,就需要观察,发现问题,探索问题的规律性东西,要有一双敏锐的眼睛.请先观察下列算式,再填空.
32-1=8×1,52-32=8×2
(1)72-52=8×________;
(2)92-72=8×________;
(3)(________)2-92=8×5;
(4)132-(________)2=8×________;
(5)通过观察归纳,用含字母n的式子表示这一规律为________________.
隐藏答案
解:(1)72-52=8×3;
(2)92-72=8×4;
(3)112-92=8×5;
(4)132-112=8×6;
(5)(2n+1)2-(2n-1)2=8n.
浅谈现代信息技术在小学作文教学中的运用及效果
双湖峪镇中心小学李光
摘要:信息技术高速发展的新时代,呼唤新型的作文教学模式,现代信息技术被广泛运用到教学中,尤其是作文教学,势必会冲击传
统的作文教学模式,建立新型的教学模式。
运用现代教育信息技术进行多媒体辅助作文教学,能把图像、声音、文字等教学材料融合,实现教学的优化整合。
合理有效地利用现代信息技术辅助作文教学,不仅能够帮助学生积累写作素材,丰富学生的感知,激发写作兴趣,培养学生的观察能力和语言表达能力,而且有助于营造开放、民主的课堂,还可以优化习作评价方式,真正把课堂还给学生,从而更好地体现新课改的精神。
关键词:现代信息技术作文教学写作素材兴趣评价
在信息技术高速发展的新时代,现代信息技术以信息储备量大,丰富的表现力,良好的知识组织形式,自主式学习的良好实现,及学习资源独特的共享功能等独特的优势,给教学开辟了一片新的天地,在教学中得到广泛应用,并且在学校教育中扮演着越来越重要的角色。
随着现代教育技术进入课堂,传统的作文教学模式势必会受到冲击,高速发展的时代呼唤新型的作文教学模式。
《语文课程标准》明确指出:“要充分利用现实生活中的语文教育资源,优化语文学习环境。
”“利用广播、电视、网络等技术,扩展语文学习环境。
”现代信息技术在作文教学中,能实现教学内容的呈现方式、学生的学习方式、教师的教学方式和师生互动方式的变革,真正体现学生在作文。