相关回归分析作业
数据回归分析作业
数据回归分析作业数据回归分析是一种统计方法,用于确定自变量和因变量之间的关系,并预测因变量的值。
在这个作业中,我们将探索回归分析的基本概念和方法,并应用这些方法解决实际问题。
1. 简介回归分析是一种监督学习算法,它用于预测连续变量的值。
在回归分析中,我们使用自变量的值来预测因变量的值。
自变量可以是一个或多个,而因变量通常是一个连续变量。
回归分析的目标是找到一条最佳拟合线(对于简单线性回归)或超平面(对于多元回归),以最小化预测误差的平方和。
这条拟合线或超平面被称为回归方程,它用于预测新的自变量对应的因变量值。
2. 简单线性回归简单线性回归是回归分析中最简单的形式,其中只有一个自变量和一个因变量。
简单线性回归的回归方程可以表示为:y = β0 + β1x其中,y是因变量,x是自变量,β0和β1是回归系数。
我们可以使用最小二乘法来估计回归系数。
最小二乘法的目标是最小化预测误差的平方和,即最小化:RSS = Σ(y - (β0 + β1x))²通过求解RSS对β0和β1的偏导数为0的方程组,我们可以得到回归系数的估计值。
3. 多元回归分析多元回归分析是回归分析的扩展,其中有多个自变量和一个因变量。
多元回归的回归方程可以表示为:y = β0 + β1x1 + β2x2 + ... + βnxn其中,y是因变量,x1,x2,…,xn是自变量,β0,β1,β2,…,βn是回归系数。
与简单线性回归类似,我们可以使用最小二乘法来估计回归系数。
最小二乘法的目标是最小化预测误差的平方和。
4. 数据预处理在进行回归分析之前,通常需要对数据进行预处理。
数据预处理的目标是确保数据符合回归分析的假设,以及减小噪声和异常值的影响。
常见的数据预处理步骤包括:•数据清洗:去除缺失值和重复值。
•特征选择:选择与因变量相关性高的自变量。
•数据转换:对数据进行标准化或归一化,以满足回归分析的假设。
5. 模型评估为了评估回归模型的拟合效果,我们可以使用各种指标,如均方误差(MSE)、平均绝对误差(MAE)、决定系数(R²)等。
回归分析作业
1、为了估计山上积雪融化后对下游灌溉的影响,在山上建立一个观测站,测量最大面积积雪深度X与当年灌溉面积Y,测得连续10年的数据见文件“积雪深度与灌溉面积.sav”。
试作出相应的散点图,判断X与Y是否有线性关系,若有求出Y关于X的线性回归方程,并对模型进行检验。
2、分别利用多元回归全模型与逐步回归模型研究国家财政收入问题,并比较两个模型的合理性。
数据见文件“财政收入研究.sav”。
3、试利用曲线拟合研究眼增加投资额与年利润的关系,并建立回归方程。
数据见文件“投资与利润.sav”。
作业要求以word格式在bb系统上提交,要有SPSS运行结果以及结果分析。
301-习题作业-第四章 多元线性回归分析
思考题4.1 为了考察城镇商品房市场的特征,有人建立了如下的模型:ii i i i Z P X Y εαααα++++=3210ln ln 其中:i Y 为第i 个城镇的商品房销售面积,i X 为该城镇居民的人均可支配收入,i P 为商品房均价,i Z 为常住人口数量。
(1)分别解释系数1α和2α的经济含义。
(2)有人认为,中国商品房市场存在严重的炒房现象,导致价格越高,商品房的销售量越火爆,你如何检验这种观点?写出你的原假设、备选假设、检验统计量和判定规则。
(3)有人认为,商品房市场存在严重泡沫,商品房的销售量已经与居民收入、人口规模严重脱节,你如何检验这种观点?写出你的原假设、备选假设、检验统计量和判定规则。
(4)如果样本中既有大城市,也有小城镇,你如何检验大小城市的商品房市场是否具有相同的特征。
4.2. 在分析变量Y 的影响因素时,学生甲建立了如下的多元回归方程: t t t t X X Y εααα+++=22110。
学生乙也在研究同样的经济问题,她只学习了一元回归模型。
为了考察在X 2不变时,X 1对Y 的影响,学生乙进行了如下的三步回归分析: t t t X Y 1210εββ++= (a ) t t t X X 22101εγγ++= (b )t t t 3211ˆˆεελε+= (c )其中:t t 21ˆ,ˆεε分别是回归方程(a )、(b )的残差项。
(1)参数1α和参数1λ有什么样的关系?解释你的理由。
(2)参数2α和参数1β是同一个参数吗?解释你的理由。
(3)回归方程(c )为什么没有截距项?4.3. 在基于受约束和无约束回归方程的估计结果检验规线性约束时,需要建立F 检验统计量。
有同学在相关文献中看到了如下的F 检验统计量:)1,(~)1/(/)(222-----=K N q F K N R qR R F ur r ur 。
(1)说明该F 统计量的形式是如何得到的。
回归分析作业
回归分析”作业注:需要使用软件的地方请都使用R!Parti 一元线性回归教材p54习题2.152.15-家保险公司十分关心其总公司营业部加班的制度,决定认真调查一下现状。
经过十周时间,收集了每周加班工作时间的数据和签发的新保单数目,x为每周新签发的保单数目,y为每周加班工作时间(小时)。
(1) 画散点图。
(2) x与y之间是否大致呈线性关系?(3) 用最小二乘法求出回归方程。
(4) 求回归标准误差■:?。
(5) 给出回归系数的置信度为95%的区间估计。
(6) 计算决定系数。
(7) 对回归方程作方差分析。
(8) 作回归系数的显著性检验。
(9) 作相关系数的显著性检验。
(10) 该公司预计下一周签发新保单X0=1000张,需要的加班时间是多少?(11) 给出Y0的置信度为95%的精确预测区间和近似预测区间。
(12) 给出E(Y 0)的置信度为95%的区间估计。
2、有一台秤,其测量结果带有随机误差。
用它分别测量A和B两个球的重量,测量结果分别为2磅和3磅;再把A和B同时放到这个秤上,测量结果为4磅。
请采用回归模型,估计出A和B的重量。
3、对于一元线性回归模型:y-飞「ix・;,请阐述如何检验下列假设是否成(1) n2;⑵卄2.Part2多元线性回归教材p87习题3•门研究货运总量y (万吨)与工业总产值x1 (亿元)、农业总产值x2 (亿元)、居民非商品支出x3 (亿元)的关系。
数据见表3.9表3.9编号货运总量y (万吨)工业总产值X1 (亿元)农业总产值X2 (亿元)居民非商品支出X3 (亿元)1 160 70 35 1.02 260 75 40 2.43 210 65 40 2.04 265 74 42 3.05 240 72 38 1.26 220 68 45 1.57 275 78 42 4.08 160 66 36 2.09 275 70 44 3.210 250 65 42 3.0(1)计算出y, X1, x2, X3的相关系数矩阵。
回归分析作业
一、假设检验:1.某药厂最近研制出一种新的降压药,为了验证其疗效,选择15个高血压病人进行实验。
数据表是服药前后的血压值。
选用适当的统计方法验证该药是否有效。
patient 1 2 3 4 5 6 7 8 before 115 135 127 130 103 90 101 104 after 109 120 125 130 105 94 90 100patient 9 10 11 12 13 14 15before 109 89 120 113 118 130 120after 90 90 110 103 100 121 108解:设血压值总体分布服从X~N(μ,S2)假设检验问题:μ1 为服药前血压值样本均值,μ2为服药后血压值样本均值: μ1=μ2 即服药前后血压值相等。
原假设H备择假设H:μ1≠μ2 即服药前后血压值不相等。
1然后采用双边检验的方法,使用Minitab进行检验,得到以下数据:Paired T-Test and CI: X(服药之前), Y(服药之后)Paired T for X(服药之前)- Y(服药之后)N Mean StDev SE MeanX(服药之前)15 113.60 14.21 3.67Y(服药之后)15 106.33 13.04 3.37Difference 15 7.27 7.27 1.8895% lower bound for mean difference: 3.96T-Test of mean difference = 0 (vs > 0): T-Value = 3.87 P-Value = 0.001由以上数据可以得出:p值=0.001<α=0.05,拒绝原假设,服用新的降压药后血压值有显著的差异,即该降压药有效。
二、方差分析:1、对于硅酸盐水泥的抗折强度,用四种不同的配方方法收集了以下数据:配方法抗折强度1 3129 3000 2865 28902 3200 3300 2975 31503 2800 2900 2985 30504 2600 2700 2600 2765(1)检验配方法影响水泥砂浆强度的假设。
第五章相关分析作业试题及答案
第五章相关分析一、判断题二、1.若变量X的值增加时,变量Y的值也增加,说明X与Y之间存在正相关关系;若变量X的值减少时,Y变量的值也减少,说明X与Y之间存在负相关关系。
()三、2.回归系数和相关系数都可以用来判断现象之间相关的密切程度()四、3.回归系数既可以用来判断两个变量相关的方向,也可以用来说明两个变量相关的密切程度。
()五、4.计算相关系数的两个变量,要求一个是随机变量,另一个是可控制的量。
()六、5.完全相关即是函数关系,其相关系数为±1。
()1、×2、×3、×4、×5、√.七、单项选择题1.当自变量的数值确定后,因变量的数值也随之完全确定,这种关系属于()。
2. A.相关关系 B.函数关系 C.回归关系 D.随机关系3.现象之间的相互关系可以归纳为两种类型,即()。
4. A.相关关系和函数关系 B.相关关系和因果关系 C.相关关系和随机关系 D.函数关系和因果关系5.在相关分析中,要求相关的两变量()。
6. A.都是随机的 B.都不是随机变量 C.因变量是随机变量 D.自变量是随机变量7.现象之间线性依存关系的程度越低,则相关系数( ) 。
8. A.越接近于-1 B. 越接近于1 C. 越接近于0 D. 在0.5和0.8之间9.若物价上涨,商品的需求量相应减少,则物价与商品需求量之间的关系为( )。
10. A.不相关 B. 负相关 C. 正相关 D. 复相关11.能够测定变量之间相关关系密切程度的主要方法是( ) 。
12. A.相关表 B.相关图 C.相关系数 D.定性分析13.下列哪两个变量之间的相关程度高()。
14. A.商品销售额和商品销售量的相关系数是0.915. B.商品销售额与商业利润率的相关系数是0.8416. C.平均流通费用率与商业利润率的相关系数是-0.9417. D.商品销售价格与销售量的相关系数是-0.9118.回归分析中的两个变量()。
第五章 相关分析作业(试题及答案)
第五章相关分析一、判断题二、1.若变量X的值增加时,变量Y的值也增加,说明X与Y之间存在正相关关系;若变量X的值减少时,Y变量的值也减少,说明X与Y之间存在负相关关系。
()三、2.回归系数和相关系数都可以用来判断现象之间相关的密切程度()四、3.回归系数既可以用来判断两个变量相关的方向,也可以用来说明两个变量相关的密切程度。
()五、4.计算相关系数的两个变量,要求一个是随机变量,另一个是可控制的量。
()六、5.完全相关即是函数关系,其相关系数为±1。
()1七、1.2.3.4.5.6.7.8.9.22. A.r=0 B.|r|=1C.-1<r<1 D.0<r<123.每一吨铸铁成本(元)倚铸件废品率(%)变动的回归方程为:y c=56+8x,这意味着()24. A.废品率每增加1%,成本每吨增加64元 B.废品率每增加1%,成本每吨增加8%25. C.废品率每增加1%,成本每吨增加8元 D.废品率每增加1%,则每吨成本为561、B2、A3、A4、C5、B6、C7、C8、D9、B10、C.八、多项选择题1.测定现象之间有无相关关系的方法有()2.A、对现象做定性分析B、编制相关表C、绘制相关图D.计算相关系数E、计算估计标准3.下列属于负相关的现象有()4.A、商品流转的规模愈大,流通费用水平越低B、流通费用率随商品销售额的增加而减少5.C、国内生产总值随投资额的增加而增长D、生产单位产品所耗工时随劳动生产率的提高而减少E、产品产量随工人劳动生产率的提高而增加6.变量x值按一定数量增加时,变量y也按一定数量随之增加,反之亦然,则x和y之间存在()7.A、正相关关系B、直线相关关系C、负相关关系D、曲线相关关系8.E、非线性相关关系9.直线回归方程y c=a+bx中的b称为回归系数,回归系数的作用是()10.A、确定两变量之间因果的数量关系B、确定两变量的相关方向C、确定两变量相关的密切程度D、确定因变量的实际值与估计值的变异程度11.E确定当自变量增加一个单位时,因变量的平均增加量12.设产品的单位成本(元)对产量(百件)的直线回归方程为y c=76-1.85x,这表示()1九、1.2.3.4.5.6.7.8.1、1≤r<06、十、1.一种不完全的依存关系。
第5章相关分析和回归分析作业答案1
第5章相关分析和回归分析作业答案1.当变量x按一定数值变化时,变量y也近似地按固定数值变化,这表明变量x和变量y之间存在着( 3 )①完全相关关系②复相关关系③直线相关关系④没有相关关系2.单位产品成本与其产量的相关:单位产品成本与单位产品原材料消耗量的相关( 2)①前者是正相关,后者是负相关②前者是负相关,后者是正相关③两者都是正相关④两者都是负相关3.相关系数r的取值范围( 2 )①-∞<r<+∞②-1≤r≤+1③<r<1 ④0≤r≤+14.当所有观测值都落在回归直线上,则x与y之间的相关系数( 4 )①.②1③1 ④15.相关分析与回归分析,在是否需要确定自变量和因变量的问题上( 1 )①前者无须确定,后者需要确定②前者需要确定,后者勿需确定③两者均需确定④两者都无需确定6.—元线性回归模型的参数有( 2 )①一个②两个③三个④三个以上7.直线相关系数的绝对值接近1时,说明两变量相关关系的密切程度是( 1 )①完全相关②微弱相关③无线性相关④高度相关8.年劳动生产率x(千元)和工人工资y(元)之间的回归方程为10+7,这意味着年劳动生产率每提高1千元时,工人工资平均( 1 )①增加70元②减少70元③增加80元④减少80元9.下面的几个式子中,错误的是(1,3)①40-1.6x 0.89 (说明:正相关,x前面的系数应该为正值)②5-3.8x 0.94③36-2.4x 0.96④36+3.8x 0.9810.相关系数r与回归系数b的关系可以表达为( 1 )①*σσy②*③* ④*11.下列关系中,属于正相关关系的有( 1 )①合理限度内,施肥量和平均单产量之间的关系②产品产量与单位产品成本之间的关系③商品的流通费用与销售利润之间的关系.④流通费用率与商品销售量之间的关系12.直线相关分析与直线回归分析的联系表现为( 1)①相关分析是回归分析的基础②回归分析是相关分析的基础③相关分析是回归分析的深入④相关分析与回归分析互为条件13.如果估计标准误差,则表明( 1)①全部观测值和回归值都相等②回归值等于Y 、③全部观测值与回归值的离差之和为零④全部观测值都落在回归直线上14.进行相关分析,要求相关的两个变量( 1 )。
eviews作业(单位根,回归分析)
1.单位根检验结果检验类型ADF值P值结论LnY (0,0,2)-4.27016 0.0005 平稳LnX1 (C,T,1) -2.464548 0.3362 非平稳D(LnX1) (0,0,0) -2.994499 0.006 平稳LnX2 (C,0,0) -1.719707 0.4009 非平稳D(LnX2) (C,T,0) -3.692378 0.0616 平稳LnX3 (C,T,3) -3.123541 0.1494 非平稳D(LnX3) (C,T,3) -7.098886 0.0014 平稳LnX4 (C,T,3) -4.445399 0.0249 平稳LnX5 (C,T,0) -1.690278 0.7009 非平稳D(LnX5) (0,0,0) -3.277648 0.0033 平稳通过单位根检验,可以发现LnY和LnX4为平稳序列,而LnX1、LnX2、LnX3、LnX5均为一阶单整序列。
2.协整检验由于后面需要进行回归分析,这里对这些变量做协整检验。
这里采取EG协整检验的做法(备注:Johansen协整检验样本量不够),结果见下图:从上述结果可以看到,被解释变量为LnY时,其z统计量对应的显著性P值小于10%,因此在10%的显著水平下,以LnY为被解释变量的回归方程存在协整关系。
对此,我们检查该回归的残差是否平稳,结果见下图:由残差的单位根检验结果可以看出,此时残差为平稳序列,即该回归存在协整关系。
3.格兰杰因果关系检验由前面的协整检验知LnY与解释变量存在长期的均衡关系,在此基础上,我们对其进行格兰杰因果关系检验。
从上图可以看出LnX1和LnX5不是LnY的格兰杰原因,而LnX2、LnX3、LnX4均是LnY的格兰杰原因,因此我们将建立以LnY为被解释变量,以LnX2、LnX3、LnX4为解释变量的回归。
4.回归结果首先对LnY与LnX2、LnX3、LnX4做协整检验,结果如下:从结果可以看出被解释变量为LnY时,其tau统计量对应的显著性P值小于10%,因此在10%的显著水平下,以LnY为被解释变量的回归存在协整关系。
第5章 相关分析和回归分析作业答案(1)
第5章相关分析和回归分析作业答案1.当变量x按一定数值变化时,变量y也近似地按固定数值变化,这表明变量x和变量y之间存在着( 3 )①完全相关关系②复相关关系③直线相关关系④没有相关关系2.单位产品成本与其产量的相关:单位产品成本与单位产品原材料消耗量的相关( 2 )①前者是正相关,后者是负相关②前者是负相关,后者是正相关③两者都是正相关④两者都是负相关3.相关系数r的取值范围( 2 )①-∞<r<+∞②-1≤r≤+1③-I<r<1 ④0≤r≤+14.当所有观测值都落在回归直线y=a+bx上,则x 与y之间的相关系数( 4 )①r=O.②r=1 ③r=-1 ④IrI=15.相关分析与回归分析,在是否需要确定自变量和因变量的问题上( 1 )①前者无须确定,后者需要确定②前者需要确定,后者勿需确定③两者均需确定④两者都无需确定6.—元线性回归模型的参数有( 2 )①一个②两个③三个④三个以上7.直线相关系数的绝对值接近1时,说明两变量相关关系的密切程度是( 1 )①完全相关②微弱相关③无线性相关④高度相关8.年劳动生产率x(千元)和工人工资y(元)之间的回归方程为y=10+7Ox,这意味着年劳动生产率每提高1千元时,工人工资平均( 1 )①增加70元②减少70元③增加80元④减少80元9.下面的几个式子中,错误的是( 1,3 )①y=-40-1.6x r=0.89 (说明:正相关,x前面的系数应该为正值)②y=-5-3.8x r=-0.94③y=36-2.4x r=0.96④y=-36+3.8x r=0.9810.相关系数r与回归系数b的关系可以表达为( 1 )①r=b*σx/σy ②r=b*③r=b* ④r=b*11.下列关系中,属于正相关关系的有( 1 )①合理限度内,施肥量和平均单产量之间的关系②产品产量与单位产品成本之间的关系③商品的流通费用与销售利润之间的关系.④流通费用率与商品销售量之间的关系12.直线相关分析与直线回归分析的联系表现为( 1 )①相关分析是回归分析的基础②回归分析是相关分析的基础③相关分析是回归分析的深入④相关分析与回归分析互为条件13.如果估计标准误差Sy=O,则表明( 1 )①全部观测值和回归值都相等②回归值等于Y 、③全部观测值与回归值的离差之和为零④全部观测值都落在回归直线上14.进行相关分析,要求相关的两个变量( 1 )。
回归分析大作业
用回归方法分析浙江省地区生产总值1 引言:地区生产总值是指本地区所有常住单位在一定时期内生产活动的最终成果。
地区生产总值等于各产业增加值之和。
分析地区生产总值时,一般考虑其可能的影响因素,包括有第一产业、第二产业、工业、建筑业、金融业、户籍人口等。
对于一个预测量,建立若干个都能通过检验的模型是可能的,这就需要根据实际情况进行挑选。
在线形回归模型的建立和应用的过程中,选择合适的自变量是十分重要的。
如果从数学上来说,对于一个有n-1个自变量的线形回归问题,其可能的回归模型为2n-1-1 ,若对这么多的回归模型逐一进行分析、检验其所包含的自变量是否显著且无遗漏,是很不容易的。
从方法上而言,有“全部比较法”、“只出不进法”、“只进不出法”及“逐步回归法”。
在这些方法中,逐步回归法是最为重要也是应用最为广泛的一种。
逐步回归分析的基本思想是,先对全部自变量按其对因变量的影响程度大小进行排队,从大到小变量一个一个引入,引入变量的条件是其偏回归平方和经检验是显著的。
同时,每引入一个新变量,为保证所得的自变量子集中的每个变量都是显著的,随时进行检查,及时将由于引入新自变量而变得不显著者剔除[1]。
此过程经过若干步直到不能再引入新变量为止。
所以,利用逐步回归法所得到的回归方程中的所有自变量对因变量都是显著的,而不在回归方程中的变量对因变量都是检验不显著的。
由此可见,逐步回归方法选择变量的过程包含两个基本步骤:一是从回归方程中剔除经检验不显著的自变量;二是引入新的自变量到回归方程中。
2 数据的采集与模型的建立2.1解决方法与模型建立影响地区生产总值的可能因素有:第一产业、第二产业、工业、建筑业、金融业、户籍人口等。
因而本次选取了这6个影响财政收入的变量,利用逐步回归的方法建立浙江地区生产总值的回归模型。
多元线性回归模型一般形式:Y=β0+β1X1+β2X2+…+βkXk+ε其中,X1,X2,……,Xk代表影响因素,通常是可以控制或预先给定的,称为解释变量或自变量;Y是所研究的对象,即预测目标,称为被解释变量或因变量;ε代表各种随机因素对y的影响的总和,称为随机误差项[2],且服从正态分布,即ε~N(0,σ2);βi称为多元线性回归模型的回归系数;k为多元线性回归模型中解释变量的个数。
作业-第十四章 直线回归分析
第十四章直线回归分析作业:四、综合分析题1. 为了研究女大学生胸围(cm)与肺活量(L)的关系,随机抽取某高校一年级女生15名,测量其胸围与肺活量数据如表14-2所示。
表14-2 15名一年级女大学生的胸围(cm)与肺活量(L)学生编号胸围x肺活量y1 76.50 2.512 83.90 2.823 78.30 2.604 88.40 3.355 77.10 2.536 81.70 2.807 78.30 2.768 74.80 1.919 76.70 1.9810 79.40 2.5811 83.00 3.3412 90.30 3.5713 85.90 3.1114 82.60 2.9815 80.90 2.88(1) 试建立肺活量y与胸围x的回归方程;(2) 用两种方法对回归系数进行假设检验;(3) 计算总体回归系数的95%置信区间。
2.为研究肺癌患者肺组织中的DNA加合物含量(个/108核苷酸)与吸烟的关系,某研究者用“同位素标记法”测定了12名肺癌患者肺组织中DNA加合物含量(y),并调查其每日吸烟量(x),结果如表14-3所示。
表14-3 肺组织中DNA加合物含量(个/108核苷酸)与每日吸烟量(支/天)x 5 5 10 15 15 15 20 20 20 25 25 30y9.26 3.17 6.34 14.92 7.78 12.00 9.70 15.66 12.40 11.40 17.20 19.34(1) 问该资料有无可疑的离群点?(2) 试建立直线回归方程来分析肺组织中DNA加合物含量y与每日吸烟量x之间的关系。
R语言线性回归案例作业
R语言线性回归案例作业标题:R语言实现线性回归分析:消费者购买行为案例研究引言:线性回归是一种常用的统计分析方法,可以用来研究自变量(或者多个自变量)与因变量之间的关系,并预测因变量的取值。
本文将使用R语言,基于一个消费者购买行为的案例进行线性回归分析。
1.数据集介绍:数据集包含了一些消费者的属性(如性别、年龄、收入等)以及其购买量。
我们的目标是通过这些属性来预测消费者的购买量。
2.数据预处理:首先,我们需要导入数据集并进行一些基本的数据预处理工作,如检查缺失值和异常值等。
然后,我们可以根据需要选择一些特征变量作为自变量,将购买量作为因变量。
3.模型拟合:使用R语言的lm函数,可以很方便地进行线性回归分析。
我们可以根据数据集的特征变量和因变量建立线性回归模型,并使用模型拟合数据。
4.模型评估:拟合完成后,我们需要对模型进行评估,以确定模型的准确性和可靠性。
常见的评估指标包括均方误差(MSE)、平均绝对误差(MAE)和决定系数(R2)等。
我们可以使用R语言提供的函数来计算这些指标,并对模型进行评估。
5.模型预测:在对模型进行评估后,我们可以使用模型来进行预测。
通过提供新的自变量的取值,我们可以使用训练好的模型来预测相应的购买量。
6.结果分析和可视化:最后,我们可以根据模型的预测结果,进行一些结果分析和可视化工作,以便更好地理解和解释模型。
比如,我们可以绘制自变量与因变量的散点图,并添加回归线,以展示它们之间的关系。
结论:本文使用R语言实现了线性回归分析,并基于一个消费者购买行为的案例进行了实际操作。
通过数据预处理、模型拟合、模型评估、模型预测和结果分析,我们可以有效地分析和预测消费者的购买行为。
线性回归模型的优势在于简单、易解释,并且提供了一种可靠的预测方法。
然而,线性回归分析也有其局限性,比如对于非线性关系的数据可能会不准确。
因此,在实际应用中,我们需要结合具体问题选择合适的统计分析方法。
回归分析
信息分析论文题目:回归分析作业院(系): 管理学院专业年级:2010级信息管理姓名: 曹鹏飞学号: 3201009065912013年6月3日RegressionLinear菜单详解【Dependent框】用于选入回归分析的因变量。
【Block按钮组】由Previous和Next两个按钮组成,用于将下面Independent框中选入的自变量分组。
由于多元回归分析中自变量的选入方式有前进、后退、逐步等方法,如果对不同的自变量选入的方法不同,则用该按钮组将自变量分组选入即可。
【Independent框】用于选入回归分析的自变量。
【Method下拉列表】用于选择对自变量的选入方法,有Enter(强行进入法)、Stepwise(逐步法)、Remove(强制剔除法)、Backward(向后法)、Forward(向前法)五种。
该选项对当前Independent框中的所有变量均有效。
【Selection Variable框】选入一个筛选变量,并利用右侧的Rules钮建立一个选择条件,这样,只有满足该条件的记录才会进入回归分析。
【Case Labels框】选择一个变量,他的取值将作为每条记录的标签。
最典型的情况是使用记录ID 号的变量。
【WLS>>钮】可利用该按钮进行权重最小二乘法的回归分析。
单击该按钮会扩展当前对话框,出现WLS Weight框,在该框内选入权重变量即可。
【Statistics钮】弹出Statistics对话框,用于选择所需要的描述统计量。
有如下选项:Regression Coefficients复选框组:定义回归系数的输出情况,选中Estimates可输出回归系数B及其标准误,t值和p值,还有标准化的回归系数beta;选中Confidence intervals则输出每个回归系数的95%可信区间;选中covariance matrix则会输出各个自变量的相关矩阵和方差、协方差矩阵。
统计学线性相关和回归作业
注:本周两个作业,第1页和第2页各一个某研究所研究某种代乳粉的营养价值时,用10只大白鼠作试验,得到大白鼠进食量(g)和增加体重(g)的数据见表10-1,对大白鼠的进食量与增加体重进行回归分析。
表10-1 大白鼠进食量与增加体重编号 1 2 3 4 5 6 7 8 9 10进食量820 780 720 867 690 787 934 679 639 820增重165 158 130 180 134 167 186 145 120 158请参考PPT 22页标准解答流程解答本题。
注:请自行录入数据。
1.建立假设检验H0:β=0 大白鼠的进食量与增加体重之间无线性回归关系H1:β≠0 大白鼠的进食量与增加体重之间有线性回归关系ɑ=0.052.计算统计量R方=0.883F=60.1973.确定P值,得出统计结论p<0.001,按照ɑ=0.05水准,拒绝H0,接受H1,可以认为大白鼠的进食量与增加体重之间存在线性回归关系。
例10-1某研究所研究某种代乳粉的营养价值时,用10只大白鼠作试验,得到大白鼠进食量(g)和增加体重(g)的数据见表10-1,试研究进食量与增加体重的相关关系。
表10-1 大白鼠进食量与增加体重编号 1 2 3 4 5 6 7 8 9 10进食量820 780 720 867 690 787 934 679 639 820增重165 158 130 180 134 167 186 145 120 158请参考PPT 36页标准解答流程解答本题。
注:请自行录入数据。
1.对两组样本实施正态性检验,符合正态分布(p=0.902,p=0.816),应用pearson线性相关检验。
2.建立检验假设H0:ρ=0,即大白鼠的进食量与增重之间不存在线性相关系H1:ρ≠0,即大白鼠的进食量与增重之间存在线性相关关系。
ɑ=0.053.计算统计量r=0.940,p<0.0014.确定P值,作出结论p<0.001,拒绝H0,接受H1,检验有显著性差异;可以认为大白鼠的进食量与增重之间存在相关关系,相关系数r=0.940,正相关。
Logistic_回归分析作业答案[3页]
第六章 Logistic回归练习题 (操作部分:部分参考答案)1. 下面问题的数据来自“ch6-logistic_exercise”,数据包含受访者的人口学特征、劳动经济特征、流动身份。
数据的变量及其定义如下:变量名变量的定义age 年龄,连续测量degree 受教育程度:1=未上过学;2=小学;3=初中;4=高中;5=大专;6=大学;7=研究生girl 性别:1=女性;0=男性hanzu 民族:1=汉族;0=少数民族hetong 劳动合同:1=固定合同;2=非固定合同;3=无合同income 月收入ldhour 每周劳动时间married 婚姻状态:1=在婚;0=其他(未婚、离异、再婚、丧偶,等)migtype4 流动身份:1=本地市民;2=城-城流动人口;3=乡-城流动人口pid IDss_jobloss 失业保险:1=有;0=无ss_yanglao 养老保险:1=有;1=无这里的研究问题是,流动人口与流入地居民在社会保障、劳动保护和居住环境等方面是否存在显著差别。
流动人口被区分为城-城流动人口(即具有城镇户籍、但离开户籍地半年以上之人)和乡-城流动人口(即具有农村户籍、且离开户籍地半年以上之人)。
因此,样本包含三类人群:本地市民、城-城流动人口、乡-城流动人口及相应特征。
说明:(1)你需要对数据进行一些必要的处理,才能正确回答研究问题;(2)将变量hetong的缺失数据作为一个类别;(3)将degree合并为四类:<=小学,初中、高中、>高中. use "D:\course\integration of theory andmethod\8_ordered\chapter8-logistic_exercise.dta", clear*重新三个社会保障变量. gen ss_jobl=ss_jobloss==1. gen ss_ylao=ss_yanglao==1. gen ss_yili=ss_yiliao ==1*重新code受教育程度. recode degree (1/2=1) (3=2) (4=3)(5/7=4)*将劳动合同的缺失作为一个分类. recode hetong (.=4)请基于该数据,完成以下练习,输出odds ratio的分析结果:其一,运用二分类Logistic模型,探讨流动人口的社会保障机会。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
40、某企业上半年产品产量与单位成本资料如下:
要求:(1)计算相关系数,判断其相关方向与程度;(2)建立直线回归方程;(3)指出产量每增加1000件时,单位成本平均变动多少?
41、某商业企业最近五年内商品销售额(X)的年平均数为421万元,标准差为30.07万元;商业利润(Y)的年平均数为113万元,标准差为15.41万元;五年内销售额与商业利润的乘积和为240170万元,各年销售额的平方和为890725万元,各年商业利润的平方和为65033万元。
试据此:(1)计算商业销售额与商业利润的样本相关系数并解析其含义。
(2)建立商业销售额与商业利润之间的回归方程。
(3)其他条件不变时,估计当商品销售额为600万元时,商业利润可能为多少万元?
42、对某地区随机抽取100户家庭,调查他们的月收入(X)和消费支出(Y),经过计算得到如下结果:户均月收入2100元,标准差是30元;消费支出是1200元,方差是2500元。
这两个变量的相关系数是0.9。
要求解答:(1)计算月收入与消费支出的变异系数,并说明哪个变量的变异程度度大。
(2)建立消费支出对收入水平的回归方程,估计当月收入是2500元时的平均消费支出。
(3)说明该题中的回归系数的经济含义。
(4)计算判定系数,并说明判定系数在回归分析中的作用。
43、为研究产品销售额与销售利润之间的关系,某公司对所属6家企业进行了调查,设产品销售额为x (万元),销售利润为y (万元).调查资料经初步整理和计算,结果如下::
∑x=225 ∑x2=9823 ∑y=13 ∑y2=36.7 ∑xy=593
要求:(1)计算销售额与销售利润之间的相关系数; (2)配合销售利润对销售额的直线回归方程。