[高考真题]2018年高考全国卷Ⅲ理数试题解析(精编版)(解析版)
2018年高考理科数学(3卷)答案详解(附试卷)
2018年普通高等学校招生全国统一考试理科数学3卷 答案详解一、选择题:本题共12小题,每小题5分,共60分。
1.已知集合,,则A .B .C .D . 【解析】∵}1|{≥=x x A ,}2,1{=B A . 【答案】C 2. A .B .C .D .【解析】i i i +=-+3)2)(1(. 【答案】D3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是【解析】看不见的线应该用虚线表示. 【答案】A 4.若,则 A .B .C .D . {}|10A x x =-≥{}012B =,,A B ={}0{}1{}12,{}012,,()()1i 2i +-=3i --3i -+3i -3i+1sin 3α=cos2α=897979-89-【解析】227cos212sin 199αα=-=-=. 【答案】B5.252()x x+的展开式中4x 的系数为A .10B .20C .40D .80【解析】由二项式定理得252()x x +的展开式的通项为251031552()2rr r r r rr T C x C x x --+⎛⎫== ⎪⎝⎭,由1034r -=,得2r =,∴252()x x+的展开式中4x 的系数为225240C =.【答案】C6.直线分别与轴,轴交于,两点,点在圆上,则△ABP 面积的取值范围是 A .B .C .D .【解析】如图所示,由题意可知)0,2(-A 、)0,2(-B ,∴22||=AB .过点P 作△ABP 的高PH ,由图可以看出,当高PH 所在的直线过圆心)0,2(时,高PH 取最小值或最大值. 此时高PH 所在的直线的方程为02=-+y x .将02=-+y x 代入,得到与圆的两个交点:)1,1(-N 、)1,3(M ,因此22|211|min =+-=|PM|,232|213|max =++=|PM|. 所以222221min =⨯⨯=S ,6232221max =⨯⨯=S . 20x y ++=x y A B P ()2222x y -+=[]26,[]48,⎡⎣22(2)2x y -+=图A6【答案】A7.函数的图像大致为【解析】设2)(24++-==x x y x f ,∵02)0(>=f ,因此排除A 、B ;)12(224)(23--=+-='x x x x x f ,由0)(>'x f 得22-<x 或220<<x ,由此可知函数)(x f 在),(220内为增函数,因此排除C.422y x x =-++【答案】D8.某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数,4.2=DX ,)6()4(=<=x P x P ,则p= A .0.7B .0.6C .0.4D .0.3【解析】某群体中的每位成员使用移动支付的概率都为p ,看做独立重复事件,满足),10(~p B X .∵4.2=DX ,∴4.2)1(10=-p p ,解得6.0=p 或4.0=p .∵)6()4(=<=x P x P ,∴4661064410)1()1(p p C p p C -<-,解得021<-p ,即21>p . ∴6.0=p .【答案】B9.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若△ABC 的面积为4222c b a -+,则C =A .B .C .D .【解析】由已知和△ABC 的面积公式有,4sin 21222c b a C ab -+=,解得C ab c b a sin 2222=-+.∴ C abCab ab c b a C sin 2sin 22cos 222==-+=,又∵1cos sin 22=+C C ,∴22sin cos ==C C ,4π=C . 【答案】C10.设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为39,则三棱锥D -ABC 体积的最大值为 A .312B .318C .324D .354【解析】如图A12所示,球心为O ,△ABC 的外心为O ′,显然三棱锥D -ABC 体积最大时D 在O′O 的延长线与球的交点.△ABC 为为等边三角形且其面积为39,因此有39432=⨯AB ,解得AB =6. △3260sin 32=⋅⨯=' AB C O ,2)32(42222=-='-='O O OC O O , 2π3π4π6π∴642=+='D O .∴ 三棱锥D -ABC 体积的最大值为31863931=⨯⨯=V .图A10【答案】B11.设F 1、F 2是双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点,O 是坐标原点.过F 2作C 的一条渐近线的垂线,垂足为P .若,则的离心率为 AB.2CD【解析】双曲线C 的渐近线方程为by x a=±,即0bx ay ±=. ∴ 点F 2到渐近线的距离为b ba bc d =+=22,即b ||PF =2,∴ a b c ||PF ||OF |OP|=-=-=222222,∴ a |OP|||PF 661==,在Rt △OPF 2中,cbOF ||PF O PF ==∠||cos 222,在Rt △F 1PF 2中,bca cb |F |F ||PF ||PF |F |F ||PF O PF 4642cos 22221221221222-+=⋅-+=∠,∴ bca cbc b 464222-+=,化简得222364b a c =-,将222a c b -=代入其中得223a c =,1PF =C∴3222==ac e ,3=e .图A11【答案】C12.设0.2log 0.3a =,2log 0.3b =,则A .0a b ab +<<B .0ab a b <+<C . 0a b ab +<<D .0ab a b <<+【解析】∵0.20.20.2log 1log 0.3log 0.2<<,∴01a <<.∵221log 0.3log 2<,∴1b <-. ∴0ab <,0a b +<. ∵0.30.30.30.311=log 2log 0.2log 0.4log 0.31a b ab a b++=+=<=,0ab <,∴ab a b <+.综上所述 0ab a b <+<.【答案】B二、填空题:本题共4小题,每小题5分,共20分。
【数学】2018年高考真题——全国卷Ⅲ(理)(精校版)
2018年普通高等学校招生全国统一考试(全国Ⅲ卷)理科数学一、选择题1.已知集合A={x|x-1≥0},B={0,1,2},则A∩B等于()A.{0} B.{1}C.{1,2} D.{0,1,2}答案 C解析∵A={x|x-1≥0}={x|x≥1},∴A∩B={1,2}.2.(1+i)(2-i)等于()A.-3-i B.-3+iC.3-i D.3+i答案 D解析(1+i)(2-i)=2+2i-i-i2=3+i.3.中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()答案 A解析由题意可知带卯眼的木构件的直观图如图所示,由直观图可知其俯视图应选A.4.若sin α=,则cos 2α等于()A. B.C.-D.-答案 B解析∵sin α=,∴cos 2α=1-2sin2α=1-2×=.5.的展开式中x4的系数为()A.10 B.20 C.40 D.80答案 C解析的展开式的通项公式为T k+1=·(x2)5-k·=·2k·x10-3k,令10-3k=4,得k=2.故展开式中x4的系数为·22=40.6.直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆(x-2)2+y2=2上,则△ABP 面积的取值范围是()A.[2,6]B.[4,8]C.[,3] D.[2,3]答案 A解析设圆(x-2)2+y2=2的圆心为C,半径为r,点P到直线x+y+2=0的距离为d,则圆心C(2,0),r=,所以圆心C到直线x+y+2=0的距离为2,可得d max=2+r=3,=2-r=.由已知条件可得|AB|=2,所以△ABP面积的最大值为|AB|·d max=6,dmin△ABP面积的最小值为|AB|·d min=2.综上,△ABP面积的取值范围是[2,6].7.函数y=-x4+x2+2的图象大致为()A. B.C. D.答案 D解析方法一f′(x)=-4x3+2x,则f′(x)>0的解集为∪,此时f(x)单调递增;f′(x)<0的解集为∪,此时f(x)单调递减.方法二当x=1时,y=2,所以排除A,B选项.当x=0时,y=2,而当x=时,y=-++2=2>2,所以排除C选项.8.某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立.设X为该群体的10位成员中使用移动支付的人数,D(X)=2.4,P(X=4)<P(X=6),则p等于() A.0.7 B.0.6 C.0.4 D.0.3答案 B解析由题意可知,10位成员中使用移动支付的人数X服从二项分布,即X~B(10,p),所以D(X)=10p(1-p)=2.4,所以p=0.4或0.6.又因为P(X=4)<P(X=6),所以p4(1-p)6<p6(1-p)4,所以p>0.5,所以p=0.6.9.△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C等于() A. B.C. D.答案 C解析∵S=ab sin C===ab cos C,∴sin C=cos C,即tan C=1.又∵C∈(0,π),∴C=.10.设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且其面积为9,则三棱锥D-ABC体积的最大值为()A.12B.18C.24D.54答案 B解析由等边△ABC的面积为9,可得AB2=9,所以AB=6,所以等边△ABC的外接圆的半径为r=AB=2.设球的半径为R,球心到等边△ABC的外接圆圆心的距离为d,则d===2.所以三棱锥D-ABC高的最大值为2+4=6,所以三棱锥D-ABC体积的最大值为×9×6=18.11.设F1,F2是双曲线C:-=1(a>0,b>0)的左、右焦点,O是坐标原点.过F2作C 的一条渐近线的垂线,垂足为P.若|PF 1|=|OP|,则C的离心率为()A.B.2 C. D.答案 C解析如图,过点F1向OP的反向延长线作垂线,垂足为P′,连接P′F2,由题意可知,四边形PF1P′F2为平行四边形,且△PP′F2是直角三角形.因为|F2P|=b,|F2O|=c,所以|OP|=a.又|PF 1|=a=|F2P′|,|PP′|=2a,所以|FP|=a=b,所以c==a,所以e==.12.设a=log0.20.3,b=log20.3,则()A.a+b<ab<0 B.ab<a+b<0C.a+b<0<ab D.ab<0<a+b答案 B解析∵a=log0.20.3>log0.21=0,b=log20.3<log21=0,∴ab<0.∵=+=log 0.30.2+log0.32=log0.30.4,∴1=log0.30.3>log0.30.4>log0.31=0,∴0<<1,∴ab<a+b<0.二、填空题13.已知向量a=(1,2),b=(2,-2),c=(1,λ).若c∥(2a+b),则λ=________. 答案解析2a+b=(4,2),因为c∥(2a+b),所以4λ=2,得λ=.14.曲线y=(ax+1)e x在点(0,1)处的切线的斜率为-2,则a=________.答案-3解析∵y′=(ax+a+1)e x,∴当x=0时,y′=a+1,∴a+1=-2,得a=-3.15.函数f(x)=cos在[0,π]上的零点个数为______.答案 3解析由题意可知,当3x+=kπ+(k∈Z)时,f(x)=cos=0.∵x∈[0,π],∴3x+∈,∴当3x+的取值为,,时,f(x)=0,即函数f(x)=cos在[0,π]上的零点个数为3.16.已知点M(-1,1)和抛物线C:y2=4x,过C的焦点且斜率为k的直线与C交于A,B两点.若∠AMB=90°,则k=________.答案 2解析方法一设点A(x1,y1),B(x2,y2),则∴-=4(x 1-x2),∴k==.设AB的中点为M′(x0,y0),抛物线的焦点为F,分别过点A,B作准线x=-1的垂线,垂足为A′,B′,则|MM′|=|AB|=(|AF|+|BF|)=(|AA′|+|BB′|).∵M′(x0,y0)为AB中点,∴M为A′B′的中点,∴MM′平行于x轴,∴y1+y2=2,∴k=2.方法二由题意知,抛物线的焦点坐标为F(1,0),设直线方程为y=k(x-1),直线方程与y2=4x联立,消去y,得k2x2-(2k2+4)x+k2=0.设A(x 1,y1),B(x2,y2),则x1x2=1,x1+x2=.由M(-1,1),得=(-1-x 1,1-y1),=(-1-x2,1-y2).由∠AMB=90°,得·=0,∴(x1+1)(x2+1)+(y1-1)(y2-1)=0,∴x1x2+(x1+x2)+1+y1y2-(y1+y2)+1=0.又y1y2=k(x1-1)·k(x2-1)=k2[x1x2-(x1+x2)+1],y1+y2=k(x1+x2-2),∴1++1+k2-k+1=0,整理得-+1=0,解得k=2.三、解答题17.等比数列{a n}中,a1=1,a5=4a3.(1)求{a n}的通项公式;(2)记S n为{a n}的前n项和,若S m=63,求m.解(1)设{a n}的公比为q,由题设得a n=q n-1.由已知得q4=4q2,解得q=0(舍去),q=-2或q=2.故a n=(-2)n-1或a n=2n-1(n∈N*).(2)若a n=(-2)n-1,则S n=.由S m=63得(-2)m=-188,此方程没有正整数解.若a n=2n-1,则S n=2n-1.由S m=63得2m=64,解得m=6.综上,m=6.18.某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人.第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数m,并将完成生产任务所需时间超过m和不超过m的工人数填入下面的列联表;(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:K2=,.解(1)第二种生产方式的效率更高.理由如下:(ⅰ)由茎叶图可知:用第一种生产方式的工人中,有75%的工人完成生产任务所需时间至少80 min;用第二种生产方式的工人中,有75%的工人完成生产任务所需时间至多79 min.因此第二种生产方式的效率更高.(ⅱ)由茎叶图可知,用第一种生产方式的工人完成生产任务所需时间的中位数为85.5 min;用第二种生产方式的工人完成生产任务所需时间的中位数为73.5 min.因此第二种生产方式的效率更高.(ⅲ)由茎叶图可知,用第一种生产方式的工人完成生产任务平均所需时间高于80 min;用第二种生产方式的工人完成生产任务平均所需时间低于80 min.因此第二种生产方式的效率更高.(ⅳ)由茎叶图可知,用第一种生产方式的工人完成生产任务所需时间分布在茎8上的最多,关于茎8大致呈对称分布;用第二种生产方式的工人完成生产任务所需时间分布在茎7上的最多,关于茎7大致呈对称分布.又用两种生产方式的工人完成生产任务所需时间分布的区间相同,故可以认为用第二种生产方式完成生产任务所需的时间比用第一种生产方式完成生产任务所需的时间更少.因此第二种生产方式的效率更高.(2)由茎叶图知m==80.列联表如下:(3)因为K2==10>6.635,所以有99%的把握认为两种生产方式的效率有差异.19.如图,边长为2的正方形ABCD所在的平面与半圆弧所在平面垂直,M是上异于C,D的点.(1)证明:平面AMD⊥平面BMC;(2)当三棱锥M-ABC体积最大时,求平面MAB与平面MCD所成二面角的正弦值.(1)证明由题设知,平面CMD⊥平面ABCD,交线为CD.因为BC⊥CD,BC⊂平面ABCD,所以BC⊥平面CMD,又DM⊂平面CMD,故BC⊥DM.因为M为上异于C,D的点,且DC为直径,所以DM⊥CM.又BC∩CM=C,BC,CM⊂平面BMC,所以DM⊥平面BMC.又DM⊂平面AMD,故平面AMD⊥平面BMC.(2)解以D为坐标原点,的方向为x轴正方向,建立如图所示的空间直角坐标系D-xyz.当三棱锥M-ABC体积最大时,M为的中点.由题设得D(0,0,0),A(2,0,0),B(2,2,0),C(0,2,0),M(0,1,1),=(-2,1,1),=(0,2,0),=(2,0,0),设n=(x,y,z)是平面MAB的法向量,则即可取n=(1,0,2),是平面MCD的法向量,因此cos〈n,〉==,sin〈n,〉=.所以平面MAB与平面MCD所成二面角的正弦值是.20.已知斜率为k的直线l与椭圆C:+=1交于A,B两点,线段AB的中点为M(1,m)(m>0).(1)证明:k<-;(2)设F为C的右焦点,P为C上一点,且++=0.证明:||,||,||成等差数列,并求该数列的公差.证明(1)设A(x1,y1),B(x2,y2),则+=1,+=1.两式相减,并由=k,得+·k=0.由题设知=1,=m,于是k=-.①由题设得0<m<,故k<-.(2)由题意得F(1,0).设P(x3,y3),则(x3-1,y3)+(x1-1,y1)+(x2-1,y2)=(0,0).由(1)及题设得x3=3-(x1+x2)=1,y3=-(y1+y2)=-2m<0.又点P在C上,所以m=,从而P,||=,于是||===2-.同理||=2-.所以||+||=4-(x 1+x2)=3.故2||=||+||,即||,||,||成等差数列.-x2|=.②设该数列的公差为d,则2|d|=|||-|||=|x将m=代入①得k=-1,所以l的方程为y=-x+,代入C的方程,并整理得7x2-14x+=0.故x 1+x2=2,x1x2=,代入②解得|d|=.所以该数列的公差为或-.21.已知函数f(x)=(2+x+ax2)ln(1+x)-2x.(1)若a=0,证明:当-1<x<0时,f(x)<0;当x>0时,f(x)>0;(2)若x=0是f(x)的极大值点,求a.(1)证明当a=0时,f(x)=(2+x)ln(1+x)-2x,f′(x)=ln(1+x)-.设函数g(x)=f′(x)=ln(1+x)-,则g′(x)=.当-1<x<0时,g′(x)<0;当x>0时,g′(x)>0,故当x>-1时,g(x)≥g(0)=0,当且仅当x=0时,g(x)=0,从而f′(x)≥0,当且仅当x=0时,f′(x)=0.所以f(x)在(-1,+∞)上单调递增.又f(0)=0,故当-1<x<0时,f(x)<0;当x>0时,f(x)>0.(2)解f′(x)=,记h(x)=ax2-x+(1+2ax)(1+x)ln(x+1)(x>-1),则h′(x)=4ax+(4ax+2a+1)ln(x+1).当a≥0,x>0时,h′(x)>0,h(x)单调递增,所以h(x)>h(0)=0,即f′(x)>0,f(x)单调递增,所以x=0不是极大值点,不符合题意.当a<0时,令m(x)=4ax+(4ax+2a+1)ln(x+1),则m′(x)=8a+4a ln(x+1)+,显然m′(x)单调递减.①令m′(0)=0,解得a=-,所以当-1<x<0时,m′(x)>0,m(x)单调递增,即h′(x)单调递增.当x>0时,m′(x)<0,m(x)单调递减,即h′(x)单调递减.所以h′(x)≤h′(0)=0,所以h(x)单调递减.因为h(0)=0,所以当-1<x<0时,h(x)>0,f′(x)>0,f(x)单调递增;当x>0时,h(x)<0,f′(x)<0,f(x)单调递减,此时x=0为f(x)的极大值点,符合题意.②当-<a<0时,所以m′(0)=1+6a>0,m′(e--1)=(2a-1)(1-e)<0,所以m′(x)=0在x>0上有唯一零点,记为x0,所以当0<x<x0时,m′(x)>0,m(x)单调递增,即h′(x)单调递增,所以h′(x)>h′(0)=0,h(x)单调递增,所以h(x)>h(0)=0,即f′(x)>0,f(x)单调递增,不符合题意.③当a<-时,m′(0)=1+6a<0,m′=(1-2a)e2>0.所以m′(x)=0在-1<x<0上有唯一零点,记为x1,所以当x1<x<0时,m′(x)<0,m(x)单调递减,即h′(x)单调递减.所以h′(x)<0,h(x)单调递减,所以h(x)<0,即f′(x)<0,f(x)单调递减,不符合题意.综上,a=-.22.选修4-4:坐标系与参数方程在平面直角坐标系xOy中,⊙O的参数方程为(θ为参数),过点(0,-)且倾斜角为α的直线l与⊙O交于A,B两点.(1)求α的取值范围;(2)求AB中点P的轨迹的参数方程.解(1)⊙O的直角坐标方程为x2+y2=1.当α=时,l与⊙O交于两点.当α≠时,记tan α=k,则l的方程为y=kx-.l与⊙O交于两点当且仅当<1,解得k<-1或k>1,即α∈或α∈.综上,α的取值范围是.(2)l的参数方程为.设A,B,P对应的参数分别为t A,t B,t P,=,且t A,t B满足t2-2t sin α+1=0.则t于是t A+t B=2sin α,t P=sin α.又点P的坐标(x,y)满足所以点P的轨迹的参数方程是.23.选修4-5:不等式选讲设函数f(x)=|2x+1|+|x-1|.(1)画出y=f(x)的图象;(2)当x∈[0,+∞)时,f(x)≤ax+b恒成立,求a+b的最小值.解(1)f(x)=y=f(x)的图象如图所示.(2)由(1)知,y=f(x)的图象与y轴交点的纵坐标为2,且各部分所在直线斜率的最大值为3,故当且仅当a≥3且b≥2时,f(x)≤ax+b在[0,+∞)上恒成立,因此a+b的最小值为5.。
2018年全国卷3理科数学试题及参考答案-
绝密★启用前试题类型:新课标Ⅲ2018年普通高等学校招生全国统一考试理科数学参考答案注意事项:1. 答题前,考生先将自己的姓名、准考证号填写在答题卡上.2. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑. 如需改动,用橡皮擦干净后,再选涂其他答案标号. 回答非选择题时,将答案写在答题卡上. 写在本试卷上无效.3. 考试结束后,将本试卷和答题卡一并交回.一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}|10A x x =-≥,{}0,1,2B =,则A B = ( ) A .{}0 B .{}1 C .{}1,2 D .{}0,1,2 【答案】C【解析】:1A x ≥,{}1,2A B ∴= 【考点】交集2.()()12i i +-=( )A .3i --B .3i -+C .3i -D .3i + 【答案】D【解析】()()21223i i i i i +-=+-=+【考点】复数的运算3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫做榫头,凹进部分叫做卯眼,图中的木构件右边的小长方体是榫头. 若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )【答案】A【解析】注意咬合,通俗点说就是小长方体要完全嵌入大长方体中,嵌入后最多只能看到小长方体的一个面,而B 答案能看见小长方体的上面和左面,C 答案至少能看见小长方体的左面和前面,D 答案本身就不对,外围轮廓不可能有缺失 【考点】三视图 4.若1sin 3α=,则cos 2α=( ) A .89 B .79 C .79- D .89- 【答案】B【解析】27cos 212sin 9αα=-= 【考点】余弦的二倍角公式5.522x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为( )A .10B .20C .40D .80 【答案】C【解析】522x x ⎛⎫+ ⎪⎝⎭的第1r +项为:()521035522rr r r r r C x C x x --⎛⎫= ⎪⎝⎭,故令2r =,则10345240r r r C x x -=【考点】二项式定理俯视方向D.C. B.A.6.直线20x y ++=分别与x 轴、y 轴交于点,A B 两点,点P 在圆()2222x y -+=上,则ABP ∆面积的取值范围是( )A .[]2,6B .[]4,8 C. D.⎡⎣【答案】A【解析】()()2,0,0,2A B --,AB ∴=,可设()2,P θθ+,则4P ABd πθ-⎛⎫==+∈ ⎪⎝⎭[]12,62ABP P AB P AB S AB d ∆--∴=⋅=∈ 注:P AB d -的范围也可以这样求:设圆心为O ,则()2,0O,故P AB O AB O AB d d d ---⎡∈+⎣,而O AB d -==,P AB d -∴∈ 【考点】点到直线距离、圆上的点到直线距离最值模型(圆的参数方程、三角函数) 7.422y x x =-++的图像大致为( )【答案】DxxxxyyyyD.C.B.A.OO11OO111111【解析】()12f =,排除A 、B ;()32'42212y x x x x =-+=-,故函数在0,2⎛⎫⎪ ⎪⎝⎭单增,排除C【考点】函数图像辨识(按照奇偶性、特殊点函数值正负、趋势、单调性(导数)的顺序来考虑)8.某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10为成员中使用移动支付的人数, 2.4DX =,()()46P X P X =<=,则p =( )A .0.7B .0.6C .0.4D .0.3 【答案】B【解析】由题意得X 服从二项分布,即()~10,X p ,由二项分布性质可得()101 2.4DX p p =-=,故0.4p =或0.6,而()()()()64446610104161P x C p p P x C p p ==-<==-即()221p p -<,故0.5p >0.6p ∴=【考点】二项分布及其方差公式9.ABC ∆的内角,,A B C 的对边分别为,,a b c ,若ABC ∆的面积为2224a b c+-,则C =( )A .2πB .3πC .4πD .6π【答案】C 【解析】2221sin 24ABCa b c S ab C ∆+-==,而222cos 2a b c C ab+-= 故12cos 1sin cos 242ab C ab C ab C ==,4C π∴= 【考点】三角形面积公式、余弦定理10.设,,,A B C D 是同一个半径为4的球的球面上四点,ABC ∆为等边三角形且其面积为D ABC -的体积最大值为( )A .B .C .D .【答案】B【解析】如图,O为球心,F为等边ABC∆的重心,易知OF⊥底面ABC,当,,D O F三点共线,即DF⊥底面ABC时,三棱锥D ABC-的高最大,体积也最大. 此时:6ABCABCABS∆∆⎫⎪⇒==等边,在等边ABC∆中,233BF BE AB===,在Rt OFB∆中,易知2OF=,6DF∴=,故()max163D ABCV-=⨯=【考点】外接球、椎体体积最值11.设12,F F是双曲线()2222:10,0x yC a ba b-=>>的左,右焦点,O是坐标原点,过2F作C的一条渐近线的垂线,垂足为P.若1PF=,则C的离心率为( )AB.2CD【答案】C【解析】渐近线OP的方程为:by xa=,利用点到直线的距离公式可求得2PF b=,(此结论可作为二级结论来记忆),在Rt ABC∆中,易得OP a=,1PF∴=,在1POF∆中,由余弦定理可得:22216cos2a c aPOFac+-∠=,又2cosaPOFc∠= 22262a c a aac c+-∴+=,故cea==【考点】双曲线几何性质、余弦定理解三角形OF ECBAD12. 设0.2log 0.3a =,2log 0.3b =,则( )A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b <<+ 【答案】B【解析】首先由0.2log y x =单调递减可知0.20.20.20log 1log 0.3log 0.21a =<=<=,同理可知21b -<<-,0,0a b ab ∴+<<,排除C 、D 其次:利用作商法:0.30.30.311log 0.2log 2log 0.41a b ab a b+=+=+=<(注意到0ab <) a b ab ∴+>【考点】利用对数函数单调性确定对数范围、作商法比较大小 二、填空题:本大题共4小题,每小题5分,共20分13. 已知向量()1,2a = ,()2,2b =- ,()1,c λ=. 若()//2c a b + ,则_______.λ= 【答案】12【解析】()24,2a b +=,故24λ=【考点】向量平行的坐标运算14. 曲线()1xy ax e =+在点()0,1处的切线斜率为2-,则______.a =【答案】3-【解析】()'1x xy ae ax e =++,12k a ∴=+=-【考点】切线斜率的计算方法15.函数()cos 36f x x π⎛⎫=+ ⎪⎝⎭在[]0,π的零点个数为_________.【答案】3【解析】[]0,x π∈,3,3666t x ππππ⎡⎤=+∈+⎢⎥⎣⎦,由cos y t =图像可知,当35,,222t πππ=时cos 0t =,即()f x 有三个零点 或者:令362x k πππ+=+,则93k x ππ=+,当0,1,2k =时,[]0,x π∈,故3个零点【考点】换元法(整体法)、余弦函数的图像与性质16. 已知点()1,1M -和抛物线2:4C y x =,过C 的焦点且斜率为k 的直线与抛物线交于,A B 两点,若90AMB ∠= ,则_______.k =【答案】2 【解析】(1) 常规解法:设直线方程为1x my =+,联立214x my y x=+⎧⎨=⎩可求121244y y m y y +=⎧⎨=-⎩,由()()12121212110MB MA y y y y x x x x ⋅=-++++++= ,可得12m =,故2k =(2) 二级结论:以焦点弦为直径的圆与准线相切设AB 中点为N ,则由二级结论可知NM ⊥准线,1N M y y ∴==,故22A B N y y y +==,由点差法可得,42A B k y y ==+ 进一步可得二级结论:AB M k y p ⋅=【考点】直线与抛物线联立(二级结论、点差法)三.解答题:共70分. 解答应写出文字说明,证明过程或演算步骤.. 第17~21题为必考题,每个试题考生必须作答. 第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17. (12分)等比数列{}n a 中,1531,4a a a ==. (1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和. 若63m S =,求m . 【答案】(1)12n n a -=或()12n n a -=-;(2)6m =【解析】(1)25334a a a q ==,2q ∴=±,∴12n n a -=或()12n n a -=-(2) 当2q =时,()()112631mmS -==-,解得6m =当2q =-时,()()112633mm S --==,得()2188m-=-无解综上:6m =【考点】等比数列通项公式与前n 项和公式 18. (12分)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式. 为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人. 第一组工人用第一种生产方式,第二组工人用第二种生产方式,根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:第一种生产方式第二种生产方式8655689 9 7 627012234 5 6 6 89 8 7 7 6 5 4 3 3281445 2 11 009(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数m ,并将完成生产任务所需时间超过m 和不超过m 的工人数填入下面的列联表:超过m不超过m第一种生产方式 第二种生产方式(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:()()()()()22n ad bc K a b c d a c b d -=++++,()2P K k ≥ 0.0500.010 0.001k3.8416.63510.828【答案】(1)第二组生产方式效率更高;(2)见解析;(3)有;【解析】(1)第二组生产方式效率更高;从茎叶图观察可知,第二组数据集中在70min~80min 之间,而第一组数据集中在80min~90min 之间,故可估计第二组的数据平均值要小于第一组数据平均值,事实上168727677798283838485868787888990909191928420E +++++++++++++++++++==同理274.7E =,21E E < ,故第二组生产方式效率更高 (2)由茎叶图可知,中位数7981802m +==,且列联表为:超过m 不超过m第一种生产方式15 5 第二种生产方式515(3)由(2)可知()22224015510 6.63520202020K -==>⨯⨯⨯,故有99%的把握认为两种生产方式的效率有差异 【考点】茎叶图、均值及其意义、中位数、独立性检验 19.(12分)如图,边长为2的正方形ABCD 所在的平面与半圆弧 CD所在的平面垂直,M 是CD 上异于,C D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ABC -体积的最大时,求面MAB 与面MCD 所成二面角的正弦值.【答案】(1)见解析; 【解析】(1)ABCD CDM BC DCM BC DM DM BMC ADN BMC BC CD MC DM ⎫⊥⎫⇒⊥⇒⊥⎬⎪⇒⊥⇒⊥⊥⎬⎭⎪⊥⎭(这边只给出了证明的逻辑结构,方便大家阅读,考试还需要写一些具体的内容)(2)ABC S ∆ 恒定,故要使M ABC V -最大,则M ABC d -最大,结合图象可知M 为弧 CD中点时,M ABC V -最大. 此时取CD 的中点O ,则MO DC ⊥,故MO ⊥面ABCD ,故可建立如图所示空间直角坐标系 则:()0,0,1M ,()2,1,0A -,()2,1,0B ,()0,1,0C ,()0,1,0D -MBCDA()()0,2,0,2,1,1AB MA ==--,∴平面MAB 的法向量为()11,0,2n = ,易知平面MCD 的法向量为()21,0,0n =,故12cos ,5n n <>== , ∴面MAB 与面MCD【考点】面面垂直的判定、三棱锥体积最值、二面角的求法 20. (12分)已知斜率为k 的直线l 与椭圆22:143x y C +=交于,A B 两点,线段AB 的中点为()()1,0M m m >.(1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且0FP FA FB ++=. 证明,,FA FP FB 成等差数列,并求该数列的公差. 【答案】(1)见解析;(2)28d =±【解析】(1) 点差法:设()()1122,,,A x y B x y ,则22112222143143x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩相减化简可得: 1212121234y y y y x x x x -+⋅=--+,34OM AB k k ⋅=-(此公式可以作为点差法的二级结论在选填题中直接用),34m k ∴=-,易知中点M 在椭圆内,21143m +<,代入可得12k <-或12k >,又0m >,0k ∴<,综上12k <-联立法:设直线方程为y kx n =+,且()()1122,,,A x y B x y ,联立22143x y y kx n⎧⎪+=⎨⎪=+⎩可得,()2224384120k x knx n +++-=,则122212284341243kn x x k n x x k -⎧+=⎪⎪+⎨-⎪=⎪+⎩,()121226243ny y k x x n k +=++=+224143343M M kn x k n y m k -⎧==⎪⎪+∴⎨⎪==⎪+⎩,两式相除可得34m k =-,后续过程和点差法一样(如果用∆算的话比较麻烦)(2) 0FP FA FB ++= ,20FP FM ∴+= ,即()1,2P m -,214143m ∴+=,()304m m ∴=>∴71,4k n m k =-=-=,由(1)得联立后方程为2171404x x -+=,1,2114x ∴=±, ()22121223c a c a cFA FB x x a x x a c a c a ⎛⎫⎛⎫∴+=-+-=-+= ⎪ ⎪⎝⎭⎝⎭(此处用了椭圆的第二定义,否则需要硬算,计算量太大)而32FP =2FA FB FP ∴+=故,,FA FP FB成等差数列.221212214c a c a c d FA FB x x x x a c a c a ⎛⎫⎛⎫=±-=±---=±-=± ⎪ ⎪⎝⎭⎝⎭28d ∴=±【考点】点差法、直线与椭圆联立求解、等差数列、椭圆的第二定义21. (12分)已知函数()()()22ln 12f x x ax x x =+++-.(1)若0a =,证明:当10x -<<时,()0f x <;当0x >,()0f x >; (2)若0x =是()f x 的极大值点,求a . 【答案】(1)见解析;(2)16a =-【解析】(1)常规方法:当0a =时,()()()()2ln 121f x x x x x =++->-,()()1'ln 111f x x x∴=++-+ ()()2''1xf x x ∴=+,当10x -<<时,()''0f x <;当0x >时,()''0f x >()'f x ∴在()1,0-上单调递减,在()0,+∞上单调递增,而()'00f =, ∴()'0f x ≥恒成立,()f x ∴单调递增,又()00f = ∴当10x -<<时,()0f x <;当0x >,()0f x >改进方法:若0a =,则()()()()()22ln 122ln 12x f x x x x x x x ⎡⎤=++-=++-⎢⎥+⎣⎦令()()2ln 12x g x x x =+-+,则()()()()22214'01212x g x x x x x =-=>++++ 所以()g x 在()0,+∞单增,又因为()00g = 故当10x -<<时,()()00g x g <=,即()0f x <; 当0x >时,()()00g x g >=,即()0f x >;方法对比:若直接求导,那么完全处理掉对数经常需要二次求导,而方法二提出()2x +之后对数单独存在,一次求导就可消掉对数(2) 方法一:极大值点的第二充要条件:已知函数y =()f x 在0x x =处各阶导数都存在且连续,0x x =是函数的极大值点的一个充要条件为前21n -阶导数等于0,第2n 阶导数小于0()()()22ln 12f x x ax x x =+++-()()()21'21ln 111ax f x ax x x +∴=+++-+,()'00f ∴=()()()2234''2ln 11ax ax xf x a x x ++∴=+++,()''00f ∴=()()232661'''1ax ax x a f x x +-++∴=+0x =是()f x 的极大值点,()'''0610f a ∴=+=,16a ∴=-,下证:当16a =-时,0x =是()f x 的极大值点,()()()3163'''1x x f x x -+=+,所以()''f x 在()1,0-单增,在()0,+∞单减 进而有()()''''00f x f ≤=,从而()'f x 在()1,-+∞单减,当()1,0x ∈-时,()()''00f x f >=,当()0,x ∈+∞时,()()''00f x f <= 从而()f x 在()1,0-单增,在()0,+∞单减,所以0x =是()f x 的极大值点.方法二: 0x =是()f x 的极大值点,所以存在0δ>,使得在()(),00,δδ- ,()()00f x f <=,即()()22ln 120x ax x x +++-<当()0,x δ∈时,()ln 10x +>,故()()()()2222ln 122ln 1ln 1xx x x x x a x x x +--+-++<=+,当(),0x δ∈-时,()ln 10x +<,故()()()222ln 1ln 1x x x a x x -++>+即()()()()()()()()()()()22000022ln 11ln 1limlimln 121ln 11ln 111lim lim 42642ln 144ln 141x x x x x x x x x x a x x x x x x x x x x x x x x →→→→-++-++==++++--++===-++++++++(洛必达法则,极限思想)【考点】导数的应用(二)选考题:共10分,请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.22. 选修44-:坐标系与参数方程(10分)在平面直角坐标系xOy 中,O 的参数方程为cos sin x y θθ=⎧⎨=⎩(θ为参数),过点(0,且倾斜角为α的直线l 与O 交于,A B 两点.(1) 求α的取值范围;(2) 求AB 中点P 的轨迹的参数方程.【答案】(1)3,44ππα⎛⎫∈ ⎪⎝⎭;(2)23,,44222x y αππαα⎧=⎛⎫⎪⎛⎫∈⎨ ⎪ ⎪⎝⎭⎝⎭=-⎪⎩【解析】(1)当2πα=时,直线:0l x =,符合题意;当2πα≠时,设直线:l y kx =-1d =<,即()(),11,k ∈-∞-+∞ ,又tan k α=,3,,4224ππππα⎛⎫⎛⎫∴∈ ⎪ ⎪⎝⎭⎝⎭综上,3,44ππα⎛⎫∈ ⎪⎝⎭(2)可设直线参数方程为cos 3,44sin x t y t αππαα=⎧⎛⎫⎪⎛⎫∈⎨ ⎪ ⎪=+⎝⎭⎪⎝⎭⎩,代入圆的方程可得:2sin 10t α-+=122P t t t α+∴==cos 3,44sin x y ααππααα⎧=⎛⎫⎪⎛⎫∈⎨ ⎪ ⎪⎝⎭⎝⎭=+⎪⎩即点P的轨迹的参数方程为23sin 2,,244x y ππααα⎧⎛⎫=⎪⎛⎫∈⎨⎪ ⎪⎝⎭⎝⎭⎪=⎩(也可以设直线的普通方程联立去做,但是要注意讨论斜率不存在的情况) 【考点】参数方程、直线的斜率,轨迹方程23. 选修45-:不等式选讲(10分)已知函数()211f x x x =++-. (1)画出()y f x =的图像;(2)当[)0,x ∈+∞时,()f x ax b ≤+,求a b +的最小值. 【答案】(1)见解析;(2)5【解析】(1)()13,212,123,1x x f x x x x x ⎧-<-⎪⎪⎪=+-≤≤⎨⎪>⎪⎪⎩,图象如下(2)由题意得,当0x ≥时,ax b +的图象始终在()f x 图象的上方,结合(1)中图象可知,3,2a b ≥≥,当3,2a b ==时,a b +最小,最小值为5, 【考点】零点分段求解析式、用函数图象解决恒成立问题xy21.531-0.5O。
全国卷Ⅲ2018年理数高考试题解析(word档含答案解析)
为 9 3 ,则三棱锥 D ABC 体积的最大值为
A .0.7
B. 0.6
C. 0.4
D. 0.3
9.△ ABC 的内角 A ,B ,C 的对边分别为
a2 a ,b , c ,若 △ ABC 的面积为
b2
c2 ,则 C
4
A. π 2
B. π 3
C. π 4
D. π 6
10.设 A ,B ,C ,D 是同一个半径为 4 的球的球面上四点, △ ABC 为等边三角形且其面积
项是符合题目要求的.
1.已知集合 A x | x 1≥ 0 , B 0,1,2 ,则 A B
A. 0
B. 1
C. 1,2
D. 0,1,2
2. 1 i 2 i
A. 3 i
B. 3 i
C. 3 i
D. 3 i
3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图
中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长
2018 年普通高等学校招生全国统一考试
理科数学
注意事项: 1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如
需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。 写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。 一、选择题:本题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一
方体,则咬合时带卯眼的木构件的俯视图可以是
4.若 sin A. 8 9
1 ,则 cos 2
3
B. 7 9
全国III卷高考理科数学试题及答案解析
2018年全国III 卷高考理科数学试题及答案分析2018年一般高等学校招生全国一致考试(新课标III 卷)理科数学注意事项:.答题前,先将自己的姓名、准考据号填写在试题卷和答题卡上,并将准考据号条形码粘贴在答题卡上的指定地点。
21教育网2.选择题的作答:每题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、底稿纸和答题卡上的非答题地区均无效。
2·1·c·n·j·y .非选择题的作答:用署名笔挺接答在答题卡上对应的答题地区内。
写在试题卷、底稿纸和答题卡上的非答题地区均无效。
【根源:21·世纪·教育·网】4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题(此题共12小题,每题5分,共60分.在每题给的四个选项中,只有一项切合)1.已知会合A x|x1≥0,B0,1,2,则A B()A.0B.1C.1,2D.0,1,22.1i2i()A.3i B.3i C.3i D.3i3.中国古建筑借助榫卯将木构件连结起来,构件的凸出部分叫棒头,凹进部分叫卯眼,图中木构件右侧的小长方体是棒头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()4.若sin1,则cos2()3A.8B.7C.7D.899995.x225的睁开式中x4的系数为()xA.10B.20C.40D.806.直线xy20分别与x轴,y轴交于A,B两点,点P在圆x222上,则ABP面积的取值范y2围是()A.2,6B.4,8,D.22,32 C.2327.函数y422的图像大概为()x x8.某集体中的每位成品使用挪动支付的概率都为p,各成员的支付方式互相独立,设X为该集体的10位成员中使用挪动支付的人数,DX,PX4PX6,则p()21·cn·jy·comA.B.C.D.9.△ABC的内角A,B,C的对边分别为a,b,c,若ABC的面积为a2b2c2,则C()4A.B.3C.4D.6210.设A,B,C,D是同一个半径为4的球的球面上四点,ABC为等边三角形且其面积为93,则三棱锥DABC体积的最大值为()A.123B.183C.243D.54311.设F1,F2是双曲线C:x2y21(a0,b0)的左,右焦点,O是坐标原点.过F2作C的一条渐近线a2b2的垂线,垂足为P.若PF16OP,则C的离心率为()A.5B.2C.3D.212.设alog,blog2,则()A.abab0B.abab0C.ab0ab D.ab0ab二、填空题(此题共4小题,每题5分,共20分)13.已知向量a=1,2,b=2,2,c=1,λ.若c∥2a+b,则________.14.曲线y ax1e x在点0,1处的切线的斜率为2,则a________.15.函数fx cos3x6在0,的零点个数为________.16.已知点M1,1和抛物线C:y24x,过C的焦点且斜率为k的直线与C交于A,B两点.若∠AMB90,则k________.21·世纪*教育网三、解答题(共70分,解答应写出文字说明、证明过程或演算步骤,第17~31题为必考题,每个试题考生都一定作答,第22、23题为选考题,考生依据要求作答.)www-2-1-cnjy-com(一)必考题:共60分。
精品解析:2018年全国普通高等学校招生统一考试理科数学(新课标III卷)(解析版)
绝密★启用前2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则A. B. C. D.【答案】C【解析】分析:由题意先解出集合A,进而得到结果。
详解:由集合A得,所以故答案选C.点睛:本题主要考查交集的运算,属于基础题。
2.A. B. C. D.【答案】D【解析】分析:由复数的乘法运算展开即可。
详解:故选D.点睛:本题主要考查复数的四则运算,属于基础题。
3. 中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是A. AB. BC. CD. D【答案】A【解析】分析:观察图形可得。
详解:观擦图形图可知,俯视图为故答案为A.点睛:本题主要考擦空间几何体的三视图,考查学生的空间想象能力,属于基础题。
4. 若,则A. B. C. D.【答案】B详解:故答案为B.点睛:本题主要考查二倍角公式,属于基础题。
5. 的展开式中的系数为A. 10B. 20C. 40D. 80【答案】C所以故选C.点睛:本题主要考查二项式定理,属于基础题。
6. 直线分别与轴,轴交于,两点,点在圆上,则面积的取值范围是A. B. C. D.【答案】A【解析】分析:先求出A,B两点坐标得到再计算圆心到直线距离,得到点P到直线距离范围,由面积公式计算即可详解:直线分别与轴,轴交于,两点,则点P在圆上圆心为(2,0),则圆心到直线距离故点P到直线的距离的范围为则故答案选A.点睛:本题主要考查直线与圆,考查了点到直线的距离公式,三角形的面积公式,属于中档题。
2018年数学真题及解析_2018年全国统一高考数学试卷(理科)(全国新课标ⅲ)
2018年云南省高考数学试卷(理科)(全国新课标Ⅲ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5.00分)已知集合A={x|x﹣1≥0},B={0,1,2},则A∩B=()A.{0}B.{1}C.{1,2}D.{0,1,2}2.(5.00分)(1+i)(2﹣i)=()A.﹣3﹣i B.﹣3+i C.3﹣i D.3+i3.(5.00分)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()A. B. C. D.4.(5.00分)若sinα=,则cos2α=()A.B.C.﹣ D.﹣5.(5.00分)(x2+)5的展开式中x4的系数为()A.10 B.20 C.40 D.806.(5.00分)直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆(x﹣2)2+y2=2上,则△ABP面积的取值范围是()A.[2,6]B.[4,8]C.[,3]D.[2,3]7.(5.00分)函数y=﹣x4+x2+2的图象大致为()A.B.C.D.8.(5.00分)某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立.设X为该群体的10位成员中使用移动支付的人数,DX=2.4,P(x=4)<P(X=6),则p=()A.0.7 B.0.6 C.0.4 D.0.39.(5.00分)△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=()A.B.C.D.10.(5.00分)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且面积为9,则三棱锥D﹣ABC体积的最大值为()A.12B.18C.24D.5411.(5.00分)设F1,F2是双曲线C:﹣=1(a>0.b>0)的左,右焦点,O是坐标原点.过F2作C的一条渐近线的垂线,垂足为P,若|PF1|=|OP|,则C的离心率为()A.B.2 C.D.12.(5.00分)设a=log0.20.3,b=log20.3,则()A.a+b<ab<0 B.ab<a+b<0 C.a+b<0<ab D.ab<0<a+b二、填空题:本题共4小题,每小题5分,共20分。
2018年高考全国卷3理科数学精校含答案
2018年普通高等学校招生全国统一考试理科数学注意事项:1 •答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2•回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3 •考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有项是符合题目要求的.1.已知集合A x|x 1 > 0 , B0 , 1 , 2,则AI BA •0B •1C. 1 , 2D •0 , 1 ,22. 1i 2 iA • 3 iB •3i C. 3 i D • 3 i3•中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头•若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是A B C4.若sin丄,则cos23877A .- B.-C.999I)5△ ABP 面积的取值范围是A . 2, 6B . 4,8427•函数y x x 2的图像大致为&某群体中的每位成员使用移动支付的概率都为 该群体的10位成员中使用移动支付的人数, A . 0.7B . 0.69. △ ABC 的内角 A , B , C 的对边分别为a ,则C“ n n A .-B.- 23DX2.4 , P X 4 P X6,则pC . 0.4D . 0.32 .2 2b , c,若 △ ABC 的面积为a b c4,C .n D .n465. x 2 - 的展开式中x 4的系数为 x A . 10 B . 206 .直线x y 20分别与x 轴,y 轴交于A , C . 40 D . 80y 22上,则B 两点,点P 在圆xC . 2,3 2D . 2 2,3 210•设A , B , C , D 是同一个半径为 4的球的球面上四点,△ ABC 为等边三角形且其面积为9.,3,则三棱锥D ABC 体积的最大值为 A • 12 3B • 18.3C . 24 3D . 54.32 2X y11. 设F i , F 2是双曲线C :p — 1 ( a 0 , b 0 )的左、右焦点,O 是坐标原点.过F 2a b作C 的一条渐近线的垂线,垂足为 P .若PFJ -./6 OP ,则C 的离心率为A . 5B . 2C .3D . . 212. 设 a log o.2 0.3 , b log 2 0.3,贝UA . a b ab 0B . ab a b 0C . a b 0 abD . ab0 ab二、填空题:本题共 4小题,每小题5分,共20分.13 .已知向量 a= 1,2 , b= 2, 2 , c= 1,入.若 c // 2a + b ,贝U _________________ . 14.曲线y ax 1 e x 在点0 , 1处的切线的斜率为2,则a __________ .n15 .函数f x cos 3x -在0 , n 的零点个数为 6 21, 1和抛物线C : y 4x ,过C 的焦点且斜率为 k 的直线与C 交于A , B两点.若/ AMB 90,贝V k ____________ .三、解答题:共70分.解答应写出文字说明、 证明过程或演算步骤. 第17~21题为必考题, 每个试题考生都必须作答.第 22、23题为选考题,考生根据要求作答.学科 .网(一)必考题:共 60分.17.(12 分)等比数列 a n 中,a ’ 1, a, 4a 3 .(2)记S n 为a n 的前n 项和.若S m 63,求m .16 .已知点M(1)求a n 的通项公式;18.(12分)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种 新的生产方式•为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式•根据工人 完成生产任务的工作时间(单位:min )绘制了如下茎叶图:第一种牛.产方戌第二种乍产方式 & 6 5 5 68 Q 7 6 2 7 01223 456689^776543 3 214 4 52 110 0(1) 根据茎叶图判断哪种生产方式的效率更高?并说明理由; (2) 求40名工人完成生产任务所需时间的中位数m ,并将完成生产任务所需时间超 过m和不超过m 的工人数填入下面的列联表:(3)根据(2)abedaebd'附: K 219.(12分)如图,边长为2的正方形ABCD 所在的平面与半圆弧 CD 所在平面垂直, M 是CD 上异于C ,D 的点.(1) 证明:平面 AMD 丄平面BMC ; (2)当三棱锥 M ABC 体积最大时,求面 MAB 与面MCD 所成二面角的正弦值.2 220.(12分)已知斜率为k 的直线1与椭圆C7诗1交于A ,B 两点,线段AB 的中点为M 1, m m 0成等差数列,并求该数列的公差.(1) 证明:k -;2(2) 设F 为C 的右焦点,uuu uin uun P 为C 上一点,且FP FA FB 0 .证明: nunFAurn FPnu n FB221. (12 分)已知函数f x 2 x ax ln 1 x 2x .(1)若 a 0,证明:当1 x 0 时,f x 0 ;当x 0 时,f x 0;(2)若x 0是fx的极大值点,求a .(二)选考题:共10分,请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.22. [选修4—4:坐标系与参数方程](10分)x cos在平面直角坐标系xOy中,O O的参数方程为'(为参数),过点y sin(1)求的取值范围; (2)求AB中点P的轨迹的参数方程.0 , 2且倾斜角为的直线l与O O交于A, B两点.23. [选修4—5:不等式选讲](10分)设函数f x 2x 1 x 1 .(1)画出y fx的图像;.(1)求的取值范围; (2)求AB中点P的轨迹的参数方程.参考答案:17. (12 分)故 a n ( 2)n 1 或 a n 2n整数解.综上,m 6. 18. ( 12 分)解:(1)第二种生产方式的效率更高 理由如下:(i )由茎叶图可知:用第一种生产方式的工人中,有多79分钟•因此第二种生产方式的效率更高(ii )由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间的中位数为 85.5 分钟,用第二种生产方式的工人完成生产任务所需时间的中位数为 73.5分钟.因此第二 种生产方式的效率更高.(iii )由茎叶图可知:用第一种生产方式的工人完成生产任务平均所需时间高于 80分钟;用第二种生产方式的工人完成生产任务平均所需时间低于 80分钟,因此第二种生产方式的效率更高.(iv )由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间分布在茎 最多,关于茎8大致呈对称分布;用第二种生产方式的工人完成生产任务所需时间分布 在茎7上的最多,关于茎7大致呈对称分布,又用两种生产方式的工人完成生产任务所 需时间分布的区间相同,故可以认为用第二种生产方式完成生产任务所需的时间比用第14. 3 15.3 16.213.2 解:(1 )设{a n }的公比为 ,由题设得 a n由已知得q 4 4q 2,解得 0 (舍去) (2)若 a n ( 2)n1,则 S n1 ( 2)n 3Sm63得(2)m 188,此方程没有正若 a n 2n 1,则 S n2n 1 .由S m 63得2m 64,解得m 6.75%的工人完成生产任务所需时间至少80分钟,用第二种生产方式的工人中,有75%的工人完成生产任务所需时间至8上的一种生产方式完成生产任务所需的时间更少,因此第二种生产方式的效率更高•学科*网以上给出了4种理由,考生答出其中任意一种或其他合理理由均可得分(2)由茎叶图知m 79 8180.2(3)由于K2 40(15 15 5 5)10 6.635,所以有99%的把握认为两种生产方20 20 20 20式的效率有差异.19. ( 12 分)解:(1)由题设知,平面CMD丄平面ABCD,交线为CD.因为BC丄CD,BC 平面ABCD , 所以BC丄平面CMD,故BC丄DM .因为M为CD上异于C,D的点,且DC为直径,所以DM丄CM.又BC I CM=C,所以DM丄平面BMC.而DM 平面AMD ,故平面AMD丄平面BMC.uuu(2)以D为坐标原点,DA的方向为x轴正方向,建立如图所示的空间直角坐标系D-xyz.当三棱锥M- ABC体积最大时,M为CD的中点.由题设得D(0,0,0), A(2,0,0), B(2,2,0), C(0,2,0), M (0,1,1),UULW UUU UUUAM ( 2,1,1),AB (0,2,0), DA (2,0,0)设n (x, y, z)是平面MAB的法向量,则uuurn AM 0, 2x y z 0, uuu 即n AB 0. 2y 0.可取n (1,0,2).uuuDA是平面MCD的法向量,因此uuu/恕、n DA cos; n, DA utu-' 'In ||DA|,uuu sin[n,DA所以面MAB与面MCD所成二面角的正弦值是2/55 .20.( 12 分)解: ( 1 )设A(x1, y1), B(x2, y2),则2x42y1321,x242里13两式相减,并由勺一y2k得X-i x2为x2y1y2k 0.4 3由题设知彳生1,上迪m,于是2 2k 2.①4m3 1由题设得0 m ,故k .2 2(2)由题意得F(1,0),设P(x3,y3),则(X3 1必)(X1 1,yJ (X2 1,y2)(0,0)由(1)及题设得x3 3 (x1 x2) 1, y3(y1 y2) 2m 0.3 3 uuu 3又点P在C上,所以m ,从而P(1, ),|FP | .4 2 2uu|FA| ..(X1 1)22 (X1 1)23(1 X1uuu同理I FBI X 2uuu 所以I FA IuurI FBI14 2(X1 X2) 3.uuu 故2|FP I uuu|FA|uu uuu uuu设该数列的公差为uuu|FB |,即| FA |,| FP |,| FB | 成等差数列. d,则uuu2|d| || FB| IFAII 2|X1 X2I 舟届X2)24X1X2 .②将m 3代入①得所以I的方程为y 7,代入C的方程,并整理得47X214X0.故为X22,XX2—,代入②解得| d|28 3、,21 28所以该数列的公差为日或日28 2821.(12 分)解:(1 )当a0 时,f(x) (2 X)In(1 X)2X, f (X) ln(1 X)设函数g(x)X r,f (X) ln(1 X) ,则1 Xg(x)X(1 X)2.当1 X 0 时,g (X) 0;当X 0 时, g (X) 0 .故当X 1 时,g(x) g(0),且仅当X 0时,g(x) 0,从而f (x) 0,且仅当X 0时,f (X) 0.所以f(x)在(1,)单调递增学#科网又f(0) 0,故当1 X 0 时,f(x) 0 ;当X 0 时,f(x) 0.(2)( i )若 a 0,由(1 )知,当 x 0 时,f(x) (2 x)l n(1 x) 2x 0 f (0), 这与x 0是f (x)的极大值点矛盾• (ii )若a 0,设函数h(x)f (x)2 x ax 2ln(1x) 2A 2由于当 |x| min{1,1}时,2 x ax 2V|a|0,故h(x)与f(x)符号相同•又h(0) f (0) 0,故x 0是f (x)的极大值点当且仅当 x 0是h(x)的极大值点• i , 、1 2(2 x ax 2)2x(1 2ax) x 2(a 2x 2 4ax 6a 1) h (x)1 x(2ax 2)2 (x 1)(ax 2 x 2)2如果6a 1 0 ,则当06a 1 4a且 |x| min {1, | 时,h (x) 0,故 x不是h(x)的极大值点• 如果6a 10,则a 2 x 2 4ax 6a1 0存在根x 1 0,故当x (x 1,0),如果6a 1x (0,1)时,占八、、| x | min{1,一}时,h(x) 0,所以3(0,则咖& xxh (x)0 •所以 x 1 622.[选修4—4:坐标系与参数方程] 综上,a 【解析】(1)时,2—时, 2& 1:一21.1 kx 0不是h(x)的极大值点•24)1)(x 2 6x 12厂则当 x ( 1,0)时,h(x) 0;0是h(x)的极大值点,从而 x 0是f (x)的极大值(10 分)e O 的直角坐标方程为 x 2 l 与e O 交于两点.记tan k ,则I 的方程为1,解得k 1或k 1,即kx .2 . l 与e O 交于两点当且仅当(2,J ).综上, 的取值范围是(一,).4 4x t cos ,的参数方程为—(t 为参数,y v 2 tsinX t P cos , y .2 t P s in23.[选修4—5:不等式选讲](10分)3x, x -,21【解析】(1) f (x) x 2, 2 x3x, x 1.(2)由(1)知,y f (x)的图像与y 轴交点的纵坐标为 2,且各部分所在直线斜率 的最大值为3,故当且仅当 a 3且 b 2时, f (x) ax b 在 [0, ) 成立,因此 a b 的最小值为 5 .P 对应的参数分别为tA , tB ,t p ,则t pt A t p 且2 ,t A , t B 满足t 2 2.2tsin是 t A t B2、2sint pP 的坐标(x, y)满足(2) | 4).所以点P 的轨迹的参数方程是-sin2 , 2、2 ,2cos22 2为参数,一44).1, y f(X )的图像如图所示.。
2018年高考全国卷Ⅲ卷理科数学(含答案)(2021年整理精品文档)
(完整版)2018年高考全国卷Ⅲ卷理科数学(含答案)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)2018年高考全国卷Ⅲ卷理科数学(含答案))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)2018年高考全国卷Ⅲ卷理科数学(含答案)的全部内容。
绝密★启用前2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}012=-≥,{}B=,,,则A B=|10A x xA.{}0B.{}1C.{},,012,D.{}122.()()+-=1i2iA.3i-+C.3i-D.3i+--B.3i3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是4.若1sin 3α=,则cos 2α=A .89B .79C .79-D .89-5.522x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为A .10B .20C .40D .806.直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP △面积的取值范围是 A .[]26,B .[]48,C .232⎡⎤⎣⎦,D .2232⎡⎤⎣⎦,7.函数422y x x =-++的图像大致为8.某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数, 2.4DX =,()()46P X P X =<=,则p = A .0.7B .0.6C .0。
2018年高考理数真题试题(全国Ⅲ卷)(Word版+答案+解析)
2018年高考理数真题试卷(全国Ⅲ卷)一、选择题:1.已知集合 A ={x|x −1≥0},B ={0,1,2} ,则 A ∩B = ( ) A. {0} B. {1} C. {1,2} D. {0,1,2}2.(1+i)(2−i) =( )A. -3-iB. -3+iC. 3-iD. 3+i3.中国古建筑借助榫卯将木构件连接起来,构建的突出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头,若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )A. B.C. D.4.若 sinα=13 ,则 cos2α =( )A. 89 B. 79 C. - 79 D. - 89 5.(x 2+2x )5 的展开式中x 4的系数为( )A. 10B. 20C. 40D. 806.直线 x +y +2=0 分别与 x 轴, y 轴交于点 A,B 两点,点 P 在圆 (x −2)2+y 2=2 上,则 ΔABP 面积的取值范围是( )A. [2,6]B. [4,8]C. [√2,3√2]D. [2√2,3√2] 7.函数 y =−x 4+x 2+2 的图像大致为( )A. B.C. D.8.某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立,设X为该群体的10位成员中使用移动支付的人数,DX=2.4,P(X=4)<P(X=6),则p=()A. 0.7B. 0.6C. 0.4D. 0.39.ΔABC的内角A,B,C的对边分别为a,b,c,若ΔABC的面积为a2+b2−c24,则C=( )A. π2B. π3C. π4D. π610.设A,B,C,D是同一个半径为4的球的球面上四点,ΔABC为等边三角形且其面积为9√3,则三棱锥D−ABC体积的最大值为( )A. 12√3B. 18√3C. 24√3D. 54√311.设F1 , F2是双曲线C:x2a2−y2b2=1(a>0 , b>0)的左,右焦点,O是坐标原点。
(完整word版)2018年全国新课标Ⅲ卷( 理科)解析版
2018年普通高等学校招生全国统一考试(全国新课标3卷)理科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}|10A x x =-≥,{}012B =,,,则A B =( ) A .{}0 B .{}1 C .{}12, D .{}012,, 1。
答案:C解答:∵{|10}{|1}A x x x x =-≥=≥,{0,1,2}B =,∴{1,2}A B =.故选C.2.()()1i 2i +-=( )A .3i --B .3i -+C .3i -D .3i + 2。
答案:D解答:2(1)(2)23i i i i i +-=+-=+,选D 。
3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )3.答案:A解答:根据题意,A 选项符号题意。
4.若1sin 3α=,则cos 2α=( )A .89B .79C .79-D .89-4。
答案:B解答:227cos 212sin 199αα=-=-=.故选B 。
5.522x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为( )A .10B .20C .40D .80 5.答案:C解答:25103552()()2r r r r r r C x C x x--=⋅⋅,当2r =时,1034r -=,此时系数22552240r r C C ==.故选C.6.直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP △面积的取值范围是A .[]26,B .[]48,C .232⎡⎤⎣⎦,D .2232⎡⎤⎣⎦,6.答案:A解答:由直线20x y ++=得(2,0),(0,2)A B --,∴22||2222AB =+=,圆22(2)2x y -+=的圆心为(2,0),∴圆心到直线20x y ++=的距离为222211+=+,∴点P 到直线20x y ++=的距离的取值范围为222222d -≤≤+,即232d ≤≤,∴1||[2,6]2ABP S AB d ∆=⋅∈。
2018年全国统一高考真题数学试卷(理科)(新课标ⅲ)(含答案及解析)
2018年全国统一高考数学试卷(理科)(新课标Ⅲ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={x|x﹣1≥0},B={0,1,2},则A∩B=()A.{0}B.{1}C.{1,2}D.{0,1,2} 2.(5分)(1+i)(2﹣i)=()A.﹣3﹣i B.﹣3+i C.3﹣i D.3+i3.(5分)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()A.B.C.D.4.(5分)若sinα=,则cos2α=()A.B.C.﹣D.﹣5.(5分)(x2+)5的展开式中x4的系数为()A.10B.20C.40D.806.(5分)直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆(x﹣2)2+y2=2上,则△ABP面积的取值范围是()A.[2,6]B.[4,8]C.[,3]D.[2,3]7.(5分)函数y=﹣x4+x2+2的图象大致为()A.B.C.D.8.(5分)某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立.设X为该群体的10位成员中使用移动支付的人数,DX=2.4,P(x=4)<P(X=6),则p=()A.0.7B.0.6C.0.4D.0.39.(5分)△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=()A.B.C.D.10.(5分)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且面积为9,则三棱锥D﹣ABC体积的最大值为()A.12B.18C.24D.5411.(5分)设F1,F2是双曲线C:﹣=1(a>0.b>0)的左,右焦点,O是坐标原点.过F2作C的一条渐近线的垂线,垂足为P,若|PF1|=|OP|,则C的离心率为()A.B.2C.D.12.(5分)设a=log0.20.3,b=log20.3,则()A.a+b<ab<0B.ab<a+b<0C.a+b<0<ab D.ab<0<a+b二、填空题:本题共4小题,每小题5分,共20分。
全国卷3高考真题理科数学含解析
A.0.7
B.0.6
C.0.4
D.0.3
9. △ABC 的内角 A,B ,C 的对边分别为,,,若 △ABC 的面积为 a2 b2 c2 ,则 C ( ) 4
A. π 2
B. π 3
C. π 4
D. π 6
10.设 A,B ,C ,D 是同一个半径为 4 的球的球面上四点,△ABC 为等边三角形且其面积为 9 3 ,则三棱锥 D ABC
三、解答题:共 70 分.(解答应写出文字说明、证明过程或演算步骤.第 17~21 题为必考题,每个试题考生都必须作
将来的你将会感激现在拼命的自己,只找理由成功,不找借口失败!让优秀成为习惯! 2
没有等出来的美丽只有拼出来的辉煌
答.第 22、23 题为选考题,考生根据要求作答) (一)必考题:共 60 分.
(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由; (2)求 40 名工人完成生产任务所需时间的中位数 m ,并将完成生产任务所需时间超过 m 和不超过 m 的工人数填
入下面的列联表:
超过 m
不超过 m
第一种生产方式
第二种生产方式
(3)根据(2)中的列联表,能否有 99%的把握认为两种生产方式的效率有差异?
附: K 2
nad bc2
,
a bc da cb d
P K 2 ≥ k 0.050 0.010 0.001
k
3.841 6.635 10.828
将来的你将会感激现在拼命的自己,只找理由成功,不找借口失败!让优秀成为习惯! 3
没有等出来的美丽只有拼出来的辉煌
每一次努力都是最优的亲近,每一滴汗水都是机遇的滋润!!!
2018年高考理科数学全国卷3(含答案与解析)
数学试卷 第1页(共20页) 数学试卷 第2页(共20页)绝密★启用前2018年普通高等学校招生全国统一考试(课标全国卷Ⅲ)理科数学本试卷满分150分,考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{10}A x x =-∣≥,{0,1,2}B =,则A B = ( )A .{0}B .{1}C .{1,2}D .{0,1,2} 2.()(1i 2i)+-=( )A .3i --B .3i -+C .3i -D .3i +3.中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )ABC D 4.若1sin 3α=,则cos2α=( )A .89B .79C .79- D .89- 5.252()x x+的展开式中4x 的系数为( )A .10B .20C .40D .806.直线2=0x y ++分别与x 轴,y 交于A ,B 两点,点P 在圆22(2)=2x y -+上,则ABP △面积的取值范围是( )A .[2,6 ]B .[4,8]C .[2,3 2 ]D [ 22,32] 7.函数422y x x =-++的图象大致为( )ABCD8.某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立.设X为该群体的10位成员中使用移动支付的人数, 2.4DX =,()6(4)P X P X ==<,则p =( )A .0.7B .0.6C .0.4D .0.39.ABC △的内角A ,B ,C 的对边分别为a ,b ,c .若ABC △的面积为2224a b c +-,则C = ( )A .π2B .π3C .π4D .π6毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共20页) 数学试卷 第4页(共20页)10.设A ,B ,C ,D 是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为93,则三棱锥D ABC -体积的最大值为( )A .123B .183C .243D .54311.设1F ,2F 是双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若1||6||PF OP =,则C 的离心率为 ( )A .5B .2C .3D .2 12.设0.2log 0.3a =,2log 0.3b =,则( )A .0a b ab +<<B .ab a b +<<0C .0a b ab +<<D .0ab a b +<<第Ⅱ卷(非选择题 共90分)二、填空题:本题共4小题,每小题5分,共20分.13.已知向量2)(1,=a ,)2(2,=-b ,),(1λ=c .若2()+∥c a b ,则=λ . 14.曲线)e (1xy ax =+在点(0,1)处的切线的斜率为2-,则a = .15函数π()cos(3)6f x x =+在[0,π]的零点个数为 .16.已知点1()1,M -和抛物线C :²4y x =,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若90AMB ∠=,则k = .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.) (一)必考题:共60分. 17.(12分)等比数列{}n a 中,11a =,534a a =. (1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和.若63m S =,求m .18.(12分)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人.第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min )绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高,并说明理由;(2)求40名工人完成生产任务所需时间的中位数m ,并将完成生产任务所需时间超过超过m不超过m第一种生产方式 第二种生产方式(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:22()(a b)(c d)(a c)(b d)n ad bc K -=++++,2()P K k ≥0.050 0.010 0.001k3.841 6.635 10.828数学试卷 第5页(共20页) 数学试卷 第6页(共20页)19.(12分)如图,边长为2的正方形ABCD 所在的平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ABC -体积最大时,求面MAB 与面MCD 所成二面角的正弦值.20.(12分)已知斜率为k 的直线l 与椭圆C :22143x y +=交于A ,B 两点,线段AB 的中点为(1,)()M m m >0.(1)证明:12k <-;(2)设F 为C 的右焦点,P 为C 上一点,且0FP FA FB ++=.证明:FA ,FP ,FB成等差数列,并求该数列的公差. 21.(12分)已知函数22()()ln(1)2f x a x x x x +=-++.(1)若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2)若=0x 是()f x 的极大值点,求a .(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4—4:坐标系与参数方程](10分)在平面直角坐标系xOy 中,O 的参数方程为cos ,sin x y θθ=⎧⎨=⎩(θ为参数),过点(0,2)且倾斜角为α的直线l 与O 交于A ,B 两点. (1)求α的取值范围;(2)求AB 中点P 的轨迹的参数方程.23.[选修4—5:不等式选讲](10分) 设函数()211f x x x =++-. (1)画出() y f x =的图象;(2)当[ 0),x ∈+∞,()b x f ax +≤,求a b +的最小值.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共20页) 数学试卷 第8页(共20页)2018年普通高等学校招生全国统一考试(课标全国卷Ⅲ)理科数学答案解析第Ⅰ卷一、选择题 1.【答案】C【解析】∵={1}A x x |≥,{0,1,2}B =,∴={1,2}A B ,故选C .2.【答案】D【解析】21i 2i)(2i 2i i 3i )(+-=-+-=+,故选D . 3.【答案】A【解析】两个木构件咬合成长方体时,小长方体(榫头)完全嵌入带卯眼的木构件,易知俯视图可以为A .故选A . 4.【答案】B 【解析】由1sin 3α=,得22127cos212sin 12()=1=399αα=-=-⨯-.故选B .5.【答案】C【解析】252()x x+的展开式的通项251103155()(2)2r r r r r r r T C x x C x ---+==,令1034r -=,得2r =,所以4x 的系数为225240C ⨯=.故选C . 6.【答案】A【解析】由圆22(2)=2x y -+可得圆心坐标(2,0),半径r =ABP △的面积记为S ,点P 到直线AB 的距离记为d ,则有12S AB d =.易知AB =maxd ==min d =所以26S ≤≤,故选A .7.【答案】D【解析】∵42()2f x x x =-++,∴3()42f x x x '=-+,令()0f x '>,解得x <或x 0<此时,()f x 递增;令()0f x '<,解得x <0或x ,此时,()f x 递减.由此可得()f x 的大致图象.故选D . 8.【答案】B【解析】由题知~1()0,X B p ,则(101 2.4)DX p p =⨯⨯-=,解得0.4p =或0.6.又∵()6(4)P X P X ==<,即446664221010(1)(1)(1)0.5C P p C P p p p p --⇒-⇒<<>,∴0.6p =,故选B .9.【答案】C【解析】根据余弦定理得2222cos a b c ab C +-=,因为2224ABCa Sbc +-=△,所以c 42os ABC ab C S =△,又1sin 2ABC S ab C =△,所以tan 1C =,因为π()0,C ∈,所以4C π=.故选C .10.【答案】B【解析】设ABC △的边长为a ,则1sin60=932ABC S a a =△,解得6a =(负值舍去).ABC △的外接圆半径r 满足62sin60r=,得r =球心到平面ABC 的距离为2=.所以点D 到平面ABC 的最大距离为246+=,所以三棱锥DABC -体积的最大值为163⨯=故选B .11.【答案】C【解析】点2(,0)F c 到渐近线b y x a =的距离2(0)PF b b ==>,而2OF c =,所以在2Rt OPF △中,由勾股定理可得OP a ,所以1PF ==.在2Rt OPF △中,222cos PF b PF O OF c∠==,在12F F P△中,2222222121221246cos 22PF F F PF b c a PF O PF F F b c+-+-∠==⋅⋅2,所以222222463464b b c a b c a c bc +-=⇒=-,则有22223()46c a c a -=-,解得c a=负值舍去),即e =.故选C .数学试卷 第9页(共20页) 数学试卷 第10页(共20页)12.【答案】B【解析】解法一:∵0.20.2log 0.3log 1=0a =>,22log 0.3log 1=0b =<,∴0ab <,排除C . ∵0.20.20log 0.3log 0.2=1<<,22log 0.3log 0.5=1-<,即01a <<,1b <-,∴0a b +<,排除D .∵220.2log 0.3lg0.2log 0.2log 0.3lg 2b a ===,∴2223log 0.3log 0.2log 12b b a -=-=<,∴1bb ab a b a+⇒+<<,排除A .故选B . 解法二:易知01a <<,1b -<,∴0ab <,0a b +<,∵0.30.30.311log 0.2log 2log 0.41a b +=+=<, 即1a b ab+<,∴a b ab +>,∴0ab a b +<<.故选B .第Ⅱ卷二、填空题13.【答案】12【解析】由已知得2(4,2)+=a b .又,()1c λ=,2()+∥c a b ,所以42=0λ-,解得12λ=. 14.【答案】3-【解析】设(e ))1(xf x ax =+,则()()1e xf x ax a '=++,所以曲线在点(0,1)处的切线的斜率(0)12k f a '==+=-,解得3a =-. 15.【答案】3【解析】令()0f x =,得πcos(3)6x +,解得ππ+()39k x k =∈Z .当0k =时,π9x =;当1k =时,4π9x =;当2k =时,7π9x =,又[ 0,π]x ∈,所以满足要求的零点有3个.16.【答案】2【解析】解法一:由题意可知C 的焦点坐标为(1,0),所以过焦点(1,0),斜率为k 的直线方程为1y x k =+,设111,y A y k ⎛⎫+ ⎪⎝⎭,221,y B y k ⎛⎫+ ⎪⎝⎭,将直线方程与抛物线方程联立得21,4,y x k y x ⎧=+⎪⎨⎪=⎩整理得2440y y k --=,从而得124y y k +=,124y y =-.∵1()1,M -,90AMB ∠=,∴0MA MB =,即1212(2)(2)(1)(1)0y yy y k k+++--=,即2440k k -+=,解得2k =.解法二:设11A(,)x y ,22(),B x y ,则2112224,4,y x y x ⎧=⎨=⎩①②②-①得2221214()y y x x -=-,从而2121124y y x x k y y --+==.设AB 的中点为M ',连接MM '.∵直线AB 过抛物线24y x =的焦点,∴以线段AB 为直径的M '⊙与准线:1l x =-相切.∵1()1,M -,90AMB ∠=,∴点M 在准线:1l x =-上,同时在M '⊙上,∴准线l 是M '⊙的切线,切点M ,且MM l '⊥,即MM '与x 轴平行,∴点M '的纵坐标为1,即1212221y y y y =⇒++=,故124422y y k =+==. 故答案为:2. 三、解答题17.【答案】(1)解:设{}n a 的公比为q ,由题设得1n n a q -=.由已知得424q q =,解得0q =(舍去)或2q =-或2q =. 故1(2)n n a -=-或12n n a -=. (2)若1(2)n n a -=-,则1(2)3nn S --=.数学试卷 第11页(共20页) 数学试卷 第12页(共20页)由63m S =得(2)188m -=-.此方程没有正整数解.若12n n a -=,则21n n S =-.由63m S =得264m =,解得6m =. 综上,6m =.【解析】(1)解:设{}n a 的公比为q ,由题设得1n n a q-=.由已知得424q q =,解得0q =(舍去)或2q =-或2q =. 故1(2)n n a -=-或12n n a -=.(2)若1(2)n n a -=-,则1(2)3n n S --=.由63m S =得(2)188m -=-。
2018年全国3卷理科数学真题(解析版)
18年全国3卷理科数学一、选择题:本题共12小题,每小题5分,共60分.1.已知集合AT x |x ・120}, B={0. 1. 2},贝iJACBA. {0JB. HIC. {1 . 2}D. (0. k 2}【答案】C【解析】分析:由题意先解出集合A.进而得到结果。
详解:由集合A 得X2 1,所以AOBTL2}故答案选C.2. (1 +A. -3rB. -3+iC. 3-iD. 3 + i【答案】D【解析】分析:由0数的乘法运算展开即可。
详解:(I + iX2 • i) = 2 . 1 + 2」.『=3 + l故选D.3.中国古建筑借助棵卯将木构件连接起来.构件的凸出部分叫桦头,凹进部分叫卯眼,图中 木构件右边的小长方体是桦头.若如留摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯限的木构件的俯视图可以是fS徵方向A C D. DC DA. AB. BC.【答案】A【解析】分析:观察图形可得。
详解:观擦图形图可知,俯视图为_____:故答案为A.4.若gma-,则cos2a7SA. B. C.— D.—99【答案】B【解析】分析:由公式脉2«=1”28静(1可得。
,27详解:cos2a•1-2sin"a■1--1■-99故答案为B.5.的展开式中的系数为A.10B.20C.40D.80【答案】C【解析】分析:与出然后可得结果详解:由鼬可得T"」C^x2)5'r(-)r C;2r-x10JrX令10.3r=4,则r=2所iUC;-2,=C^x2z=40故选C.6直线x+y+2=0分别与轴,轴交于,两点,点在圆(x-2)'y'=2上,则△ABP面积的取值范围是A.|2.6|B.[4.8]C.匝.^1D.[20.3因【答案】A【解析】分析:先求出A・B两点坐标得到|AB|•再计算圆心到直线距离,得到点P到直线距离范围・由而枳公式计算叩可详解:•・Fgr+2=0分别与轴,轴交于,两点•・•点P在圆&.2尸+广=2上12+0+21 l W 同心为(2, 0).则圆心到I • L .项小一f —"夕故点P 到立线x +y f =0的距离的范"I 为[也3卤则 S &AB P -*!AB|<i 2-^d,e[16]故答案选A.D. DC. C A. A B. B【答案】D 【解析】分析:由特殊值排除即可详解:% = 0时.y = 2,排除ABy ,= + ・2\(2^・ 1)•场丘• y AO,排除C故正确答案选D.8.某群体中的每位成员使用移动支付的概率都为,备成员的支付方式相互独立,设为该群体 的10位成员中使用移动支付的人数,DX = 24, P(X = 4)<P(X 6),则pA. 0.7B. 0.6C. 0.4D. 0.3【答案】B【解析】分析;判断出为二项分布.利用公mx)=np(l・p)进行计算即可•IXX)二np(l・P)••・p=04或p=06P(X=4)=C加」(】.p)6<P(X=6)=C,y(1-p)1,.-.(I『)2<^,可知1>>。
2018年普通高等学校招生全国统一考试(全国新课标Ⅲ卷) 理科数学试题及详解 精编版
2018年普通高等学校招生全国统一考试(全国新课标3卷)理科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合,,则( ) A . B .C .D . 1.答案:C解答:∵{|10}{|1}A x x x x =-≥=≥,{0,1,2}B =,∴{1,2}A B =.故选C.2.( )A .B .C .D . 2.答案:D解答:2(1)(2)23i i i i i +-=+-=+,选D.3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )3.答案:A解答:根据题意,A 选项符号题意.4.若,则( )A .B .C .D .4.答案:B{}|10A x x =-≥{}012B =,,A B ={}0{}1{}12,{}012,,()()1i 2i +-=3i --3i -+3i -3i+1sin 3α=cos 2α=897979-89-解答:227cos 212sin 199αα=-=-=.故选B.5.的展开式中的系数为( )A .10B .20C .40D .80 5.答案:C解答:25103552()()2r rr r r r C x C x x--=⋅⋅,当2r =时,1034r -=,此时系数22552240r r C C ==.故选C.6.直线分别与轴,轴交于,两点,点在圆上,则面积的取值范围是A .B .C .D .6.答案:A解答:由直线20x y ++=得(2,0),(0,2)A B --,∴||AB ==22(2)2x y -+=的圆心为(2,0),∴圆心到直线20x y ++==点P 到直线20x y ++=的距离的取值范围为d ≤≤+d ≤≤1||[2,6]2ABP S AB d ∆=⋅∈.7.函数的图像大致为( )522x x ⎛⎫+ ⎪⎝⎭4x 20x y ++=x y A B P ()2222x y -+=ABP △[]26,[]48,⎡⎣422y x x =-++7.答案:D解答:当0x =时,2y =,可以排除A 、B 选项;又因为3424(22y x x x x x '=-+=-+-,则()0f x '>的解集为(,(0,)22-∞-U ,()f x 单调递增区间为(,)2-∞-,(0,2;()0f x '<的解集为(()22-+∞U ,()f x单调递减区间为(2-,()2+∞.结合图象,可知D 选项正确.8.某群体中的每位成员使用移动支付的概率都为,各成员的支付方式相互独立,设为该群体的10位成员中使用移动支付的人数,,,则( )A .0.7B .0.6C .0.4D .0.38.答案:B解答:由~(10,)X B p ,∴10(1) 2.4DX p p =-=,∴21010 2.40p p -+=,解之得120.4,0.6p p ==,由(4)(6)P X P X =<=,有0.6p =.9.的内角的对边分别为,,,若的面积为,则( )A .B .C .D .9.答案:Cp X 2.4DX =()()46P X P X =<=p =ABC △A B C ,,a b c ABC △2224a b c +-C =π2π3π4π6解答:2222cos 1cos 442ABCa b c ab C S ab C ∆+-===,又1sin 2ABC S ab C ∆=,故tan 1C =,∴4C π=.故选C.10.设是同一个半径为4的球的球面上四点,为等边三角形且其面积为体积的最大值为( ) A .B .C .D .10.答案:B解答:如图,ABC ∆为等边三角形,点O 为A ,B ,C ,D 外接球的球心,G 为ABC ∆的重心,由ABC S ∆=6AB =,取BC 的中点H ,∴sin60AH AB =⋅︒=∴23AG AH ==O 到面ABC 的距离为2d ==,∴三棱锥D ABC -体积最大值1(24)3D ABC V -=⨯+=11.设是双曲线()的左,右焦点,是坐标原点.过作的一条渐近线的垂线,垂足为.若,则的离心率为( )AB .2C D11.答案:C解答:∵2||PF b =,2||OF c =,∴ ||PO a =; 又因为1|||PF OP ,所以1||6PF a =; 在2Rt POF ∆中,22||cos ||PF bOF cθ==; ∵在12Rt PF F ∆中,2222121212||||||cos 2||||PF F F PF bPF F F cθ+-==⋅⋅, 222222224644633bb c a b c a c a c=⇒+-=⇒-=-223c a ⇒=e ⇒=A B C D ,,,ABC △D ABC -12F F ,22221x y C a b-=:00a b >>,O 2F C P 1PF OP C12.设,,则( )A .B .C .D .12.答案:B解答:∵0.2log 0.3a =,2log 0.3b =,∴0.31log 0.2a =,0.31log 2b =, ∴0.311log 0.4a b +=,∴1101a b <+<即01a bab +<<, 又∵0a >,0b <,∴0ab a b <+<,故选B.二、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密★启用前2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则A. B. C. D.【答案】C【解析】分析:由题意先解出集合A,进而得到结果.详解:由集合A得,所以故答案选C.点睛:本题主要考查交集的运算,属于基础题.2.A. B. C. D.【答案】D【解析】分析:由复数的乘法运算展开即可.详解:故选D.点睛:本题主要考查复数的四则运算,属于基础题.3. 中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是A. AB. BC. CD. D【答案】A【解析】分析:观察图形可得.详解:观擦图形图可知,俯视图为故答案为A.点睛:本题主要考擦空间几何体的三视图,考查学生的空间想象能力,属于基础题.4. 若,则A. B. C. D.【答案】B【解析】分析:由公式可得.详解:故答案为B.点睛:本题主要考查二倍角公式,属于基础题.5. 的展开式中的系数为A. 10B. 20C. 40D. 80【答案】C【解析】分析:写出,然后可得结果详解:由题可得令,则所以故选C.点睛:本题主要考查二项式定理,属于基础题.6. 直线分别与轴,轴交于,两点,点在圆上,则面积的取值范围是A. B. C. D.【答案】A【解析】分析:先求出A,B两点坐标得到再计算圆心到直线距离,得到点P到直线距离范围,由面积公式计算即可详解:直线分别与轴,轴交于,两点,则点P在圆上圆心为(2,0),则圆心到直线距离故点P到直线的距离的范围为则故答案选A.点睛:本题主要考查直线与圆,考查了点到直线的距离公式,三角形的面积公式,属于中档题.7. 函数的图像大致为A. AB. BC. CD. D【答案】D【解析】分析:由特殊值排除即可详解:当时,,排除A,B.,当时,,排除C故正确答案选D.点睛:本题考查函数的图像,考查了特殊值排除法,导数与函数图像的关系,属于中档题.8. 某群体中的每位成员使用移动支付的概率都为,各成员的支付方式相互独立,设为该群体的10位成员中使用移动支付的人数,,,则A. 0.7B. 0.6C. 0.4D. 0.3【答案】B【解析】分析:判断出为二项分布,利用公式进行计算即可.或,,可知故答案选B.点睛:本题主要考查二项分布相关知识,属于中档题.9. 的内角的对边分别为,,,若的面积为,则A. B. C. D.【答案】C【解析】分析:利用面积公式和余弦定理进行计算可得.详解:由题可知所以由余弦定理所以故选C.点睛:本题主要考查解三角形,考查了三角形的面积公式和余弦定理.10. 设是同一个半径为4的球的球面上四点,为等边三角形且其面积为,则三棱锥体积的最大值为A. B. C. D.【答案】B【解析】分析:作图,D为MO 与球的交点,点M为三角形ABC的重心,判断出当平面时,三棱锥体积最大,然后进行计算可得.详解:如图所示,点M为三角形ABC的重心,E为AC中点,当平面时,三棱锥体积最大此时,,点M为三角形ABC的重心中,有故选B.点睛:本题主要考查三棱锥的外接球,考查了勾股定理,三角形的面积公式和三棱锥的体积公式,判断出当平面时,三棱锥体积最大很关键,由M为三角形ABC的重心,计算得到,再由勾股定理得到OM,进而得到结果,属于较难题型.11. 设是双曲线()的左、右焦点,是坐标原点.过作的一条渐近线的垂线,垂足为.若,则的离心率为A. B. 2 C. D.【答案】C【解析】分析:由双曲线性质得到,然后在和在中利用余弦定理可得.详解:由题可知在中,在中,故选C.点睛:本题主要考查双曲线的相关知识,考查了双曲线的离心率和余弦定理的应用,属于中档题.12. 设,,则A. B.C. D.【答案】B详解:.,即又即故选B.点睛:本题主要考查对数的运算和不等式,属于中档题.二、填空题:本题共4小题,每小题5分,共20分.13. 已知向量,,.若,则________.【答案】【解析】分析:由两向量共线的坐标关系计算即可.详解:由题可得,即故答案为点睛:本题主要考查向量的坐标运算,以及两向量共线的坐标关系,属于基础题.14. 曲线在点处的切线的斜率为,则________.【答案】【解析】分析:求导,利用导数的几何意义计算即可.详解:则所以故答案为-3.点睛:本题主要考查导数的计算和导数的几何意义,属于基础题.15. 函数在的零点个数为________.【答案】【解析】分析:求出的范围,再由函数值为零,得到的取值可得零点个数.详解:由题可知,或解得,或故有3个零点.点睛:本题主要考查三角函数的性质和函数的零点,属于基础题.16. 已知点和抛物线,过的焦点且斜率为的直线与交于,两点.若,则________.【答案】2【解析】分析:利用点差法进行计算即可.详解:设则所以所以取AB中点,分别过点A,B作准线的垂线,垂足分别为因为,因为M’为AB中点,所以MM’平行于x轴因为M(-1,1)所以,则即故答案为2.点睛:本题主要考查直线与抛物线的位置关系,考查了抛物线的性质,设,利用点差法得到,取AB中点, 分别过点A,B作准线的垂线,垂足分别为,由抛物线的性质得到,进而得到斜率.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17. 等比数列中,.(1)求的通项公式;(2)记为的前项和.若,求.【答案】(1)或(2)【解析】分析:(1)列出方程,解出q可得;(2)求出前n项和,解方程可得m.详解:(1)设的公比为,由题设得.由已知得,解得(舍去),或.故或.(2)若,则.由得,此方程没有正整数解.若,则.由得,解得.综上,.点睛:本题主要考查等比数列的通项公式和前n项和公式,属于基础题.18. 某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数,并将完成生产任务所需时间超过和不超过的工人数填入下面的列联表:超过不超过第一种生产方式第二种生产方式(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:,【答案】(1)第二种生产方式的效率更高. 理由见解析(2)80(3)能【解析】分析:(1)计算两种生产方式的平均时间即可.(2)计算出中位数,再由茎叶图数据完成列联表.(3)由公式计算出,再与6.635比较可得结果.详解:(1)第二种生产方式的效率更高.理由如下:(i)由茎叶图可知:用第一种生产方式的工人中,有75%的工人完成生产任务所需时间至少80分钟,用第二种生产方式的工人中,有75%的工人完成生产任务所需时间至多79分钟.因此第二种生产方式的效率更高. (ii)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间的中位数为85.5分钟,用第二种生产方式的工人完成生产任务所需时间的中位数为73.5分钟.因此第二种生产方式的效率更高.(iii)由茎叶图可知:用第一种生产方式的工人完成生产任务平均所需时间高于80分钟;用第二种生产方式的工人完成生产任务平均所需时间低于80分钟,因此第二种生产方式的效率更高.(iv)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间分布在茎8上的最多,关于茎8大致呈对称分布;用第二种生产方式的工人完成生产任务所需时间分布在茎7上的最多,关于茎7大致呈对称分布,又用两种生产方式的工人完成生产任务所需时间分布的区间相同,故可以认为用第二种生产方式完成生产任务所需的时间比用第一种生产方式完成生产任务所需的时间更少,因此第二种生产方式的效率更高.以上给出了4种理由,考生答出其中任意一种或其他合理理由均可得分.(2)由茎叶图知.列联表如下:超过不超过第一种生产方式15 5第二种生产方式 5 15(3)由于,所以有99%的把握认为两种生产方式的效率有差异.点睛:本题主要考查了茎叶图和独立性检验,考察学生的计算能力和分析问题的能力,贴近生活.19. 如图,边长为2的正方形所在的平面与半圆弧所在平面垂直,是上异于,的点.(1)证明:平面平面;(2)当三棱锥体积最大时,求面与面所成二面角的正弦值.【答案】(1)见解析(2)【解析】分析:(1)先证平面CMD,得,再证,进而完成证明.(2)先建立空间直角坐标系,然后判断出的位置,求出平面和平面的法向量,进而求得平面与平面所成二面角的正弦值.(1)由题设知,平面CMD⊥平面ABCD,交线为CD.因为BC⊥CD,BC平面ABCD,所以BC⊥平面CMD,详解:故BC⊥DM.因为M为上异于C,D的点,且DC为直径,所以DM⊥CM.又BC CM=C,所以DM⊥平面BMC.而DM平面AMD,故平面AMD⊥平面BMC.(2)以D为坐标原点,的方向为x轴正方向,建立如图所示的空间直角坐标系D−xyz.当三棱锥M−ABC体积最大时,M为的中点.由题设得,设是平面MAB的法向量,则即可取.是平面MCD的法向量,因此,,所以面MAB与面MCD所成二面角的正弦值是.点睛:本题主要考查面面垂直的证明,利用线线垂直得到线面垂直,再得到面面垂直,第二问主要考查建立空间直角坐标系,利用空间向量求出二面角的平面角,考查数形结合,将几何问题转化为代数问题进行求解,考查学生的计算能力和空间想象能力,属于中档题.20. 已知斜率为的直线与椭圆交于,两点,线段的中点为.(1)证明:;(2)设为的右焦点,为上一点,且.证明:,,成等差数列,并求该数列的公差.【答案】(1)(2)或【解析】分析:(1)设而不求,利用点差法进行证明.(2)解出m,进而求出点P的坐标,得到,再由两点间距离公式表示出,得到直的方程,联立直线与椭圆方程由韦达定理进行求解.详解:(1)设,则.两式相减,并由得.由题设知,于是.①由题设得,故.(2)由题意得,设,则.由(1)及题设得.又点P在C上,所以,从而,.于是.同理.所以.故,即成等差数列.设该数列的公差为d,则.②将代入①得.所以l的方程为,代入C的方程,并整理得.故,代入②解得.所以该数列的公差为或.21. 已知函数.(1)若,证明:当时,;当时,;(2)若是的极大值点,求.【答案】(1)见解析(2)【解析】分析:(1)求导,利用函数单调性证明即可.(2)分类讨论和,构造函数,讨论的性质即可得到a的范围.详解:(1)当时,,.设函数,则.当时,;当时,.故当时,,且仅当时,,从而,且仅当时,.所以在单调递增.又,故当时,;当时,.(2)(i)若,由(1)知,当时,,这与是的极大值点矛盾. (ii)若,设函数.由于当时,,故与符号相同.又,故是的极大值点当且仅当是的极大值点..如果,则当,且时,,故不是的极大值点.如果,则存在根,故当,且时,,所以不是的极大值点.如果,则.则当时,;当时,.所以是的极大值点,从而是的极大值点综上,.点睛:本题考查函数与导数的综合应用,利用函数的单调性求出最值证明不等式,第二问分类讨论和,当时构造函数时关键,讨论函数的性质,本题难度较大.(二)选考题:共10分,请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.22. [选修4—4:坐标系与参数方程]在平面直角坐标系中,的参数方程为(为参数),过点且倾斜角为的直线与交于两点.(1)求的取值范围;(2)求中点的轨迹的参数方程.【答案】(1)(2)为参数,【解析】分析:(1)由圆与直线相交,圆心到直线距离可得.(2)联立方程,由根与系数的关系求解详解:(1)的直角坐标方程为.当时,与交于两点.当时,记,则的方程为.与交于两点当且仅当,解得或,即或.综上,的取值范围是.(2)的参数方程为为参数,.设,,对应的参数分别为,,,则,且,满足.于是,.又点的坐标满足所以点的轨迹的参数方程是为参数,.点睛:本题主要考查直线与圆的位置关系,圆的参数方程,考查求点的轨迹方程,属于中档题.23. [选修4—5:不等式选讲]设函数.(1)画出的图像;(2)当,,求的最小值.【答案】(1)见解析(2)【解析】分析:(1)将函数写成分段函数,再画出在各自定义域的图像即可.(2)结合(1)问可得a,b范围,进而得到a+b的最小值详解:(1)的图像如图所示.(2)由(1)知,的图像与轴交点的纵坐标为,且各部分所在直线斜率的最大值为,故当且仅当且时,在成立,因此的最小值为.点睛:本题主要考查函数图像的画法,考查由不等式求参数的范围,属于中档题.。