10钢的热处理 C曲线(精编)

合集下载

热处理C曲线

热处理C曲线

(二)奥氏体状态 1. 奥氏体晶粒大小的影响 奥氏体晶粒度增加,晶粒愈细,晶界面积增多,使晶界形 核的珠光体易于形核,有利于珠光体转变发生,C曲线左移 ;虽然使贝氏体转变速度增加,C曲线左移。但对晶内形核 的贝氏体转变影响不如珠光体转变大。对马氏体转变奥氏体 晶粒长大,缺陷减少及奥氏体均匀化。马氏体形成的阻力减 小,Ms升高。 2.加热温度和保温时间 加热温度和保温时间主要是通过改变奥氏体成分和状态来 影响珠光体转变和贝氏体转变。因为奥氏体成分不一定是钢 的成分,所以加热温度和保温时间不同,得到的奥氏体也不 一样,必然对随后的冷却转变起影响。 3.原始组织 主要影响奥氏体成分均匀性。原始组织愈细,加热后奥氏 体均匀化快,奥氏体成分愈均匀,随之冷却后珠光体转变和 贝氏体转变的形核率下降,长大减慢,C曲线右移。 原始组织愈粗,奥氏体成分不均匀,促进奥氏体分解,C曲 线左移。
综上所述, TTT图为珠光体等温转变、马氏体连续转变、 贝氏体等温转变的综合。
(二)非共析钢的过冷A等温转变图
与共析钢的A等温转变图不同的是:
对亚共析钢在发生P转变之前有先共析F析出,因此亚共析 钢的过冷A等温转变曲线在左上角有一条先共析F析出线,且 该线随含碳量增加向右下方移动,直至消失。
对过共析钢在发生P转变之前有先共析渗碳体析出,因此过 共析钢的过冷A等温转变曲线在左上角有一条先共析渗碳体 析出线,且随含碳量增加向左上方移动,直至消失。
(2)对贝氏体转变 贝氏体长大速度是受碳扩散控制(碳在铁素体内的脱溶)。这
是由于贝氏体转变时领先相为铁素体,随奥氏体中碳含量的增加 ,获得铁素体晶核几率下降。含碳量增加时,转变时需扩散的原 子量增加,贝氏体转变之前铁素体转变速度下降,贝氏体转变也 减慢,C曲线右移。
(3)对马氏体转变 碳含量(Wc)增加,Ms下降、Mf下降;Ms和Mf下降不一致

10钢的热处理 C曲线(精编)

10钢的热处理 C曲线(精编)

三、钢的奥氏体晶粒度 钢的奥氏体晶粒大小根据标准晶粒度等级图确 定。标准晶粒度分为8级。 1~4级为粗晶粒度,5~8级为细晶粒度。
标准晶粒度 等级
放大100倍
1.实际晶粒度和本质晶粒度
实际晶粒度:某一具体热处理或热加工条件 下的奥氏体的晶粒度。
它决定钢的性能。
本质晶粒度 钢加热到930 ℃±10℃、保温 8小时、冷却后测得的晶粒度。
➢650~600℃ : 细片状P---索氏体(S); 片间距为0.2~0.4μm (1000×); 25~36HRC。
➢600~550℃:极细片状P---屈氏体(T); 片间距为<0.2μm ( 电镜 ); 35~40HRC。
珠光体形貌像
光镜下形貌
电镜下形貌
索氏体形貌像
光镜形貌
电镜形貌
屈氏体形貌像
(b) 电子显微照片 5000×
上贝氏体形态
上贝氏体强度、韧性都较差。
下贝氏体(下B) 在350 ℃~Ms之间转变
产物。光学显微镜下为黑色针状, 电子显微镜 下可看到在铁素体针内沿一定方向分布着细 小的碳化物(Fe2.4C)颗粒。
(a) 光学显微照片 500倍
(b) 电子显微照片 12000倍
奥氏体向贝氏体下的贝转氏体变形属态 于半扩散型转变, 铁下原贝子氏不体扩硬散度而高碳,原韧子性有好一,定具扩有散较能好力的。强 韧性。
1.共析钢过冷奥氏体的等温转变 等温转变曲线(TTT曲线、C曲线)来分析。
T --- time T --- temperature T --- transformation
共析碳钢 TTT 曲线建立过程示意图
温度
(℃)பைடு நூலகம்
A1
800
700

10钢的热处理工艺

10钢的热处理工艺

形变热处理
高温形变热处理是把钢加热至奥氏体化,保温一段时间,在该温度下进行塑性变形,随后淬火处理,获得马氏体组织。
高温形变热处理的应用??碳钢、低合金结构钢及机械加工量不大的锻件或轧材。
根据性能要求,高温形变热处理在淬火后,还需要进行回火。高温形变热处理的塑性变形是在奥氏体再结晶温度以上的范围内进行的,因而强化程度(一般在10%~30%之间)不如低温形变热处理大。
1.过热
2.过烧
3.氧化
4.脱碳
由于加热温度过高或时间过长造成奥氏体晶粒粗大的缺陷
淬火加热温度太高造成奥氏体晶界出现局部熔化或发生氧化的现象
淬火加热时工件与周围的氧等发生的化学反应
淬火加热时,钢中的碳与空气中的氧等发生反应生成含碳气体逸出
第三节 其他类型热处理
钢的表面热处理
化学热处理
形变热处理
(2)渗碳后的组织 常用于渗碳的钢为低碳钢和低碳合金钢,如20、20Cr、20CrMnTi、12CrNi3等。渗碳后缓冷组织自表面至心部依次为:过共析组织(珠光体+碳化物)、共析组织(珠光体)、亚共析组织(珠光体+铁素体)的过渡区,直至心部的原始组织。
(3)渗碳后的热处理 渗碳后的热处理方法有:直接淬火法、一次淬火法和二次淬火法。
从经济性原则考虑,正火的生产周期短,操作简单,工艺成本低,在满足使用和工艺性能的前提下,应尽可能用正火代替退火。
第二节 钢的淬火与回火
一、淬火 将钢加热到Ac1或Ac3以上,保温一定时间,然后快速(大于临界冷却速度)冷却以获得马氏体(下贝氏体)组织的热处理工艺称为淬火。
1.淬火应力
与渗碳相比,渗氮温度低且渗氮后不再进行热处理,所以工件变形小。 为了提高渗碳工件的心部强韧性,需要在渗氮前对工件进行调质处理。

图1-34热处理工艺曲线示意图

图1-34热处理工艺曲线示意图

二、钢的热处理金属材料在固体范围内进行加热、保温和冷却,以改变其内部组织,获得所需性能的一种方法称热处理。

热处理的种类很多,根据其目的、加热和冷却方法的不同,可以分为:普通热处理、表面热处理及其他热处理方法。

普通热处理有退火、正火、淬火、回火;表面热处理有表面淬火(感应加热、火焰加热等)、化学热处理(渗碳、渗氮等);其他热处理有真空热处理、变形热处理和激光热处理等。

热处理方法虽然很多,但都是由加热、保温和冷却三个阶段组成的,通常用热处理工艺曲线表示。

图1-34 热处理工艺曲线示意图一、钢的普通热处理根据加热及冷却的方法不同,获得金属材料的组织及性能也不同。

普通热处理可分为退火、正火、淬火和回火四种。

普通热处理是钢制零件制造过程中非常重要的工序。

退火1.退火工艺及其目的退火是将工件加热到适当温度,保温一定时间,然后缓慢冷却的热处理工艺,实际生产中常采取随炉冷却的方式。

退火的主要目的:①降低硬度,改善钢的成形和切削加工性能;②均匀钢的化学成分和组织;③消除内应力。

2.常用退火工艺方法根据处理的目的和要求的不同,钢的退火可分为完全退火、球化退火和去应力退火等。

表1-4 为主要退火工艺方法及其应用。

表1-4 常用退火方法的工艺、目的与应用名称工艺目的应用完全退火将钢加热至Ac 3 以上30~50℃,保温一定时间,炉冷至室温(或炉冷至600℃以下,出炉空冷)细化晶粒,消除过热组织,降低硬度和改善切削加工性能主要用于亚共析钢的铸、锻件,有时也用于焊接结构球化退火将钢加热至Ac 1 以上20~40℃,保温一定时间,炉冷至室温,或快速冷至略低于Ar 1 温度,保温后出炉空冷,使钢中碳化物球状化的退火工艺使钢中的渗碳体球状化,以降低钢的硬度,改善切削加工性,并为以后的热处理做好组织准备。

若钢的原始组织中有严重的渗碳体网,则在球化退火前应进行正火消除,以保证球化退火效果主要用于共析钢和过共析钢均匀化退火(扩散退火)将钢加热到略低于固相线温度(Ac 3 或Ac cm 以上150~300℃),长时间保温(10~15h),随炉冷却。

热处理C曲线

热处理C曲线
对过共析钢在发生P转变之前有先共析渗碳体析出,因此过 共析钢的过冷A等温转变曲线在左上角有一条先共析渗碳体 析出线,且随含碳量增加向左上方移动,直至消失。
温度
亚共析钢的TTT曲线
(℃)
A3
800
F
A1
700
A
600
P+F S+F
T
500
400
B
300 Ms 200
100 0 Mf
M + A残
-100 0
上述两个因素综合作用的结果,在550℃是驱动力和原子 的扩散的作用都充分发挥,使孕育期最短,使TTT图呈“C” 字形。
综上所述, TTT图为珠光体等温转变、马氏体连续转变、 贝氏体等温转变的综合。
(二)非共析钢的过冷A等温转变图
与共析钢的A等温转变图不同的是:
对亚共析钢在发生P转变之前有先共析F析出,因此亚共析 钢的过冷A等温转变曲线在左上角有一条先共析F析出线,且 该线随含碳量增加向右下方移动,直至消失。
加热温度和保温时间、原始组织 • 应力 • 塑性变形
(一)A的成分
1.含碳量
含碳量不改变C曲线的形状但对珠光体转变、贝氏体转变的 影响不同。
(1)对珠光体转变
①非共析钢在发生珠光体转变之前有先共析相(铁素体、 渗碳体)析出,因此非共析钢的过冷奥氏体等温转变C曲线 在左上角有一条先共析相析出线,且先共析相析出线随含碳 量的变化而移动。
影响,图形比较复杂。 常见的C曲线有四种形状: (a) 表示A→P和A→B转变线重叠; (b) 表示转变终了线出现的二个鼻子; (c) 表示转变终了线分开,
珠光体转变的鼻尖离纵轴远; (d) 表示形成了二组独立的C曲线。
二、 影响过冷奥氏体C曲线形状的因素

【金属材料热处理技术知识讲座】谈谈“C”曲线

【金属材料热处理技术知识讲座】谈谈“C”曲线

谈谈“C”曲线第一讲C曲线的来源——奥氏体的等温转变有的老师傅说“热加工人在大干,定叫钢铁组织变。

它的变化有规律,加热按着平衡图,冷却按着C曲线。

”这话是很有道理的。

一冷却有“学问”钢在热加工时,必须有加热、保温及冷却的过程。

冷却方法虽然不同,但总不外乎两种形式:连续冷却与等温冷却。

如果随着时间的延长,温度始终接连不断地在降低,这就是连续冷却。

连续冷却不一定非得是用同一冷却速度冷至室温不可,可以先快后慢,或先慢后快等。

等温冷却是指在降温范围内的某一指定温度上,做一定时间的停留,然后再接着冷却下来的一种冷却形式。

它可以采用多个恒温段的方法依次进行冷却。

具体采用什么方式,要根据性能要求,并符合内部组织变化的客观规律。

二性能有差异大家知道,钢的退火是为了降低硬度,必须缓冷,而淬火是要提高硬度,必须快冷。

不同的冷却速度只是外因,是产生硬度差异的条件,而钢的内部组织之间的矛盾性,才是硬度变化的根据,也就是内因。

这就是说,冷却只是深刻地影响到钢的内部组织变化,而这种变化却只有通过钢内部组织转变的客观规律才能引起。

三奥氏体的等温转变奥氏体是碳在铁的面心立方晶格中的间隙固溶体。

在钢加热到Ac1以上并保温后,其内部就呈现这种组织。

奥氏体的等温转变就是把钢加热到呈奥氏体状态的温度并保温,再迅速冷到低于Ac1的某一固定温度,在此温度进行恒温,以便使奥氏体充分完成组织转变。

四C曲线的画法用不同的等温温度和停留时间,进行详细试验,就可以分别知道在每个温度下,奥氏体转变开始与结束的时间,还可以知道奥氏体在转变过程中的转变量与停留时间关系的数据。

奥氏体转变量和等温温度及停留时间,三者有不可分割的联系,利用温度—时间坐标来反映,既完整又简单。

第二讲C曲线的上部——珠光体转变区一C曲线的分区在C曲线中,共有五条主要的线。

其中有两条是曲线:代表过冷奥氏体转变开始线和结束线;有三条是水平直线:A1为高温奥氏体临界点,Ms为马氏体转变开始点,Mz为马氏体转变终了点。

10钢的热处理 C曲线

10钢的热处理 C曲线

高温转变区过冷奥氏体一部分转变为铁 素体。剩余的过冷奥氏体再转变为珠光体型 组织。
3.过共析钢过冷奥氏体的等温转变 过共析钢过冷A的C曲线的上部为过冷A中析出 二次渗碳体开始线。 当加热温度为Ac1以上30~50 ℃时,过共析 钢随着碳含量的增加, C曲线位置向左移, 同时Ms、 Mf线往下移。
奥氏体的孕育期,都能够阻碍奥氏体分 解,表现为使C—曲线向右移的作用。 碳是影响C—曲线位置的最主要元素:在 正常条件下,亚共析碳钢的C—曲线随含 碳量的增加而A3点不断降低,奥氏体稳 定性不断提高,使曲线向右移,过共析 钢的C—曲线则随含碳量的增加而Acm点 不断上升,使曲线向左移。故在碳钢中 以共析碳钢过冷奥氏体为最稳定。
2.影响奥氏体晶粒度的因素 (1)加热温度和保温时间 加热温度升高,晶粒逐渐长大。温度越高, 保温时间越长,奥氏体晶粒越粗大。
(2)钢的成分 ●奥氏体中碳含量增高,晶粒长大倾向增 大。未溶碳化物则阻碍晶粒长大。 ●钛、钒、铌、锆、铝有利于得到本质细 晶粒钢。碳化物、氧化物和氮化物弥散分布在 晶界上,能阻碍晶粒长大。 ●锰、磷促进晶粒长大。
2.钢在加热时的组织转变 共析钢加热到Ac1以上时,珠光体将转变为奥 氏体。四个过程: 奥氏体晶核形成、奥氏体晶核长大、 剩余渗碳体溶解、奥氏体成分均匀化。
亚共析钢加热到 Ac3 以上获得单一的 奥氏体组织。 过共析钢加热到 Accm以上获得单一的奥 氏体组织。
F
Fe3C A A
未溶Fe3C
A 形核
2.4.2 钢在冷却时的转变 当温度在A1以上时, 奥氏体是稳定的。
当温度降到A1以下后,奥氏体即处于过 冷状态,这种奥氏体称为过冷奥氏体。 过冷A是不稳定的,会转变为其它的组 织。钢在冷却时的转变,实质上是过冷A的 转变。

热处理C曲线

热处理C曲线
过冷奥氏体转变动力学图
第一节 过冷奥氏体等温转变动力学图
过冷A在非平衡条件下冷却,可有如图的几种形式: 其中: (a) dT/dτ= 0,为等温冷却; (b) dT/dτ= C,为连续冷却; (c) dT/dτ= f(τ),为实际冷却
过冷奥氏体等温转变曲 线又称 TTT 图、 IT 图或 C 曲 线。综合反映了过冷奥氏 体在冷却时的等温转变温 度、等温时间和转变量之 间的关系(即反映了过冷 奥氏体在不同的过冷度下 等温转变的转变开始时间、 转变终了时间、转变产物 类型、转变量与等温温度、 等温时间的关系)。 TTT-Temperature Time Transformation IT-Isothermal Transformation
总之,Co、Al可促进冷却转变,其他合金元素大多阻碍转变
(二)奥氏体状态 1. 奥氏体晶粒大小的影响 奥氏体晶粒度增加,晶粒愈细,晶界面积增多,使晶 界形核的珠光体易于形核,有利于珠光体转变发生,C曲线 左移;虽然使贝氏体转变速度增加,C曲线左移。但对晶内 形核的贝氏体转变影响不如珠光体转变大。对马氏体转变奥 氏体晶粒长大,缺陷减少及奥氏体均匀化。马氏体形成的阻 力减小,Ms升高。 2.加热温度和保温时间 加热温度和保温时间主要是通过改变奥氏体成分和状 态来影响珠光体转变和贝氏体转变。因为奥氏体成分不一定 是钢的成分,所以加热温度和保温时间不同,得到的奥氏体 也不一样,必然对随后的冷却转变起影响。 3.原始组织 主要影响奥氏体成分均匀性。原始组织愈细,加热后 奥氏体均匀化快,奥氏体成分愈均匀,随之冷却后珠光体转 变和贝氏体转变的形核率下降,长大减慢,C曲线右移。 原始组织愈粗,奥氏体成分不均匀,促进奥氏体分解, C曲线左移。
合金元素的影响: 除Co、Al (>2.5% ) 外,所有合金元 素溶入奥氏体中,会引起:

热处理C曲线精编版精编版

热处理C曲线精编版精编版
珠光体转变的鼻尖离纵轴远; (d) 表示形成了二组独立的C曲线。
二、 影响过冷奥氏体C曲线形状的因素
A的成分:C和合金元素 奥氏体状态:奥氏体晶粒大小的影响、
加热温度和保温时间、原始组织 应力 塑性变形
(一)A的成分
1.含碳量
含碳量不改变C曲线的形状但对珠光体转变、贝氏体转变的 影响不同。
, 变
区 ( A→P、A→B), 转 变
产物区(P、B), M形
成区(A→M)、M转变产
物区(M或M+Ar)
孕育期最短的部位,即转 变开始线的突出部分,称为 鼻子。
温度 (℃)
800 700 600 500
400 300 200 100
0
共析碳钢 TTT 曲线的分析
稳定的奥氏体区
过 冷 奥 氏
+ 产
V3 = 33℃/s : 油冷;T+M+A残
V4 ≥ 138℃/s : 水冷 ; M+A残
-100 0
1 10 102 103 104 时间(s)
第二节 过冷奥氏体连续转变动力学图
过冷奥氏体连续冷却转变图(又称CCT图或CT图):综 合反映了过冷奥氏体在连续冷却时的转变温度、时间和转变 量之间的关系(即反映了过冷奥氏体在不同的冷却速度下转 变的转变开始时间、转变终了时间、转变产物类型、转变量 与转变温度、转变时间的关系)。
因此,共析钢的C曲线离纵轴最远,共析钢的过冷奥氏体最 稳定。
非共析钢和共析钢的TTT图比较
原因:
在相同条件下,随亚共析钢中碳含量增加,获得铁素体 晶核几率下降,铁素体长大时需扩散去的碳量增大,扩散 的距离增大,先共析铁素体析出的孕育期增长,铁素体析 出速度下降;一般认为铁素体析出有利与珠光体转变,而 珠光体的析出在铁素体之后,铁素体析出速度减慢,珠光 体的析出速度也减慢,C曲线向右移动。

C曲线

C曲线

A
F Fe3C Fe3C P(Fe3C+F)
图3-7 珠光体转变过程示意图
珠光体的形成过程中需要碳原子的移动。 温度高时碳原子移动距离大,所形成的 珠光体片层较宽,温度较低时碳原子移 动困难,所形成的珠光体片层较密。在 727℃~650℃之间转变得到的组织为珠 光体;
珠光体的形成过程中需要碳原子的移动。 温度高时碳原子移动距离大,所形成的 珠光体片层较宽,温度较低时碳原子移 动困难,所形成的珠光体片层较密。在 727℃~650℃之间转变得到的组织为珠 光体;
3.1.2 热处理原理
温 度
A1 A3 Acm
保温
加热
冷却
时间
钢加热时的转变
C -曲线
C-曲线是对碳钢加热得到奥氏体后,在冷 却过程中组织转变进行分析的工具。
钢的热处理工艺有两种冷却方式: (1)等温冷却转变:就是使加热到奥氏体的钢, 先以较快的冷却速度冷到A1线以下一定的温 度,然后进行保温,使奥氏体在等温下发生 组织转变。 (2)连续冷却转变:是指在冷却过程中,随 着时间的延长温度连续下降。在实际生产中 大多数的冷却过程是连续冷却。
温度 ( ℃) 800
二) 共析碳钢 TTT 曲线与CCT曲线的比较
稳定的奥氏体区 A1
700 600 500
400 300 Ms 200 100 0 -100 0 Mf
CCT曲线 TTT曲线
1
10
102
103
104
时间(s)
A1
A1
TA
TA
温 度
Ms Mf


A→M
Ms Mf A→M
时间
时间
亚共析钢
20~28
32~46 32~40 80 15~24 32~40 28~40
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.共析钢过冷奥氏体的等温转变 等温转变曲线(TTT曲线、C曲线)来分析。
T --- time T --- temperature T --- transformation
共析碳钢 TTT 曲线建立过程示意图
温度
(℃)
A1
800
700
600
500
400 300 200 100
0
-100 0
1
10
102
光镜形貌 电镜形貌
(2) 中温转变
贝氏体转变区(550 ℃~Ms):
过冷奥氏体的转变产物为贝氏体型组织。
贝氏体 渗碳体分布在碳过饱和的铁素体基体上 的两相混合物。
上贝氏体(上B) 550 ℃~350 ℃之间转变产物。 呈羽毛状, 小片状的渗碳体分布在成排的铁素体片 之间。
(a)光学显微照片 500×
奥氏体组织。
F
Fe3C
未溶Fe3C
A A
残余Fe3C
A 形核 A
残余Fe3C溶解
A 长大 A A 均匀化
二、影响奥氏体转变速度的因素
1.加热温度 随加热温度的提高, 奥氏体化速度加快。 2.加热速度 加3.钢热中速碳度含越量快,发生转变的温度越高,转变 所需碳4.的合含时金量间元增越素加短,。铁素体和渗碳体的相界面增 大,钴5.转原、变始镍速组等度织加加快快奥。氏体化过程; 铬原、始钼组、织钒中等渗减碳慢体奥为氏片体状化时过奥程氏;体形成速 度快硅,、渗铝碳、体锰间等距不越影小响,奥转氏变体速化度过越程快。。 合金元素的扩散速度比碳慢得多,合金钢的 热处理加热温度一般较高,保温时间更长。
三、钢的奥氏体晶粒度 钢的奥氏体晶粒大小根据标准晶粒度等级图确 定。标准晶粒度分为8级。 1~4级为粗晶粒度,5~8级为细晶粒度。
标准晶粒度 等级
放大100倍
1.实际晶粒度和本质晶粒度
实际晶粒度:某一具体热处理或热加工条件 下的奥氏体的晶粒度。
它决定钢的性能。
本质晶粒度 钢加热到930 ℃±10℃、保温 8小时、冷却后测得的晶粒度。
(a)珠光体 3800倍
(b) 索氏体 8000倍
(c)屈氏体 8000倍
奥氏体转变为珠光体是扩散型转变, 通过碳、 铁的扩散和晶体结构的重构来实现的。
珠光体型 ( P ) 转变 ( A1~550℃ ) : ➢A1~650℃ : P ; 5~25HRC;
片间距为0.6~0.7μm ( 500× )。
(2) 连续冷却 钢以某种速度从 高温到低温连续冷 却,在临界点以下 变温转变。
2.4.1 钢在加热时的转变
一、奥氏体的形成
1.钢在加热时的临界温度 大多数热处理工艺将钢加热到临界温度以上, 获得全部或部分奥氏体组织,进行奥氏体化。
实际热处理,加热时相变 温度偏高,冷却时偏低。加 热和冷却速度愈大偏差愈 大。
反映奥氏体晶粒长大的倾向。
本质细晶粒钢:晶粒细小。 本质粗晶粒钢:晶粒粗大。
2.影响奥氏体晶粒度的因素 (1)加热温度和保温时间 加热温度升高,晶粒逐渐长大。温度越高,保 温时间越长,奥氏体晶粒越粗大。
(2)钢的成分 ●奥氏体中碳含量增高,晶粒长大倾向增大。 未溶碳化物则阻碍晶粒长大。 ●钛、钒、铌、锆、铝有利于得到本质细晶 粒钢。碳化物、氧化物和氮化物弥散分布在晶 界上,能阻碍晶粒长大。 ●锰、磷促进晶粒长大。
2.亚共析钢过冷奥氏体的等温转变 转变曲线多一条过冷奥氏体转变为铁素体的转 变开始线。亚共析钢随着碳含量的增加,C曲线
加热时为Ac1、Ac3、Accm 冷却时为Ar1、Ar3、Arcm
2.钢在加热时的组织转变
共析钢加热到Ac1以上时,珠光体将转变为奥
氏体。四个过程: 奥氏体晶核形成、奥氏体晶核长大、 剩余渗碳体溶解、奥氏体成分均匀化。
亚共析钢加热到
Ac3 以上获得单一的
奥氏体组织。 过共析钢加热到
Accm以上获得单一的
2.4.2 钢在冷却时的转变
当温度在A1以上时, 奥氏体是稳定的。
当温度降到A1以下后,奥氏体即处于过
冷状态,这种奥氏体称为过冷奥氏体。
过冷A是不稳定的,会转变为其它的组织。 钢在冷却时的转变,实质上是过冷A的转变。
钢在热处理时的冷却方式
温 度
热 加
保温
临界温度
连续冷却
等温冷却 时间
一、过冷奥氏体的等温转变
103
104 时间(s)
共析钢过冷A的等温转变曲线图
共析钢过冷奥氏体等温转变:二个转变区
(1)高温转变
珠光体转变区(A1~550 ℃):
过冷奥氏体转变产物为珠光体型组织。
珠光体型组织是铁素体和渗碳体的机械混合 物。渗碳体呈层片状分布在铁素体基体上。
转变温度越低,层间距越小。按层间距大小 分为:珠光体(P)、索氏---索氏体(S); 片间距为0.2~0.4μm (1000×); 25~36HRC。
➢600~550℃:极细片状P---屈氏体(T); 片间距为<0.2μm ( 电镜 ); 35~40HRC。
珠光体形貌像
光镜下形貌
电镜下形貌
索氏体形貌像
光镜形貌
电镜形貌
屈氏体形貌像
为什么热处理后材料性能会改变? 热处理后材料内部的微观结构(组织)发 生变化,使材料性能改变。
问题1: 加热、冷却时材料内部的微观结构如何
变化(热处理原理)? 问题2:
热处理工艺有哪些?工程实际中有何应 用?
热处理工艺曲线
钢加热奥氏体化后,冷却的方式有两种: (1) 等温处理 将钢迅速冷却到临界点以下的给 定温度,进行保温,恒温转变。
2.4 钢的热处理
热处理 将固态金属或合金在一定介质中 加热、保温和冷却,以改变材料整体或表 面组织,从而获得所需性能的工艺。
热处理作用:大幅度地改善金属材料的工艺性 能和使用性能。
绝大多数机械零件必须热处理。
如:45钢 热轧钢板硬度18HRC 860℃加热,水冷,硬度55HRC
T10钢 760℃加热,炉冷,硬度20HRC 760℃加热,水冷,硬度65HRC
(b) 电子显微照片 5000×
上贝氏体形态
上贝氏体强度、韧性都较差。
下贝氏体(下B) 在350 ℃~Ms之间转变
产物。光学显微镜下为黑色针状, 电子显微镜 下可看到在铁素体针内沿一定方向分布着细 小的碳化物(Fe2.4C)颗粒。
(a) 光学显微照片 500倍
(b) 电子显微照片 12000倍
奥氏体向贝氏体下的贝转氏体变形属态 于半扩散型转变, 铁下原贝子氏不体扩硬散度而高碳,原韧子性有好一,定具扩有散较能好力的。强 韧性。
相关文档
最新文档