2018年成人高考高起点《数学(理)》真题及答案解析

合集下载

2018成人高考高起专《数学》真题及答案解析

2018成人高考高起专《数学》真题及答案解析

精心整理2017年成人高等学校高起点招生全国统一考试数学本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分150分。

考试时间150分钟。

第I卷(选择题,共85分)一、选择题(本大题共17小题,每小题5分,共85分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合M={1,2,3,4,5),N={2,4,6),则M∩N=()A.{2,4)B.(2,4,6)C.(1,3,5)D.{1,2,3,4.5,6)2.函数y=3sin的最小正周期是()A.8πB.4πC.2πD.2π3.函数y=的定义城为()A.{x|x0}B.{x|x1}C.{x|x1}D.{x|01}4.设a,b,c为实数,且a>b,则()A.a-c>b-cB.|a|>|b|C.>D.ac>bc5.若<<,且sin=,则=()A B. C. D.6.函数y=6sinxcosc的最大值为()A.1B.2C.6D.37.右图是二次函数y=+bx+c的部分图像,则()A.b>0,c>0B.b>0,c<0C.b<0,c>0D.b<0,c<008.已知点A(4,1),B(2,3),则线段AB的垂直平分线方程为()A.x-y+1=0B.x+y-5=0C.x-y-1=0D.x-2y+1=09.函数y=是()A.奇函数,且在(0,+)单调递增B.偶函数,且在(0,+)单调递减C.奇函数,且在(-,0)单调递减D.偶函数,且在(-,0)单调递增10.一个圆上有5个不同的点,以这5个点中任意3个为顶点的三角形共有()A.60个B.15个C.5个D.10个11.若lg5=m,则lg2=()A.5mB.1-mC.2mD.m+112.设f(x+1)=x(x+1),则f(2)=()A.1B.3C.2D.613.函数y=的图像与直线x+3=0的交点坐标为()A.(-3,-)B.(-3,)C.(-3,)D.(-3,-)14.双曲线-的焦距为()A.1B.4C.2D.15.已知三角形的两个顶点是椭圆C:+=1的两个焦点,第三个顶点在C上,则该三角形的周长为()A.10B.20C.16D.2616.在等比数列{}中,若=10,则,+=()A.100B.40C.10D.2017.若1名女生和3名男生随机地站成一列,则从前面数第2名是女生的概率为()A. B. C. D.第Ⅱ卷(非选择题,共65分)二、填空题(本大题共4小题,每小题4分,共16分)18.已知平面向量a=(1,2),b=(-2,3),2a+3b=.19.已知直线1和x-y+1=0关于直线x=-2对称,则1的斜率为=.20.若5条鱼的平均质量为0.8kg,其中3条的质量分别为0.75kg,0.83kg和0.78kg,则其余2条的平均质量为kg.21.若不等式|ax+1|<2的解集为{x|-<x<},则a=.三.解答题(本大题共4小题,共49分.解答应写出推理、演算步骤)22.(本小题满分12分)设{}为等差数列,且=8.(1)求{}的公差d;(2)若=2,求{前8项的和.23.(本小题满分12分)设直线y=x+1是曲线y=+3+4x+a的切线,求切点坐标和a的值。

2018成人高考高起专《数学》真题及答案解析

2018成人高考高起专《数学》真题及答案解析

2017 年成人高等学校高起点招生全国统一考试数学本试卷分第I 卷(选择题) 和第Ⅱ卷(非选择题) 两部分。

满分150分。

考试时间150分钟。

第I 卷( 选择题,共85 分 )一、选择题( 本大题共17 小题,每小题 5 分, 共85 分. 在每小题给出的四个选项中,只有一项是符合题目要求的)1. 设集合M={1,2,3,4,5),N={2,4,6), 则M∩N=()A.{2,4)B.(2,4,6)C.(1,3,5)D.{1,2,3,4.5,6)2. 函数y=3sin 的最小正周期是( )A.8 πB.4πC.2 πD.2π3. 函数y= 的定义城为( )A.{x|x 0}B.{x|x 1}C.{x| x 1}D.{x| 0或1}4. 设a,b,c 为实数,且a>b, 则( )A.a-c>b-cB.|a|>|b|C. >D.ac>bc5. 若π< <π, 且sin = ,则=( )A B. C. D.6. 函数y=6sinxcosc 的最大值为( )A.1B.2C.6D.37. 右图是二次函数y= +bx+c 的部分图像,则( )A.b>0,c>0B.b>0,c<0C.b<0,c>0D.b<0,c<0 08. 已知点A(4,1),B(2,3) ,则线段AB的垂直平分线方程为( )A.x-y+1=0B.x+y-5=0C.x-y-1=0D.x-2y+1=09. 函数y= 是( )A. 奇函数, 且在(0,+ ) 单调递增B. 偶函数, 且在(0,+ ) 单调递减C.奇函数, 且在(- ,0) 单调递减D.偶函数, 且在(- ,0) 单调递增10. 一个圆上有 5 个不同的点,以这 5 个点中任意 3 个为顶点的三角形共有( )A.60 个B.15 个C.5 个D.10 个11. 若lg5=m, 则lg2=( )A.5mB.1-mC.2mD.m+112.设f(x+1)=x(x+1), 则f(2)= ( )A.1B.3C.2D.613.函数y= 的图像与直线x+3=0 的交点坐标为( )A.(-3,- )B.(-3, )C.(-3, )D.(-3,- )14.双曲线- 的焦距为()A.1B.4C.2D.15.已知三角形的两个顶点是椭圆C:+ =1 的两个焦点,第三个顶点在 C 上,则该三角形的周长为( )A.10B.20C.16D.2616.在等比数列{ } 中, 若=10, 则,+ =( )A.100B.40C.10D.2017.若1 名女生和 3 名男生随机地站成一列,则从前面数第 2 名是女生的概率为( )A. B. C. D.第Ⅱ卷( 非选择题, 共65 分)二、填空题( 本大题共 4 小题, 每小题 4 分, 共16 分)18.已知平面向量a=(1,2),b=(-2,3),2a+3b= .19.已知直线 1 和x-y+1=0 关于直线x=-2 对称,则 1 的斜率为= .20.若5 条鱼的平均质量为0.8kg, 其中 3 条的质量分别为0.75kg,0.83kg 和0.78kg ,则其余2 条的平均质量为kg.21.若不等式|ax+1|<2 的解集为{x|- <x< },则a= .三. 解答题( 本大题共 4 小题, 共49 分. 解答应写出推理、演算步骤)22. ( 本小题满分12 分)设{ } 为等差数列, 且=8.(1) 求{ } 的公差d;(2) 若=2, 求{ 前8 项的和.23.( 本小题满分12 分)设直线y=x+1 是曲线y= +3 +4x+a 的切线, 求切点坐标和 a 的值。

2018成人高考高起专《数学》真题及答案解析

2018成人高考高起专《数学》真题及答案解析

精心整理2017年成人高等学校高起点招生全国统一考试数学本试卷分第I卷(选择题)和第□卷(非选择题)两部分。

满分150分。

考试时间150分钟第I卷(选择题,共85分)一、选择题(本大题共17小题,每小题5分,共85分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 设集合M={1,2,3,4,5),N={2,4,6), 则MA N=()A.{2,4)B.(2,4,6)C.(1,3,5)D.{1,2,3,4.5,6)2. 函数y=3sin [的最小正周期是()A.8 nB.4 nC.2 nD.2 n3. 函数丫=「+「▼的定义城为()A.{x|x > 0} B{x|x 詮1} C.{x|°w x s1} D.{x gs5v^1}4. 设a,b,c为实数,且a>b,则()严“ \ y* #乞兀/ /.y//j jA.a-c>b-cB.|a|>|b| 。

.=2>以 D.ac>bc6. 函数y=6sinxcosc的最大值为()A.1B.2C.6D.37. 右图是二次函数yp2+bx+c的部分图像,贝S ()5. 若号中弓,且sin 口土,贝S厂卞A=()A.b>0,c>0B.b>0,c<0C.b<0,c>0D.b<0,c<008. 已知点A(4,1),B(2,3),则线段AB 的垂直平分线方程为()A.x-y+ 仁0B.x+y-5=0C.x-y-1=0D.x-2y+1=09. 函数 y= ■是()A.奇函数,且在(0,+ “)单调递增B.偶函数,且在(0,+ “)单调递减C.奇函数,且在(-皿,0)单调递减D.偶函数,且在(-“,0)单调递增10. 一个圆上有5个不同的点,以这5个点中任意3个为顶点的三角形共有()A.60 个B.15 个C.5 个D.10 个11. 若 lg5=m,则 lg2=()A.5mB.1-mC.2m 12. 设 f(x+1)=x(x+1), 则 f(2)=()三角形的周长为()A.10B.20C.16D.2616. 在等比数列{»}中,若山nd=10,则nl 朋,+ 2卒=() 1 丄、 11A.(-3,- 舟B.(-3, ft )C.(-3, 匚)D.(-3,- ft )14.双曲线呼- 1 的焦距为()A.1 ; B .4 C.2 D A?13.函数y 二」的图像与直线x+3=0的交点坐标为() 15.已知三角形的两个顶点是椭圆 D.m+1A.1B.3C.2D.6C: £吒=1的两个焦点,第三个顶点在 C 上,则该A.100B.40C.10D.2017. 若1名女生和3名男生随机地站成一列,则从前面数第2名是女生的概率为()B. C「 D.第u卷(非选择题,共65分)二、填空题(本大题共4小题,每小题4分,共16分)18. 已知平面向量a=(1,2),b=(-2,3),2a+3b二.19. 已知直线1和x-y+1=0关于直线x=-2对称,则1的斜率为己20. 若5条鱼的平均质量为0.8kg,其中3条的质量分别为0.75kg,0.83kg 和0.78kg , 则其余2条的平均质量为kg.21. 若不等式|ax+1|<2的解集为{x|- - <x< },则a=.三.解答题(本大题共4小题,共49分.解答应写出推理、演算步骤)22. (本小题满分12分)设{利}为等差数列,且些—OR=8.(1)求{*}的公差d;(2)若料=2,求⑺前8项的和爲.23. (本小题满分12分)设直线y=x+1是曲线y二愛3+«2+4x+a的切线,求切点坐标和a的值。

2018年湖北成人高考高起点理科数学预测真题及答案

2018年湖北成人高考高起点理科数学预测真题及答案

年湖北成人高考高起点理科数学预测真题及答案(一)本试卷分选择题和非选择题两部分.满分分,考试时间分钟.选择题一、选择题:本大题共小题,每小题分,共分.在每小题给出的四个选项中,只有一项是符合题目要求的.()已知集合{,,,,,},{,,,,,},则∩.{,,,,,,,}.{,,}.{,,}.{,,}()()的值是(成人高考更多完整资料免费提供加微信:)....()....()若向量(,),(,),则(·)()等于..(,) ..(,)()棱长为的正方体,其外接球的表面积为.π.π.π.π()三角形全等是三角形面积相等的.充分但不必要条件.必要但不充分条件.充要条件.既不充分也不必要条件()已知()(∈)是以为周期的奇函数,且()(),则有....()等差数列{}的公差<,且·,,则数列{}的通项公式是.(∈*).(∈*).(∈*) .(∈*)()方程的两根可分别作为.一个椭圆和一个双曲线的离心率.两个抛物线的离心率.一个椭圆和一个抛物线的离心率.两个椭圆的离心率()甲、乙两人独立地解同一个问题,甲解决这个问题的概率是,乙解决这个问题的概率是,那么其中至少有人解决这个问题的概率是....()(一)().{|>} .{|<≤} .{|≤} .{|<<}()个人排成一排,甲、乙相邻的不同排法有.种.种.种.种()()抛物线的准线方程是,则的值为()一名同学投篮的命中率为,他连续投篮次,其中恰有次命中的概率为()直线与直线关于直线对称,则()函数有.极小值,极大值.极小值,极大值.极小值,极大值.极小值,极大值非选择题二、填空题:本大题共小题,每小题分,共分.把答案填在题中横线上.()(成人高考更多完整资料免费提供加微信:) ()设(),则.()函数的最小正周期及最大值分别是.()曲线在点(,)处的切线方程是.三、解答题:本大题共小题,共分.解答应写出推理、演算步骤.()(本小题满分分)()求实数的值;()()(本小题满分分)已知等差数列{}中,,.()求数列{}的通项公式;(Ⅱ)当为何值时,数列{}的前项和取得最大值,并求该最大值.()(本小题满分分)已知抛物线:(>)的焦点在直线上.()求抛物线的方程;(Ⅱ)设直线与抛物线相交于,两点,求线段中点的坐标.()(本小题满分分)()求函数()的单调区间,并指出它在各单调区间上是增函数还是减函数;(Ⅱ)求函数()在区间[,]上的最大值和最小值.一、选择题()【参考答案】 ()集合∩是由同时属于集合和集合的元素组成的集合,易得答案为∩{,,}.【解题指要】本题考查集合的运算.注意∪的结果是(),二者是不同的.()【参考答案】 ()()[()]().【解题指要】本题考杏复数运算.在复数运算中,要记住:()【参考答案】 ()【解题指要】本题考查函数值域的求法,一般采用直接法求解.()【参考答案】 ()(·)()[(,)·(,)][(,)(,)] ()(,)(,)(,).【解题指要】本题考查向量的运算.向量数量积的结果是实数,向量和数的乘积的结果是向量.()【参考答案】 ()【解题指要】本题考查正方体和球的相关知识.()【参考答案】 ()若两个三角形全等,则它们的面积相等;然而,面积相等的三角形却不一定是全等三角形,因此答案为充分但不必要条件,选().【解题指要】本题考查充分必要条件的相关知识.()【参考答案】 ()因为()是以为周期的奇函数,所以()()()(),即().又(),所以.【解题指要】本题考查函数的奇偶性和周期性.()【参考答案】 ()【解题指要】本题考查等差数列的通项公式.()【参考答案】()【解题指要】本题考查离心率的相关知识.椭圆离心率的取值范围是(,),双曲线离心率的取值范围是(,∞),抛物线的离心率为.()【参考答案】 ()【解题指要】本题考查独立事件同时发生的概率.甲不能解决问题的概率为,乙不能解决问题的概率为,因此,两人都不能独立解决问题的概率为()(),从而其中至少有人解决这个问题的概率为()().()【参考答案】 ()二次根式要有意义,应有≥,即≤,所以<≤.【解题指要】本题考查二次根式的概念和对数函数的单调性,求解时要注意对数函数的定义域.()【参考答案】 ()【解题指要】本题考查排列组合的相关知识.对于相邻问题,采用捆绑法比较方便求解.()【参考答案】 ()()【参考答案】 ()【解题指要】本题考查抛物线的标准方程及其相关几何性质.抛物线的标准方程形式:二几何性质.()【参考答案】 ()【解题指要】本题考查次独立重复事件概率的计算方法.()【参考答案】 ()【解题指要】本题考查反函数的求法.求反函数要先“倒”:即把用表示;然后“换”:即换成,换成;最后“注”:注明反函数的定义域(即原函数的值域).()【参考答案】 ()由于’,±时’,且<时,’<;<<时,'>;>时'<.故时,取极小值;时,取极大值.【解题指要】本题考查导数的应用.注意导数值为的点,需它的“左邻”和。

2018成人高考高起专《数学》真题及答案解析

2018成人高考高起专《数学》真题及答案解析

2017年成人高等学校高起点招生全国统一考试数学本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分150分。

考试时间150分钟。

第I卷(选择题,共85分)一、选择题(本大题共17小题,每小题5分,共85分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合M={1,2,3,4,5),N={2,4,6),则M∩N=()A.{2,4)B.(2,4,6)C.(1,3,5)D.{1,2,3,4.5,6)2.函数y=3sin的最小正周期是( )A.8πB.4πC.2πD.2π3.函数y=的定义城为( )A.{x|x0}B.{x|x1}C.{x|x1}D.{x|0或1}4.设a,b,c为实数,且a>b,则( )A.a-c>b-cB.|a|>|b|C.>D.ac>bc5.若π<<π,且sin=,则 =( )A B. C. D.6.函数y=6sinxcosc的最大值为( )A.1B.2C.6D.37.右图是二次函数y=+bx+c的部分图像,则( )A.b>0,c>0B.b>0,c<0C.b<0,c>08.已知点A(4,1),B(2,3),则线段AB的垂直平分线方程为( )A.x-y+1=0B.x+y-5=0C.x-y-1=0D.x-2y+1=09.函数y=是( )A.奇函数,且在(0,+)单调递增B.偶函数,且在(0,+)单调递减C.奇函数,且在(-,0)单调递减D.偶函数,且在(-,0)单调递增10.一个圆上有5个不同的点,以这5个点中任意3个为顶点的三角形共有( )A.60个B.15个C.5个D.10个11.若lg5=m,则lg2=( )A.5mB.1-mC.2mD.m+112.设f(x+1)=x(x+1),则f(2)= ( )A.1B.3C.2D.613.函数y=的图像与直线x+3=0的交点坐标为( )A.(-3,-)B.(-3,)C.(-3,)D.(-3,-)14.双曲线- 的焦距为()A.1B.4C.2D.15.已知三角形的两个顶点是椭圆C:+=1的两个焦点,第三个顶点在C上,则该三角形的周长为( )A.10B.20C.16D.2616.在等比数列{}中,若 =10,则 ,+=( )A.100B.40C.10D.2017.若1名女生和3名男生随机地站成一列,则从前面数第2名是女生的概率为( )A. B. C. D.第Ⅱ卷(非选择题,共65分)二、填空题(本大题共4小题,每小题4分,共16分)18.已知平面向量a=(1,2),b=(-2,3),2a+3b= .19.已知直线1和x-y+1=0关于直线x=-2对称,则1的斜率为= .20.若5条鱼的平均质量为0.8kg,其中3条的质量分别为0.75kg,0.83kg和0.78kg,则其余2条的平均质量为 kg.21.若不等式|ax+1|<2的解集为{x|-<x<},则a= .三.解答题(本大题共4小题,共49分.解答应写出推理、演算步骤)22. (本小题满分12分)设{}为等差数列,且=8.(1)求{}的公差d;(2)若=2,求{前8项的和.23.(本小题满分12分)设直线y=x+1是曲线y=+3+4x+a的切线,求切点坐标和a的值。

成人高考自考数学真题2018年成人高等学校高起点招生全国统一考试理科数学附答案解析

成人高考自考数学真题2018年成人高等学校高起点招生全国统一考试理科数学附答案解析

已知椭圆 C 的长轴长为 4,两焦点分别为 F1(- 3,0),F2( 3,0). (1)求 C 的标准方程.
(2)若 P 为 C 上一点,|PF1|-|PF2|=2,求 cos∠F1PF2.
2
2
【答案】题知 a=2,c= 3,所以 b= 2 − 2=1,所以椭圆方程为 + = 1
41
(2) | |
3
3
=22 −1
(2) = 22 −1=128=27
即 2k-1=7 ,得 k=4
23.(本小题满分 12 分)
在ΔABC 中,A=300,AB=2, BC= 3.求
(1)sinC
(2)AC
【答案】(1)根据正弦定理 =
有2 =
3300,解得
sinC=
3 3
.
(2) sinC= 3 ,sin600= 3 ,知∠C <600 ,得到∠B 为钝角.
A. 3/10
B. 1/5
C. 1/10
D.3/5
【答案】C 10.圆 x2+y2+2x-6y-6=0 的半径为( )
A. 10
B. 4
【答案】B
11.双曲线 3x2-4y2=12 的焦距为( )
C. 15
D.16
A. 2 7
B. 2 3
C. 4
D.2
【答案】A
12.已知抛物线 y2=6x 的焦点为 F,点 A(0,-1),则直线 AF 的斜率为( )
2018 年成人高等学校高起点招生全国统一考试
理科数学
本试卷分第 I 卷(选择题)和第Ⅱ卷(非选择题)两部分。满分 150 分。考试时间 150 分钟。
第 I 卷(选择题,共 85 分)

2018成人高考高起专《数学》真题与答案解析

2018成人高考高起专《数学》真题与答案解析

2017年成人高等学校高起点招生全国统一考试数学本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分150分。

考试时间150分钟。

第I卷(选择题,共85分)一、选择题(本大题共17小题,每小题5分,共85分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合M={1,2,3,4,5),N={2,4,6),则M∩N=()A.{2,4)B.(2,4,6)C.(1,3,5)D.{1,2,3,4.5,6)2.函数y=3sin的最小正周期是( )A.8πB.4πC.2πD.2π3.函数y=的定义城为( )A.{x|x0}B.{x|x1}C.{x|x1}D.{x|0或1}4.设a,b,c为实数,且a>b,则( )A.a-c>b-cB.|a|>|b|C.>D.ac>bc5.若π<<π,且sin=,则 =( )A B. C. D.6.函数y=6sinxcosc的最大值为( )A.1B.2C.6D.37.右图是二次函数y=+bx+c的部分图像,则( )A.b>0,c>0B.b>0,c<0C.b<0,c>08.已知点A(4,1),B(2,3),则线段AB的垂直平分线方程为( )A.x-y+1=0B.x+y-5=0C.x-y-1=0D.x-2y+1=09.函数y=是( )A.奇函数,且在(0,+)单调递增B.偶函数,且在(0,+)单调递减C.奇函数,且在(-,0)单调递减D.偶函数,且在(-,0)单调递增10.一个圆上有5个不同的点,以这5个点中任意3个为顶点的三角形共有( )A.60个B.15个C.5个D.10个11.若lg5=m,则lg2=( )A.5mB.1-mC.2mD.m+112.设f(x+1)=x(x+1),则f(2)= ( )A.1B.3C.2D.613.函数y=的图像与直线x+3=0的交点坐标为( )A.(-3,-)B.(-3,)C.(-3,)D.(-3,-)14.双曲线- 的焦距为()A.1B.4C.2D.15.已知三角形的两个顶点是椭圆C:+=1的两个焦点,第三个顶点在C上,则该三角形的周长为( )A.10B.20C.16D.2616.在等比数列{}中,若 =10,则 ,+=( )A.100B.40C.10D.2017.若1名女生和3名男生随机地站成一列,则从前面数第2名是女生的概率为( )A. B. C. D.第Ⅱ卷(非选择题,共65分)二、填空题(本大题共4小题,每小题4分,共16分)18.已知平面向量a=(1,2),b=(-2,3),2a+3b= .19.已知直线1和x-y+1=0关于直线x=-2对称,则1的斜率为= .20.若5条鱼的平均质量为0.8kg,其中3条的质量分别为0.75kg,0.83kg和0.78kg,则其余2条的平均质量为 kg.21.若不等式|ax+1|<2的解集为{x|-<x<},则a= .三.解答题(本大题共4小题,共49分.解答应写出推理、演算步骤)22. (本小题满分12分)设{}为等差数列,且=8.(1)求{}的公差d;(2)若=2,求{前8项的和.23.(本小题满分12分)设直线y=x+1是曲线y=+3+4x+a的切线,求切点坐标和a的值。

2018年成人高考数学真题(理工类)版(最新整理)

2018年成人高考数学真题(理工类)版(最新整理)
2018 年成人高等学校招生全国统一考试(高起点)
数学试题(理工农医类)
第Ⅰ卷(选择题,共 85 分) 一、选择题(本大题共 17 小题,每小题 5 分,共 85 分,在每小题给出的四个选项中,只有一项是
符合题目要求的)
1.设集合 M {x -1 x 2}, N {x x 1}, 则 M N
(25)(本小题满分 12 分)设椭圆的焦点为 F1( 3,0), F2 ( 3,0) ,其长轴长为 4.
(1)求椭圆的方程;
(2)若直线 y 3 x m 与椭圆有两个不同的交点,求 m 的取值范围. 2
(22)(本小题满分 12 分)已知 ABC 中, A 60o , AB 5, AC 6, 求 BC .
(23)(本小题满分
12
分)已知数列 an的前 n
项和
sn
1
1 2n
,求‘
(1) an的前 3 项;
(2) an 的通项公式.
(24)(本小题满分 12 分)设函数 f (x) x3 3x2 9x .求 (1)函数 f (x) 的导数; (2)函数 f (x) 在区间[1,4]的最大值与最小值.
C . -2
D . -3
13 .每次射击时,甲击中目标的概率为 0.8 ,乙击中目标的概率为 0.6 ,甲、乙各自独立地射向目标,
则恰有一人击中的概率为
A . 0.44
B . 0.6
C . 0.8
D .1
14 .已知一个球的体积为 32 ,则它的表面积为 3
A . 4 B . 8 C .16
D . 24
B . y x-1 2
C . y 2x 1 D . y 1-2x
7 .若 a, b, c 为实数,且 a 0 。设甲: b2 4ac 0 ,乙: ax2 bx c 0 有实数根,则

2018成人高考高起专《数学》真题及答案解析

2018成人高考高起专《数学》真题及答案解析

2017年成人高等学校高起点招生全国统一考试数学本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分150分。

考试时间150分钟。

第I卷(选择题,共85分)一、选择题(本大题共17小题,每小题5分,共85分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合M={1,2,3,4,5),N={2,4,6),则M∩N=()A.{2,4)B.(2,4,6)C.(1,3,5)D.{1,2,3,4.5,6)2.函数y=3sin的最小正周期是()3.y=的定义城为A.{x|x0}B.{x|x1}C.{x|x1}D.{x|01}4.为实数,且a>b,>5.<,则D.6.函数y=6sinxcosc的最大值为()A.1B.2C.6D.37.右图是二次函数y=+bx+c的部分图像,则()A.b>0,c>0B.b>0,c<0C.b<0,c>08.已知点A(4,1),B(2,3),则线段ABA.x-y+1=0B.x+y-5=0C.x-y-1=0D.x-2y+1=09.函数y=是()A.奇函数,且在(0,+)单调递增B.偶函数,且在(0,+)单调递减C.奇函数,且在(-,0)单调递减D.偶函数,且在(-,0)单调递增10.一个圆上有5个不同的点,以这5个点中任意3个为顶点的三角形共有()A.60个B.15个C.5个D.10个11.若lg5=m,则lg2=()A.5mB.1-mC.2mD.m+112.设f(x+1)=x(x+1),则f(2)=()A.1B.3C.2D.613.函数y=的图像与直线x+3=0的交点坐标为()A.(-3,-)B.(-3,)C.(-3,)D.(-3,-)14.双曲线-的焦距为()A.1B.4C.2D.15.已知三角形的两个顶点是椭圆C:+=1的两个焦点,第三个顶点在C上,则该三角形的周长为()A.10B.20C.16D.2616.在等比数列{}中,若=10,则,+=()A.100B.40C.10D.2017.若1名女生和3名男生随机地站成一列,则从前面数第2名是女生的概率为(),共65分))21.若不等式|ax+1|<2的解集为{x|-<x<},则a=.三.解答题(本大题共4小题,共49分.22.(本小题满分12分)设{}为等差数列,且=8.(1)求{}的公差d;(2)若=2,求{前8项的和.23.(本小题满分12分)设直线y=x+1是曲线y=+3+4x+a的切线,求切点坐标和a的值。

2018年高考真题——数学理(全国Ⅰ卷)+Word版含答解析

2018年高考真题——数学理(全国Ⅰ卷)+Word版含答解析

绝密★启用前2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设1i2i 1iz -=++,则||z =A .0B .12C .1D 2.已知集合{}220A x x x =-->,则A =R ð A .{}12x x -<< B .{}12x x -≤≤ C .}{}{|1|2x x x x <->D .}{}{|1|2x x x x ≤-≥3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:建设前经济收入构成比例 建设后经济收入构成比例则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 4.设n S 为等差数列{}n a 的前n 项和,若3243S S S =+,12a =,则=5a A .12- B .10-C .10D .125.设函数32()(1)f x x a x ax =+-+,若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为 A .2y x =-B .y x =-C .2y x =D .y x =6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =A .3144AB AC - B .1344AB AC - C .3144AB AC + D .1344AB AC +7.某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A .172B .52C .3D .28.设抛物线C :y 2=4x 的焦点为F ,过点(–2,0)且斜率为23的直线与C 交于M ,N 两点,则FM FN ⋅= A .5B .6C .7D .89.已知函数e 0()ln 0x x f x x x ⎧≤=⎨>⎩,,,,()()g x f x x a =++.若g (x )存在2个零点,则a 的取值范围是 A .[–1,0)B .[0,+∞)C .[–1,+∞)D .[1,+∞)10.下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .△ABC 的三边所围成的区域记为I ,黑色部分记为II ,其余部分记为III .在整个图形中随机取一点,此点取自I ,II ,III 的概率分别记为p 1,p 2,p 3,则A .p 1=p 2B .p 1=p 3C .p 2=p 3D .p 1=p 2+p 311.已知双曲线C :2213x y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若△OMN 为直角三角形,则|MN |= A .32B .3 C. D .412.已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方体所得截面面积的最大值为 ABCD二、填空题:本题共4小题,每小题5分,共20分。

2018成人高考高起专《数学》真题及答案解析

2018成人高考高起专《数学》真题及答案解析

WORD格式整理2017 年成人高等学校高起点招生全国统一考试数学本试卷分第 I 卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分 150分。

考试时间 150分钟。

第I 卷(选择题,共85分)一、选择题 (本大题共17 小题,每小题 5 分 ,共 85 分 .在每小题给出的四个选项中,只有一项是符合题目要求的 )1.设集合M={1,2,3,4,5),N={2,4,6), 则 M∩N=()A.{2,4)B.(2,4,6)C.(1,3,5) D.{1,2,3,4.5,6)2.函数y=3sin 的最小正周期是( )A.8 πB.4πC.2 πD.2 π3.函数 y= 的定义城为 ( )A.{x|x0} B.{x|x 1} C.{x| x1} D.{x| 0或1}4.设 a,b,c 为实数,且 a>b,则( )A.a-c>b-cB.|a|>|b| C. > D.ac>bc5.若 < < ,且sin = ,则=( )A B. C. D.6.函数 y=6sinxcosc 的最大值为( )A.1B.2C.6D.37.右图是二次函数y= +bx+c 的部分图像,则 ( )A.b>0,c>0B.b>0,c<0C.b<0,c>0D.b<0,c<0 08.已知点 A(4,1),B(2,3) ,则线段AB 的垂直平分线方程为( )A.x-y+1=0B.x+y-5=0C.x-y-1=0D.x-2y+1=09.函数 y= 是( )A. 奇函数 ,且在(0,+ )单调递增B.偶函数 ,且在(0,+ )单调递减C.奇函数 ,且在 (- ,0)单调递减 D.偶函数 ,且在 (- ,0) 单调递增10.一个圆上有 5 个不同的点,以这 5 个点中任意 3 个为顶点的三角形共有 ( )A.60 个B.15个 C.5 个 D.10 个11.若 lg5=m, 则lg2=( )A.5mB.1-mC.2mD.m+1专业资料值得拥有WORD格式整理12.设 f(x+1)=x(x+1), 则 f(2)= ( )A.1B.3C.2D.613.函数 y= 的图像与直线x+3=0 的交点坐标为 ( )A.(-3,- )B.(-3, )C.(-3, )D.(-3,- )14.双曲线- 的焦距为()A.1B.4C.2D.15.已知三角形的两个顶点是椭圆C:+ =1 的两个焦点,第三个顶点在 C 上,则该三角形的周长为 ( )A.10B.20C.16D.2616.在等比数列 { } 中 ,若=10,则,+ =( )A.100B.40C.10D.2017.若 1 名女生和 3 名男生随机地站成一列,则从前面数第2 名是女生的概率为( )A. B. C. D.第Ⅱ卷(非选择题 ,共 65 分)二、填空题 (本大题共4小题 ,每小题 4 分 ,共 16 分 )18.已知平面向量a=(1,2),b=(-2,3),2a+3b= .19.已知直线1 和 x-y+1=0 关于直线x=-2 对称,则 1 的斜率为 = .20.若 5 条鱼的平均质量为0.8kg,其中 3 条的质量分别为0.75kg,0.83kg 和 0.78kg,则其余 2条的平均质量为kg.21.若不等式 |ax+1|<2 的解集为 {x|- <x< } ,则 a= .三 .解答题 (本大题共 4 小题 ,共 49 分 .解答应写出推理、演算步骤)22.(本小题满分 12 分 )设 { } 为等差数列 ,且=8.(1)求 { } 的公差 d;(2)若=2,求{ 前 8 项的和.专业资料值得拥有WORD格式整理23.(本小题满分12 分 )设直线 y=x+1 是曲线 y= +3 +4x+a 的切线 ,求切点坐标和a 的值。

2018成人高考高起专《数学》真题及答案解析

2018成人高考高起专《数学》真题及答案解析

精心整理2017年成人高等学校高起点招生全国统一考试数学本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分150分。

考试时间150分钟。

第I卷(选择题,共85分)一、选择题(本大题共17小题,每小题5分,共85分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合M={1,2,3,4,5),N={2,4,6),则M∩N=()A.{2,4)B.(2,4,6)C.(1,3,5)D.{1,2,3,4.5,6)2.函数y=3sin的最小正周期是()A.8πB.4πC.2πD.2π3.函数y=的定义城为()A.{x|x0}B.{x|x1}C.{x|x1}D.{x|01}4.设a,b,c为实数,且a>b,则()A.a-c>b-cB.|a|>|b|C.>D.ac>bc5.若<<,且sin=,则=()A B. C. D.6.函数y=6sinxcosc的最大值为()A.1B.2C.6D.37.右图是二次函数y=+bx+c的部分图像,则()A.b>0,c>0B.b>0,c<0C.b<0,c>0D.b<0,c<008.已知点A(4,1),B(2,3),则线段AB的垂直平分线方程为()A.x-y+1=0B.x+y-5=0C.x-y-1=0D.x-2y+1=09.函数y=是()A.奇函数,且在(0,+)单调递增B.偶函数,且在(0,+)单调递减C.奇函数,且在(-,0)单调递减D.偶函数,且在(-,0)单调递增10.一个圆上有5个不同的点,以这5个点中任意3个为顶点的三角形共有()A.60个B.15个C.5个D.10个11.若lg5=m,则lg2=()A.5mB.1-mC.2mD.m+112.设f(x+1)=x(x+1),则f(2)=()A.1B.3C.2D.613.函数y=的图像与直线x+3=0的交点坐标为()A.(-3,-)B.(-3,)C.(-3,)D.(-3,-)14.双曲线-的焦距为()A.1B.4C.2D.15.已知三角形的两个顶点是椭圆C:+=1的两个焦点,第三个顶点在C上,则该三角形的周长为()A.10B.20C.16D.2616.在等比数列{}中,若=10,则,+=()A.100B.40C.10D.2017.若1名女生和3名男生随机地站成一列,则从前面数第2名是女生的概率为()A. B. C. D.第Ⅱ卷(非选择题,共65分)二、填空题(本大题共4小题,每小题4分,共16分)18.已知平面向量a=(1,2),b=(-2,3),2a+3b=.19.已知直线1和x-y+1=0关于直线x=-2对称,则1的斜率为=.20.若5条鱼的平均质量为0.8kg,其中3条的质量分别为0.75kg,0.83kg和0.78kg,则其余2条的平均质量为kg.21.若不等式|ax+1|<2的解集为{x|-<x<},则a=.三.解答题(本大题共4小题,共49分.解答应写出推理、演算步骤)22.(本小题满分12分)设{}为等差数列,且=8.(1)求{}的公差d;(2)若=2,求{前8项的和.23.(本小题满分12分)设直线y=x+1是曲线y=+3+4x+a的切线,求切点坐标和a的值。

2018成人高考高起专《数学》真题及答案解析

2018成人高考高起专《数学》真题及答案解析

2017年成人高等学校高起点招生全国统一考试数学本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分150分。

考试时间150分钟。

第I卷(选择题,共85分)一、选择题(本大题共17小题,每小题5分,共85分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合M={1,2,3,4,5),N={2,4,6),则M∩N=()A.{2,4)B.(2,4,6)C.(1,3,5)D.{1,2,3,4.5,6)2.函数y=3sin的最小正周期是()3.y=的定义城为A.{x|x0}B.{x|x1}C.{x|x1}D.{x|01}4.为实数,且a>b,>5.<,则D.6.函数y=6sinxcosc的最大值为()A.1B.2C.6D.37.右图是二次函数y=+bx+c的部分图像,则()A.b>0,c>0B.b>0,c<0C.b<0,c>08.已知点A(4,1),B(2,3),则线段ABA.x-y+1=0B.x+y-5=0C.x-y-1=0D.x-2y+1=09.函数y=是()A.奇函数,且在(0,+)单调递增B.偶函数,且在(0,+)单调递减C.奇函数,且在(-,0)单调递减D.偶函数,且在(-,0)单调递增10.一个圆上有5个不同的点,以这5个点中任意3个为顶点的三角形共有()A.60个B.15个C.5个D.10个11.若lg5=m,则lg2=()A.5mB.1-mC.2mD.m+112.设f(x+1)=x(x+1),则f(2)=()A.1B.3C.2D.613.函数y=的图像与直线x+3=0的交点坐标为()A.(-3,-)B.(-3,)C.(-3,)D.(-3,-)14.双曲线-的焦距为()A.1B.4C.2D.15.已知三角形的两个顶点是椭圆C:+=1的两个焦点,第三个顶点在C上,则该三角形的周长为()A.10B.20C.16D.2616.在等比数列{}中,若=10,则,+=()A.100B.40C.10D.2017.若1名女生和3名男生随机地站成一列,则从前面数第2名是女生的概率为(),共65分))21.若不等式|ax+1|<2的解集为{x|-<x<},则a=.三.解答题(本大题共4小题,共49分.22.(本小题满分12分)设{}为等差数列,且=8.(1)求{}的公差d;(2)若=2,求{前8项的和.23.(本小题满分12分)设直线y=x+1是曲线y=+3+4x+a的切线,求切点坐标和a的值。

2018成人高考高起专《数学》真题及答案解析

2018成人高考高起专《数学》真题及答案解析

2017年成人高等学校高起点招生全国统一考试数学本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分150分。

考试时间150分钟。

第I卷(选择题,共85分)一、选择题(本大题共17小题,每小题5分,共85分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合M={1,2,3,4,5),N={2,4,6),则M∩N=()A.{2,4)B.(2,4,6)C.(1,3,5)D.{1,2,3,,6)2.函数y=3sin x4的最小正周期是( )ππππ3.函数y=√x(x−1)的定义城为( )A.{x|x≥0}B.{x|x≥1}C.{x|0≤x≤1}D.{x|x≤0或x≥1}4.设a,b,c为实数,且a>b,则( )>b-c B.|a|>|b| C.a2>b2>bc5.若π2<θ<π,且sinθ=13,则cosθ=( )A.2√23B.− 2√23C. − √23D.√236.函数y=6sinxcosc的最大值为( )7.右图是二次函数y=x2+bx+c的部分图像,则( )>0,c>0 >0,c<0 <0,c>0 <0,c<0 08.已知点A(4,1),B(2,3),则线段AB的垂直平分线方程为( )+1=0 +y-5=0 =0 +1=09.函数y=1x是( )A.奇函数,且在(0,+∞)单调递增B.偶函数,且在(0,+∞)单调递减C.奇函数,且在(-∞,0)单调递减D.偶函数,且在(-∞,0)单调递增10.一个圆上有5个不同的点,以这5个点中任意3个为顶点的三角形共有( )个个个个11.若lg5=m,则lg2=( )+112.设f(x+1)=x(x+1),则f(2)= ( )13.函数y=2x 的图像与直线x+3=0的交点坐标为( )A.(-3,-16) B.(-3,18) C.(-3,16) D.(-3,-18) 14.双曲线y 23-x 2=1的焦距为( )D.√215.已知三角形的两个顶点是椭圆C :x 225+y 216=1的两个焦点,第三个顶点在C 上,则该三角形的周长为( )16.在等比数列{a n }中,若d 3a 4=10,则a 1a 6,+a 2a 5=( )17.若1名女生和3名男生随机地站成一列,则从前面数第2名是女生的概率为( )A.14B.13C.12D.34 第Ⅱ卷(非选择题,共65分)二、填空题(本大题共4小题,每小题4分,共16分)18.已知平面向量a=(1,2),b=(-2,3),2a+3b= .19.已知直线1和x-y+1=0关于直线x=-2对称,则1的斜率为= .20.若5条鱼的平均质量为,其中3条的质量分别为,和,则其余2条的平均质量为 kg.21.若不等式|ax+1|<2的解集为{x|-23<x<12},则a= . 三.解答题(本大题共4小题,共49分.解答应写出推理、演算步骤)22. (本小题满分12分)设{a a }为等差数列,且a 2+a 4−2a 1=8.(1)求{a a }的公差d;(2)若a 1=2,求{a a }前8项的和a 8.23.(本小题满分12分)设直线y=x+1是曲线y=a 3+3a 2+4x+a 的切线,求切点坐标和a 的值。

2018成人高考高起点数学考试真题和答案解析

2018成人高考高起点数学考试真题和答案解析

2017年成考高起点数学(理)真题及答案第1卷(选择题,共85分)一、选择题(本大题共17小题,每小题5分,共85分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合M={1,2,3,4,5),N={2,4,6),则M∩N= 【】A.{2,4}B.{2,4,6}C.{1,3,5}D.{1,2,3,4,5,6}2.函数的最小正周期是【】A.8πB.4πC.2πD.3.函数的定义域为【】A.B.C.D.4.设a,b,C为实数,且a>b,则【】A.B.C.D.5.若【】A.B.C.D.6.函数的最大值为A.1B.2C.6D.37.右图是二次函数Y=X2+bx+C的部分图像,则【】A.b>0,C>0B.b>0,C<0C.b<0,C>0D.b<0,c<08.已知点A(4,1),B(2,3),则线段AB的垂直平分线方程为【】A.z-Y+1=0B.x+y-5=0C.x-Y-1=0D.x-2y+1=09.函数【】A.奇函数,且在(0,+∞)单调递增B.偶函数,且在(0,+∞)单调递减C.奇函数,且在(-∞,0)单调递减D.偶函数,且在(-∞,0)单调递增10.一个圆上有5个不同的点,以这5个点中任意3个为顶点的三角形共有【】A.60个B.15个C.5个D.10个11.若【】A.5mB.1-mC.2mD.m+112.设f(x+1)一x(x+1),则f(2)= 【】A.1B.3C.2D.613.函数y=2x的图像与直线x+3=0的交点坐标为【】A.B.C.D.14.双曲线的焦距为【】A.1B.4C.2D.根号215.已知三角形的两个顶点是椭圆的两个焦点,第三个顶点在C上,则该三角形的周长为【】A.10B.20C.16D.2616.在等比数列{a n}中,若a3a4=l0,则a l a6+a2a5=【】A.100B.40C.10D.2017.若l名女牛和3名男生随机地站成一列,则从前面数第2名是女生的概率为【】A.B.C.D.第Ⅱ卷(非选择题,共65分)二、填空题(本大题共4小题,每小题4分。

2018年成人高考高起点理科数学预测真题及答案(六)

2018年成人高考高起点理科数学预测真题及答案(六)

2018年景人高考高起点理科数学展望真题及答案(六)本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.选择题一、选择题:本大题共17小题,每题5分,共85分.在每题给出的四个选项中,只有一项为哪一项切合题目要求的.(1)函数y=sin 2xcos 2x的最小正周期是(2)A (-1,+∞)B [-1,+∞)C (-1,0)∪(0,+∞)D [-1,0)∪(0,+∞)(3)0<x<5是不等式|x-2|<4建立的A 充足不用要条件B 必需不充足条件C 充要条件D 既不充足也不用要条件(4)在区间(0,+∞)内为增函数的是(成人高考更多完好资料免费供给加微信/QQ:29838818)(5)(6)A k<4B 4<k<9C k<9D k>9(7)(8)(9)某小组共10名学生,此中女生3名,现选举2人今世表,起码有1名女生入选,则不一样的选法共有A 21种B 24种C 27种D 63种(10)甲、乙两个水文站同时做水文预告,假如甲站、乙站各自预告的正确率分别为0.8和0.7,那么,在一次预告中两站都正确预告的概率为A 0.7B 0.56C 0.7D 0.8(11)圆x2+y2+2x-8y+8=0的半径为A 2B 3C 4D 8(12)已知向量a,b知足|a|=1,|b|=4,且a·b=2,则a与b的夹角为(13)A 20,20B 15,20C 20,15D 15,15(14)设定义在R上的函数f(x)=x|x|,则f(x)A 既是奇函数,又是增函数B 既是偶函数,又是增函数C 既是奇函数,又是减函数D 既是偶函数,又是减函数(15)正四棱锥的侧棱长与底面边长都是1,则侧棱和底面所成的角为A 30°B 45°C 60°D 90°(16)已知数列{a n}知足a n+1=a n+2,且a1=1,那么它的通项公式a n等于A 2n-1B 2n+1C 2n-2D 2n+2(17)从某次测试的试卷中抽出5份,分数分别为:76,85,90,72,77,则此次测试成绩的样本方差为A 42.2B 42.8C 43.4D 44非选择题二、填空题:本大题共4小题,每题4分,共l6分.把答案填在题中横线上.(18)曲线y=x+e x在x=0处的切线方程是_____.(成人高考更多完好资料免费供给加微信/QQ:29838818)(19)(20)设失散型随机变量ξ的散布列为:则P1的值为_____.(21)若A,B两点在半径为2的球面上,以线段AB为直径的小圆周长为2π,则A,B两点的球面距离为_____.三、解答题:本大题共4小题,共49分.解答应写出推理、演算步骤.(22)(本小题满分12分)已知等比数列{a n}中,a1a2a3=27.(I)求a2;(Ⅱ)若{a n}的公比q>1,且a1+a2+a3=13,求{a n}的前8项和.(23)(本小题满分l2分)已知ΔABC极点的直角坐标分别为A(3,4),B(0,0),C(c,0).(Ⅱ)若C=5,求sin A的值.(24)(本小题满分12分)已知函数f(x)=e x-e2x.(I)求f(x)的单一区间,并说明它在各区间的单一性;(Ⅱ)求f(x)在区间[0,3]上的最大值和最小值.(25)(本小题满分13分)(I)求双曲线方程;(Ⅱ)若点M(3,m)在双曲线上,求证MF1⊥MF2.答案分析一、选择题(1)【参照答案】 (D)【解题指要】此题主要考察三角函数周期的求法.(2)【参照答案】 (B)由已知应有x+1≥0,解得x≥-1,应选(B).【解题指要】此题考察函数的定义域.在求函数的定义域时,应将条件写全,而且注意会合的交、并关系.(3)【参照答案】(A)【解题指要】此题主要考察绝对值不等式的解法,考察考生对充要条件的掌握状况.(4)【参照答案】 (C)【解题指要】此题考察函数的单一性.考生对基本初等函数的单一性应娴熟掌握.(5)【参照答案】 (D)【解题指要】此题考察余弦函数的最值.(6)【参照答案】(B)【解题指要】此题考察双曲线方程应知足的条件.(7)【参照答案】 (C)【解题指要】此题考察函数的表示,属较易题.(8)【参照答案】(B)应选(B).【解题指要】此题考察复数的运算.关于复数的运算,娴熟掌握运算法例即可.(9)【参照答案】(B)【解题指要】此题主要考察考生对摆列组合知识的理解.(10)【参照答案】 (B)P=0.8×0.7=0.56,应选(B).【解题指要】此题主要考察两个互相独立事件同时发生的概率的求法.(11)【参照答案】 (B)x2+y2+2x-8y+8=(x+1)2+(y-4)2-9=0.因此(x+1)2+(y-4)2=32,即该圆的半径为3.【解题指要】此题考察圆的方程.求圆的圆心坐标和半径,只要将所给方程配方后转变为标准方程即可得解.(12)【参照答案】 (C)【解题指要】此题考察向量的数目积及向量夹角的求法.(13)【参照答案】(C)(14)【参照答案】 (A)【解题指要】此题考察函数的奇偶性和单一性.(15)【参照答案】 (B)【解题指要】此题考察空间线与面的地点关系.(16)【参照答案】 (A)由a n+1=a n+2可得a n+1-a n=2,知数列{a n}为等差数列,且公差d=2,故通项公式为:a n=1+(n-1)×2=2n-1.应选(A).【解题指要】此题考察等差数列的基本知识.(17)【参照答案】 (B)【解题指要】此题考察样本方差的观点及其计算.二、填空题(18)【参照答案】2x-y+1=0【解题指要】曲线在x=x0处的切线的斜率为对应函数在x=x0处的导数值.(19)【参照答案】8【解题指要】此题考察等差数列的有关知识.(20)【参照答案】【解题指要】此题考察失散型随机变量散布列的性质.(21)【参照答案】【解题指要】此题考察球和球面距离的有关知识.三、解答题(22)【参照答案】【解题指要】此题考察等比数列知识.(23)【参照答案】解 (I)由于A(3,4),B(0,0),C(c,0),因此【解题指要】此题考察解三角形、向量等有关知识.向量与三角函数、分析几何、立体几何等都有密切的联系,对其基本运算要娴熟掌握.(24)【参照答案】解【解题指要】此题考察导数在求函数单一区间及极值、最值上的应用.(25)【参照答案】解【解题指要】此题考察双曲线的方程及其几何性质.。

2018年成人高考高数真题及答案解析

2018年成人高考高数真题及答案解析

2018年成人高等学校专升本招生全国统一考试高等数学(一)一、选择题:每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求。

1.=→xxx cos lim0( ) A.e B.2 C.1 D.0 2.设x y cos 1+=,则dy=( )A.()dx x sin 1+B.()dx x sin 1-C.xdx sinD.xdx sin - 3.若函数()x x f 5=,则()='x f ( ) A.15-x B.15-x x C.5ln 5x D.x 5 4.=-⎰dx x21( ) A.C x +-2ln B.C x +--2ln C.()C x +--221D.()C x +-2215.()='⎰dx x f 2( ) A.()Cx f +221B.()C x f +2C.()C x f +22D.()C x f +216.若()x f 为连续的奇函数,则()=⎰-dx x f 11 A.0 B.2 C.()12-f D.()12f 7.若二元函数y x y x z 232++=,则=∂∂xz( ) A.y xy 232++ B.y xy 23++ C.32+xy D.3+xy 8.方程0222=-+z y x 表示的二次曲面是( ) A.柱面 B.球面 C.旋转抛物面 D.椭球面9.已知区域(){}11,11,≤≤-≤≤-=y x y x D ,则=⎰⎰Dxdxdy ( )A.0B.1C.2D.410.微分方程1='y y 的通解为( ) A.C x y +=2 B.Cx y +=221C.Cx y =2D.C x y +=22 二、填空题:11~20小题,每小题4分,共40分 11.曲线43623++-=x x x y 的拐点为___________ 12.()=-→xx x 1031lim ___________13.若函数()x x x f arctan -=,则()='x f ___________ 14.若x e y 2=,则=dy ___________ 15.()=+⎰dx x 32___________ 16.()=+⎰-dx x x 1125___________17.=⎰dx x π02sin ___________ 18.=∑∞=031n n___________ 19.=⎰+∞-dx e x 0___________20.若二元函数22y x z =,则=∂∂∂yx z2___________ 三、解答题:21~28题,共70分.解答应写出推理、演算步骤21.设函数()⎪⎩⎪⎨⎧≥+=0a,30<,sin 3x x x x xx f ,在0=x 处连续,求a22.求()1sin 123lim 2231---→x x x x23.设函数()()23ln 2++=x x x f ,求()0f '' 24.求23sin lim x tdt x x ⎰→25.求⎰xdx x cos26.求函数()5213123+-=x x x f 的极值27.求微方程x y xy ln 21=-'的通解28.设区域(){}0,9,22≥≤+=y y x y x D ,计算()d xdy y x D⎰⎰+222018年成人高等学校专升本招生全国统一考试高等数学(一)试题答案解析1.【答案】D【解析】01cos lim lim cos lim00===→→→x x x x x x 2.【答案】D【解析】()x x y sin cos 1-='+=',故xdx dy sin -= 3.【答案】C【解析】()()5ln 55x x x f ='=' 4.【答案】B 【解析】C x dx x+--=-⎰2ln 215.【答案】A 【解析】()()()()C x f x d x f dx x f +='='⎰⎰22122212 6.【答案】A【解析】因为()x f 为连续的奇函数,故()011=⎰-dx x f 7.【答案】C【解析】y x y x z 232++=,故32+=∂∂xy xz8.【答案】C【解析】0222=-+z y x 可化为z y x =+2222,故表示的是旋转抛物面9.【答案】A【解析】02111111===⎰⎰⎰⎰⎰---xdx dy xdx xdxdy D10.【答案】B【解析】原方程分离变量得dx ydy =,两边同时积分得C x y +=221,故方程的通解为C x y +=221 11.【答案】(2,-6)【解析】31232+-='x x y ,126-=''x y ,令0=''y ,则6,2-==y x ,故拐点为(2,-6) 12.【答案】3-e【解析】()()[]()33310131lim 31lim --⋅-→→=-+=-e x x xx xx13.【答案】221x x +【解析】()x x x f arctan -=,则()2221111xx x x f +=+-=' 14.【答案】dx e x 22【解析】()x x e e y 222='=',则dx e dy x 22= 15.【答案】C x x ++32 【解析】()C x x dx x ++=+⎰3322 16.【答案】32【解析】()32316111361125=⎪⎭⎫ ⎝⎛+=+--⎰x x dx x x17.【答案】2【解析】22cos222sin 22sin 000=-=⎪⎭⎫ ⎝⎛=⎰⎰πππxx d x dx x18.【答案】23【解析】2331123lim 3113111lim 31000=⎪⎭⎫ ⎝⎛-=-⎪⎭⎫ ⎝⎛-⋅=→→∞=∑n x n x n n19.【答案】1 【解析】100=-=∞+-+∞-⎰x x e dx e20.【答案】xy 4【解析】22y x z =,22xy xz =∂∂,xy y x z 42=∂∂∂ 21.【答案】()3sin 3limlim 00==--→→xxx f x x()()a a x x f x x =+=++→→3lim lim 0且()a f =0因为()0=x x f 在处连续 所以()()()0lim lim 00f x f x f x x ==+-→→3=a22.【答案】()1123lim 1sin 123lim 22312231---=---→→x x x x x x x x ()()()()25113lim11113lim2121=+++=+--++=→→x x x x x x x x x x23.【答案】()()()22392332+-=''++='x x f x x f故()490-=''f24.【答案】2002003cos 31lim 3sin lim xt x tdtx x xx -=→→⎰()2329lim 313cos 131lim 22020==-=→→x xx x x x25.【答案】⎰⎰-=xdx x x xdx x sin sin cos C x x x ++=cos sin26.【答案】()x x x f -='2,令()0='x f ,得01=x ,12=x , 当1>0<x x 或时,()0>x f ',此时()x f 为单调增加函数 当1<x <0时,()0<x f ',此时()x f 为单调减少函数 故当0=x 时,()x f 取极大值,极大值()50=f 当1=x 时,,()x f 取极小值,极小值()6291=f 27.【答案】这是个一阶线性非齐次微分方程()xx P 1-=,()x x Q ln 2=故通解为⎪⎪⎭⎫ ⎝⎛+⎰⎰=⎰-C dx xe e y dx x dx x 11ln 2()[]Cx x C dx x x x +=⎪⎭⎫ ⎝⎛+⋅=⎰2ln ln 228.【答案】D 在极坐标系里可表示为30,0≤≤≤≤r πθ,故()πθπ48132022=⋅=+⎰⎰⎰⎰rdr r d dxdy y xD。

2018成人高考数学真题

2018成人高考数学真题

2018成人高考数学真题2018年成人高考数学考试一直备受考生们关注,考试难度如何?考察的内容有哪些?下面就让我们来看一下2018年成人高考数学的真题。

第一部分:选择题1.已知函数$f(x)=2x^2-5x-3$,则$f(-1)=$?A. -4B. 4C. 3D. -3答案:A. -42.若直线$y=kx+3$与抛物线$y=x^2-4x$相交于$(1,4)$,则$k=$?A. -1B. 0C. 1D. 2答案:C. 13.在平面直角坐标系中,点A$(2,3)$,点B$(-1,4)$,则$\angleAOB$的正切值为?(其中O为坐标原点)A. $\frac{7}{2}$B. $\frac{5}{3}$C. $\frac{7}{5}$D. $\frac{5}{7}$答案:B. $\frac{5}{3}$4.已知实数$a$,使得方程$x^2-2ax+0.25=0$有两个不相等的实根,则$a$的取值范围是?A. $a>0$B. $0<a<2$C. $a>1$D. $a>0.5$答案:B. $0<a<2$第二部分:填空题5.已知等差数列前$n$项和为$S_n=\frac{n(2a_1+(n-1)d)}{2}$,若$a_1=3$,$d=5$,$S_7=42$,则数列的第一个数$a_1=$ ?(填数字)答案:-46.设函数$y=f(x)=x^3-3x^2+x+2$,则$f'(x)=$ ?(填公式)答案:$f'(x)=3x^2-6x+1$第三部分:计算题7.已知集合$A=\{x | x=a^2,b^2,c^2,d^2\}$,$B=\{y |y=\sqrt{a},\sqrt{b},\sqrt{c},\sqrt{d}\}$,若$a=2$,$b=3$,$c=4$,$d=5$,求$A\cap B$。

答案:$\{2,3,4,5\}$8.解方程组:$$\begin{cases} 2x+3y=11\\ x+y=5 \end{cases}$$答案:$x=2$,$y=3$第四部分:证明题9.已知$\triangle ABC$,$\angle A+\angle B+\angle C=180^\circ$,证明$AB+BC>AC$。

2018成人高考高起专《数学》真题与答案解析

2018成人高考高起专《数学》真题与答案解析

2017年成人高等学校高起点招生全国统一考试数学本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分150分。

考试时间150分钟。

第I卷(选择题,共85分)一、选择题(本大题共17小题,每小题5分,共85分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合M={1,2,3,4,5),N={2,4,6),则M∩N=()A.{2,4)B.(2,4,6)C.(1,3,5)D.{1,2,3,4.5,6)2.函数y=3sin x4的最小正周期是( )A.8πB.4πC.2πD.2π3.函数y=√x(x−1)的定义城为( )A.{x|x≥0}B.{x|x≥1}C.{x|0≤x≤1}D.{x|x≤0或x≥1}4.设a,b,c为实数,且a>b,则( )A.a-c>b-cB.|a|>|b|C.a2>b2D.ac>bc5.若π2<θ<π,且sinθ=13,则cosθ=( )A.2√23B.− 2√23C. − √23D.√236.函数y=6sinxcosc的最大值为( )A.1B.2C.6D.37.右图是二次函数y=x2+bx+c的部分图像,则( )A.b>0,c>0B.b>0,c<0C.b<0,c>08.已知点A(4,1),B(2,3),则线段AB的垂直平分线方程为( )A.x-y+1=0B.x+y-5=0C.x-y-1=0D.x-2y+1=09.函数y=1x是( )A.奇函数,且在(0,+∞)单调递增B.偶函数,且在(0,+∞)单调递减C.奇函数,且在(-∞,0)单调递减D.偶函数,且在(-∞,0)单调递增10.一个圆上有5个不同的点,以这5个点中任意3个为顶点的三角形共有( )A.60个B.15个C.5个D.10个11.若lg5=m,则lg2=( )A.5mB.1-mC.2mD.m+112.设f(x+1)=x(x+1),则f(2)= ( )A.1B.3C.2D.613.函数y=2x 的图像与直线x+3=0的交点坐标为( )A.(-3,-16)B.(-3,18)C.(-3,16)D.(-3,-18) 14.双曲线y 23-x 2=1的焦距为( )A.1B.4C.2D.√215.已知三角形的两个顶点是椭圆C :x 225+y 216=1的两个焦点,第三个顶点在C 上,则该三角形的周长为( )A.10B.20C.16D.2616.在等比数列{a n }中,若d 3a 4=10,则a 1a 6,+a 2a 5=( )A.100B.40C.10D.2017.若1名女生和3名男生随机地站成一列,则从前面数第2名是女生的概率为( )A.14B.13C.12D.34 第Ⅱ卷(非选择题,共65分)二、填空题(本大题共4小题,每小题4分,共16分)18.已知平面向量a=(1,2),b=(-2,3),2a+3b= .19.已知直线1和x-y+1=0关于直线x=-2对称,则1的斜率为= .20.若5条鱼的平均质量为0.8kg,其中3条的质量分别为0.75kg,0.83kg 和0.78kg ,则其余2条的平均质量为 kg.21.若不等式|ax+1|<2的解集为{x|-23<x<12},则a= .三.解答题(本大题共4小题,共49分.解答应写出推理、演算步骤)22. (本小题满分12分)设{a a }为等差数列,且a 2+a 4−2a 1=8.(1)求{a a }的公差d;(2)若a 1=2,求{a a }前8项的和a 8.23.(本小题满分12分)设直线y=x+1是曲线y=a3+3a2+4x+a的切线,求切点坐标和a的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档