(完整)初一数学图形认识专项练习题

合集下载

七年级数学图形的初步认识复习测试题含答案

七年级数学图形的初步认识复习测试题含答案

第四章图形初步相识复习题一、细心选一选1、以下说法正确是〔〕A、直线AB和直线BA是两条直线;B、射线AB和射线BA是两条射线;C、线段AB和线段BA是两条线段;D、直线AB和直线a不能是同一条直线2、以下图中角表示方法正确个数有〔〕A、1个B、2个C、3个D、4个3、下面图形经过折叠可以围成一个棱柱是〔〕4、经过同一平面内随意三点中两点共可以画出〔〕A、一条直线B、两条直线C、一条或三条直线D、三条直线5、假设∠A=20 o 18′,∠B=20 o 15′30〞,∠C=20.25 o,则〔〕A、∠A>∠B>∠CB、∠B>∠A>∠CC、∠A>∠C >∠BD、∠C >∠A >∠B6、如图,每个图片都是6个一样正方形组成,不能折成正方形是〔〕7、如左图所示正方体沿某些棱绽开后,能得到图形是〔〕8、以下语句正确是〔〕A.钝角与锐角差不行能是钝角;B.两个锐角和不行能是锐角;C.钝角补角肯定是锐角;D.∠α和∠β互补〔∠α>∠β〕,则∠α是钝角或直角。

9、在时刻8:30,时钟上时针和分针夹角是为〔〕西东 AD A 、85 ° B 、75° C 、70 ° D 、60° 10、假如∠α=26°,则∠α余角补角等于 〔 〕 A 、20° B 、70 ° C 、110 ° D 、116°11、假如∠α+∠β=900,而∠β与∠γ互余,则∠α与∠γ关系为 〔 〕A 、互余B 、互补C 、相等D 、不能确定。

12、如右图以下说法错误是〔 〕 A 、OA 方向是北偏东40° B 、OB 方向是北偏西15 ° C 、OC 方向是南偏西30° D 、OD 方向是东南方向。

13、以下说法中错误有( )(1)线段有两个端点,直线有一个端点; (2)角大小与我们画出角两边长短无关; (3)线段上有多数个点; (4)同角或等角补角相等; (5)两个锐角和肯定大于直角A .1个B .2个C .3个D .4个 14、如右图∠AOD -∠AOC =〔 〕 A 、∠ADC B 、∠BOC C 、∠BODD 、∠COD15、如图把一个圆绕虚线旋转一周,得到几何体是( ) 二、细心填一填16. 将以下几何体分类,柱体有: ,锥体有 〔填序号〕 。

初一数学图形的初步认识练习题及答案

初一数学图形的初步认识练习题及答案

一、填空题(每题3分,共30分)1、三棱柱有条棱,个顶点,个面;2、如图1,若是中点,AB=4,则DB=;3、42.79=度分秒;4、如果∠α=29°35′,那么∠α的余角的度数为;5、如图2,从家A 上学时要走近路到学校B,最近的路线为(填序号),理由是;6、如图3,OA、OB 是两条射线,C 是OA 上一点,D、E 分别是OB 上两点,则图中共有条线段,共有射线,共有个角;7.如图4,把书的一角斜折过去,使点A 落在E 点处,BC 为折痕,BD 是∠EBM 的平分线,则∠CBD=8.如图5,将两块三角板的直角顶点重合,若∠AOD=128°,则∠BOC=;9.2:35时钟面上时针与分针的夹角为;10.经过平面内四点中的任意两点画直线,总共可以画条直线;二选择题(每题3分,共24分)7、B图3图5图412、如果与互补,与互余,则与的关系是()A.=B.C.D.以上都不对13、对于直线,线段,射线,在下列各图中能相交的是()A.1个B.2个C.3个D.4个16、在海上,灯塔位于一艘船的北偏东40度方向,那么这艘船位于这个灯塔的()方向A.南偏西50度B.南偏西40度C.北偏东50度D.北偏东40度17、如右图,AB、CD交于点O,∠AOE=90°,若∠AOC:∠COE=5:4,则∠AOD等于()A.120°B.130°C.140°D.150°18、图中(1)-(4)各图都是正方体的表面展开图,若将他们折成正方体,各面图案均在正方体外面,则其中两个正方体各面图案完全一样,他们是()A.(1)(2)B.(2)(3)C.(3)(4)D.(2)(4)三、作图题(各7分,共21分)19、已知、求作线段AB 使AB=2a-b(不写作法,保留作图痕迹)20、按照要求,在图中画出表示下列方向的射线:(1)南偏东300(2)北偏西600(3)西南方向四、解答题(8+8+9分,共25分)21、若一个角的补角等于它的余角的4倍,求这个角的度数。

(完整)初一数学图形认识专项练习题

(完整)初一数学图形认识专项练习题

初一数学图形认识专项练习题一、填空题:(本大题共10小题,每小题2分,共20分)1•有一圆柱,从它的侧面展开,问:展开的图形是 ____________ :2•有一棱柱,从它的侧面展开,问:展开的图形是____________ :3•有一圆锥,从它的侧面展开,问:展开的图形是_____________ :4 •有一正方体,观察后请写上;有___________ 顶点,经过顶点共有____________ 条边.5.________________________ 一个七棱柱共有__ 面、___________ 棱、顶点,其中有__________ 面的形状和面积是完全相同的•有一图形是十边形,它是由不在同一条直线上的线段依次首尾相连组成的封闭图形,通过它的一个顶点分别与其它顶点连结,可分割成三角形.6.如图所示,用四个不同的平面去截一个正方体,请根据截面的形状填空:(1 (2) {町(4 J(1) 截面是___________ ( 2) 截面是___________ ;(3) 截面是___________ ( 4) 截面是___________ .8.现有一张长52cm宽28cm的矩形纸片,要从中剪出长15cm,宽12cm的矩形小纸片(不能粘贴),则最多能剪出___________________ 张二、选择题:(本大题共8小题,每小题3分,共24分)1.观察图形,问:圆锥的三视图是( )A.主视图和俯视图是三角形,侧视图是圆B.主视图和侧视图是三角形,俯视图是圆C.主视图和侧视图是三角形,俯视图是圆和圆心D.以上都不对2.用一个平面去截一个正方体,截面图形不可能是( )A.长方形B.梯形C.三角形D.圆3.用一个平面去截一个几何体,如果截面的形状是圆,则这个几何体不可能是 ( )A.圆柱B.圆锥C.正方体D.球4•小明看到了“实验楼”三个字,而且能看到该楼所有的门窗,贝U小明看到的图是()A.俯视图B.左视图C.主视图D.都有可能5.截去四边形的一个角,剩余图形不可能是()A.三角形B.四边形C.五边形D.圆6.从下列右边备选图形中找出一个,使其经旋转后与左图完全一致的是()三、解答题:(本大题共6小题,共56分)1.用一个平面截一个正方体,能截得五边形吗?如果行,请画出示意图.截得的这个五边形的边具有什么性质?2.图中有8块小立方块,请把它的主视图、左视图和俯视图画出来.3.下面的图是由几块小立方块组成的几何体的俯视图,小方块中的数字表示该位置小方块的个数,你能画出这个几何体的主视图和左视图吗?请动手一试,如图所示,你还能画出这些小立方块组成的几何体吗?。

(完整版)七年级数学认识三角形练习题

(完整版)七年级数学认识三角形练习题

三角形的认识练习题一、填空(每空 3 分,共60 分)1.三角形的三边关系:①三角形随意两边之和差第三边 .第三边;②三角形随意两边之2.以下每组分别是三根小木棒的长度,用它们能摆成三角形吗?(填“能”或“不可以”):(1)3 ㎝,4 ㎝, 5 ㎝()(2)8 ㎝,7 ㎝,15㎝()(3)13 ㎝,12 ㎝, 20 ㎝()(4)5 ㎝,5 ㎝,11 ㎝()(5)6cm, 8cm, 10cm()(6)7cm, 7cm, 14cm()3.在△ ABC 中,∠ A=10°,∠ B=30°,则∠ C=_________.( 2 )一个等腰三角形的一边是5cm ,另一边是7cm , 则这个三角形的周长是_____________cm.4.假如∠ B+∠ C=∠ A,那么△ ABC是三角形 .5.在△ ABC 中, AB=6 cm, AC=8 cm 那么 BC 长的取值范围是.6. ABC 中, AD 是 ABC 的中线,且 BC 10cm ,则 BD= cm.7.在 ABC 中, A 80 ,AD为 A 的均分线,则BAD=8.假如一个三角形两边上的高的交点,恰巧是三角形的一个极点,则此三角形是_____________三角形 .9.判断具备下边条件的三角形是直角三角形、锐角三角形仍是钝角三角形:(1)假如A:B:C 1: 3: 4 ,那么 ABC 是三角形;(2)假如 A B ,C 30 ,那么ABC 是三角形;()假如 1C,那么ABC 是3 AB5三角形 .二、选择(每题 3 分,共 27 分)1.在△ ABC 中,∠ A 是锐角,那么△ ABC 是()A 、锐角三角形B、直角三角形C、钝角三角形D、不可以确立2.△ ABC 中,若∠ A∶∠ B∶∠ C=1∶2∶3,则△ ABC 的形状是()A 、锐角三角形B、直角三角形C、钝角三角形D、不确立3.以下是由四位同学描绘三角形的三种不一样的说法,正确的选项是()A 、由三个角构成的图形叫三角形B、由三条线段构成的图形叫三角形C、由三条直线构成的图形叫三角形D、由不在同向来线上的三条线段首尾按序相接所构成的图形叫三角形4.△ ABC 中,已知a=8, b=5,则 c 为( )A 、c=3 B、c=13 C、c 能够是随意正整数D、c 能够是大于 3 小于13 的随意数值5.下边说法中正确的选项是:()1 / 3A、三角形的角均分线 , 中线 , 高都在三角形内B、直角三角形的高只有一条C、钝角三角形的三条高都在三角形外D、三角形起码有一条高在三角形内6.假如一个三角形的三条高线的交点恰巧是三角形的一个极点,那么这个三角形是()A 、直角三角形B、锐角三角形C、钝角三角形D、不可以确立7.在一个三角形,若A 、直角三角形8.三角形的高线是A B 40 ,则ABC 是(B、锐角三角形C、钝角三角形()A、线段B、垂线)D、以上都不对C、射线D、直线9. 在Rt△中,两个锐角关系是() A、互余 B 、互补 C 、相等 D 、以上都不对三、解答题1.如图 ,在△ ABC 中 ,∠BAC=60 °,∠B=45°,AD 是△ ABC 的一条角均分线求∠ ADB的度数 . (7 分)AO2.在以下图中,分别画出三角形的三条高。

初一数学图形认识初步棱、顶点、面间数量关系(欧拉公式)练习题(含答案)

初一数学图形认识初步棱、顶点、面间数量关系(欧拉公式)练习题(含答案)

初一数学图形认识初步棱、顶点、面间数量关系(欧拉公式)练习题欧拉公式:(1)简单多面体的顶点数V、面数F及棱数E间的关系为:V+F﹣E=2.这个公式叫欧拉公式.(2)V+F﹣E=X(P),V是多面体P的顶点个数,F是多面体P的面数,E是多面体P的棱的条数,X(P)是多面体P的欧拉示性数.一选择题1.将正方体的面数记为f,边数记为e,顶点数记为v,则f+v﹣e=()A.1 B.2 C.3 D.42.一个多面体,若顶点数为4,面数为4,则棱数是()A.2 B.4 C.6 D.83.设长方体的顶点数为v,棱数为e,面数为f,则v+e+f等于()A.26 B.2 C.14 D.104.正多面体的面数、棱数、顶点数之间存在着一个奇妙的关系,若用F,E,V分别表示正多面体的面数、棱数、顶点数,则有F+V﹣E=2,现有一个正多面体共有12条棱,6个顶点,则它的面数F等于()A.6 B.8 C.12 D.205.欧拉公式中,多面体的面数F,棱数E,顶点数V之间的正确关系是()A.F+V﹣E=2 B.F+E﹣V=2 C.E+V﹣F=2 D.E﹣V﹣F=2二填空题6.简单多面体是各个面都是多边形组成的几何体,十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)和棱数(E)之间存在一个有趣的关系式,称为欧拉公式.如表是根据左边的多面体模型列出的不完整的表.现在有一个多面体,它的每一个面都是三角形,它的面数(F)和棱数(E)的和为30,则这个多面体的顶点数V=.7.阅读下面的材料:1750年欧拉在写给哥德巴赫的信中列举了多面体的一些性质,其中一条是,如果用V,E,F分别表示凸多面体的顶点数、棱数、面数,则有V﹣E+F=2.这个发现就是著名的欧拉定理.根据所阅读的材料,完成:一个多面体的面数为12,棱数是80,则其顶点数为.8.阅读下面的材料:1750年欧拉在写给哥德巴赫的信中列举了多面体的一些性质,其中一条是:如果用V,E,F分别表示凸多面体的顶点数、棱数、面数,则有V﹣E+F=2.这个发现,就是著名的欧拉定理.根据所阅读的材料,完成:一个多面体的面数为12,棱数是30,则其顶点数为.9.一个多面体的顶点数为12,棱数是30,则这个多面体的面数是.10.任意一个多面体,它的面数记为a,顶点数记为b,棱的条数记为c,则a,b,c三者之间的关系式为.11.n棱柱的面数+顶点数﹣棱数=.12.从每个顶点出发的所有棱长相等,所有面形状、大小完全相同的正多边形的几何体称为正多面体、其面数+顶点数﹣棱数=.13.如图,正四面体的顶点数(4)+面数(4)﹣棱数(6)=2,仔细观察后计算,正八面体的顶点数+面数﹣棱数=.14.瑞士著名数学家欧拉发现:简单多面体的顶点数V、面数F及棱数E之间满足一种有趣的关系:V+F﹣E=2,这个关系式被称为欧拉公式.比如:正二十面体(如右图),是由20个等边三角形所组成的正多面体,已知每个顶点处有5条棱,则可以通过欧拉公式算出正二十面体的顶点为个.那么一个多面体的每个面都是五边形,每个顶点引出的棱都有3条,它是一个面体.15.一个多面体的面数为6,棱数是12,则其顶点数为.16.十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(v)、面数(f)、棱数(e)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型:根据上面多面体模型,你发现顶点数(v)、面数(f)、棱数(e)之间存在的关系式是.17.正多面体共有五种,它们是、、、、,它们的面数f,棱数e、顶点数v满足关系式.18.图1(1)、(2)、(3)依次表示四面体、八面体、正方体.它们各自的面积数F、棱数E与顶点数V如下表,观察这些数据,可以发现F、E、V之间的关系满足等式:.三解答题19.十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:(1)根据上面多面体模型,完成表格中的空格.(2)你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是.(3)一个多面体的面数与顶点数相同,且有12条棱,则这个多面体的面数是.20.图1至图3是将正方体截去一部分后得到的多面体.(1)根据要求将表格补充完整:(2)猜想f、v、e三个数量间有何关系;(3)根据猜想计算,若一个多面体有顶点数2018个,棱数4035条,试求出它的面数.21.观察下列多面体,并把下表补充完整.观察上表中的结果,你能发现a、b、c之间有什么关系吗?请写出发现的关系式.22.十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:(1)根据上面多面体模型,完成表格中的空格,你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是.(2)一个多面体的面数比顶点数小8,且有30条棱,则这个多面体的面数是.(3)某个玻璃饰品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处都有3条棱,设该多面体外表面三角形的个数为x个,八边形的个数为y个,求x+y的值.23.观察下列多面体,并把如表补充完整.观察表中的结果,你能发现a、b、c之间有什么关系吗?请写出关系式.24.回答下列问题:(1)如图所示的甲、乙两个平面图形能折什么几何体?(2)由多个平面围成的几何体叫做多面体.若一个多面体的面数为f,顶点个数为v,棱数为e,分别计算第(1)题中两个多面体的f+v﹣e的值?你发现什么规律?(3)应用上述规律解决问题:一个多面体的顶点数比面数大8,且有50条棱,求这个几何体的面数.25.设棱锥的顶点数为V,面数为F,棱数为E.(1)观察与发现:三棱锥中,V3=,F3=,E3=;五棱锥中,V5=,F5=,E5=;(2)猜想:①十棱锥中,V10=,F10=,E10=;②n棱锥中,Vn=,Fn=,En=;(用含有n的式子表示)(3)探究:①棱锥的顶点数(V)与面数(F)之间的等量关系:;②棱锥的顶点数(V)、面数(F)、棱数(E)之间的等量关系:E=;(4)拓展:棱柱的顶点数(V)、面数(F)、棱数(E)之间是否也存在某种等量关系?若存在,试写出相应的等式;若不存在,请说明理由.26.如图1至图3是将正方体截去一部分后得到的多面体.(1)根据要求填写表格.(2)猜想f、v、e三个数量间有何关系;(3)根据猜想计算,若一个多面体有顶点数2018个,棱数4036条,试求出它的面数.27.十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式,请你观察下列几种简单多面体模型,解答下列问题:(1)根据上面多面体模型,完成表格中的空格;你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是.(2)正十二面体有12个面,那它有条棱;(3)一个多面体的面数比顶点数小8,且有30条棱,则这多面体的顶点数是;(4)某个玻璃饰品的外形是简单多面体,它的外表是由三角形和八边形两种多边形拼接而成,且有48个顶点,每个顶点处都有3条棱,设该多面体表面三角形的个数为x个,八边形的个数为y个,求x+y 的值.28.十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:(1)根据上面多面体模型,完成表格中的空格:(2)你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是.(3)一个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是.29.在对第一章“丰富的图形世界”复习前,老师让学生整理正方体截面的形状并探究多面体(由若干个多边形所围成的几何体)的棱数、面数、顶点数之间的数量关系,如图是小颖用平面截正方体后剩余的多面体,请解答下列问题:(1)根据上图完成下表.(2)猜想:一个多面体的V(顶点数),F(面数),E(棱数)之间的数量关系是;(3)计算:已知一个多面体有20个面、30条棱,那么这个多面体有个顶点.30.观察下列多面体,并把表补充完整.(1)完成表中的数据;(2)若某个棱柱由28个面构成,则这个棱柱为棱柱;(3)根据表中的规律判断,n棱柱共有个面,共有个顶点,共有条棱;(4)观察表中的结果,你发现棱柱顶点数、棱数、面数之间有什么关系吗?请直接写出来.初一数学图形认识初步棱、顶点、面间数量关系(欧拉公式)练习题参考答案与解析1.分析:根据正方体的概念和特性进行分析计算即解.解:正方体的顶点数v =8,棱数e =12,面数f =6.故f+v ﹣e =8+6﹣12=2.故选B .2.分析:根据欧拉公式,简单多面体的顶点数V 、面数F 及棱数E 间的关系为:V+F ﹣E =2,代入求出棱数.解:根据欧拉公式:V+F ﹣E =2,可得4+4﹣E =2,解得E =6.故选C .3.分析:根据长方体的概念和特性进行分析计算即解.解:长方体的顶点数v =8,棱数e =12,面数f =6.故v+e+f =8+12+6=26.故选A .4.分析:根据题意中的公式F+V ﹣E =2,将E ,V 代入即解.解:∵正多面体共有12条棱,6个顶点,∴E =12,V =6,∴F =2﹣V+E =2﹣6+12=8.故选B .5.分析:根据欧拉公式进行解答即可.解:凸多面体的面数F 、顶点数V 和棱数E 满足如下关系:V+F ﹣E =2,故选A .6.分析:直接利用V ,E ,F 分别表示凸多面体的顶点数、棱数、面数,欧拉公式为V ﹣E+F =2,求出答案.解:∵现在有一个多面体,它的每一个面都是三角形,它的面数(F )和棱数(E )的和为30,∴这个多面体的顶点数V =2+E ﹣F ,∵每一个面都是三角形,∴每相邻两条边重合为一条棱,∴E =23F ,∵E+F =30,∴F =12,∴E =18,∴V =,2+E ﹣F =8,故答案为8. 7.分析:直接利用欧拉公式V ﹣E+F =2,求出答案.解:∵用V ,E ,F 分别表示凸多面体的顶点数、棱数、面数,则有V ﹣E+F =2.∴V =E ﹣F+2,∵一个多面体的面数为12,棱数是80,∴其顶点数为:80﹣12+2=70.故答案为:70.8.分析:直接把面数、棱数代入公式,即可求得顶点数.解:由题意可得,V ﹣30+12=2,解得V =20.故答案为:209分析:根据常见几何体的结构特征进行判断.解:∵顶点数记为V ,棱数记为E ,面数记为F ,V+F ﹣E =2,∴12+F ﹣30=2,解得:F =20.故答案为:20.10.分析:简单多面体的顶点数V 、面数F 及棱数E 间的关系为:V+F ﹣E =2,这个公式叫欧拉公式.解:由欧拉公式可得:a+b ﹣c =2.故答案为:a+b ﹣c =2.11.分析:根据欧拉公式,得出正多面体的面数+顶点数﹣棱数的结果.解:从每个顶点出发的所有棱长相等,所有面形状、大小完全相同的正多边形的几何体称为正多面体,其面数+顶点数﹣棱数=2.故答案为:2.12.分析:根据欧拉公式,得出正多面体的面数+顶点数﹣棱数的结果.解:从每个顶点出发的所有棱长相等,所有面形状、大小完全相同的正多边形的几何体称为正多面体,其面数+顶点数﹣棱数=2.故答案为2.13.分析:只需分别找出正八面体的顶点数,面数和棱数即可.解:正八面体有6个顶点,12条棱,8个面.∴正八面体的顶点数+面数﹣棱数=6+8﹣12=2.故答案为:2.14.分析:①设出正二十面体的顶点为n 个,则棱有25n 条.利用欧拉公式构建方程即可解决问题.②设顶点数V ,棱数E ,面数F ,每个点属于三个面,每条边属于两个面,利用欧拉公式构建方程即可解决问题.解:①设出正二十面体的顶点为n 个,则棱有25n 条.由题意F =20,∴n+20﹣25n =2,解得n =12.②设顶点数V ,棱数E ,面数F ,每个点属于三个面,每条边属于两个面,由每个面都是五边形,则就有E =25F ,V =35F ,由欧拉公式:F+V ﹣E =2,代入:F+35F ﹣25F =2,化简整理:F =12,所以:E =30,V =20,即多面体是12面体.棱数是30,面数是12,故答案为12,12.15.分析:因为多面体的面数为6,棱数是12,故多面体为四棱柱.解:根据四棱柱的概念,有8个顶点.故答案为8.16.分析:先根据四面体、长方体、正八面体,正十二面体的顶点数、面数和棱数,总结出顶点数(v )、面数(f )、棱数(e )之间存在的关系式即可.解:四面体的顶点数为4、面数为4,棱数为6,则4+4﹣6=2;长方体的顶点数为8、面数为6,棱数为12,则8+6﹣12=2;正八面体的顶点数为6,面数为8,棱数为12,则8+6﹣12=2;则关系式为:v+f ﹣e =2;故答案为:v+f ﹣e =2.17.分析:根据正多面体的面是正三角形,正方形,正五边形三种情况写出即可;再根据欧拉公式进行解答.解:正多面体只能有五种,用正三角形做面的正四面体、正八面体,正二十面体,用正方形做面的正六面体,用正五边形做面的正十二面体.f+v ﹣e =2.18.分析:根据题给图形中各图具体的面积数F 、棱数E 与顶点数V ,即可得出答案.解:根据表中所列可知:四面体有4﹣6+4=2;八面体有8﹣12+6=2;正方体有6﹣12+8=2;故有F ﹣E+V =2.故答案为:F ﹣E+V =2.19.分析:(1)依据多面体模型,即可得到棱数和顶点数;(2)依据表格中的数据,即可得出顶点数(V)、面数(F)、棱数(E)之间存在的关系式;(3)依据欧拉公式进行计算,即可得到这个多面体的面数.解:(1)四面体的棱数为6;正八面体的顶点数为6;故答案为:6,6;(2)顶点数(V)、面数(F)、棱数(E)之间存在的关系式是V+F﹣E=2,故答案为:V+F﹣E=2;(3)设这个多面体的面数是x,则2x﹣12=2,解得x=7,这个多面体的面数是7,故答案为:7.20.分析:(1)根据图形数出即可.(2)根据(1)中结果得出f+v﹣e=2.(3)把数值代入f+v﹣e=2求出即可.解:(1)填表如下:故答案为:7,8,15.(2)f+v﹣e=2.(3)∵v=2018,e=4035,f+v ﹣e=2,∴f+2018﹣4035=2,解得f=2019.故它的面数是2019.21.分析:只要将各个图形的顶点数、棱数、面数数一下就行;数的时候要注意:图中不能直接看到的那一部分不要遗漏,也不要重复,可通过想象计数,正确填入表内,通过观察找出每个图中“顶点数、棱数、面数”之间隐藏着的数量关系,这个数量关系用公式表示出来即可.解:填表如下,观察表中的结果,能发现a、b、c之间有的关系是:a+c﹣b=2.22.分析:(1)观察可得顶点数+面数﹣棱数=2;(2)代入(1)中的式子即可得到面数;(3)得到多面体的棱数,求得面数即为x+y的值.解:(1)四面体的棱数为6;正八面体的顶点数为6;关系式为:V+F﹣E=2;(2)由题意得:F+8+F﹣30=2,解得F=12;(3)∵有24个顶点,每个顶点处都有3条棱,两点确定一条直线;∴共有24×3÷2=36条棱,那么24+F﹣36=2,解得F=14,∴x+y=14.故答案为:(1)6;6;V+F﹣E=2.(2)12;(3)14.23.分析:结合三棱柱、四棱柱和五棱柱的特点,即可填表,根据已知的面、顶点和棱与几棱柱的关系,可知n棱柱一定有(n+2)个面,2n个顶点和3n条棱,进而得出答案,利用前面的规律得出a,b,c之间的关系.解:填表如下,根据上表中的规律判断,若一个棱柱的底面多边形的边数为n,则它有n个侧面,共有n+2个面,共有2n个顶点,共有3n条棱;故a,b,c之间的关系:a+c﹣b=2.24.分析:(1)由长方体与五棱锥的折叠及长方体与五棱锥的展开图解题.(2)列出几何体的面数,顶点数及棱数直接进行计算即可;(3)设这个多面体的面数为x,根据顶点数+面数﹣棱数=2,列出方程即可求解.解:(1)图甲折叠后底面和侧面都是长方形,所以是长方体;图乙折叠后底面是五边形,侧面是三角形,实际上是五棱锥的展开图,所以是五棱锥.(2)甲:f=6,e=12,v=8,f+v ﹣e=2;乙:f=6,e=10,v=6,f+v﹣e=2;规律:顶点数+面数﹣棱数=2.(3)设这个多面体的面数为x,则x+x+8﹣50=2,解得x=22.25.分析:(1)观察与发现:根据三棱锥、五棱锥的特征填写即可;(2)猜想:①根据十棱锥的特征填写即可;②根据n棱锥的特征的特征填写即可;(3)探究:①通过列举得到棱锥的顶点数(V)与面数(F)之间的等量关系;②通过列举得到棱锥的顶点数(V)、面数(F)、棱数(E)之间的等量关系;(4)拓展:根据棱柱的特征得到棱柱的顶点数(V)、面数(F)、棱数(E)之间的等量关系.解:(1)观察与发现:三棱锥中,V3=4,F3=4,E3=6;五棱锥中,V5=6,F5=6,E5=10;(2)猜想:①十棱锥中,V10=11,F10=11,E10=20;②n棱锥中,Vn=n+1,Fn=n+1,En=2n;(用含有n的式子表示)(3)探究:①棱锥的顶点数(V)与面数(F)之间的等量关系:V =F;②棱锥的顶点数(V)、面数(F)、棱数(E)之间的等量关系:E=V+F﹣2;(4)拓展:棱柱的顶点数(V)、面数(F)、棱数(E)之间也存在某种等量关系,相应的等式是:V+F﹣E =2.故答案为:4,4,6;6,6,10;11,11,20;n+1,n+1,2n;V=F,V+F﹣2.26.分析:(1)根据图形数出即可.(2)根据(1)中结果得出f+v﹣e=2.(3)代入f+v﹣e =2求出即可.解:(1)题1,面数f=7,顶点数v=9,棱数e=14,题2,面数f=6,顶点数v=8,棱数e=12,题3,面数f=7,顶点数v=10,棱数e=15,故答案为:7,9,14.6,8,12,7,10,15.(2)f+v﹣e=2.(3)∵v=2018,e=4036,f+v﹣e=2,∴f+2018﹣4036=2,f=2020,即它的面数是2020.27.分析:(1)观察表格可以看出:顶点数+面数﹣棱数=2,关系式为:V+F﹣E=2;(2)根据题意得出是十二面体,得出顶点数;(3)代入(1)中公式进行计算;(4)根据欧拉公式可得顶点数+面数﹣棱数=2,然后表示出棱数,进而可得面数.解:(1)根据题意得:四面体的棱数为6,正八面体顶点数为6,∵4+4﹣6=2,8+6﹣12=2,6+8﹣12=2,∴顶点数(V)、面数(F)、棱数(E)之间存在的关系式是V+F﹣E=2;故答案为:V+F﹣E=2;(2)正十二面体有十二个面,每个面都是正五边形,它的每个顶点处都有相同数目的棱.则它有30条棱,20个顶点;故答案是:30;(3)由(1)可知:V+F﹣E=2,∵一个多面体的面数比顶点数小8,且有30条棱,∴V+V﹣8﹣30=2,即V=20,故答案是:20;(4)∵有48个顶点,每个顶点处都有3条棱,两点确定一条直线;∴共有48×3÷2=72条棱,设总面数为F,48+F﹣72=2,解得F=26,∴x+y=26.28.分析:(1)观察图形即可得出结论;(2)观察可得顶点数+面数﹣棱数=2;(3)代入(2)中的式子即可得到面数.解:(1)观察图形,四面体的棱数为6;正八面体的顶点数为6;正十二面体的面数为12;(2)观察表格可以看出:顶点数+面数﹣棱数=2,关系式为:V+F﹣E=2;(3)由题意得:F﹣8+F ﹣30=2,解得F=20.故答案为:(1)6,6,12;(2)V+F﹣E=2;(3)20.29.分析:(1)观察图形即可得出结论;(2)观察可得顶点数+面数﹣棱数=2;(3)代入(2)中的式子即可得到面数.解:(1)观察图形,多面体(1)的顶点数为10;多面体(3)的面数为5;多面体(5)的棱数为12;故答案为:10,5,12;(2)观察表格可以看出:顶点数+面数﹣棱数=2,即关系式为:V+F﹣E=2;故答案为:V+F﹣E=2;(3)由题意得:V+20﹣30=2,解得V=12.故答案为:12.30.分析:(1)结合三棱柱、四棱柱、五棱柱和六棱柱的特点,即可填表:(2)(3)根据已知的面、顶点和棱与几棱柱的关系,可知n棱柱一定有(n+2)个面,2n个顶点和3n条棱,进而得出答案;(4)利用前面的规律得出a,b,c之间的关系.解:(1)填表如下.(2)若某个棱柱由28个面构成,则这个棱柱为26棱柱;(3)根据表中的规律判断,n棱柱共有(n+2)个面,共有 2n个顶点,共有 3n条棱;(4)a,b,c之间的关系:a+c﹣b=2故答案为:8;15,18;7;26;(n+2),2n,3n.- 11 -。

初一数学图形认识专项练习题

初一数学图形认识专项练习题

初一数学图形认识专项练习题一、填空题:(本大题共10小题,每小题2分,共20分)1.有一圆柱,从它的侧面展开,问:展开的图形是__________.2.有一棱柱,从它的侧面展开,问:展开的图形是__________.3.有一圆锥,从它的侧面展开,问:展开的图形是__________.4.有一正方体,观察后请写上;有__________个顶点,经过顶点共有__________条边.5.圆是可以分解成若干个扇形,而扇形是由一条__________和经过这条__________的__________的两条__________所组成的图形.6.你知道圆锥由__________个面组成的,那么其中一个是__________的,另一个是__________的.7.一个七棱柱共有__________个面、__________条棱、__________个顶点,其中有__________个面的形状和面积是完全相同的.8.有一图形是十边形,它是由__________条不在同一条直线上的线段依次首尾相连组成的封闭图形,通过它的一个顶点分别与其它顶点连结,可分割成__________个三角形.9.如图所示,用四个不同的平面去截一个正方体,请根据截面的形状填空:(1)截面是__________;(2)截面是__________;(3)截面是__________;(4)截面是__________.10.现有一张长52cm,宽28cm的矩形纸片,要从中剪出长15cm,宽12cm的矩形小纸片(不能粘贴),则最多能剪出__________张.二、选择题:(本大题共8小题,每小题3分,共24分)1.观察图形,问:圆锥的三视图是()A.主视图和俯视图是三角形,侧视图是圆B.主视图和侧视图是三角形,俯视图是圆C.主视图和侧视图是三角形,俯视图是圆和圆心D.以上都不对2.用一个平面去截一个正方体,截面图形不可能是()A.长方形B.梯形C.三角形D.圆3.用一个平面去截一个几何体,如果截面的形状是圆,则这个几何体不可能是()A.圆柱B.圆锥C.正方体D.球4.小明看到了“实验楼”三个字,而且能看到该楼所有的门窗,则小明看到的图是()A.俯视图B.左视图C.主视图D.都有可能5.截去四边形的一个角,剩余图形不可能是()A.三角形B.四边形C.五边形D.圆6.用图所示的几何图形拼成的图形是()7.如图,按照一定的规律,你认为“?”处应放的图形是()8.从下列右边备选图形中找出一个,使其经旋转后与左图完全一致的是()三、解答题:(本大题共6小题,共56分)1.用一个平面截一个正方体,能截得五边形吗?如果行,请画出示意图.截得的这个五边形的边具有什么性质?2.图中有8块小立方块,请把它的主视图、左视图和俯视图画出来.3.下面的图是由几块小立方块组成的几何体的俯视图,小方块中的数字表示该位置小方块的个数,你能画出这个几何体的主视图和左视图吗?请动手一试,如图所示,你还能画出这些小立方块组成的几何体吗?4.如图,将等腰三角形对折沿着中间的折痕剪开,得到两个形状和大小都相同的直角三角形,将这两个直角三角形拼在一起,使得它有一条相等的边是公有的,你能拼出多少种不同的几何图形?并请你分别说出所拼的图形的名称.5.用火柴棒拼搭等边三角形(1)用火柴棒拼搭出两个边长等于棒长的等边三角形,你有几种拼法,最少需要几根火柴棒?(2)拼6个边长等于棒长的等边三角形,看谁用的棒最少?(3)用6根火柴棒拼搭等边三角形,若允许搭成的等边三角形不在同一平面内,那么可以搭多少个?一、填空题:1.长方形2.一些有公共边的矩形拼成的图形3.扇形4.8;125.弧;弧;端点;半径6.2;平;曲7.9;21;14;2(上、下)8.10;369.正方形;正方形;长方形;长方形10.7二、选择题:1.C 2.D 3.C 4.C 5.D 6.B 7.A 8.A三、解答题:1.能截得五边形,如图,截得的这个五边形有两对对边平行.2.3.4.共可以拼出以下六种图形((1)~(6))(1)、(3)是等腰三角形;(2)、(4)是平行四边形;(5)是长方形;(6)可以称它为筝形.5.(1)2、5 (2)12 (3)4(1)有两种情况,至少要用5根火柴棒,如图(2);而图(1)则用6根火柴棒.(2)最少要12根火柴棒,如图(4);图(3)用了13根.(3)若可以不在同一个平面内拼搭,可以搭4个等边三角形,如图(5)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一数学图形认识专项练习题
一、填空题:(本大题共10小题,每小题2分,共20分)
1.有一圆柱,从它的侧面展开,问:展开的图形是__________.
2.有一棱柱,从它的侧面展开,问:展开的图形是__________.
3.有一圆锥,从它的侧面展开,问:展开的图形是__________.
4.有一正方体,观察后请写上;有__________个顶点,经过顶点共有__________条边.
5.一个七棱柱共有__________个面、__________条棱、__________个顶点,其中有__________个面的形状和面积是完全相同的.
6.有一图形是十边形,它是由__________条不在同一条直线上的线段依次首尾相连组成的封闭图形,通过它的一个顶点分别与其它顶点连结,可分割成
__________个三角形.
7.如图所示,用四个不同的平面去截一个正方体,请根据截面的形状填空:
(1)截面是__________;(2)截面是__________;
(3)截面是__________;(4)截面是__________.
8.现有一张长52cm,宽28cm的矩形纸片,要从中剪出长15cm,宽12cm的矩形小纸片(不能粘贴),则最多能剪出__________张.
二、选择题:(本大题共8小题,每小题3分,共24分)
1.观察图形,问:圆锥的三视图是()
A.主视图和俯视图是三角形,侧视图是圆
B.主视图和侧视图是三角形,俯视图是圆
C.主视图和侧视图是三角形,俯视图是圆和圆心
D.以上都不对
2.用一个平面去截一个正方体,截面图形不可能是()
A.长方形B.梯形
C.三角形D.圆
3.用一个平面去截一个几何体,如果截面的形状是圆,则这个几何体不可能是()
A.圆柱B.圆锥
C.正方体D.球
4.小明看到了“实验楼”三个字,而且能看到该楼所有的门窗,则小明看到的图是()
A.俯视图B.左视图
C.主视图D.都有可能
5.截去四边形的一个角,剩余图形不可能是()
A.三角形B.四边形
C.五边形D.圆
6.从下列右边备选图形中找出一个,使其经旋转后与左图完全一致的是()
三、解答题:(本大题共6小题,共56分)
1.用一个平面截一个正方体,能截得五边形吗?如果行,请画出示意图.截得的这个五边形的边具有什么性质?
2.图中有8块小立方块,请把它的主视图、左视图和俯视图画出来.
3.下面的图是由几块小立方块组成的几何体的俯视图,小方块中的数字表示该位置小方块的个数,你能画出这个几何体的主视图和左视图吗?请动手一试,如图所示,你还能画出这些小立方块组成的几何体吗?。

相关文档
最新文档