七年级数学上册 第4章 图形的初步认识检测题 (新版)华东师大版

合集下载

华师大版七年级上册《第4章+图形的初步认识》2013年单元测试卷

华师大版七年级上册《第4章+图形的初步认识》2013年单元测试卷

华师大版七年级上册《第4章 图形的初步认识》2013年单元测试卷一、选择题(每小题3分,共30分)2.(3分)正多面体的面数、棱数、顶点数之间存在着一个奇妙的关系,若用F ,E,V 分别表示正多面体的面数、. C D .CD .5.(3分)(2011•宁夏)将“创建文明城市”六个字分别写在一个正方体的六个面上,这个正方体的平面展开图如图所示,那么在这个正方体中,和“创“相对的字是( )6.(3分)(2009•辽宁)如图,已知直线AB 、CD 相交于点O ,OA 平分∠EOC ,∠EOC=110°,则∠BOD 的度数是( ).C D .8.(3分)下列平面图形不能够围成正方体的是( ).CD .10.(3分)在直线l 上顺次取A 、B 、C 三点,使得AB=5cm ,BC=3cm ,如果O 是线段AC 的中点,那么线段OB二、填空题(每小题3分,共24分) 11.(3分)如图,直线AB ,CD 相交于点0,OE 平分∠AOD ,若∠BOC=80°,则∠AOE= _________ °.12.(3分)直线上的点有 _________ 个,射线上的点有 _________ 个,线段上的点有 _________ 个. 13.(3分)两条直线相交有 _________个交点,三条直线相交最多有 _________ 个交点,最少有 _________ 个交点. 14.(3分)如图,OM 平分∠AOB ,ON 平分∠COD .若∠MON=50°,∠BOC=10°,则∠AOD= _________ 度.15.(3分)图中给出的分别有直线、射线、线段,能相交的图形是 _________ .16.(3分)下列表面展开图的立体图形的名称分别是: _________ 、 _________ 、 _________ 、 _________ .17.(3分)如图,C ,D 是线段AB 上两点,若CB=4cm ,DB=7cm ,且D 是AC 的中点,则AC= _________ .18.(3分)(2012•内江)由一些大小相同的小正方形组成的一个几何体的主视图和俯视图如图所示,那么组成该几何体所需的小正方形的个数最少为_________.三、解答题(共46分)19.(6分)(2006•临安市)马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.(注:①只需添加一个符合要求的正方形;②添加的正方形用阴影表示)20.(6分)如图是一个长方体的表面展开图,每个面上都标注了字母,请根据要求回答问题:(1)如果A面在长方体的底部,那么哪一个面会在上面?(2)如果F面在前面,B面在左面,那么哪一个面会在上面?(字母朝外)21.(6分)如图,已知线段AD=6cm,线段AC=BD=4cm,E、F分别是线段AB、CD的中点,求EF.22.(6分)如图所示,直线AB、CD相交于O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度数.23.(7分)已知:如图,∠AOB是直角,∠AOC=40°,ON是∠AOC的平分线,OM是∠BOC的平分线.(1)求∠MON的大小;(2)当锐角∠AOC的大小发生改变时,∠MON的大小是否发生改变?为什么?24.(7分)如图,已知C是AB的中点,D是AC的中点,E是BC的中点.(1)若DE=9cm,求AB的长;(2)若CE=5cm,求DB的长.25.(8分)十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:)之间存在的关系式是_________.(2)一个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是_________.(3)某个玻璃鉓品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处都有3条棱,设该多面体外表三角形的个数为x个,八边形的个数为y个,求x+y的值.华师大版七年级上册《第4章图形的初步认识》2013年单元测试卷参考答案与试题解析一、选择题(每小题3分,共30分)2.(3分)正多面体的面数、棱数、顶点数之间存在着一个奇妙的关系,若用F,E,V分别表示正多面体的面数、.C D,进而得到再利用等量代换可得∴==.CD .5.(3分)(2011•宁夏)将“创建文明城市”六个字分别写在一个正方体的六个面上,这个正方体的平面展开图如图所示,那么在这个正方体中,和“创“相对的字是( )6.(3分)(2009•辽宁)如图,已知直线AB 、CD 相交于点O ,OA 平分∠EOC ,∠EOC=110°,则∠BOD 的度数是()∠.C D..C D.10.(3分)在直线l上顺次取A、B、C三点,使得AB=5cm,BC=3cm,如果O是线段AC的中点,那么线段OB二、填空题(每小题3分,共24分)11.(3分)如图,直线AB,CD相交于点0,OE平分∠AOD,若∠BOC=80°,则∠AOE=40°.12.(3分)直线上的点有无数个,射线上的点有无数个,线段上的点有无数个.13.(3分)两条直线相交有1个交点,三条直线相交最多有3个交点,最少有1个交点.14.(3分)如图,OM平分∠AOB,ON平分∠COD.若∠MON=50°,∠BOC=10°,则∠AOD=90度.15.(3分)图中给出的分别有直线、射线、线段,能相交的图形是(1)(3).16.(3分)下列表面展开图的立体图形的名称分别是:圆柱、圆锥、四棱锥、三棱柱.17.(3分)如图,C,D是线段AB上两点,若CB=4cm,DB=7cm,且D是AC的中点,则AC=6cm.18.(3分)(2012•内江)由一些大小相同的小正方形组成的一个几何体的主视图和俯视图如图所示,那么组成该几何体所需的小正方形的个数最少为4.三、解答题(共46分)19.(6分)(2006•临安市)马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.(注:①只需添加一个符合要求的正方形;②添加的正方形用阴影表示)20.(6分)如图是一个长方体的表面展开图,每个面上都标注了字母,请根据要求回答问题:(1)如果A面在长方体的底部,那么哪一个面会在上面?(2)如果F面在前面,B面在左面,那么哪一个面会在上面?(字母朝外)21.(6分)如图,已知线段AD=6cm,线段AC=BD=4cm,E、F分别是线段AB、CD的中点,求EF.EF=BC+(EF=BC+(×22.(6分)如图所示,直线AB、CD相交于O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度数.23.(7分)已知:如图,∠AOB是直角,∠AOC=40°,ON是∠AOC的平分线,OM是∠BOC的平分线.(1)求∠MON的大小;(2)当锐角∠AOC的大小发生改变时,∠MON的大小是否发生改变?为什么?是直角,不改变,可得∴∵∴24.(7分)如图,已知C是AB的中点,D是AC的中点,E是BC的中点.(1)若DE=9cm,求AB的长;(2)若CE=5cm,求DB的长.DC=AC=25.(8分)十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是V+F﹣E=2.(2)一个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是20.(3)某个玻璃鉓品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处都有3条棱,设该多面体外表三角形的个数为x个,八边形的个数为y个,求x+y的值.。

华东师大版数学七年级上册第4章图形的初步认识复习课件

华东师大版数学七年级上册第4章图形的初步认识复习课件

三、解答题 13.如图所示是一多面体的表面展开图,每个面上都标注了字母,请 回答: (1)如果F面在前面,从左面看是B面,那么哪一面会在上面? (2)折叠成长方体后,俯视图与D面一致,左视图与C面一致,那么 主视图是哪面的视图? 解:(1)C面 (2)A面或F面
14.如图是一个由若干个棱长相等的正方体构成的几何体的从三个方 向看到的形状图.
角的特殊关系
1.∠1与∠2互余,∠1是∠2的余角,∠2是∠1的余角。
∠1+∠2=90°
2.∠1与∠2互补,∠1是∠2的补角,∠2是∠1的补角。
∠1+∠2=180°只考虑数量关系,与位置无关。
结论:同角(等角)的补角相等。
结论:对顶角相等
判断下列各图中的∠1和∠2是不是对顶角。
A.11° B.11.25° C.11.45° D.12.25°
二、填空题 8.(2015秋·南江县期末)已知∠α的余角是35°36′,则∠α的度数是 ___5_4_°__2_4_′ __。. _ 9.如图,水平放置的长方体的底面是长为4,宽为2的长方形,它的
左视图的面积为6,则长方体的体积等于_2_4_。_.。
16.A,B两点在数轴上的位置如图,O为原点,现A,B两点分别以1 个单位/秒,4个单位/秒的速度同时向左运动。
(1)几秒后,原点恰好在两点正中间? (2)几秒后,恰好有OA∶OB=1∶2?
解:(1)设运动时间为x秒,x+3=12-4x,x=1.8,答:1.8秒后,
原点恰好在两点之间。
(2)设运动时间为t秒。①B与A相遇前:12-4t=2(t+3),t=1;②B 与A相遇后:4t-12=2(t+3),t=9。答:1秒或9秒后,恰好有OA∶OB =1∶2。
线段
封闭
每个多边形可以分割 N-2 不重合的三角形。

2022七年级数学上册第4章图形的初步认识检测题新版华东师大版

2022七年级数学上册第4章图形的初步认识检测题新版华东师大版

七年级数学上册第4章图形的初步认识检测题新版华东师大版(时间:100分钟满分:120分)一、选择题(每小题3分,共30分)1.数轴是一条( B )A.射线B.直线C.线段D.以上都是2.下列四个几何体中,是三棱柱的为( C )3.下列说法中正确的是( A )A.两点之间的所有连线中,线段最短B.射线就是直线C.两条射线组成的图形叫做角D.小于平角的角可分为锐角和钝角两类4.(2022·宁波)如图所示几何体是由一个球体和一个圆柱组成的,它的俯视图是( C)5.在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右平移1个单位长度,得到点C,若CO=BO,则a的值为( A )A.-3 B.-2 C.-1 D.16.(2021·随州)如图是由4个相同的小正方体构成的一个组合体,该组合体的三视图中完全相同的是( A )A.主视图和左视图B.主视图和俯视图C.左视图和俯视图D.三个视图均相同第6题图第8题图第9题图第10题图7.下列说法错误的是( B )A .两个互余的角都是锐角B .一个角的补角大于这个角本身C .互为补角的两个角不可能都是锐角D .互为补角的两个角不可能都是钝角8.(2021·河北)一个骰子相对两面的点数之和为7,它的展开图如图,下列判断正确的是( A )A .A 代表B .B 代表C .C 代表D .B 代表9.如图,已知∠AOB 是直角,∠AOC 是锐角,ON 平分∠AOC,OM 平分∠BOC,则∠MON 等于( A )A .45°B .45°+12 ∠AOC C .60°-12∠AOC D .不能计算10.如图是一个几何体的三视图,其中主视图与左视图完全一样,则这个几何体的表面积是( B )A .80-2πB .80+4πC .80D .80+6π 二、填空题(每小题3分,共15分)11.(北京中考)在如图所示的几何体中,其三视图中有长方形的是__①②__.(写出所有正确答案的序号)第11题图第12题图第13题图12.如图,已知点A ,O ,C 在同一直线上,OE 平分∠AOB,OF 平分∠BOC,则∠EOF 的度数为__90__°.13.如图,已知AB =8 cm ,BD =3 cm ,C 为AB 的中点,则线段CD 的长为__1__cm . 14.经过一点A 画直线,可以画__无数__条;过不在同一直线上三点中的任意两点画直线,一共可能画__3__条.15.(青岛中考)如图,一个正方体由27个大小相同的小立方块搭成,现从中取走若干个小立方块,得到一个新的几何体.若新几何体与原正方体的表面积相等,则最多可以取走__16__个小立方块.三、解答题(共75分)16.(8分)已知平面上四点A ,B ,C ,D ,如图: (1)画直线AB ; (2)画射线AD ;(3)直线AB ,CD 相交于点E ;(4)连结AC ,BD 相交于点F.解:作图略17.(9分)如图,(1)∠AOC 是哪两个角的和; (2)∠AOB 是哪两个角的差;(3)如果∠AOB=∠COD,那么∠AOC 与∠DOB 相等吗? 解:(1)∠AOC 是∠AOB 与∠BOC 的和 (2)∠AOC 与∠BOC 的差或∠AOD 与∠BOD 的差 (3)相等.理由如下:∵∠AOB=∠COD,∴∠AOB +∠BOC=∠COD+∠BOC,即∠AOC=∠BOD18.(9分)如图,B ,C 两点把线段AD 分成2∶4∶3三部分,CD =6 cm . (1)求AD 的长;(2)若M 是AD 的中点,求线段MC 的长.解:(1)∵AB∶BC∶CD=2∶4∶3,∴CD =39 AD =13 AD ,∵CD =6,∴AD =3CD =18 cm (2)由(1)知AD =18,∵M 是AD 的中点,∴MD =12 AD =12 ×18=9(cm ),∴MC =MD -CD =9-6=3(cm )19.(9分)一个正方体六个面分别标有字母A,B,C,D,E,F,其展开图如图所示,已知:A=x2-2xy,B=A-C,C=3xy+y2,若该正方体相对两个面上的多项式的和相等,试用x,y的代数式表示多项式D,并求当x=-1,y=-2时,多项式D的值.解:由展开图可知A与C相对,B与D相对,∴B+D=A+C,又∵A=x2-2xy,B=A-C,C=3xy+y2,则D=A+C-B=A+C-(A-C)=2C=2(3xy+y2)=6xy+2y2,当x=-1,y=-2时,6xy+2y2=12+8=20,故当x=-1,y=-2时,多项式D的值是2020.(9分)如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°,(1)求∠BOC的度数;(2)通过计算判断OE是否平分∠BOC.解:(1)∠BOC=180°-∠AOC=180°-50°=130°(2)∵OD平分∠AOC,∴∠COD=1 2∠AOC=12×50°=25°.∵∠DOE=90°,∴∠COE=90°-∠COD=90°-25°=65°,∴∠BOE=∠BOC-∠COE=130°-65°=65°,∴∠COE=∠BOE,∴OE平分∠BOC21.(10分)如图,直线SN与直线WE相交于点O,射线ON表示正北方向,射线OE表示正东方向.已知射线OB的方向是南偏东m°,射线OC的方向是北偏东n°,且m°的角与n°的角互余.(1)①若m=50,则射线OC的方向是__北偏东40°__;②图中与∠BOE 互余的角有__∠BOS,∠EOC__,与∠BOE 互补的角有__∠BOW,∠COS__; (2)若射线OA 是∠BON 的平分线,则∠BOS 与∠AOC 是否存在确定的数量关系?如果存在,请写出你的结论以及计算过程;如果不存在,请说明理由.解:(2)∠AOC=12 ∠BOS.因为射线OA 是∠BON 的平分线,所以∠NOA=12 ∠BON.因为∠BOS+∠BON=180°,所以∠BON=180°-∠BOS.所以∠NOA=12 ∠BON =90°-12 ∠BOS.因为∠NOC+∠BOS=90°,所以∠NOC=90°-∠BOS.所以∠AOC=∠NOA-∠NOC=90°-12∠BOS-(90°-∠BOS)=12∠BOS22.(10分)如图①,已知线段AB =16 cm ,点C 为线段AB 上的一个动点(点C 不与A ,B 重合),点D ,E 分别是AC 和BC 的中点.(1)求DE 的长;(2)知识迁移:如图②,已知∠AOB=130°,过角的内部任一点C 画射线OC ,若OD ,OE 分别平分∠AOC 和∠BOC,试说明∠DOE 的大小与射线OC 的位置无关.解:(1)∵点D ,E 分别是AC 和BC 的中点,∴DC =12 AC ,CE =12 BC ,∴DE =DC +CE =12AC +12 BC =12 (AC +BC)=12 AB =12 ×16=8(cm ) (2)∵OD,OE 分别平分∠AOC 和∠BOC,∴∠DOC =12 ∠AOC,∠EOC =12 ∠BOC,∴∠DOE =∠DOC+∠EOC=12 (∠AOC+∠BOC)=12 ∠AOB=65°,∴∠DOE 为一定值,与射线OC 的位置无关23.(11分)如图①所示,将一副三角尺的直角顶点重合在点O 处. (1)①∠AOD 和∠BOC 相等吗?说明理由;②∠AOC 和∠BOD 在数量上有何关系?说明理由;(2)若将这副三角尺按图②所示摆放,三角尺的直角顶点重合在点O 处. ①∠AOD 和∠BOC 相等吗?说明理由;②∠AOC 和∠BOD 在(1)中的数量关系还成立吗?说明理由.解:(1)①相等.理由:因为∠AOD=90°+∠BOD,∠BOC=90°+∠BOD,所以∠AOD 和∠BOC相等②∠AOC+∠BOD=180°.理由:因为∠AOC+90°+∠BOD+90°=360°,所以∠AOC+∠BOD=180°(2)①相等.理由:因为∠AOD=90°-∠BOD,∠BOC=90°-∠BOD,所以∠AOD和∠BOC相等②成立.理由:因为∠AOC=90°+90°-∠BOD,所以∠AOC +∠BOD=180°。

第4章图形的初步认识单元测试卷20212022学年华东师大版七年级上册数学.docx

第4章图形的初步认识单元测试卷20212022学年华东师大版七年级上册数学.docx

2021-2022学年华东师大新版七年级上册数学《第4章图形的初步认识》单元测试卷一. 选择题1.有5个大小一样的正方形制成如图所示的拼接图形(阴影部分),请你在图中的拼接图形上再接一个正方形,使新拼接成的图形折叠后能成为一个封闭的正方体盒子,你不能选择图中A, B, C,。

中的()位置接正方形.2.下列几何体中,是圆锥的为(4.如图所示的物体是一个几何体,从正面看到的图形是(B. C. D.5.如图是一个由4个相同的正方体组成的立体图形,则它的主视图为(A.天空划过一道流星B.汽车雨刷在挡风玻璃上刷出的痕迹C.抛出一块小石子,石子在空中飞行的路线D.旋转一扇门,门在空中运动的痕迹9.把14个棱长为1的正方体在地面上堆叠如图所示的立体,然后将露出的表面部分涂成红色,那么红色部分的面积为()A. 21B. 24C. 33D. 3710.如图所示是一个三棱柱,画出它的主视图和左视图均正确的是()主视图左视图二. 填空题11 •如果一个六棱柱的一条侧棱长为5cm,那么所有侧棱之和为12.已知圆柱按如图所示方式放置,其左视图的面积为48,则该圆柱的侧面积为主视方向13.请你写出一种几何体,使得它的主视图、左视图和俯视图都一样,它是.14.若一个棱柱有30条棱,那么该棱柱有个面.15.在①长方体、②球、③圆锥、④圆柱、⑤三棱柱这五种几何体中,其主视图、左视图、俯视图都完全相同的是(填上序号即可).16.墙角处有若干大小相同的小正方体堆成如图所示的立体图形,如果你打算搬走其中部分小正方体(不考虑操作技术的限制),但希望搬完后从正面、从上面、从右面用平行光线照射时,在墙面及地面上的影子不变,那么你最多可以搬走个小正方体.I上面7正面17.如图所示,在直角三角形中,以其中一条直角边所在的直线为轴旋转一周,得到几何体的体积为.(结果保留TT)18.长方体是一个立体图形,它有个面,条棱,个顶点.19.一个正〃棱柱共有15条棱,一条侧棱的长为5cm, 一条底面边长为3cm,则这个棱柱的侧面积为cnr.20.如图所示,是由若干相同大小的小立方体组成的立体图形的三视图,请在右边的立体图形中画出所缺少的小立方体.三. 解答题21.画出如图图形的三视图.23.将一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱,现在有一个长为8cm.宽为4cm的长方形,绕它的一条边所在的直线旋转一周,求得到的圆柱体的体积是多少?24.已知一个直棱柱有8个面,它的底面边长都是5ce侧棱长都是4cm.(1)它是几棱柱?它有多少个顶点?多少条棱?(2)这个棱柱的所有侧面的面积之和是多少?25.由7个相同的小立方块搭成的几何体如图所示,(1)请画出它的三视图?(2)请计算它的表面积?(棱长为1)IF而26.如图,如图几何体是由若干棱长为1的小立方体按一定规律在地面上摆成的,若将露出的表面都涂上颜色(底面不涂色),观察该图,探究其中的规律.图①图②(1) 第1个几何体中只有2个面涂色的小立方体共有 个.第3个几何体中只有2个面涂色的小立方体共有 个.(2) 求出第100个几何体中只有2个面涂色的小立方体的块数.(3) 求出前100个几何体中只有2个面涂色的小立方体的块数的和.27. 如图四个几何体分别是三棱柱,四棱柱,五棱柱和六棱柱,三棱柱有5个面,9条棱, 6个顶点,观察图形,填写下面的空. (1)四棱柱有——个面,_ ___ 条棱,_ __ 个顶点; (2)六棱柱有— —个面,_ ___ 条棱,— __ 个顶点;(3) 由此猜想”棱柱有 个面,条棱,个顶点.三棱柱四棱柱五棱柱六棱柱参考答案与试题解析一.选择题1.解:如图所示:根据立方体的展开图可知,不能选择图中A的位置接正方形.故选:A.2.解:观察可知,C选项图形是圆锥.故选:C.3.解:A、该几何体为四棱柱,不符合题意;3、该几何体为圆锥,不符合题意;C、该几何体为三棱柱,符合题意;D、该几何体为圆柱,不符合题意.故选:C.4.解:该几何体是一个圆台,从正面看到的图形是一个等腰梯形,故选C.5.解:根据题干分析可得,从正面看到的图形是| | ..故选:A.6.解:A、圆柱的主视图和左视图都是长方形,俯视图是圆,故此选项错误;3、长方体的三视图不相同,故此选项错误;。

2022学年秋学期华东师大版七年级数学上册第四章单元检测卷附答案解析

2022学年秋学期华东师大版七年级数学上册第四章单元检测卷附答案解析
2022学年秋学期七年级数学上册第四章单元检测卷
第四章《图形的初步认识》
一、选择题(本大题共12个小题,每小题4分,共48分.以下每小题都给出了A、B、C、D四个选项,其中只有一个是符合题目要求的。)
1、下列几何体中,是圆锥的为()
2、如图是由5个大小相同的正方体组成的几何体,它的左视图为()
3、一个正方体的平面展开图如图所示,每一个面都有一个汉字,则在该正方体中和“国”字相对的汉字是(A)
17、(本小题满分12分)先化简,再求值:
小明同学对平面图形进行了自主探究;图形的顶点数A,被分成的区域数B,线段数C三者之间是否存在确定的数量关系。如图是他在探究时画出的5个图形。
(1)根据图完成表格:
A
B
C
平面图形(1)
3
6
平面图形(2)
5
8
平面图形(4)
10
6
(2)猜想:一个平面图形中顶点数A,区域数B,线段数C之间的数量关系是;
15、两根长度分别为6cm和10cm的直木条,将它们一端重合且放在同一条直线上,此时两根木条中点之间的距离为_________cm;
16、一个正方体的六个面上分别标有1,2,3,4,5,6中的一个数字,下图是将这个正方体按三种不同方法放置,对于这三种放置朝下的面上的数字之和为________.
三、解答题(本大题6个小题,共56分。解答应写出必要的文字说明或演算步骤。)
【牛刀小试】如图1,若 ,求 的度数;
【类比说明】如图1,若 ,求 的度数(用含 的代数式表示);
【猜想发现】如图2,O是直线AB上一线, 是直角,OE平分 ,探究 与 的关系,直接写出结论。
22、(本小题满分12分)如图1,点O为直线AB上一点,过点O作射线OC,使 ,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方。

苍溪县第一中学七年级数学上册第4章图形的初步认识本章复习课件新版华东师大版

苍溪县第一中学七年级数学上册第4章图形的初步认识本章复习课件新版华东师大版

休息时间到啦
同学们,下课休息十分钟。现在是休息时间 休息一下眼睛,
看看远处,要保护好眼睛哦~站起来动一动 对身体不好哦~
知识点3:直线
(1)直线的概念:把线段向两方无限延 伸所形成的图形.
(2)直线的表示方式:可用这条直线上 的两个点表示,也可以用一个小写字母 表示.
(3)直线的基本性质:经过两点有一条 直线,并且只有一条直线.
3.用一个钉子把一根细木条钉在木板上, 用手拨木条,木条能转动,这说明 _过__一__点__有__无__数条直线 ;用两个钉子把 细木条钉在木板上,就能固定细木条,这 说明_两__点__确__定__一__条__直__线_。
4.如下图,一只蚂蚁要从圆
·B
柱体A点沿表面尽可能地
爬到B点,因为那里有它的
当堂小练
3. 求以下各多项式的值.
〔1〕7x2-3x2-2x-2x2+5+6x.其中x = -2; 解 : 7x2-3x2-2x-2x2+5+6x =(7-3-2)x2+(-2+6)x+5 =2x2+4x+5 当x = -2时 , 原式=2×(-2)2+4×(-2)+5=5
当堂小练
〔2〕2x2-3xy+y2-2xy-2x2+5xy-2y+1.其中x2=2 ,
厨房的
3 2
, 厨房的面积是卧室的
2 , 还有一个卫
3
〔1〕用x、y表示他的卫生间的面积. 〔2〕假设x=5 , y=3 , 求他的卫生间的面积.
拓展与延伸
解 : 〔1〕卧室面积为xy , 厨房面积为 客 ∴卫厅生面间积面为积32 为×3x23 y-xxyy=-x2y.xy-xy=1 xy.

2020年华东师大新版七年级(上)《第4章+图形的初步认识》新题套卷(3)【附答案】

2020年华东师大新版七年级(上)《第4章+图形的初步认识》新题套卷(3)【附答案】

2020年华东师大新版七年级(上)《第4章图形的初步认识》新题套卷(3)一、选择题(共10小题)1.如图,已知线段AB=10cm,点N在AB上,NB=2cm,M是AB中点,那么线段MN的长为()A.5cm B.4cm C.3cm D.2cm2.钟表在8:25时,时针与分针的夹角是()度.A.101.5°B.102.5°C.120°D.125°3.一个圆柱体切拼成一个近似长方体后()A.表面积不变,体积变大B.表面积变大,体积不变C.表面积变小,体积不变D.表面积不变,体积不变4.在下列生活、生产现象中,不可以用基本事实“两点确定一条直线”来解释的有()A.1个B.2个C.3个D.4个5.如图,甲从A点出发向北偏东60°方向走到点B,乙从点A出发向南偏西20°方向走到点C,则∠BAC的度数是()A.80°B.100°C.120°D.140°6.如图,下列关于物体的主视图画法正确的是()A.B.C.D.7.如图所示,点A,B,C,D在同一条直线上,则图中线段的条数有()A.3条B.4条C.5条D.6条8.长方形纸板绕它的一条边旋转一周形成的几何体为()A.圆柱B.棱柱C.圆锥D.球9.用一个平面去截一个圆锥,截面的形状不可能是()A.圆B.矩形C.椭圆D.三角形10.如图,已知∠AOC=∠BOD=80°,∠BOC=25°,则∠AOD的度数为()A.150°B.145°C.140°D.135°二、填空题(共10小题)11.如图,若要使得图中平面展开图折叠成正方体后,相对面上的两个数之和为5,则x+y+z 的值为.12.点A、B、C在同一条数轴上,其中点A、B表示的数分别为﹣3、1,若BC=2,则AC 等于.13.如图,用剪刀沿直线将一片平整的长方形纸片剪掉一部分,发现剩下纸片的周长比原纸片的周长要小,能正确解释这一现象的数学知识是.14.如图为一个长方体,则该几何体主视图的面积为cm2.15.用一张正方形的纸片剪出一个面积最大的圆形纸片,如果已知正方形的边长是4厘米,那么这个圆形的面积是平方厘米.16.若一个直四棱柱的底面是边长为2cm的正方形,侧棱长为4cm,则这个直四棱柱的所有棱长之和是cm.17.如图,在已知的角内部画射线,画1条射线,图中共有3个角;画2条射线,图中共有6个角;画3条射线,图中共有10个角;求画18条射线所得的角的个数是.18.将两个三角尺的直角顶点重合为如图所示的位置,若∠AOD=108°,则∠COB =.19.如图是一个正方体纸盒的展开图,当折成纸盒时,与数11重合的数是.20.如图是由一些完全相同的小正方体组成的几何体的主视图、俯视图和左视图,则组成这个几何体的小正方体的个数是个.三、解答题(共10小题)21.计算:(1)|﹣36|×(﹣)+(﹣8)÷(﹣2)2﹣(﹣1)2021;(2)180°﹣(35°54'+21°33').22.如图是一个用硬纸板制作的长方体包装盒展开图,已知它的底面形状是正方形,高为12cm.(1)制作这样的包装盒需要多少平方厘米的硬纸板?(2)若1平方米硬纸板价格为5元,则制作10个这样的包装盒需花费多少钱?(不考虑边角损耗)23.如图,是由一些大小相同的小正方体组合成的简单几何体.根据要求完成下列题目.(1)请在下面方格纸中分别画出它的左视图和俯视图(画出的图需涂上阴影);(2)图中共有个小正方体.24.如图,B、C是线段AD上的任意两点,M是AB的中点,N是CD的中点,如果MN=3cm,BC=1.5cm,求AD的长.25.如图所示的几何体是由7个相同的小正方体搭成的,请画出这个图形的主视图、左视图和俯视图.26.如图,线段AB=10cm,C是线段AB上一点,AC=4cm,M是AB的中点,N是AC的中点.求(1)线段CM的长;(2)求线段MN的长.27.平面内一定点A在直线CD的上方,点O为直线CD上一动点,作射线OA,OE,OA′,当点O在直线CD上运动时,始终保持∠COE=90°,∠AOE=∠A′OE,将射线OA 绕点O顺时针旋转75°得到射线OB.(1)如图1,当点O运动到使点A在射线OE的左侧时,若OB平分∠A′OE,求∠AOE 的度数;(2)当点O运动到使点A在射线OE的左侧时,且∠AOC=4∠A′OB时,求∠AOE的度数;(3)当点O运动到某一时刻时,满足∠A′OB=120°,求出此时∠BOE的度数.28.(画图痕迹用黑色签字笔加粗加黑)画出如图所示物体的主视图、左视图、俯视图.29.请你在右边的方格中画出如左图所示几何体的三视图:30.由几个相同的边长为1的小立方块搭成的几何体的俯视图如图①,格中的数字表示该位置的小立方块的个数.(1)请在下面方格纸图②中分别画出这个几何体的主视图和左视图.(2)根据三视图,这个组合几何体的表面积为多少个平方单位?(包括底面积)(3)若上述小立方块搭成的几何体的俯视图不变,如图③,各位置的小立方块个数可以改变(总数目不变),则搭成这样的组合几何体中的表面积最大(包括底面积)仿照图①,将数字填写在图③的正方形中.2020年华东师大新版七年级(上)《第4章图形的初步认识》新题套卷(3)参考答案与试题解析一、选择题(共10小题)1.如图,已知线段AB=10cm,点N在AB上,NB=2cm,M是AB中点,那么线段MN的长为()A.5cm B.4cm C.3cm D.2cm【解答】解:∵AB=10cm,M是AB中点,∴BM=AB=5cm,又∵NB=2cm,∴MN=BM﹣BN=5﹣2=3cm.故选:C.2.钟表在8:25时,时针与分针的夹角是()度.A.101.5°B.102.5°C.120°D.125°【解答】解:∵时针在钟面上每分钟转0.5°,分针每分钟转6°,∴钟表上8:25时,时针与分针的夹角可以看成时针转过8时0.5°×25=12.5°,分针在数字5上.∵钟表12个数字,每相邻两个数字之间的夹角为30°,∴8:25时分针与时针的夹角3×30°+12.5°=102.5°.故选:B.3.一个圆柱体切拼成一个近似长方体后()A.表面积不变,体积变大B.表面积变大,体积不变C.表面积变小,体积不变D.表面积不变,体积不变【解答】根据立体图形的切拼方法可知:圆柱体切拼成一个长方体后,体积大小不变,表面积增加了两个以圆柱的高和底面半径为边长的长方形的面积,所以表面积变大了.故选:B.4.在下列生活、生产现象中,不可以用基本事实“两点确定一条直线”来解释的有()A.1个B.2个C.3个D.4个【解答】解:第一、二、三幅图中的生活、生产现象可以用基本事实“两点确定一条直线”来解释,第四幅图中利用的是“两点之间,线段最短”的知识.故选:A.5.如图,甲从A点出发向北偏东60°方向走到点B,乙从点A出发向南偏西20°方向走到点C,则∠BAC的度数是()A.80°B.100°C.120°D.140°【解答】解:如图,由题意,∠BAC=30°+90°+20°=140°,故选:D.6.如图,下列关于物体的主视图画法正确的是()A.B.C.D.【解答】解:物体的主视图画法正确的是:.故选:C.7.如图所示,点A,B,C,D在同一条直线上,则图中线段的条数有()A.3条B.4条C.5条D.6条【解答】解:由图可得,线段有:线段AB、线段AC、线段AD、线段BC、线段BD、线段CD,共6条.故选:D.8.长方形纸板绕它的一条边旋转一周形成的几何体为()A.圆柱B.棱柱C.圆锥D.球【解答】解:将长方形纸板绕它的一条边旋转,可得下面的几何体,故选:A.9.用一个平面去截一个圆锥,截面的形状不可能是()A.圆B.矩形C.椭圆D.三角形【解答】解:过圆锥的顶点的截面是三角形,平行于圆锥的底面的截面是圆,不平行于圆锥的底面的截面是椭圆,截面不可能是矩形,故B符合题意;故选:B.10.如图,已知∠AOC=∠BOD=80°,∠BOC=25°,则∠AOD的度数为()A.150°B.145°C.140°D.135°【解答】解:∵∠AOC=∠BOD=80°,∠BOC=25°,∴∠AOB=∠AOC﹣∠BOC=80°﹣25°=55°,∴∠AOD=∠BOD+∠AOB=80°+55°=135°,故选:D.二、填空题(共10小题)11.如图,若要使得图中平面展开图折叠成正方体后,相对面上的两个数之和为5,则x+y+z 的值为4.【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“z”与面“3”相对,面“y”与面“﹣2”相对,“x”与面“10”相对.则z+3=5,y+(﹣2)=5,x+10=5,解得z=2,y=7,x=﹣5.故x+y+z=4.故答案为:4.12.点A、B、C在同一条数轴上,其中点A、B表示的数分别为﹣3、1,若BC=2,则AC 等于2或6.【解答】解:此题画图时会出现两种情况,即点C在线段AB内,点C在线段AB外,所以要分两种情况计算.点A、B表示的数分别为﹣3、1,AB=4.第一种情况:在AB外,AC=4+2=6;第二种情况:在AB内,AC=4﹣2=2.故答案为2或6.13.如图,用剪刀沿直线将一片平整的长方形纸片剪掉一部分,发现剩下纸片的周长比原纸片的周长要小,能正确解释这一现象的数学知识是两点之间线段最短.【解答】解:用剪刀沿直线将一片平整的长方形纸片剪掉一部分,发现剩下纸片的周长比原纸片的周长要小,能正确解释这一现象的数学知识是两点之间线段最短,故答案为:两点之间线段最短.14.如图为一个长方体,则该几何体主视图的面积为20cm2.【解答】解:该几何体的主视图是一个长为5cm,宽为4cm的矩形,所以该几何体主视图的面积为20cm2.故答案为:20.15.用一张正方形的纸片剪出一个面积最大的圆形纸片,如果已知正方形的边长是4厘米,那么这个圆形的面积是12.56平方厘米.【解答】解:∵正方形的边长是4厘米,∴剪出的最大的圆直径为4厘米,半径=2厘米,所以,圆的面积=πr2=3.14×22=12.56(平方厘米).故答案为:12.56.16.若一个直四棱柱的底面是边长为2cm的正方形,侧棱长为4cm,则这个直四棱柱的所有棱长之和是32cm.【解答】解:由题意得:这个直四棱柱的所有棱长之和是:4×2+4×2+4×4=8+8+16=32(cm),故答案为:32.17.如图,在已知的角内部画射线,画1条射线,图中共有3个角;画2条射线,图中共有6个角;画3条射线,图中共有10个角;求画18条射线所得的角的个数是190.【解答】解:∵在已知角内画射线,画1条射线,图中共有3个角,3=;画2条射线,图中共有6个角,6=;画3条射线,图中共有10个角,10=;…,∴画n条射线,图中共有个角,∴画18条射线所得的角的个数是=190,故答案为:190.18.将两个三角尺的直角顶点重合为如图所示的位置,若∠AOD=108°,则∠COB=72°.【解答】解:∵∠COD=90°,∠AOB=90°,∠AOD=108°,∴∠AOC=∠AOD﹣∠COD=108°﹣90°=18°,∴∠COB=∠AOB﹣∠AOC=90°﹣18°=72°.故答案为:72°.19.如图是一个正方体纸盒的展开图,当折成纸盒时,与数11重合的数是1和7.【解答】解:由正方体展开图的特征得出,折叠成正方体后,点11所在的正方形分别和点7、点1所在的两个正方形相交,故点1与点7、点1重合.故答案为1和7;20.如图是由一些完全相同的小正方体组成的几何体的主视图、俯视图和左视图,则组成这个几何体的小正方体的个数是4个.【解答】解:在俯视图上标出该位置摆放的小立方体的个数,如图所示:因此,组成这个几何体的小正方体的个数是4个.故答案为:4.三、解答题(共10小题)21.计算:(1)|﹣36|×(﹣)+(﹣8)÷(﹣2)2﹣(﹣1)2021;(2)180°﹣(35°54'+21°33').【解答】解:(1)原式=36×(﹣)+(﹣8)÷4﹣(﹣1)=27﹣30﹣2+1=﹣4;(2)原式=179°60′﹣56°87'=179°60′﹣57°27'=122°33′.22.如图是一个用硬纸板制作的长方体包装盒展开图,已知它的底面形状是正方形,高为12cm.(1)制作这样的包装盒需要多少平方厘米的硬纸板?(2)若1平方米硬纸板价格为5元,则制作10个这样的包装盒需花费多少钱?(不考虑边角损耗)【解答】解:(1)由题意得,2×(12×6+12×6+6×6)=360cm2;答:制作这样的包装盒需要360平方厘米的硬纸板;(2)360÷10000×5×10=1.8元,答:制作10个这样的包装盒需花费1.8元钱.23.如图,是由一些大小相同的小正方体组合成的简单几何体.根据要求完成下列题目.(1)请在下面方格纸中分别画出它的左视图和俯视图(画出的图需涂上阴影);(2)图中共有9个小正方体.【解答】解:(1)如图所示:;(2)图中共有9个小正方体.故答案为:9.24.如图,B、C是线段AD上的任意两点,M是AB的中点,N是CD的中点,如果MN=3cm,BC=1.5cm,求AD的长.【解答】解:∵MN=MB+BC+CN,∵MN=3cm,BC=1.5cm,∴MB+CN=3﹣1.5=1.5cm,∴AD=AB+BC+CD=2(MB+CN)+BC=2×1.5+1.5=4.5cm.答:AD的长为4.5cm.25.如图所示的几何体是由7个相同的小正方体搭成的,请画出这个图形的主视图、左视图和俯视图.【解答】解:根据分析,可得.26.如图,线段AB=10cm,C是线段AB上一点,AC=4cm,M是AB的中点,N是AC的中点.求(1)线段CM的长;(2)求线段MN的长.【解答】解:(1)由AB=10,M是AB的中点,所以AM=5,又AC=4,所以CM=AM﹣AC=5﹣4=1(cm).所以线段CM的长为1cm;(2)因为N是AC的中点,所以NC=2,所以MN=NC+CM,2+1=3(cm),所以线段MN的长为3cm.27.平面内一定点A在直线CD的上方,点O为直线CD上一动点,作射线OA,OE,OA′,当点O在直线CD上运动时,始终保持∠COE=90°,∠AOE=∠A′OE,将射线OA 绕点O顺时针旋转75°得到射线OB.(1)如图1,当点O运动到使点A在射线OE的左侧时,若OB平分∠A′OE,求∠AOE 的度数;(2)当点O运动到使点A在射线OE的左侧时,且∠AOC=4∠A′OB时,求∠AOE的度数;(3)当点O运动到某一时刻时,满足∠A′OB=120°,求出此时∠BOE的度数.【解答】解:(1)设∠AOE的度数为x,由题意知∠A′OE=x,∠EOB=75°﹣x,∵OB平分∠A′OE,∴2∠EOB=∠A′OE,∴2(75°﹣x)=x,解得x=50,答:∠AOE的度数为50;(2)①如图2,当射线OB在∠A′OE内部时,设∠AOE的度数为y,由题意知,∠A′OE=y,∠EOB=75°﹣y,∵∠COE=90°,∴∠AOC=90°﹣y,∵∠AOC=4∠A′OB,∴∠A′OB=(90°﹣y),∵∠A′OB+∠EOB=∠A′OE,∴(90°﹣y)+75°﹣y=y,解得y=;②如图3,当射线OB在∠A′OE外部时,设∠AOE的度数为y,由题意知,∠A′OE=y,∠EOB=75°﹣y,∵∠COE=90°,∴∠AOC=90°﹣y,∵∠AOC=4∠A′OB,∴∠A′OB=(90°﹣y),∵∠AOE+∠A′OE+∠A′OB=75°,∴y+y+(90°﹣y)=75°,解得y=30,答:∠AOE的度数为或30;(3)如图4,当∠A′OB=120°时,由图可得:∠A′OA=∠A′OB﹣∠AOB=120°﹣75°=45°,又∵∠AOE=∠A′OE,∴∠AOE=22.5°,∴∠BOE=75°+22.5°=97.5°;如图5,当∠A′OB=120°,由图可得∠A′OA=360°﹣120°﹣75°=165°,又∵∠A′OE=∠AOE,∴∠AOE=82.5°,∴∠BOE=75°+82.5°=157.5°;当射线OE在CD下面时,如图6、7,∠BOE=22.5°或82.5°,综上,∠BOE的度数为157.5°或97.5°或22.5°或82.5°.28.(画图痕迹用黑色签字笔加粗加黑)画出如图所示物体的主视图、左视图、俯视图.【解答】解:物体的主视图、左视图、俯视图.如图所示:29.请你在右边的方格中画出如左图所示几何体的三视图:【解答】解:如图30.由几个相同的边长为1的小立方块搭成的几何体的俯视图如图①,格中的数字表示该位置的小立方块的个数.(1)请在下面方格纸图②中分别画出这个几何体的主视图和左视图.(2)根据三视图,这个组合几何体的表面积为多少个平方单位?(包括底面积)(3)若上述小立方块搭成的几何体的俯视图不变,如图③,各位置的小立方块个数可以改变(总数目不变),则搭成这样的组合几何体中的表面积最大(包括底面积)仿照图①,将数字填写在图③的正方形中.【解答】解:(1)这个几何体的主视图和左视图如图所示:(2)俯视图知:上面共有3个小正方形,下面共有3个小正方形;由左视图知:左面共有4个小正方形,右面共有4个正方形;由主视图知:前面共有5个小正方形,后面共有5个正方形,故可得表面积为:2×(3+4+5)=24;(3)要使表面积最大,则需满足两正方体重合的最少,此时俯视图为:。

七年级数学上册第4章图形的初步认识4.3立体图形的表面展开图同步练习题新版华东师大版

七年级数学上册第4章图形的初步认识4.3立体图形的表面展开图同步练习题新版华东师大版

第四章4.3立体图形的表面展开图同步练习题一、选择题1.下列几何体中,其侧面展开图为扇形的是( )2.如图所示的平面图形中,不可能围成圆锥的是( )3.一个几何体的表面展开图如图所示,则这个几何体是( )A.四棱锥 B.四棱柱 C.三棱锥 D.三棱柱4.下列图形可以作为一个正方体的展开图的是( )A B C D 5.下列四个图形中,是三棱柱的平面展开图的是( )6.下列图形中,能通过折叠围成一个三棱柱的是( )7.如图是一个正方体纸盒的平面展开图,六个面上分别写有“为武汉加油!”,则写有“为”字的对面是________字( )A.汉 B.! C.武 D.加8.如图是一个正方体的纸巾盒,它的表面展开图是( )A B C D9.如图,将长方体的表面展开,得到的平面图形不可能是( )A B C D10.如图1所示,将一个正四棱锥(底面为正方形,四条侧棱相等)的其中四条边剪开,得到图2,则被剪开的四条边有可能是( )A.PA,PB,AD,BC B.PD,DC,BC,ABC.PA,AD,PC,BC D.PA,PB,PC,AD11.如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色.下列图形中,是该几何体的表面展开图的是( )A B C D12.如图是一个正方体纸盒的外表面展开图,则这个正方体是( )A B C D 13.有一正方体,六个面上分别写有数字1,2,3,4,5,6,有三个人从不同的角度观察的结果如图.如果记6的对面的数字为a,2的对面的数字为b,那么a+b的值为( )A.3 B.7 C.8 D.11二、填空题14.如图是某几何体的表面展开图,则这个几何体是______15.如图,在这些图形中,是四棱柱的侧面展开图的是______(填序号).16.一个正方体的相对表面上所标的数字相等,如图是一个正方体的表面展开图,那么x+y =______17.一个正方体的表面展开图如图所示,每个面上都标注了字母(字母都在正方体外表面).若从正方体的右面看是面D,面C在后面,则正方体的上面是______18.如图,将七个小正方形中的一个去掉,就能成为一个正方体的展开图,则去掉的小正方形的序号是______三、解答题19.已知一个直四棱柱的底面是边长为5 cm的正方形,侧棱长都是8 cm,回答下列问题:(1)这个直四棱柱有几个面?几个顶点?(2)这个直四棱柱有多少条棱?(3)将这个直四棱柱的侧面展开成一个平面图形,这个图形是什么形状?面积是多少?(4)这个直四棱柱的体积是多少?20.如图所示,用1,2,3,4标出的四块正方形,以及由字母标出的八块正方形中任意一块,一共5块连在一起的正方形折成一个无盖方盒,共有几种不同的方法?请选择合适的方法.参考答案一、选择题1.下列几何体中,其侧面展开图为扇形的是(C)2.如图所示的平面图形中,不可能围成圆锥的是(D)3.一个几何体的表面展开图如图所示,则这个几何体是(A)A.四棱锥 B.四棱柱 C.三棱锥 D.三棱柱4.下列图形可以作为一个正方体的展开图的是(C)A B C D5.下列四个图形中,是三棱柱的平面展开图的是(B)6.下列图形中,能通过折叠围成一个三棱柱的是(C)7.如图是一个正方体纸盒的平面展开图,六个面上分别写有“为武汉加油!”,则写有“为”字的对面是________字(B)A.汉 B.! C.武 D.加8.如图是一个正方体的纸巾盒,它的表面展开图是(B)A B C D9.如图,将长方体的表面展开,得到的平面图形不可能是(C)A B C D10.如图1所示,将一个正四棱锥(底面为正方形,四条侧棱相等)的其中四条边剪开,得到图2,则被剪开的四条边有可能是(A)A.PA,PB,AD,BC B.PD,DC,BC,ABC.PA,AD,PC,BC D.PA,PB,PC,AD11.如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色.下列图形中,是该几何体的表面展开图的是(B)A B C D12.如图是一个正方体纸盒的外表面展开图,则这个正方体是(C)A B C D 13.有一正方体,六个面上分别写有数字1,2,3,4,5,6,有三个人从不同的角度观察的结果如图.如果记6的对面的数字为a,2的对面的数字为b,那么a+b的值为(B)A.3 B.7 C.8 D.11二、填空题14.如图是某几何体的表面展开图,则这个几何体是圆柱.15.如图,在这些图形中,是四棱柱的侧面展开图的是①(填序号).16.一个正方体的相对表面上所标的数字相等,如图是一个正方体的表面展开图,那么x+y =317.一个正方体的表面展开图如图所示,每个面上都标注了字母(字母都在正方体外表面).若从正方体的右面看是面D,面C在后面,则正方体的上面是面E18.如图,将七个小正方形中的一个去掉,就能成为一个正方体的展开图,则去掉的小正方形的序号是6或7.三、解答题19.已知一个直四棱柱的底面是边长为5 cm的正方形,侧棱长都是8 cm,回答下列问题:(1)这个直四棱柱有几个面?几个顶点?(2)这个直四棱柱有多少条棱?(3)将这个直四棱柱的侧面展开成一个平面图形,这个图形是什么形状?面积是多少?(4)这个直四棱柱的体积是多少?解:(1)这个直四棱柱有6个面,8个顶点.(2)这个直四棱柱有12条棱.(3)将这个直四棱柱的侧面展开成一个平面图形,这个图形是长方形,面积是4×5×8=160(cm2).(4)这个直四棱柱的体积是5×5×8=200(cm3).20.如图所示,用1,2,3,4标出的四块正方形,以及由字母标出的八块正方形中任意一块,一共5块连在一起的正方形折成一个无盖方盒,共有几种不同的方法?请选择合适的方法.解:任意选择A,B,C,D,E,G中的一块即可,共有6种不同的方法.。

华师版七年级上册数学第4章 图形的初步认识 专题技能训练 有关正方体展开图的常见类型

华师版七年级上册数学第4章 图形的初步认识 专题技能训练 有关正方体展开图的常见类型
华师版七年级上
第4章 图形的初步认识
专题技能训练(五) 训练2 有关正方体展开图的常见类

1C 2C 3 见习题 4C 5 见习题
提示:点击 进入习题
6 见习题 7 见习题
答案显示
1.【2021·驻马店汝南期末】下列图形中,是正方体的展开图的是( ) C
ABCD
2.下列图形中,不是正方体表面展开图的是( C )
解:如图所示.(答案不唯一)
(2)若折叠成的正方体相对面上的两个数互为相反数,求x,y的值.
解:根据题意,得3x+1+x+3=0,x+y=0, 解得x=-1, y=1.
6.一个正方体的六个面上分别写着1,2,3,4,5,6这6个数字,根据如图所 示的三个图中所写数字想一想,“?”处的数字是什么?
4.【2021·重庆北碚区期末】如图是一个表面分别标有“郑”“州”“中
”“心”“城”“市”字样的正方体的展开图,则在原正方体中,与“
C
5.【2021·福州晋安区期末】如图,纸板上有5个小正方形. (1)请你再添加1个小正方形,使这6个小正方形能折叠成一个正方体;
解:由题图①②可知标1的面与标2,3,5,4的面相邻,所以 标1的面与标6的面相对;由题图②③可知标3的面与标1,2, 5的面相邻,所以标3的面与标4的面相对;由题图①③可知标 5的面与标1,3,4的面相邻,所以标5的面与标2的面相对; 所以“?”处的数字是6.
7.一只蜘蛛在一个正方体的顶点A处,一只蚊子在这个正方体的顶点B处,如图所 示,现在蜘蛛想尽快地捉到这只蚊子,那么它所走的最短路线是怎样的?在 图上画出来,这样的最短路线有几条?(提示:两点之间,线段最短)
ABCD
3.如图所示,用标有数字1,2,3,4的四个正方形,以及标有字母A,B,C, D,E,F,H的七个正方形中任意一个,连在一起并折叠成一个无盖的正 方体盒子,一共有几种不同的方法?写出这些方法所用到正方形所标有的 数字和字母.例如:(1,2,3,4,F)

数学课件 华东师大版七年级上册 同步教学第4章图形的初步认识第五节最基本的图形

数学课件 华东师大版七年级上册 同步教学第4章图形的初步认识第五节最基本的图形
【点拨】因为 E 为 DB 的中点,且 EB=3, 所以 BD=2BE=6. 因为线段 AB=20,C 为 AB 的中点,所以 CB=AC=10, 所以 CD=BC-BD=10-6=4.
9.【中考·日照】如图,已知 AB=8 cm,BD=3 cm,C 为 AB 的 中点,则线段 CD 的长为____1___题
16 见习题
17 见习题
答案显示
1.线段的长短比较方法: (1)度量法:分别度量出每条线段的__长__度____,再按长度的大小,
比较线段的长短,线段的长短关系和它们__长__度____的大小关 系是一致的.
(2)叠合法:比较两条线段 AB,CD 的长短,可将线段 AB 放到 线段 CD 上,点 A 和点 C 重合,观察另外两个端点 B,D 的 位置,如果点 B 和点 D 重合,则_A__B_=__C_D_____;如果点 D 在 线段 AB 内部,则__A_B__>_C_D_______;如果点 D 在线段 AB 外 部,则___A__B_<_C_D______.
3.经过两点有___一_____条直线,并且只有___一_____条直线.即 两点确定___一_____条直线.
1.下列表示方法不正确的是( B )
2.下列图形中直线 AB,线段 CD,射线 EF 不可能相交的是( A )
3.如图所示,下列说法错误的是( D ) A.直线 AB 经过点 C B.点 D 不在直线 AC 上 C.点 C 在线段 AB 的延长线上 D.点 A 在线段 BC 的延长线上
【点拨】因为 C 为 AB 的中点,AB=8 cm, 所以 BC=12AB=12×8=4(cm). 因为 BD=3 cm,所以 CD=BC-BD=4-3=1(cm).
10.按要求完成下列任务. 实践与操作:画线段 AB,并延长 AB 至 C,使 BC=2AB, 取 AC 的中点 D. 推理与计算:若线段 CD=9,求线段 BD 的长. 解:如图所示. 因为点 D 是 AC 的中点,CD=9,所以 AC=2CD=18, 因为 BC=2AB,所以 BC=12, 所以 BD=BC-CD=12-9=3.

华师大新版七年级数学上册《第4章 图形的初步认识》单元测试卷

华师大新版七年级数学上册《第4章 图形的初步认识》单元测试卷

华师大新版七年级数学上册《第4章图形的初步认识》单元测试卷一、选择题(本大题共10小题,共30.0分)1.如图,下列立体图形中,全部是由平面围成的有()A. 1个B. 2个C. 3个D. 4个2.下面图形中,三棱柱的平面展开图为()A. B. C. D.3.∠AOB+∠BOC=180°,又∠BOC与∠COD互补,那么∠AOB与∠COD的关系()A. 互余B. 互补C. 相等D. 不能确定4.下列四个几何体,其中主视图与如图相同的是()A. B. C. D.5.如图,是一个正方体的表面展开图,则原正方体中“梦”字所在面的对面上的字是A. 大B. 伟C. 国D. 的6.如图,若OB平分∠AOC,OC平分∠BOD,且∠AOB=25°,则∠AOD等于()A. 25°B. 50°C. 75°D. 90°7.如图所示,直线AB与CD相交于点O,OB平分∠DOE,若∠DOE=60°,则∠AOE的度数是()A. 90°B. 150°C. 180°D.不能确定8.下列图形中,是正方体平面展开图的图形的个数是()A. 4个B. 3个C. 2个D. 1个9.已知线段AC=4,BC=1,则线段AB的长度()A. 一定是5B. 一定是3C. 一定是5或3D. 以上都不对10.下列四个日常现象:①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;③用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小;④沿桌子的一边看,可将桌子排整齐.其中,可以用“两点之间,线段最短”来解释的现象()A. ①③B. ②③C. ①④D. ②④二、填空题(本大题共8小题,共24.0分)11.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,此操作的依据是______ .12.十条直线两两相交,最多x个交点,最少y个交点,那么x+y=_____________.13.长方体的主视图与俯视图如图所示,则这个长方体的体积是.14.若∠BAC的余角的度数是58°19′20″,它的补角的度数是_____.15.如图,图中共有________条线段,________条射线,________条直线.16.当√x−1=2时,则x=______ .17.如图,CD是线段AB上两点,若CB=4cm,DB=7cm,且D是AC中点,则AC的长等于______.18.如图是由大小相同的小正方体组成的简单几何体的左视图和俯视图,那么组成这个几何体的小正方体的个数最少为______个.三、解答题(本大题共7小题,共46.0分)19.如图是由5个小正方形组成的“7”字图形,请你用4种方法分别在图中添加一个正方形,使它折叠后能成为立方体.20.如图是一个正方体的展开图,每个面上都标注了字母(字母折在外面),请解答下列问题:(1)如果A面在正方体的底部,那么哪个面会在上面⋅(2)如果F面在正面,从左面看是B面,那么哪个面会在上面⋅(3)如果从右面看是C面,D面在后面,那么哪个面会在上面⋅21.如图,已知B、C、D是线段AE上的点,如果AB=BC=CE,D是CE的中点,BD=6,求AE的长.22.观察下面的点阵图和相应的等式,探究其中的规律:(1)认真观察,并在④后面的横线上写出相应的等式.①1=1②1+2=(1+2)×22=3③1+2+3=(1+3)×32=6④______…(2)结合(1)观察下列点阵图,并在⑤后面的横线上写出相应的等式.1=12②1+3=22③3+6=32④6+10=42⑤______…(3)通过猜想,写出(2)中与第n个点阵相对应的等式______.23.如图,OM是∠AOB的平分线,射线OC在∠BOM内部,∠AOC=90°,ON是∠COB的平分线.(1)若∠COB=30°,求∠MON的度数;(2)若∠COB=n°,求∠MON的度数.24.如图,点B,D都在线段AC上,D是线段AB的中点,BD=3BC,如果AC=21cm,求CD的长.25.观察下列多面体,并把下表补充完整.名称三棱柱四棱柱五棱柱六棱柱图形顶点数a61012棱数b912面数c58(1)完成上表中的数据;(2)根据上表中的规律判断,十四棱柱共有____个面,共有____个顶点,共有____条棱;(3)若某个棱柱由30个面构成,则这个棱柱为____棱柱;(4)观察上表中的结果,你能发现顶点数棱数面数之间有什么关系吗?请写出来.-------- 答案与解析 --------1.答案:B解析:本题考查了认识立体图形,熟悉常见几何体的面的组成是解题的关键.解:正方体是有六个平面围成,故本图形符合要求;三棱锥有四个平面组成,故本图形符合要求;圆锥体是一个底面和一个侧面组成,侧面是一个曲面,故本图形不符合要求;圆柱体是两个底面和一个侧面组成,侧面是曲面,故本图形不符合要求.符合要求的共有2个,故选B.2.答案:A解析:本题主要考查的是三棱柱的平面展开图,熟练掌握常见立体图形的平面展开图的特征,是解决此类问题的关键.根据三棱柱的展开图的特点作答.解:A.是三棱柱的平面展开图,故选项正确;B.不是三棱柱的展开图,故选项错误;C.不是三棱柱的展开图,故选项错误;D.两底在同一侧,也不符合题意.故选A.3.答案:C解析:解:∵∠AOB+∠BOC=180°,又∠BOC与∠COD互补,∴∠AOB与∠COD的关系是相等.故选:C.直接利用互补的性质得出∠AOB与∠COD的关系.此题主要考查了互补两角的性质,正确把握相关性质是解题关键.4.答案:D解析:解:A、主视图是第一层两个小正方形,第二层左边一个小正方形,B、主视图是第一层两个小正方形,第二层左边一个小正方形,C、主视图是第一层两个小正方形,第二层左边一个小正方形,D、主视图是第一层两个小正方形,第二层两个小正方形,故选:D.根据主视图是从正面看得到的图形,可得答案.本题考查了简单组合体的三视图,从正面看得到的视图是主视图.5.答案:D解析:本题考查了正方体的展开图,注意正方体的空间图形,从相对面入手,分析及解答问题.利用正方体及其表面展开图的特点解题.解:这是一个正方体的平面展开图,共有六个面,其中面“伟”与面“国”相对,面“大”与面“中”相对,“的”与面“梦”相对.故选D.6.答案:C解析:此题主要考查了角平分线定义,关键是掌握角平分线把角分成相等的两部分.根据角平分线定义可得∠AOB=∠BOC=∠COD,即可得出∠AOD的度数.解:∵OB平分∠AOC,OC平分∠BOD,∴∠AOB=∠BOC=∠COD,∴∠AOD=∠AOB+∠BOC+∠COD=3∠AOB=75°.故选C.7.答案:B解析:本题考查了邻补角,角平分线的定义,熟练运用角平分线的定义是本题的关键.根据角平分线的定义可得∠BOE=30°,根据邻补角的定义可求∠AOE的度数.解:∵OB平分∠DOE∴∠BOE=12∠DOE=30°∵∠AOE+∠BOE=180°∴∠AOE=180°−30°=150°.故选B.8.答案:C解析:解:第一个图形、第二个图形都是正方体的展开图;第三个图形:“田”字格,不能折成正方体.第四个图形:“凹“字格,不能折成正方体.综上所述,是正方体平面展开图的图形的个数是2个.故选:C.由平面图形的折叠及立体图形的表面展开图的特点解题.本题考查了几何体的展开图.只要有“田”、“凹“字格的展开图都不是正方体的表面展开图.9.答案:D解析:解:当A、B、C三点共线时,AB=3或5,当A、B、C三点不共线时,AB长度确定不了,故选:D.当A、B、C三点共线时,AB=3或5,当A、B、C三点不共线时,AB长度确定不了,即可求解.在未画图类问题中,正确画图很重要.本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.10.答案:B解析:此题主要考查了线段的性质,关键是掌握两点之间,线段最短.根据线段的性质进行解答即可.解:①用两根钉子就可以把一根木条固定在墙上;④沿桌子的一边看,可将桌子排整齐用两点确定一条直线来解释;②把弯曲的公路改直,就能够缩短路程;③用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小用“两点之间,线段最短”来解释,故选B.11.答案:两点确定一条直线解析:解:经过刨平的木板上的两个点,能弹出一条笔直的墨线,此操作的依据是:两点确定一条直线.故答案为:两点确定一条直线.根据公理“两点确定一条直线”,来解答即可.本题考查的是直线的性质在实际生活中的运用,此类题目有利于培养学生生活联系实际的能力.12.答案:46解析:本题主要考查直线的交点问题.注意直线相交时得到最多交点的方法是:每增加一条直线,这条直线都要与之前的所有线段相交.在同一平面内,直线相交时得到最多交点的方法是:每增加一条直线这条直线都要与之前的所有线段相交,即第n条直线时交点最多有1+2+3+4+⋯+(n−1)个,整理即可得到一般规律:n(n−1),再把特殊值n=10代入即可求解.2解:在同一平面内,两条直线相交时最多有1个交点,三条直线最多有3=1+2个交点,四条直线最多有6=1+2+3个交点,…,n条直线最多有1+2+3+4+⋯+(n−1)个交点,即1+2+3+ 4+⋯+(n−1)=n(n−1).2=45当n=10时,x=10(10−1)2都交于同一点,得y=1,∴x+y=46,故答案为46.13.答案:24解析:本题主要考查了由两种视图来推测整个长方体的特征,这种类型问题在中考试卷中经常出现,注意:主视图反映物体的长和高,左视图反映物体的宽和高,俯视图反映物体的长和宽.由所给的视图判断出长方体的长、宽、高,让它们相乘即可得到体积.解:由主视图可知,这个长方体的长和高分别为4和3,由俯视图可知,这个长方体的长和宽分别为4和2,因此这个长方体的长、宽、高分别为4、2、3,因此这个长方体的体积为4×2×3=24.故答案为:24.14.答案:148°19′20″解析:本题主要考查的是余角和补角的定义,熟练掌握余角和补角的定义是解题的关键.先表示这个角的余角,然后再求它的补角即可.解:它的补角的度数=180°−(90°−58°19′20=180°−90°+58°19′20=148°19′20″.故答案为148°19′20″.15.答案:6;5;0解析:本题主要考查了直线、线段、射线的定义,在直线、线段、射线计数时,应注意分类讨论的方法计数,做到不遗漏,不重复.线段有两个端点,不能延伸,射线有一个端点,能向一方无限延伸,直线没有端点,能向两方无限延伸,根据以上内容和图形找出即可.解:图中线段有:线段OA、线段OB、线段AB、线段OC、线段AC、线段BC,共6条线段;射线有:射线CE、射线OE、射线AD、射线BD、射线OD,共5条射线;图中没有直线,即有0条直线,故答案为6;5;0.16.答案:5解析:解:∵√x−1=2,∴x−1=4.解得:x=5.故答案为:5.依据算术平方根的定义可求得x−1=4,然后解方程即可.本题主要考查的是算术平方根的定义,依据算术平方根的定义列出关于x的方程是解题的关键.17.答案:6cm解析:解:由线段的和差,得DC=DB−CB=7−4=3cm,由且D是AC中点,得AC=2DC=6cm,故答案为:6cm.根据线段的和差,可得DC的长,根据线段中点的性质,可得答案.本题考查了两点间的距离,利用线段的和差得出DC的长是解题关键.18.答案:5解析:本题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.做题要掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”.由左视图易得这个几何体共有2层,由俯视图可得第一层正方体的个数,由左视图可得第二层正方体的可能的最少个数,相加即可.解:由俯视图可以看出组成这个几何体的底面小正方体有4个,由左视图可知第二层最少有1个,故组成这个几何体的小正方体的个数最少为:4+1=5(个),故答案为:5.19.答案:解:如图:解析:本题主要考查正方体展开图的知识.根据正方体的11种展开图来解答本题即可.20.答案:解:(1)∵面“A”与面“F”相对,∴A面是正方体的底部时,F面在上面;(2)由图可知,如果F面在前面,B面在左面,那么“E”面下面,∵面“C”与面“E”相对,∴C面会在上面;(3)由图可知,如果C面在右面,D面在后面,那么“F”面在下面,∵面“A”与面“F”相对,∴A面在上面.解析:本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.利用正方体及其表面展开图的特点解题.这是一个正方体的平面展开图,共有六个面,其中面“A”与面“F”相对,面“B”与面“D”相对,“C”与面“E”相对.21.答案:解:设DE=x,∵D是CE的中点,∴CD=DE=x,则AB=BC=CE=2x,∴BD=BC+CD=6,∴2x+x=6,∴x=2∴AE=6x=12.答:AE的长为12.解析:本题考查了线段的中点及线段的运算.在一条直线或线段上的线段的加减运算和倍数运算,首先明确线段间的相互关系,最好准确画出几何图形,再根据题意进行计算.利用中点性质转化线段之间的倍分关系是解题的关键.22.答案:解:(1)1+2+3+4=(1+4)×42=10;(2)10+15=52;(3)n(n−1)2+n(n+1)2=n2.解析:解:(1)根据题中所给出的规律可知:1+2+3+4=(1+4)×42=10,故答案为:1+2+3+4=(1+4)×42=10;(2)由图示可知点的总数是5×5=25,所以10+15=52,故答案为:10+15=52;(3)由(1)(2)可知n(n−1)2+n(n+1)2=n2,故答案为:n(n−1)2+n(n+1)2=n2.(1)根据①②③观察会发现第四个式子的等号的左边是1+2+3+4,右边分子上是(1+4)×4,从而得到规律;(2)通过观察发现左边是10+15,右边是25即5的平方;(3)过对一些特殊式子进行整理、变形、观察、比较,归纳出一般规律.主要考查了学生通过特例分析从而归纳总结出一般结论的能力.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.通过分析找到各部分的变化规律后用一个统一的式子表示出变化规律是此类题目中的难点.23.答案:解:(1)∵∠AOC=90°,∠COB=30°,∴∠AOB=∠AOC+∠COB=90°+30°=120°,∵OM是∠AOB的平分线,ON是∠COB的平分线,∴∠MOB=12∠AOB,∠NOB=12∠COB,∴∠MON=∠MOB−∠NOB=60°−15°=45°;(2)当∠AOC=90°,∠COB=n°时,∴∠MON=∠MOB−∠NOB=12(90+n)°−12n°=45°.解析:本题主要考查角的计算和角平分线的定义等知识点的理解和掌握.(1)根据∠AOC=90°,∠COB=30°,可得∠AOB=∠AOC+∠COB=90°+30°=120°,再利用OM 是∠AOB的平分线,ON是∠COB的平分线,即可求得答案;(2)根据∠MON=∠MOB−∠NOB,又∠AOC=90°,∠COB=n°,由(1)可得出答案.24.答案:解:由D是线段AB的中点,BD=3BC,得AD=BD=3BC.由线段的和差,得AD+BD+BC=AC,即3BC+3BC+BC=21.解得BC=3,BD=3BC=3×3=9,CD=BC+BD=3+9=12.解析:本题考查了两点间的距离,利用线段的和差得出关于BC的方程是解题关键.根据线段中点的性质,可得AD与BD的关系,根据线段的和差,可得关于BC的方程,根据解方程,可得BC的长,再根据线段的和差,可得答案.25.答案:解:(1)填表如下:名称三棱柱四棱柱五棱柱六棱柱图形顶点数a6 81012棱数b9121518面数c5 678(2)16,28,42;(3)二十八;(4)关系:顶点数+面数−棱数=2.解析:本题考查规律型问题,欧拉公式等知识,解题的关键是学会从特殊到一般探究规律的方法,属于中考常考题型.(1)通过认真观察图象,即可一一判断;(2)根据面、顶点、棱的定义一一判断即可;(3)根据棱柱的定义判定即可;(4)从特殊到一般探究规律即可;解:(1)见答案;(2)根据上表中的规律判断,十四棱柱共有16个面,共有28个顶点,共有42条棱;故答案为16,28,42;(3)若某个棱柱由30个面构成,则这个棱柱为二十八棱柱;故答案为二十八;(4)见答案.。

华师大版七年级上册数学第4章 图形的初步认识含答案(精练)

华师大版七年级上册数学第4章 图形的初步认识含答案(精练)

华师大版七年级上册数学第4章图形的初步认识含答案一、单选题(共15题,共计45分)1、如图,已知直线AB、CD相交于点O,OE平分∠COB,若∠EOB=50°,则∠BOD的度数是:()A.50 °B.60 °C.80 °D.70 °2、一个圆锥的母线长为10,侧面展开图是半圆,则圆锥的侧面积是()A.100πB.50πC.20πD.10π3、下列物体的形状类似于球的是()A.乒乓球B.羽毛球C.茶杯D.白织灯泡4、如图是由5个小立方块搭建而成的几何体,它的俯视图是()A. B. C. D.5、如图是一个正方体的展开图,把展开图折叠成正方体后,标有“☆“的一面相对面上的字是()A.神B.奇C.数D.学6、如图,在长方体的数学课本上放有一个圆柱体,则它的主视图为()A. B. C. D.7、如图,四个几何体分别为长方体、圆柱体、球体和三棱柱,这四个几何体中截面不可能是长方形的几何体是()A. B. C.D.8、下面如图所示的几何体的俯视图是()A. B. C. D.9、下列结论,其中正确的为()①圆柱由3个面围成,这3个面都是平面②圆锥由2个面围成,这2个面中,1个是平的,1个不是平的③球仅由1个面围成,这1个面是平的④正方体由6个面围成,这6个面都是平的A.①②B.②③C.②④D.③④10、将坐标的正方体展开能得到的图形是()A. B. C. D.11、下列四个图形中,是三棱锥的表面展开图的是()A. B. C. D.12、如图所示,能读出的线段共有()A.8条B.10条C.6条D.以上都错13、已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是()A.108cm 3B.100 cm 3C.92cm 3D.84cm 314、如图是几何体的三视图及相关数据,则下列判断错误的是()A. B. C. D.15、小李同学的座右铭是“态度决定一切“,他将这几个字写在一个正方体纸盒的每个面上,其平面展开图如图所示,那么在该正方体中,和“切”相对的字是()A.态B.度C.决D.定二、填空题(共10题,共计30分)16、若一个角等于53°17′,则这个角的余角等于________.17、如图,有一圆柱,其高为12cm,它的底面半径为3cm,在圆柱下底面A处有一只蚂蚁,它想得到上面B处的食物,则蚂蚁经过的最短路程为________ cm.(π取3)18、如图,长方体的底面边长分别为2cm和4cm,高为5cm.若一只蚂蚁从P点开始经过4个侧面爬行一圈到达Q点,则蚂蚁爬行的最短路径长为________cm.19、如图,该图中不同的线段数共有________条.20、一个人从A点出发向北偏西30° 方向走到B点,再从B点出发向南偏西15°方向走到C点,那么∠ABC=________。

七年级数学上册 第4章 图形的初步认识 4.6 角 4.6.2 角的比较和运算导学案华东师大版

七年级数学上册 第4章 图形的初步认识 4.6 角 4.6.2 角的比较和运算导学案华东师大版

角的比较和运算 学习内容 角的比较和运算
学习目标 1、掌握分别用测量与重叠来比较角大小的方法;
2、理解两个角大小比较所隐含的意义,能从“量”与“形”上进行转化;
3、角平分线的性质及其简单运算。

学习重点
运用叠合法来比较两个角的大小; 学习难点 从“数量”的角度到从“形”的角度来分析两个角的大小比较。

导 学 过 程
复备栏 【温故互查】:
1、什么叫做角?什么叫角的顶点?什么叫角的边?
2、如何比较线段的长短?
【设问导读】:
阅读课本149—151页,回答下列问题:
1、如果我们要对你们手中的角进行比较(比较角度的大小),现在我选择
其中的两个角,那你们将会进行怎么样的比较方法,如何进行?
(1) ;
(2) 。

2、从以上的方法,我们将可以比较出以下两个角的大小:
3、(1)利用三角板画出哪些特殊角?
(2) 叫
这个角的角平分线。

如图,已知OC平分AOB ∠,则有:
【自学检测】:
1、作一个角等于AOB ∠
2、已知,如图,︒=∠80AOC ,︒=∠50BOC ,OD 平分BOC ∠,
求:AOD ∠。

A
【巩固训练】:
P156 exc1、2、3
【拓展延伸】
B C D O。

华师大版七年级上册数学第4章 图形的初步认识含答案(综合摸底)

华师大版七年级上册数学第4章 图形的初步认识含答案(综合摸底)

华师大版七年级上册数学第4章图形的初步认识含答案一、单选题(共15题,共计45分)1、如图所示的几何体是由一个圆柱和一个长方体组成的,它的主视图是()A. B. C.D.2、如图所示,把一个长方形纸片沿EF折叠后,点D,C分别落在,的位置.若,则等于()A. B. C. D.3、我国古代数学家利用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体,如图所示的几何体是可以形成“牟合方盖”的一种模型,它的主视图是()A. B. C. D.4、将一副直角三角尺如图装置,若,则的大小为()A. B. C. D.5、用一副三角板可以画出一些指定的角,下列各角中,不能用一副三角板画出的是()A.15°B.75°C.85°D.105°6、下列说法正确的是()A.同旁内角相等,两直线平行B.两直线平行,同位角互补C.相等的角是对顶角D.等角的余角相等7、若,则的余角为()A.36°B.46°C.126°D.146°8、下面几何体中,主视图与俯视图都是矩形的是()A. B. C. D.9、A、B两点间的距离是()A.连结A、B两点的线段B.连结A、B两点的直线C.连结A、B两点的线段的长度D.连结A、B间的线的长度10、将正方体的表面沿某些棱剪开,展成如图所示的平面图形,则原正方体中与“创”字所在的面相对的面上标的字是()A.庆B.力C.大D.魅11、如图AB=CD,则AC与BD的大小关系是()A.AC>BDB.AC<BDC.AC=BDD.无法确定12、如图,是由一些棱长为1cm的小正方体构成的立体图形的三种视图,那么这个立体图形的表面积是( )A.12B.14C.16D.1813、下列各式中,正确的角度互化是()A.18°18′18″=3.33°&nbsp;B.46°48′=46.48°C.22.25°=22°15′D.28.5°=28°50′14、如图,是一个正方体的表面展开图,则原正方体中与“中”字所在的面相对的面上标的字是()A.伟B.人C.的D.梦15、下列说法错误的是()A.长方体、正方体都是棱柱B.六棱柱有六条棱、六个侧面C.三棱柱的侧面是三角形D.球体的三种视图均为同样的图形二、填空题(共10题,共计30分)16、若∠α=35°19′,则∠α的余角的大小为________ .17、如图,圆柱体的高为4cm,底面周长为6cm,小蚂蚁在圆柱表面爬行,从A 点到B点,路线如图所示,则最短路程为________.18、经过任意三点中的两点共可以画出的直线条数是________ 条.19、如图是某个几何体的展开图,写出该几何体的名称________。

初中数学华东师大七年级上册第4章 图形的初步认识4

初中数学华东师大七年级上册第4章 图形的初步认识4

生活中的立体图形一、教学目标。

1.认识柱体、椎体、球体以及圆柱、棱柱、棱锥;能辨识常见柱体、椎体和球体。

2.了解台体。

重点:认识柱体、椎体、球体以及圆柱、棱柱、圆锥、棱锥。

难点:由实物到几何体的抽象、数学建模思想。

欧拉公式。

二、教学流程。

1.利用上海明珠电视台图片引入新课:让学生在图片中找出自己熟悉的立体图形。

2.探究棱柱和圆柱棱柱:(1)展示魔方和文具盒图示,得到常见的正方体和长方体柱体(2)探究棱柱的特征:Ⅰ棱柱的上下底面是形状相同大小相等的多边形;Ⅱ棱柱的侧面都是长方形;Ⅲ棱柱的命名由侧棱的条数(或底面多边形的边数决定)。

圆柱特征:上下底面是等圆,侧面是曲面,侧面展开为长方形,可由长方形绕一边所在直线旋转而成。

棱柱与圆柱的异同:相同点都有两个底面,它们形状和大小都相同且互相平行。

不同点棱柱的底面是多边形,圆柱的底面是圆形;棱柱的侧面是多个长方形的面,圆柱的侧面是一个曲面。

3.探究棱锥和圆锥棱锥:(1)展示金字塔图示,得到常见四棱锥锥体(2)探究棱锥的特征:Ⅰ棱柱只有一个底面,为多边形;Ⅱ棱柱的侧面都是三角形;Ⅲ棱柱的命名由侧棱的条数(或底面多边形的边数决定)。

棱锥与圆锥的异同:相同点都有一个底面。

不同点棱锥的底面是多边形,圆锥的底面是圆形;棱柱的侧面是多个三角形的面,圆锥的侧面是一个曲面。

拓展:棱台4.球体:足球的形象是球体,球体有何特点?(1球面上任意一点到中心距离等于半径;2全部是曲面;3可由圆绕直径所在直线旋转而成。

)5.立体图形的分类()()()棱柱柱体上下一样大,底面平移可得,圆柱旋转亦可得圆柱棱锥锥体上尖下小,圆锥旋转可得台体立体图形圆锥球体面上任意点到中心等于半径,旋转可得⎧⎧⎨⎪⎩⎪⎪⎧⎪−−−−→⎨⎨⎩⎪⎪⎪⎪⎩ 6.巩固练习:○1下面图形中叫圆柱的是( ).拓展1:台体:用平行于底面的面截取圆锥或棱锥得到的立体图形。

○2请同学写出下列立体图形的名称.○3把下列图形与对应的图形名称用线连起来:7.拓展:多面体与欧拉公式。

华师大版七年级上册数学第4章 图形的初步认识含答案培优

华师大版七年级上册数学第4章 图形的初步认识含答案培优

华师大版七年级上册数学第4章图形的初步认识含答案一、单选题(共15题,共计45分)1、下列图形中,哪一个是正方体的展开图()A. B. C. D.2、如图中主三视图对应的三棱柱是()A. B. C. D.3、如图所示的几何体是由一些小正方体组成的,那么从左边看它的图形是()A. B. C. D.4、已知OA⊥OC,且∠AOB∶∠AOC=2∶3,则∠BOC的度数是( )A.30 °B.150°C.30°或150°D.不能确定5、如图,已知点O在直线AB上,,则的余角是( )A. B. C. D.6、如图,,点在上,,若,则()A.70°B.145°C.110°D.140°7、某校九年级(1)班在“迎中考百日誓师”活动中打算制做一个带有正方体挂坠的倒计时牌挂在班级,正方体的每个面上分别书写“成功舍我其谁”六个字.如图是该班同学设计的正方体挂坠的平面展开图,那么“我”字对面的字是()A.舍B.我C.其D.谁8、下列说法中,是真命题的有( )A.射线和射线是同一条射线B.两直线平行,同旁内角相等 C.一个角的补角一定大于这个角 D.两点确定一条直线9、如图,已知直线AB,CD相交于点O,OE⊥AB,∠EOC=30°,则∠BOD的度数为()A.60°B.30°C.120°D.150°10、将两个长方体如图放置,则所构成的几何体的左视图可能是( )A. B. C. D.11、在底面为正三角形,且底面周长为的直棱柱上,截去一个底面为正三角形,且底面周长为的直棱柱后(如图所示),所得几何体的俯视图的周长为()A. B. C. D.12、如图是一个用相同的小立方体搭成的几何体的三视图,则组成这个几何体的小立方体的个数是()A.2B.3C.4D.513、如图,从点到点有3条路,其中走最近,其数学依据是()A.经过两点有且只有一条直线B.两条直线相交只有一个交点C.两点之间的所有连线中,线段最短D.直线比曲线短14、如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A. B.. C.. D..15、A、B两点间的距离是()A.连结A、B两点的线段B.连结A、B两点的直线C.连结A、B两点的线段的长度D.连结A、B间的线的长度二、填空题(共10题,共计30分)16、已知线段AB=7cm,在线段AB上画线段BC=3cm,则线段AC=________.17、如图是一个长方体的三视图(单位:cm),根据图中数据计算这个长方体的体积是________ .18、下列某种几何体从正面、左面、上面看到的形状图都相同,则这个几何体是________(填写序号)①三棱锥;②圆柱;③球.19、一个几何体的三视图如图所示,则该几何体的表面积为________.(π取3)20、如图,将一副直角三角板如图放置,若∠AOD=18°,则∠BOC的度数为________.21、A、B、C三点在同一条直线上,M、N分别为AB、BC的中点,且AB=60,BC=40,则MN的长为________22、一个几何体的三视图如图所示,其中从上面看的视图是一个等边三角形,则这个几何体的表面积为________.23、已知一个几何体的三视图如图所示,这个几何体是________.24、如图,▱ABCD中,∠DAB=30°,AB=6,BC=2,P为边CD上的一动点,则2PB+ PD的最小值等于________.25、如图,在直角∠AOB的内部作射线OC,若∠AOC=33°24′17″,则∠BOC =________.三、解答题(共5题,共计25分)26、一个角的补角比这个角的余角的2倍还多40°,求这个角的度数.27、如图,直线AB和EF相交于O,OC平分∠AOB,∠1=65°,试求∠3的度数.28、如图5,在中,,平分,,.求的度数;29、画出下面这个几何体(前后只有两排)的三种视图.30、如图,已知直线AB和CD相交于O点,∠COE是直角,OF平分∠AOE,∠COF=34°,求∠BOD的度数.参考答案一、单选题(共15题,共计45分)2、A3、A4、C5、A6、A7、D8、D9、C10、C11、D12、C13、C14、C15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、23、24、25、三、解答题(共5题,共计25分)26、27、28、30、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第4章检测题
(时间:100分钟满分:120分)
一、选择题(每小题3分,共30分)
1.数轴是一条( B )
A.射线B.直线C.线段D.以上都是
2.下列几何图形是六棱柱的是( D )
3.借助一副三角尺,你能画出下面度数为( B )的角.
A.65°B.75°C.85°D.95°
4.(2016·济宁)如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是( D )
5.如图,已知AD>BC,则AC与BD的关系( A )
A.AC>BD B.AC=BD C.AC<BD D.无法确定
6.(2016春·曹县校级月考)如果OC是∠AOB的平分线,则下列结论不正确的是( D ) A.∠AOC=∠BOC B.2∠AOC=∠AOB C.∠AOB=2∠BOC D.∠AOB=∠AOC 7.下列说法错误的是( B )
A.两个互余的角都是锐角B.一个角的补角大于这个角本身
C.互为补角的两个角不可能都是锐角D.互为补角的两个角不可能都是钝角
8.(2016·资阳)如图是一个正方体纸盒的外表面展开图,则这个正方体是( C )
9.(2015秋·开江县期末)用一个平面截去正方体的一个角,则截面不可能是( A )
A.等腰直角三角形B.等腰三角形C.锐角三角形D.等边三角形
10.(2016春·盐城校级月考)下列说法:①对顶角相等;②过直线外一点有且只有一条直线与这条直线平行;③直线外一点与直线上各点连接的所有线段中,垂线段最短;④一个角的余角比它的补角大90°.其中正确的个数为( B )
A.4个B.3个C.2个D.1个
二、填空题(每小题3分,共24分)
11.写出下列立体图形的具体名称:
12.判断如图所示的图形中球体有__②③④__;多面体有__①⑤⑦__.
13.(2016春·重庆校级月考)如图是由若干个小正方形搭建的几何体的三视图,那么此几何体由__6__个小正方形搭建而成.
错误! ,第14题图)
14.(2016春·曹县校级月考)已知,如图,点A ,O ,C 在同一直线上,OE 平分∠AOB,OF 平分∠BOC,则∠EOF=__90__°.
15.P 为线段AB 上一点,且AP =2
5AB ,M 是AB 的中点,若PM =2 cm ,则AB =
__20__cm .
16.经过一点A 画直线,可以画__无数__条;过不在同一直线上三点中的任意两点画直线,一共可能画__3__条.
17.(2016·萧山区模拟)如图,是一个包装盒的三视图,则这个包装盒的表面积是__600π_cm 2__.(结果保留π)
18.有一个圆形钟面,在7点30分时,时针与分针所成角的大小为__45°__. 三、解答题(共66分)
19.(8分)已知平面上四点A ,B ,C ,D ,如图: (1)画直线AB ; (2)画射线AD ;
(3)直线AB ,CD 相交于点E ;
(4)连结AC ,BD 相交于点F.
解:略
20.(8分)如图,(1)∠AOC是哪两个角的和;
(2)∠AOB是哪两个角的差;
(3)如果∠AOB=∠COD,那么∠AOC与∠DOB相等吗?
解:(1)∠AOC是∠AOB与∠BOC的和
(2)∠AOC与∠BOC的差或∠AOD与∠BOD的差
(3)∠AOC=∠BOD.理由如下:∵∠AOB=∠COD,∴∠AOB+∠BOC=∠COD+∠BOC.即∠AOC=∠BOD
21.(8分)(2015秋·南江县期末)如图,由若干个完全相同的小正方体堆成的一个几何体放置在平整的地面上.
(1)请画出这个几何体的三视图;
(2)如果在这个几何体的表面喷上红色的漆,则在所有的小正方体中,有__1__个小正方体只有一个面是红色,有__2__个小正方体只有两个面是红色,有__3__个小正方体只有三个面是红色.
解:(1)如图所示:
(2)只有一个面是红色的应该是第一列正方体中最底层中间那个,共1个;有2个面是红色的应是第一列最底层最后面那个和第二列最后面那个,共2个;只有三个面是红色的应是第一列第二层最后面的那个,第二列最前面那个,第三列最底层那个,共3个.故答案为:1,2,3
22.(10分)已知如图,B ,C 两点把线段AD 分成2∶4∶3三部分,CD =6 cm . (1)求AD 的长;
(2)若M 是AD 的中点,求线段MC 的长.
解:(1)∵AB∶BC∶CD =2∶4∶3,∴CD =39AD =1
3AD ,∵CD =6,∴AD =3CD =18 cm
(2)由(1)知AD =18,∵M 是AD 的中点,∴MD =12AD =1
2
×18=9 cm ,∴MC =MD
-CD =9-6=3 cm
23.(10分)一个正方体六个面分别标有字母A ,B ,C ,D ,E ,F ,其展开图如图所示,已知:A =x 2-2xy ,B =A -C ,C =3xy +y 2,若该正方体相对两个面上的多项式的和相等,试用x ,y 的代数式表示多项式D ,并求当x =-1,y =-2时,多项式D 的值.
解:由图形可知A 与C 相对,B 与D 相对,∴B +D =A +C ,又∵A =x 2-2xy ,B =A -C ,C =3xy +y 2,则D =A +C -B =A +C -(A -C )=2C =2(3xy +y 2)=6xy +2y 2,当
x =-1,y =-2时,6xy +2y 2=12+8=20,故当x =-1,y =-2时,多项式D 的值
是20
24.(10分)如图,O 为直线AB 上一点,∠AOC =50°,OD 平分∠AOC,∠DOE =90°, (1)求∠BOC 的度数;
(2)通过计算判断OE 是否平分∠BOC.
解:(1)∠BOC =180°-∠AOC =180°-50°=130°
(2)∵OD 平分∠AOC ,∴∠COD =12∠AOC =1
2×50°=25°,∵∠DOE =90°,∴∠COE =
90°-∠COD =90°-25°=65°,∴∠BOE =∠BOC -∠COE =130°-65°=65°,∴∠COE =∠BOE =65°,因此OE 平分∠BOC
25.(12分)(2015秋·开江县期末)如图①,已知线段AB =16 cm ,点C 为线段AB 上
的一个动点,点D ,E 分别是AC 和BC 的中点.
(1)若点C 恰为AB 的中点,求DE 的长; (2)若AC =6 cm ,求DE 的长;
(3)试说明不论AC 取何值(不超过16 cm ),DE 的长不变;
(4)知识迁移:如图②,已知∠AOB=130°,过角的内部任一点C 画射线OC ,若OD ,OE 分别平分∠AOC 和∠BOC,试说明∠DO E 的大小与射线OC 的位置无关.
解:(1)∵点C 恰为AB 的中点,∴AC =BC =1
2AB =8 cm ,∵点D ,E 分别是AC 和BC
的中点,∴DC =12AC =4 cm ,CE =1
2
BC =4 cm ,∴DE =8 cm
(2)∵AB =16 cm ,AC =6 cm ,∴BC =10 cm ,由(1)得,DC =12AC =3 cm ,CE =1
2CB
=5 cm ,∴DE =8 cm (3)∵点D ,E 分别是AC 和BC 的中点,∴DC =12AC ,CE =1
2BC ,
∴DE =1
2(AC +BC )=1
2AB =8,∴不论AC 取何值(不超过16 cm ),DE 的长不变 (4)∵OD ,
OE 分别平分∠AOC 和∠BOC ,∴∠DOC =12∠AOC ,∠EOC =1
2∠BOC ,∴∠DOE =∠DOC +
∠EOC =12(∠AOC +∠BOC )=1
2
∠AOB =65°,∴∠DOE =65°与射线OC 位置无关。

相关文档
最新文档