岩石强度破裂准则(谷风技术)
岩石的破坏准则汇总

岩石的破坏准则岩石的破坏准则对岩石试样的室内及现场试验,可获得岩石试样的强度指标,但对复杂应力状态下的天然岩体,又是如何判断其破坏呢?因此,就必须建立判断岩石破坏的准则(或称强度理论)。
岩石的应力、应变增长到一定程度,岩石将发生破坏。
用来表征岩石破坏条件的函数称为岩石的破坏准则。
岩石在外力作用下常常处于复杂的应力状态,许多试验指出,岩石的强度及其在荷载作用下的性状与岩石的应力状态有着很大的关系。
在单向应力状态下表现出脆性的岩石,在三向应力状态下具有延1岩石的破坏准则2性性质,同时它的强度极限也大大提高了。
岩石的破坏准则许多部门和学者从不同角度提出不同的破坏准则,目前岩石破坏准则主要有:最大正应力理论最大正应变理论最大剪应力理论(H.Tresca)八面体应力理论莫尔理论及库伦准则格里菲思理论(Griffith)伦特堡理论(Lundborg)经验破坏准则3岩石的破坏准则41、最大正应力理论这是较早的一种理论,该理论认为岩石的破坏只取决于绝对值最大的正应力。
即岩石内的三个主应力中只要有一个达到单轴抗压或抗拉强度时,材料就破坏。
适用条件: 单向应力状态。
对复杂应力状态不适用。
写成解析式:破坏岩石的破坏准则52、最大正应变理论该理论认为岩石的破坏取决于最大正应变,即岩石内任一方向的正应变达到单向压缩或拉伸时的破坏数值时,岩石就发生破坏。
则破坏准则为式中 m ax ε——岩石内发生的最大应变值;u ε——单向拉、压时极限应变值;这一破坏准则的解析式为(由广义虎克定律)岩石的破坏准则6R — R t 或R c推出:实验指出,该理论与脆性材料实验值大致符合,对塑性材料不适用。
岩石的破坏准则73、最大剪应力理论(H.Tresca )该理论认为岩石材料的破坏取决于最大剪应力,即当最大剪应力达到单向压缩或拉伸时的危险值时,材料达到破坏极限状态。
其破坏准则为:在复杂应力状态下,最大剪应力231max σστ-=岩石的破坏准则8单位拉伸或压缩时,最大剪应力的危险值则有 R ≥-31σσ或写成 {}{}{}0)][)][)][221222232231=------R R R σσσσσσ这个理论适用于塑性岩石,不适用于脆性岩石。
岩石强度及破坏准则优缺点

岩石力学中常用的几种强度准则
Mohr-Coulomb准则
τ
当压力不大(小于10MPa) 时,包络线可采用直线型 近似
f Ctan
破坏角(剪裂面与最大主
应力 σ1的夹角)满足: = +
42
C
1 2
(
1
3
)
φ
2θ
O σ3
σ1
σ
Hale Waihona Puke C·ctgφ1 2
(
1
3
)
库仑—莫尔强度条件
岩石力学中常用的几种强度准则
对Mohr-Coulomb强度准则评价:
优点: ➢ 公式简单实用,各参数一般都可以利用常规试验器材和方法 来确定; ➢ 不仅能反映岩体的碎性破坏,而且能反映其塑性破坏特征。
缺点:
该准则为线性破坏准则,在高围压压缩条件下,该准则 评估的岩石三轴强度与试验实测强度数据偏差较大;
该准则没有考虑中间主应力对岩石真三轴强度的影响; 该强度准则还指出,岩体的破坏角θ,但在拉伸条件下,
O
σ
岩石力学中常用的几种强度准则
对Mohr强度理论的评价:
优点: ➢ 适用于塑性岩石,也适用于脆性岩石的剪切破坏; ➢ 较好解释了岩石抗拉强度远远低于抗压强度特征; ➢ 解释了三向等拉时破坏,三向等压时不破坏现象; ➢ 简单、方便:同时考虑拉、压、剪,可判断破坏方向。
缺点:
忽视了σ2 的作用,误差:±15% 没有考虑结构面的影响 不适用于拉断破坏,破裂面趋于分离 不适用于膨胀、蠕变破坏
理上的困难; 1952 年 Drucker 和 Prager 构造了一个内切于 M-C 准则的六棱锥的圆锥屈服面;
函数形式
式中 I1xyz123, 为应力张量第一不变量
岩石的破坏准则[详细]
![岩石的破坏准则[详细]](https://img.taocdn.com/s3/m/27d063e3f01dc281e53af0b9.png)
五、岩石的破坏准则对岩石试样的室内及现场试验,可获得岩石试样的强度指标,但对复杂应力状态下的天然岩体,又是如何判断其破坏呢?因此,就必须建立判断岩石破坏的准则(或称强度理论).岩石的应力、应变增长到一定程度,岩石将发生破坏.用来表征岩石破坏条件的函数称为岩石的破坏准则.岩石在外力作用下常常处于复杂的应力状态,许多试验指出,岩石的强度及其在荷载作用下的性状与岩石的应力状态有着很大的关系.在单向应力状态下表现出脆性的岩石,在三向应力状态下具有延性性质,同时它的强度极限也大大提高了.许多部门和学者从不同角度提出不同的破坏准则,目前岩石破坏准则主要有:最大正应力理论最大正应变理论最大剪应力理论(H.Tresca)八面体应力理论莫尔理论及库伦准则格里菲思理论(Griffith)伦特堡理论(Lundborg)经验破坏准则1、最大正应力理论这是较早的一种理论,该理论认为岩石的破坏只取决于绝对值最大的正应力.即岩石内的三个主应力中只要有一个达到单轴抗压或抗拉强度时,材料就破坏.适用条件: 单向应力状态.对复杂应力状态不适用.写成解析式:破坏2、最大正应变理论该理论认为岩石的破坏取决于最大正应变,即岩石内任一方向的正应变达到单向压缩或拉伸时的破坏数值时,岩石就发生破坏.则破坏准则为式中ε——岩石内发生的最大应变值;m axε——单向拉、压时极限应变值;u这一破坏准则的解析式为(由广义虎克定律)R —R t或R c推出:实验指出,该理论与脆性材料实验值大致符合,对塑性材料不适用.3、最大剪应力理论(H.Tresca)该理论认为岩石材料的破坏取决于最大剪应力,即当最大剪应力达到单向压缩或拉伸时的危险值时,材料达到破坏极限状态.其破坏准则为:在复杂应力状态下,最大剪应力231 max σστ-=单位拉伸或压缩时,最大剪应力的危险值则有 R ≥-31σσ或写成 {}{}{}0)][)][)][221222232231=------R R R σσσσσσ这个理论适用于塑性岩石,不适用于脆性岩石. 该理论未考虑中间主应力的影响.4、八面体剪应力理论(Von.米ises)该理论认为岩石达到危险状态取决于八面体剪应力.其破坏准则为已知单元体1σ,2σ,3σ ,作一等倾面(其法线夹角相同).为研究等倾面上的应力,取一由等倾面与三个主应力面围成的四面体来研究.N 与x 、y 、z 的夹角分别为γβα、、,且 γβα==. 设:l =αcos ,m =βcos ,n =γcos设等倾面ABC 面积为S,则三个主应力面(1σ,2σ,3σ面)的面积分别为根据力的平衡条件∑=0X , ∑=0Y , ∑=0Z推出:⎪⎩⎪⎨⎧⋅⋅=⋅=⋅⋅=⋅=⋅⋅=⋅=∑∑∑γσβσασcos 0cos 0cos 0321S S p Z S S p Y S S p X z y x , 而 等倾面S 上合力:222z y x p p p p ++=所以另,等倾面S 上的法向应力为各分力p x 、p y 、p z 在N 上的投影之和,即S oct ττ≥,推出适用条件:塑性,5、莫尔理论及莫尔库伦准则该理论是目前应用最多的一种强度理论.该理论假设,岩石内某一点的破坏主要取决于它的大主应力和小主应力,即σ1和σ3,而与中间主应力无关.也就是说,当岩石中某一平面上的剪应力超过该面上的极限剪应力值时,岩石破坏.而这一极限剪应力值,又是作用在该面上法向压应力的函数,即)(στf = .这样,我们就可以根据不同的σ1、σ3绘制莫尔应力图. 每个莫尔圆都表示达到破坏极限时应力状态.一系列莫尔圆的包线即为强度曲线一方面与材料内的剪应力有关,同时也与正应力有关关于包络线:抛物线:软弱岩石双曲线或摆线:坚硬岩石直线:当σ<10米Pa 时为简化计算,岩石力学中大多采用直线形式:c ——凝聚力(米Pa) ϕ——内摩擦角.该方程称为库伦定律,所以上述方法合称为:莫尔库伦准则. 当岩石中任一平面上f ττ≥ 时,即发生破坏.即: ϕσττtg c f ⋅+=≥下面介绍用主应力来表示莫尔库仑准则. 任一平面上的应力状态可按下式计算①②α(σ1)力圆,可建力之间关系1)c和ϕ值与σ1、σ3和α角关系在σ1~σ3的应力圆上,找出2α的应力点T(T米为半径为231σσ-) 则,与直径T米垂直且与圆相切的直线即为ϕστtgc⋅+=根据几何关系,902)2180(90-=--=ααϕ,得出代入ϕστtg c ⋅+=中,得到另由公式推导:将σ1、σ3表示的 σ 和 τ 代入ϕστtg c ⋅+=中,导出对α求导,01=ασd d 推出:245ϕα+= 破坏面与最大主应力面的夹角而与最大主应力方向的夹角2).用主应力σ1、σ3表达的强度准则 将 σ 和 τ 的表达式代入 ϕστtg c ⋅+=中,ϕασσσσασσtg c ⎥⎦⎤⎢⎣⎡-+++=-2cos 222sin 2313131利用关系:ααϕ2sin )902cos(cos =-= ααϕ2cos )902sin(sin -=-= 化简得:当σ3=0时(单轴压缩):ϕϕσsin 1cos 21-==c R c ,令ϕϕϕsin 1sin 1-+=N ,则,σ1当σ1=0时(单轴抗拉该值为 )(στf =但与实测的R t 线段进行修正.岩石破坏的判断条件:ϕ>, 破坏sin极限ϕ<,稳定sin6、格里菲思(Griffith)理论以上各理论都是把材料看作为连续的均匀介质,格里菲思则认为:当岩石中存在许多细微裂隙,在力的作用下,在缝端产生应力集中,岩石的破坏往往从缝端开始,裂缝扩展,最后导致破坏.方向成β角.且形状接近于椭圆,的局部抗拉强度,的边壁就开始破裂.1).任一裂隙的应力.假定:①椭圆可作为半元限弹性介质中的单个孔洞处理, ②二维问题处理,取0=z σ椭圆参数方程:αcos a x =,αsin b y = 椭圆的轴比为:ab m =椭圆裂隙周壁上偏心角的α的任意点的切向应力 可用弹性力学中英格里斯(Inglis)公式表示:由于裂缝很窄,轴比很小,形状扁平,所以最大应力显然发生在靠近椭圆裂隙的端部,即α很小的部位,当0→α时,αα→sin ,1cos →α又由于米,α很小,略去高次项,则有米为定值,当1σ,2σ,3σ确定时,y σ、xy τ也为定值,则b σ仅随α而变.这是任一条裂隙沿其周边的切向应力.显然在椭圆周边上,随α不同b σ有不同的值,对α求导.2mτxy则,2).岩块中的最大切向应力所在的裂隙上面导出了 某一条裂隙上的最大切向应力,但在多条裂隙中,哪一条裂隙的b σ 最大?y σ,xy τ与1σ,3σ的关系为:βσσσσσ2cos 223131--+=y , βσστ2sin 231--=xy代入 m ax ,b σ中,显然m ax ,b σ与β有关,对其求导,便可求得b σ为最大的那条裂隙,即确定出β角. 即取 0m ax ,=⋅βσd d m b则①02sin =β,有β=0或 90代入m ax ,b σ中,β=0时, mb 3max ,2σσ= 或 0 β= 90时,mb 1max ,2σσ=或0. 共四个可能极值,与σ1平行或垂直的裂隙.②将)(22cos 3131σσσσβ+-=代入 m ax ,b σ中,共有两个极值,即与σ1斜交裂隙中有两个方向裂隙的切向应力达极值.因为β=0或 90时,12cos =β或-1.因此,与σ1斜交时,必须β≠0或 90, 即 12cos <β 时 才是与σ1斜交,则要求或 0331>+σσ此时,裂隙的最大拉应力为(*)如果0331<+σσ, 则1)(23131>+-σσσσ,则3σ必为负值(拉应力)此时由12cos ≥β推出12cos =β,即β为0或90°,表明裂隙与σ1平行或正交.因为03<σ,考查β=0, 90的极值,则3max ,2σσ=b m (**) 为最大拉应力.式(*)(**)即为岩石中的m ax ,b m σ达到某一临界值时就会产生破坏. 为了 确定米值,做单轴抗拉试验,使σ3垂直裂隙面(椭圆长轴),则这时的t R -=3σ 推出 t b R m 2max ,-=σ 这说明裂隙边壁最大应力m ax ,b m σ与米乘积必须满足的关系.此时,格菲思强度理论的破坏准则为:I. 由(**)式,,t b R m 2max ,-=σ, 则 322σ=-t RII. 由(*)式,代入 t b R m 2max ,-=σ, 则有:等于0,处于极限状态; 大于0, 破坏; 小于0, 稳定.上面的准则是用σ1、σ3表示的,也可用y σ,xy τ表示 将t b R m 2max ,-=σ 代入 )(122max ,xy y y b mτσσσ+±=中, 222xyy y t R τσσ+±=- 推出:t y xy y R 222+=+±στσ,22224)2(t y t y xy y R R +=+=+σστσ 在0<σ时的包线更接近实际.7、修正的格里菲思理论格里菲思理论是以张开裂隙为前提的,如果压应力占优势时裂隙会发生闭合,压力会从裂隙一边壁传递到另一边,从而缝面间将产生摩擦,这种情况下,裂隙的发展就与张开裂隙的情况不同.麦克林托克(米eclintock)考虑了这一影响,对格里菲思理论进行了修正.麦克林托克认为,在压缩应力场中,当裂缝在压应力作用下闭合时,闭合后的裂缝在全长上均匀接触,并能传递正应力和剪应力.由于均匀闭合,正应力在裂纹端部不产生应力集中,只有剪应力才能引起缝端的应力集中.这样,可假定裂纹面在二向应力条件下,裂纹面呈纯剪破坏.其强度曲线如图.由图可知 OC =c τBD=)(2131σσ-(半径)OD=)(2131σσ+(圆心)EB=τ, OE=σ,ED=OD-OE=)(2131σσ+-σAB=EB ϕcos ⋅=ϕτcos ⋅ϕsin ⋅=ED DA =ϕσϕσσsin sin )(2131⋅-+由 AB=BD-AD,可推出式中,摩擦系数ϕtg f =另外,推出tyt xy R R στ+=12取y σ为c σ,裂隙面上的压应力,则有②当c σ很小时,取c σ=0时(勃雷斯Brace)=t R 4当时c σ<0时(拉应力),上两式不适用.低应力时,格里菲思与修正的格里菲思理论较为接近,高应力时差别大(当σ3>0时).8、伦特堡(Lundborg)理论定限度,于晶体破坏,大抗剪强度.的破坏状态:σ,τ——研究点的正应力和剪应力(米Pa)τ——当没有正应力时(σ=0)岩石的抗切强度(米Pa)i τ——岩石晶体的极限抗切强度(米Pa)A ——系数,与岩石种类有关.当岩石内的剪应力τ和正应力σ达到上述关系时,岩石就发生破坏.式中的τ实际上是代表最大的剪应力,因而是强度.上式中的0τ,i τ,A 由试验确定,见P55表3-5.9、经验破坏准则现行的破坏理论并不能全面的解释岩石的破坏性态,只能对某一方面的岩石性态做出合理的解释,但对其它方面就解释不通.因此,许多研究者在探求经验准则,目前应用较多的经验破坏准则为霍克(Hoke)和布朗(Brown)经验破坏准则.①Hoke和Brown发现,大多数岩石材料(完整岩块)的三轴压缩试验破坏时的主应力之间可用下列方程式描述:R c—完整岩石单轴抗压强度(米Pa); 米—与岩石类型有关的系数米值是根据岩石的完整程度,结晶及胶结情况,通过大量试验结果及经验而确定的.岩石完整、结晶或胶结好,米值就越大,最大的为25.②对于岩体,Hoke和Brown建议:米和S——常数,取决于岩石的性质以及在承受破坏应力σ1和σ3以前岩石扰动或损伤的程度.完整岩块S=1,岩石极差时S=0.当取σ3=0时,可得到岩体的单轴抗压强度:由于s =0~1,则c cm R R ≤ 如果令σ1=0,则得到岩体的单轴抗拉强度.从R厘米和R t 米中可看出,当S=1时,R 厘米=R c 为完整岩块,当S=0时,R t 米=R 厘米=0为完全破损的岩石.因此,处于完整岩石和完全破损岩石之间的岩体,其S 值在1~0之间.。
岩石的强度理论及破坏判据[详细]
![岩石的强度理论及破坏判据[详细]](https://img.taocdn.com/s3/m/b87c145d5ef7ba0d4b733ba7.png)
依据适合的强度理论,判断岩体的破坏及其破坏形式。 岩体本构关系:指岩体在外力作用下应力或应力速率与其应变 或应变速率的关系。
岩石或岩体的变形性质:弹塑性或粘弹塑性。 本构关系:弹塑性或粘弹塑性本构关系。 本构关系分类:
①弹性本构关系:线性弹性、非线性弹性本构关系。 ②弹塑性本构关系:各向同性、各向异性本构关系。 ③流变本构关系:岩石产生流变时的本构关系。流变
Griffith强度准则只适用于研究脆性岩石的破坏。
Mohr-coulomb强度准则的适用性一般的岩石材料。
0
σ1=σ3
P β
σc / 2
σc
σ1
-σt
A
S
岩石强度理论与破坏判据
三、 莫尔强度理论
莫尔(Mohr,1900年)把库仑准则推广到考虑三向应力状态。最主
要的贡献是认识到材料性质本身乃是应力的函数。他总结指出“到极 限状态时,滑动平面上的剪应力达到一个取决于正 应力与材料性质的最大值”,并可用下列函数关系表示:
σ1 σ
莫尔包络线的具体表达式,可根据试验结果用拟合法求得。
包络线形式有:斜直线型、二次抛物线型、双曲线型等。
斜直线型与库仑准则基本一致,库仑准则是莫尔准则的一个特例。
这里主要介绍二次抛物线和双曲线型的判据表达式。
1、二次抛物线型
τ
岩性较坚硬至较弱的岩石。
2 n t
2
τ=
n(σ
+σt
)
M(σ ,τ)
四、 格里菲斯强度理论
格里菲斯(Griffith ,1920年)认为:脆性材料断 裂的起因是分布在材料中的微小裂纹尖端有拉应力 集中(这种裂纹称之为Griffith裂纹)。
格里菲斯原理认为:当作用力的势能始终保持不 变时,裂纹扩展准则可写为:
岩石的断裂准则概述

断裂力学部分岩石的断裂准则及其应用传统的力学方法通常假定材料是连续的,不存在任何缺陷或裂纹。
一般的做法是,根据结构的实际受力情况,计算出其中最危险区域的应力,乘以安全系数,若其小于屈服强度或极限强度,这认为该结构是安全的,反之则是不安全的。
但是在实际结构中许多脆性材料,包括岩石,混凝土、陶瓷、玻璃等,其构件在远低于屈服应力的条件下发生断裂,即所谓的“低应力脆断”。
研究表明,这种脆性破坏是由于宏观缺陷或裂纹的失稳扩展而引起的,由对这些内容的研究形成断裂力学。
目前研究裂纹的扩展有两种不同的观点:一种是从能量分析出发,认为物体在裂纹扩展中所能够释放出来的弹性能,必须与产生新的断裂面所消耗的能量相等。
另一种是应力强度的观点,认为裂纹扩展的临界状态,是由裂纹前缘的应力场的强度达到临界值来表征的。
这两种观点有着密切的联系,但并不总是等效的。
1基于能量分析的断裂理论1.1格里菲斯(Griffith )断裂理论脆性材料的实际断裂强度要比理论计算的断裂强度低得多,为了解释产生这种现象的原因,早在19世纪20年代Griffith 就运用能量平衡原理对吹响材料作断裂强度分析,认为固体的破坏是裂纹扩展的结果。
固体材料内部存在大量形状、大小、方向各不相同的裂纹,当收到外力作用时在裂纹的边缘部位会产生应力集中现象,当其中任何一点的应力达到材料的临界值,裂纹就开始扩展。
裂纹扩展的临界条件是裂纹扩展时所需要的表面力正好等于由裂纹扩展时系统释放的弹性应变能,即得著名的Griffith 裂纹失稳的临界条件:aEr c πσ2= (1) 其中a 为裂纹半长,c σ裂纹扩展的临界应力,r 为单位面积的表面能。
对于三维裂纹,如以a 为半径的钱币型裂纹,亦可用同样的方法求的断裂强度c σ与a 的关系式:()212νπσ-=s c r E a (2)利用公式(2),Griffith 很好的解释了材料的实际断裂迁都远低于其理论强度的原因,定量说明了裂纹尺寸对断裂强度的影响。
最新岩石的强度理论及破坏判据ppt课件

σ1 σ
莫尔包络线的具体表达式,可根据试验结果用拟合法求得。
包络线形式有:斜直线型、二次抛物线型、双曲线型等。
斜直线型与库仑准则基本一致,库仑准则是莫尔准则的一个特例。
这里主要介绍二次抛物线和双曲线型的判据表达式。
1、二次抛物线型
τ
岩性较坚硬至较弱的岩石。
2nt
2
τ=
n(σ
+σt
)
M(σ ,τ)
1
1 f2 1f 3 f2 1f 2 c
P β
3 1
1
1 2
c
1
1 2
c
0
σc / 2
σc
σ1
-σt
A
S
图7-8 σ1-σ3坐标系中的库仑准则的完整强度曲线
在此库仑准则条件下,岩石可能发生以下四种方式的破坏。
(1)当 0 0 1 1 1 12 2 时c c ,3 3 岩 石 属tt单轴拉伸破裂;
c
2c ctg 1sin
A
σ1
D
Φc O σ3 B
L
σ1 σ
1 坐标3 中库仑准则的强度曲
线,如图 6-7所示,极限应力条
件下剪切面上正应力 和剪力
用主应力可表示为:
σ1
1 tan2 c
arc( tan2 θ)
σc
121 3121 3cos2
121
3
sin2
O
σ3
图7-7 σ1-σ3坐标系的库仑准则
f
上式在 坐标系中为一条对称于 轴的 曲线,它可通过试
验方法求得,即由对应于各种应力状态(单轴拉伸、单轴压缩 及三轴压缩)下的破坏莫尔应力圆包络线,即各破坏莫尔圆的 外公切线(图7-9) ,称为莫尔强度包络线给定。
不同试验方法下岩石抗拉强度及破裂特性

实验技术与管理 Experimental Technology and Management
第 37 卷 第 10 期 2020 年 10 月 Vol.37 No.10 Oct. 2020
DOI: 10.16791/ki.sjg.2020.10.013
HUANG Zhengjun1, REN Fenhua1, LI Yuan1, ZHANG Dong1, SUI Zhili2, ZHANG Ying1
(1. School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China; 2. Urban Construction School, Beijing City University, Beijing 100083, China)
工程设计与试验方法密切相关,目前主要方法包括
直接拉伸、巴西劈裂和三点弯曲等。该文选用几种较具代表性的岩石试样(花岗岩、大理岩、辉绿岩),通过对比
试样在不同试验方法下的试验结果,同时结合数值模拟方式对不同方法下的试验过程进行理论模拟分析,得出不
同试验方法下的岩石抗拉强度和变形特性的变化规律:①巴西劈裂法得出的抗拉强度明显高于直接拉伸法,而三
Abstract: Tensile strength of rock is one of the main strength indexes of rock and one of the key parameters for design and stability evaluation of rock mass engineering. Accordingly, tensile failure is one of the major failure modes. The accurate obtaining of tensile strength and deformation characteristics of rock is closely related to the test methods. At present, the main methods for rock tensile testing are direct stretching test, Brazilian test and three-point bending test. Several types of rock samples such as granite, marble and diabase are involved, and results of different test methods are compared. Numerical and analytical methods are carried out for the analysis of tests. The results can be concluded that: First, the tensile strength result from Brazilian test is significantly higher than ones from direct stretching test, the strength obtained by the three-point bending is the bending strength with the highest value, and deformation modulus are reversed. Second, although the strength obtained by the three-point bending is bending strength, the rock failure is also caused by tensile stress, so the value could be termed as an important reference for the tensile strength of rock, which is about 2.5 times of the direct tensile and Brazilian splitting strength, and deformation modulus is between direct tensile and Brazilian splitting. Third, the deformation and failure mode of rock under the Brazilian splitting method is central generation of cracks with developing to both ends. Due to the influence of the central slit, the deformation of rock under the direct tensile method will
岩石力学课件-第六章岩石强度破坏准则

蠕变方程
描述蠕变行为的数学方程,通常 包括应变、应力、时间和温度等
参数。
岩石蠕变特征
02
01
03
岩石蠕变类型
包括瞬时蠕变、减速蠕变、稳定蠕变和加速蠕变等阶 段。
岩石蠕变影响因素
围压、温度、应力水平、岩石类型和含水量等。
岩石蠕变破坏
长时间蠕变可能导致岩石破裂或失稳。
蠕变过程中能量变化
能量耗散
蠕变过程中,岩石内部微观结构的变化导致能量耗散,表现为热 量或声发射等形式。
强化准则
描述材料在塑性变形过程中,后继 屈服面在应力空间中的变化规律, 反映材料在塑性变形过程中的硬化 或软化特性。
岩石塑性变形特征
岩石的塑性变形主要表现为晶内滑移、位错运动、 颗粒边界滑动等微观机制。
岩石的塑性变形具有明显的时间效应,即变形速率 与时间的密切关系。
温度对岩石的塑性变形有显著影响,高温下岩石的 塑性增强,易于发生蠕变。
脆性断裂力学基本原理
01
02
03
应力强度因子
描述裂纹尖端应力场强度 的参数,与裂纹长度、形 状及加载方式有关。
断裂韧性
表征材料抵抗裂纹扩展的 能力,是材料的固有属性。
脆性断裂判据
当应力强度因子达到或超 过材料的断裂韧性时,裂 纹将失稳扩展,导致脆性 断裂。
岩石脆性断裂特征
裂纹快速扩展
脆性断裂时,裂纹一旦失 稳扩展,将以极快的速度 进行,直至完全断裂。
岩石强度定义
岩石在外力作用下抵抗破坏的能 力,通常用应力来表示。
岩石强度分类
根据外力作用方式不同,岩石强 度可分为抗压强度、抗拉强度和 抗剪强度等。
破坏准则概念及意义
破坏准则概念
岩石的破坏准则

N与x、y、z的夹角分别为,且 。 设:,, 则有 设等倾面ABC面积为S,则三个主应力面(,,面)的面积分别为 根据力的平衡条件 , , 推出:,
而 等倾面S上合力: 所以: 另,等倾面S上的法向应力为各分力px、py、pz在N上的投影之和, 即
该值为 直线在轴上的截距,但与实测的Rt有差别,需对<0时的直线段 进行修正。
岩石破坏的判断条件: , 破坏
, 极限 ,稳定
6、格里菲思(Griffith)理论
以上各理论都是把材料看作为连续的均匀介质,格里菲思则认为: 当岩石中存在许多细微裂隙,在力的作用下,在缝端产生应力集中,岩 石的破坏往往从缝端开始,裂缝扩展,最后导致破坏。
由于s=0~1,则 如果令σ1=0,则得到岩体的单轴抗拉强度。 从Rcm和Rtm中可看出,当S=1时,Rcm=Rc为完整岩块,当S=0时, Rtm=Rcm=0为完全破损的岩石。因此,处于完整岩石和完全破损岩石 之间的岩体,其S值在1~0之间。
根据几何关系, ,得出 代入中,得到 另由公式推导:将1、3表示的 和 代入中,导出 或 对求导, 推出: 破坏面与最大主应力面的夹角 而与最大主应力方向的夹角
为)
2).用主应力1、3表达的强度准则 将 和 的表达式代入 中,
利用关系: 化简得: 当3=0时(单轴压缩):,
令,则, 当1=0时(单轴抗拉):
或写成 破坏 稳定
这个理论适用于塑性岩石,不适用于脆性岩石。 该理论未考虑中间主应力的影响。
4、八面体剪应力理论(Von.Mises)
该理论认为岩石达到危险状态取决于八面体剪应力。其破坏准则为
已知单元体三个主应力,, ,取坐标系平行于主应力。作一等倾 面(其法线N与三个坐标轴夹角相同)。八个象限的等倾面构成一个封 闭的正八面体,此八面体上剪应力和法向应力即为八面体应力。
岩石强度破裂准则讲解共79页

36、如果我们国家的法律中只有某种 神灵, 而不是 殚精竭 虑将神 灵揉进 宪法, 总体上 来说, 法律就 会更好 。—— 马克·吐 温 37、纲纪废弃之日,便是暴政兴起之 时。— —威·皮 物特
38、若是没有公众舆论的支持,法律 是丝毫 没有力 量的。 ——菲 力普斯 39、一个判例造出另一个判例,它们 迅速累 聚,进 而变成 法律。 ——朱 尼厄斯
40、人类法律,事物有规律、越是没有本领的就越加自命不凡。——邓拓 12、越是无能的人,越喜欢挑剔别人的错儿。——爱尔兰 13、知人者智,自知者明。胜人者有力,自胜者强。——老子 14、意志坚强的人能把世界放在手中像泥块一样任意揉捏。——歌德 15、最具挑战性的挑战莫过于提升自我。——迈克尔·F·斯特利
岩石力学章

编辑课件
21
岩石名称
页岩 砂岩
石灰石 大理石
表 6-1 典型岩石C、值
C(MPa)
(度)
3~30
15~30
8~40
35~50
10~50
35~50
15~30
35~50
f 0.25~0.6 0.7~1.62 0.7~1.2 0.7~1.2
编辑课件
22
四、库伦一纳维尔准则的第三种表达方式
度 ( tensile strength ) 的 降 低 , 但 仍 具 有 一 定 抗 压 强 度 (compressive strength )与抗剪强度(shear strength )。因 此根据岩体中裂隙发育的程度可以将包络线向压缩区域作适当的移 动。
若岩体完全丧失抗拉强度,包络线可在原点O与纵坐标相切。
编辑课件
17
因而:
0 2 1f2 1 1 2 f 2 3f2 1 1 2 f
上式即为用 1 、 3 表达的库伦一纳维尔破坏准则,若主 应力 1 、 3 满足上式,则将产生剪切破裂。
编辑课件
18
当单轴拉伸破坏时,
10,3t
即
2 0 t f2 1 1 2 f
当单轴压缩破坏时,30,1c
13 tg 2 45 2 20 t g 45 2
或
31 tg 2 45 2 20 t g 45 2
编辑课件
27
上两式均为库伦一纳维尔准则的另外形式,只要岩石内主 应力满足上面任一形式的表达式,则岩石即将产生剪切破裂 (shear failure )。
编辑课件
10
极限应力圆与抗剪强度(shear strength )直线相切的两 点D 1 、D1' 表示岩石内将出现一组共轭剪切破坏裂面的临界状态。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 11、伦特堡(Lund Borg)岩石破坏经验准
则
Байду номын сангаас
业内相关
1
业内相关
2
业内相关
3
业内相关
4
业内相关
5
业内相关
6
业内相关
7
业内相关
8
业内相关
9
业内相关
10
业内相关
11
1、最大正应力强度理论
最大正应力强度理论也称朗肯理论。该理论认为 材料破坏取决于绝对值最大的正应力。因此,作 用于岩石的三个正应力中,只要有一个主应力达 到岩石的单轴抗压强度或岩石的单轴抗拉强度, 岩石便被破坏。
f 0 fn
业内相关
19
业内相关
20
业内相关
21
业内相关
22
业内相关
23
业内相关
24
业内相关
25
4、库伦一纳维尔破坏准则(coulomb-Navier criterion)
业内相关
26
4、库伦一纳维尔破坏准则(coulomb-Navier criterion)
业内相关
27
4、库伦一纳维尔破坏准则(coulomb-Navier criterion)
第六章 岩石强度破裂准则
• 1、最大正应力强度理论
• 2、最大正应变强度理论
• 3、最大剪应力强度理论
• 4、库伦一纳维尔破坏准则
• 5、莫尔-库伦强度破坏准则
• 6、八面体应力强度理论
• 7、Drucker-Prager准则
• 8、 软弱面破裂准则
• 9、格里菲斯强度理论
• 10、Hoek-Brown岩石破坏经验准则
业内相关
38
5、莫尔-库伦强度破坏准则(Mohr-coulomb criterion)
业内相关
39
5、莫尔-库伦强度破坏准则(Mohr-coulomb criterion)
业内相关
40
业内相关
41
业内相关
42
6、八面体应力强度理论
八面体应力强度理论属于剪应力强度理论,认为材料屈服或破坏
是由于八面体上剪应力达到某一临界值引起的。
业内相关
28
4、库伦一纳维尔破坏准则(coulomb-Navier criterion)
业内相关
29
4、库伦一纳维尔破坏准则(coulomb-Navier criterion)
业内相关
30
4、库伦一纳维尔破坏准则(coulomb-Navier criterion)
业内相关
31
5、莫尔-库伦强度破坏准则(Mohr-coulomb criterion)
业内相关
32
业内相关
33
业内相关
34
5、莫尔-库伦强度破坏准则(Mohr-coulomb criterion)
莫尔于1900年提出,当一个面上的剪应力与 正应力之间满足某种函数关系时,即
f
沿该面会发生破裂,这就是莫尔破裂准则。其
中函数f的形式与岩石种类有关。不难看出,莫
尔准则是库仑准则的一般化。因为库仑准则在
破裂准则 1 c或 3 t
只适用于岩石单向受力及脆性岩石在二维应力条件下的受拉 状态,处于复杂应力状态中的岩石不能采用这种强度理论。
业内相关
12
1、最大正应力强度理论
业内相关
13
2、最大正应变强度理论
岩石受压时沿着平行于受力方向产生张性破裂。因 此,人们认为岩石的破坏取决于最大正应变,岩石 发生张性破裂的原因是由于其最大正应变达到或超 过一定的极限应变所致。根据这个理论,只要岩石 内任意方向上的正应变达到单轴压缩破坏或单轴拉 伸破坏时的应变值,岩石便被破坏。
平面上代表一条直线,而莫尔准则代表了平面
中的一条曲线AB。
业内相关
35
5、莫尔-库伦强度破坏准则(Mohr-coulomb criterion)
业内相关
36
5、莫尔-库伦强度破坏准则(Mohr-coulomb criterion)
业内相关
37
5、莫尔-库伦强度破坏准则(Mohr-coulomb criterion)
是材料塑性变形的根本原因。因此,最大剪应力强度理
论认为材料的破坏取决于最大剪应力。当岩石承受的最
大剪应力τmax达到其单轴压缩或单轴拉伸极限剪应力
τm时,岩石便被剪切破坏。业内相关
16
3、最大剪应力强度理论
最大剪应力强度理论表示为
max m
最大剪应力强度理论的又一表达形式
1 3 R
塑性岩石采用最大剪应力强度理论能获得满意的 结果,但不适用于脆性岩石。此外,这个理论也没有 考虑中间主应力的影响。
业内相关
17
4、库伦一纳维尔破坏准则(coulomb-Navier criterion)
业内相关
18
4、库伦一纳维尔破坏准则(coulomb-Navier criterion)
这个准则认为岩石沿某一面发生剪切破裂 时,不仅与该面上剪应力大小有关,而且与该 面上的正应力大小也有关系。岩石的破坏并不 是沿着最大剪应力的作用面产生的,而是沿着 其剪应力与正应力组合达到最不利的一面产生 破裂。
最大剪应力张度理论也称为屈瑞斯卡(H.Tresca)强度
准则,是研究塑性材料破坏过程中获得的强度理论。试
验表明,当材料发生屈服时,试件表面将出现大致与轴线
呈45°夹角的斜破面。由于最大剪应力出现在与试件轴
线呈45°夹角的斜面上,所以,这些破裂面即为材料沿
着该斜面发生剪切滑移的结果。一般认为这种剪切滑移
业内相关
44
6、八面体应力强度理论
由冯-米塞斯强度条件τOCT=τs,得
1 3
1 2 2 2 3 2 3 1 2
2 3
y
对于塑性材料,这个理论与试验结果很吻合。在塑 性力学中,这个理论称之为冯-米塞斯破坏条件,一直被 广泛应用。
业内相关
45
7、Drucker-Prager准则
Drucker-Prager强度准则是Von-Mises准则的 推广。Von-Mises准则认为,八面体剪应力或 平面上的剪应力分量达到某一极限值时,材料 开始屈服,在主应力空间,Mises准则是正圆 柱面,但岩石具有内摩擦性,因此,DruckerPrager强度准则在主应力空间是圆锥面,具体 形式如下:
业内相关
14
2、最大正应变强度理论
岩石强度条件可以表示为:
max m
εmax ——岩石内发生的最大应变值,可用广 义胡克定律求出; εm—单向压缩或单向拉伸试验时岩石破坏的 极限应变值,由实验求得
试验证明,这种强度理论只适用于脆性岩石,
不适用于岩石的塑性变形。
业内相关
15
3、最大剪应力强度理论
八面体应力强度理论认为当八面体上剪应力τOCT达到某一临界值 时,材料便屈服或破坏。冯-米塞斯 (Von-Mises)认为,当八面体上 的剪应力τOCT达到单向受力至屈服时八面体上极限剪应力τs,材料 便屈服或破坏。单向受力至屈服时的应力条件为
1 y 2 3 0
业内相关
43
6、八面体应力强度理论