大学化学第一章
大学化学第一章1讲解
解:(1)△U系统=(-60)+(-40)=-100kJ (2)△U系统=(-40)+(+60)=+20kJ (3)△U系统=(+60)+(+40)=100kJ (4)△U系统=(+40)+(-60)=-20kJ
化学反应的反应热 化学反应系统与环境进行能量交换的 主要形式是热,称反应热或热效应。
化学反应动力学 现实性—速率 计算任意反应的∆U、∆H、∆S 、∆G和速率v。
为了便于讨论,我们先介绍以下几 个基本概念: 包括: 系统、 环境、 相、
质量守恒、 能量守恒、 状态 和 状态函数、 热和功
热力学基本概念
◆系统和环境 (system and surroundings) 系统: 作为研究对象的那一
∴ QP =△U +P△V
QP = △U +P△V
上式可化为: QP=(U2-U1)+ P(V2-V1)
即: QP=(U2+P2V2)-(U1+P1V1)
此时,令: H = U +PV 称:焓
则: QP =H2-H1=ΔH
意义:
焓:
符号:H ; H 是状态函数;
无绝对数值;
其值与n 成正比;
单位: kJ。 根据 Q 符号的规定,有:
• 也说明ΔU ,ΔH 可以通过量热实验进行直接测定。
注意下列各组状态函数表示的意义:
1.U , H 当泛指一个过程时状态函数改变量的
表示法
2.rU , r H
指明某一反应而没有指明反应进度即 不做严格的定量计算时,两个状态函
数改变量的表示法
3.rU m , r H m 表示某反应按所给定反应方程式进
大学化学第一章
第一章 习题选解3. 20℃时某地空气中水的实际蒸汽压为1.001KPa 。
此时的相对湿度是多少?若温度降低到10℃,相对湿度又如何变化?解:设水蒸气服从PV=nRT ,其他因素不变时,P 正比于绝对温度T ,故10℃时:P H2O 实际= 1.001×2.2932.283=0.9669(KPa ) 查表1-1(P10)知,P H2O ,饱和是2.339 KPa (20℃)和1.228 KPa (10℃) 按相对湿度=饱和实际,O H O H P P 22,计算,此地空气的相对湿度分别是42.80%(20℃)和78.74%(10℃),温度降低至10℃,其值增大为20℃值的80.4274.78=1.840(倍) 4. 比较并简述原因(1)不同浓度蔗糖溶液的凝固点高低;解:b/mol·Kg -1 0.1 0.2 0.5/b K t f f ⋅=∆℃ 小 大 更大/0f f t t ∆-=℃ 高 低 更低(2)同浓度不同溶质水溶液的凝固点高低;解:溶质 微粒b/mol·kg -1 /f t ∆℃ /f t ℃C 6H 12O 6 0.1 小 高NaCl=Na ++Cl - 0.2 大 低Na 2SO 4=2Na ++SO 42- 0.3 更大 更低(3)不同浓度Na 2SO 4溶液的渗透压高低。
解:Na 2SO 4⎩⎨⎧∙≈⋅-KPa RT b p kg m ol b //1渗低1.0 高2.0 更高5.05. 比较并说明理由:解:(1) BaCl 2 FeCl 2 AlCl 3 CCl 4 晶体类型 离子 过渡型(偏离子) 过渡型(偏分子) 分子熔 点 由高到低(2) SiO 2 BaO CO 2 晶体类型 原子 离子 分子硬 度 由大到小(3) MgO CaO CaF 2 CaCl 2离子键强度 由强到弱熔 点 由高到低(4) SiC SiBr 4 SiF 4 晶体类型 原子 分子 分子结合力 共价键 色散力较强 色散力,较弱熔 点 由高到低(5) 液态HF 、HCl 、HBr 、HI 靠分子间力(主要是色散力)凝聚,从左到右因分子体积增大,色散力增强,故沸点升高。
大学有机化学-各章重点
H3C H
CH3 H
H3C H
H CH3
顺-2-丁烯 反-2-丁烯 两个相同原子或基团处于双键同侧者为顺式, 处于异侧者为反式。 顺反异构产生的条件: (1) 结构中存在限制旋转的因素(π 键或环) 。 (2) 双键碳上分别连有不同基团
a
即在
b
中当 a ≠ d,b ≠ c 时存在几何异构。当双键的两个碳上若没有相同原子或
第二章 烷烃
2.1 基本要求
1. 2. 3. 4. 掌握烷烃碳原子的杂化状态及分子结构特点。 掌握烷烃的系统命名法和普通命名法。 掌握烷烃构象的概念及构象的写法。 掌握烷烃的卤代反应及其自由基反应的机理。
2.2 基本内容
1. 命名 烷烃的命名常用的有普通命名法和系统命名法两种方法。 (1)普通命名法 简单的烷烃根据碳原子的总数称为某烷 C1~C10 用甲、乙、丙……壬癸表示,从 C11 开始 用中文大写数字表示。 不含支链的称 “正” 某烷, 链的一端第二个碳上有一个甲基并再无其它取代基的称为 “异” 某烷,有二个甲基并再无其它取代基的称为“新”某烷。 (2)系统命名法 系统命名法的基本点是确定主链和取代基的位次,描述一个烷烃结构实际上就是描写主 链(母体)和取代基的具体情况。 2. 烷烃的分子结构 (1) 碳原子的 sp3 杂化和 σ 键的特点 由一个 s 轨道和三个 p 轨道“混合” ,并“重新组合”形成四个相同的新轨道的杂化方 3 3 式称 sp 杂化。饱和烃中碳原子均为 sp 杂化,饱和烃中所有的键均为 σ 键,因为饱和碳上 形成的键都是沿着轨道对称轴方向相互重叠而形成,这是 σ 键的特征。 (2) 碳链异构和碳氢类型 分子式相同,分子中碳原子连接顺序不同而产生的异构称碳链异构。在各种不同结构的 碳链中,由于碳原子所处的地位不同可以分为伯(一级 1º)、仲(二级 2º)、叔(三级 3º)、季(四 级 4º)四种类型。 (3) 烷烃的构象异构 烷烃分子中各原子均以单键(σ 键)相连。从乙烷开始,由于 C-C σ 键的自由旋转,使分 子中的原子或基团在空间上存在不同的排列方式, 称为烷烃的构象。 乙烷有交叉式和重叠式 两种极端构象式。 由于交叉式构象中两个碳原子上的氢原子距离较远, 斥力较小, 内能最低, 称为优势构象式。 分子的热运动提供的能量足可以使不同构象间以极快的速度转化, 所以在 室温下不能分离构象异构体。 (4) 化学性质 烷烃的化学性质较稳定,但在光照或高温加热下可以发生卤代反应。卤代反应是共价键 的均裂产生自由基引起的,所以属于自由基取代反应历程。以外,在一定条件下,烷烃还能 发生氧化与燃烧、热裂等反应。
大学化学1溶液和胶体
14
溶液的通性 — 溶液的沸点上升的原因
3.溶液的沸点上升(boiling point)
液体的沸点 ( boiling point ) 当P 液 = P 外,液体沸腾时的温度。
正常沸点:当P外=P标时的液体的沸点。
溶液的沸点升高
是溶液蒸气压下降的直接结果
2024/9/30
15
溶液的通性 — 溶液的沸点上升的数值
p溶液= p*-⊿p = 2.338kPa - 0.021kPa = 2.317kPa
溶液的通性 — 凝固点下降
2.液体的凝固点降低(freezing point)
凝固点:某物质的液相蒸汽压与固相蒸汽压相等时 的温度。用Tf表示 或在一定外压下,物质固、液两相平衡共存时的温 度。
如 :H2O(l) 273K,101.3kPa H2O(s)
该温度下的饱和蒸汽压,简称蒸汽压。
加入一种难挥发的非电解质
束缚一部分高能水分子
P↓
占据了一部分水的表面
2024/9/30
8
溶液的通性 — Raoult定律
在一定温度下,难挥发性非电解质稀溶液的蒸气压
(P)等于纯溶剂的蒸气压(PA*)乘以溶液中溶剂的 摩尔分数(xA )。
p
p* A
xA
xA
nA nA nB
1.蒸气压下降 2.凝固点降低 3.沸点升高 4.渗透压力
p
p* A
xB
ΔTf=kf • bB
ΔTb =kb• bB
= CBRT
的数值与溶液中质点 的个数成正比
2024/9/30
23
第 4 章 酸碱解离平衡和沉淀溶解平衡
4.1 电解质溶液 4.2 酸碱理论 4.3 弱电解质的解离平衡 4.4 缓冲溶液 4.5 沉淀溶解平衡
大学普通化学第一章
q q
Example 2
(系统吸热)= (系统吸热)=
m·cs · ΔT n·cm · ΔT
100.0 J 的热量可使 1mol 铁的温度上升 3.98 K,求铁的cm.
Solution
q 100.0J cm = = n ⋅ ΔT (1mol)(3.98K) = 25.1 J ⋅ mol ⋅ K
−1 −1
(a)
(b)
如下图所示,试管内的物质有几相组成?
因为试管a内的酒精和水互 因为试管a内的酒精和水互 溶,故溶液中任何部分的物理 溶,故溶液中任何部分的物理 性质和化学性质完全相同;而 性质和化学性质完全相同;而 试管b内,煤油和水互不相 试管b内,煤油和水互不相 溶,致使上下两层液体的物理 溶,致使上下两层液体的物理 性质和化学性质完全不相同, 性质和化学性质完全不相同, 而且上下层间有明确的界面隔 而且上下层间有明确的界面隔 开,因此上下层液体形成两个 开,因此上下层液体形成两个 相。 但是,如果把液体上方的 相。 但是,如果把液体上方的 空气也考虑进去,则试管a中 空气也考虑进去,则试管a中 有两相:气相和溶液相;试管 有两相:气相和溶液相;试管 b中有三相,分别是水相、煤 b中有三相,分别是水相、煤 油相及液体上方的气相。 油相及液体上方的气相。
3. 状态和状态函数 (state and state function)
状 态: 一定条件下系统存在的形式。 状态函数: 描述系统状态的物理量,例如 p,V,T 等。
Attention:
(1) 系统的状态确定,系统的各种性质即所有的状态函数也都 确定,反之亦然。 (2) 当系统的状态发生变化,系统的状态函数也变化,但不一 定所有的状态函数都变化,如等温、等压过程。 (3) 反过来,当系统有一个状态函数发生变化,系统的状态一 定发生变化。
大学化学01第一章 气体和溶液
第一章 气体和溶液学习要求1. 了解分散系的分类及主要特征。
2. 掌握理想气体状态方程和气体分压定律。
3. 掌握稀溶液的通性及其应用。
4. 掌握胶体的基本概念、结构及其性质等。
5. 了解高分子溶液、乳状液的基本概念和特征。
1.1 气体1.1.1 理想气体状态方程气体是物质存在的一种形态,没有固定的形状和体积,能自发地充满任何容器。
气体的基本特征是它的扩散性和可压缩性。
一定温度下的气体常用其压力或体积进行计量。
在压力不太高(小于101.325 kPa)、温度不太低(大于0 ℃)的情况下,气体分子本身的体积和分子之间的作用力可以忽略,气体的体积、压力和温度之间具有以下关系式:V=RT p n (1-1)式中p 为气体的压力,SI 单位为 Pa ;V 为气体的体积,SI 单位为m 3;n 为物质的量,SI 单位为mol ;T 为气体的热力学温度,SI 单位为K ;R 为摩尔气体常数。
式(1-1)称为理想气体状态方程。
在标准状况(p = 101.325 Pa ,T = 273.15 K)下,1 mol 气体的体积为 22.414 m 3,代入式(1-1)可以确定R 的数值及单位:333V 101.32510 Pa 22.41410 m R T1 mol 27315 Kp n .-⨯⨯⨯==⨯3118.314 Pa m mol K --=⋅⋅⋅11= 8.314 J mol K --⋅⋅ (31 Pa m = 1 J ⋅)例1-1 某氮气钢瓶容积为40.0 L ,25 ℃时,压力为250 kPa ,计算钢瓶中氮气的质量。
解:根据式(1-1)333311V 25010Pa 4010m RT8.314Pa m mol K 298.15Kp n ---⨯⨯⨯==⋅⋅⋅⨯4.0mol =N 2的摩尔质量为28.0 g · mol -1,钢瓶中N 2的质量为:4.0 mol × 28.0 g · mol -1 = 112 g 。
大学化学第一章4节化学反应速率
对于化学反应:
1 dcB 反应速率为: v B dt
dcB 表示化学反应中物质B的浓度cB 随时间t dt
的变化率。反应速率υ 单位: mol · -3 ·-1 dm s
3
mol · -3 · -1 dm min
应用哪种物质表示υ都有唯一确定的值 。
例如: 起始浓度c/mol· -3 dm N2 + 3H2 = 2NH3 1.0 3.0 0
2秒后浓度c/mol· -3 dm
v ( N2 )
v( H2 )
0.8
2.4
0.4
0.2 0.1mol L1 s 1 t 2
cN2
1 cH 2 0.6 0.1mol L1 s 1 3 t 6
1 cNH3 0.4 0.1mol L1 s 1 2 t 4
4
v ( NH3 )
随着反应的进行,反应物的浓度不断降低, 所以正反应速率会不断变慢,产物的浓度不断增 加,所以逆反应速率会不断变快;直到正反应速 率等于逆反应速率;达到平衡状态
5
1.4.2.化学反应速率的测定
1 ci lim v(i ) t 0 i t
1 dc(i ) i dt
28
例题:写出元反应 NO2 + CO = NO + CO2的 反应速率方程式、反应的总级数和反应速率 系数单位。 解: 根据质量作用定律: v k[ NO2 ][CO] n=1+1=2 反应为二级反应 k 的单位:mol-1· 3 · -1 dm s
29
1.4.5温度对反应速率的影响 阿累尼乌斯公式 (Arrhenius公式)
17
化学反应 2HI = H2 + I2 2N2O = 2N2 + O2
大学化学课件第一章
思考
1. 101.325 kPa,273.15 K下,H2O(l), H2O(g)和 H2O(s)同时共存时,系统中的相数为多少?
2. CaCO3(s)分解为CaO (s)和CO2(g)并且达到平 衡的系统中有多少相?
二、状态与状态函数 (state function )
1. 状态是体系内一切性质的总和。
例1.1 在容积为10.0 L的真空钢瓶内,充入氯气, 当温度为288 K时,测得瓶内气体的压强为 1.01×107 Pa。 试计算钢瓶内氯气的质量,以千克表示。
解:由pV=nRT, 推出 m MpV RT
m 71.0103 1.01107 10.0 103 8.314 288
单相体系:均匀体系,只有一个相的体系。 多相体系:不均匀系,有两相或两相以上的体系。 相变:同一物质的气相、液相、固相间的相互转
化,叫做相变。固态物质不同晶形间的转 化也属相变。
TiO2/MgTiO3 界面结构
高分辨透射电子显微镜(HRTEM) High-resolution Transmission Electron Microscope
1. 理想气体 为了研究的方便,假设有一种气体:
只有位置不占有体积,是一个具有质量的几何点。 分子之间没有相互作用力, 分子间及分子与器壁间的碰撞不造成动能损失。 这种气体称之为理想气体。
说明
1) 理想气体只是一种人为的气体模型, 实际中它是不存在的。
2) 研究结果表明: 在温度不太低,压力不太高(高温、低压)条件下, 气体分子间的距离相当大, 气体分子自身体积与气体体积相比可以忽略, 分子间的作用力也显得微不足道, 可以近似认为是理想气体。 高温、低压: 温度高于0 oC, 压强低于1 atm。
大学化学 第一章
例1.2 某体系吸收了40 kJ热量,对环境做了 20 kJ的功,那么体系内能的改变量为? 解:对体系而言: ∆U(体系) = Q - w = 40 - 20 = 20 (kJ)
pV nRT
2.气体分压定律(道尔顿分压定律)
piV ni RT pi ni xi 或 pi xi p pV nRT p n
即:组分气体的分压等于 总压与该组分气体的摩尔分数的乘积。
§1.2 能量和能量守恒定律
一、体系 (系统) 和环境 (system and surrounding ) 体系(系统)就是所要研究的对象; 系统以外与系统有密切联系的其他物质或 空间部分,叫做环境。
1molN2 1molO2
答:相等。 ∵ pV=nRT ,而V、T、n均相同。 2) 容器1中O2和N2对器壁的压力相等? 答:相等。 ∵pV=nRT,而V、T、n均相同。 3) 两个容器的器壁承受的压力是否相同? 答:否。
1molO2
p2 pO2;p1 pO2 pN2 2 p2
2.气体分压定律(道尔顿分压定律)
2. 理想气体状态方程
波义尔
Robert Boyle 1627-1691
查理
Jackues-Alexandre Charles 1746-1823
盖-吕萨克
Joseph-Louis Gay-Lussac 1778-1850
阿伏加德罗
上海交通大学 大学化学 第一章 化学热力学基础
盖斯定律应用举例
例2:求298.15K、标准大气压时C(s)和 O2(g)生成CO(g)
的反应热:
C(s)
1 2
O
2
(g)
CO(g)
H ?
已知:(1)C(s) O 2 (g) CO 2 (g) H1 393 .51kJ
(2)
CO(g)
1 2
O 2 (g)
CO 2 (g)
H 2 283kJ
弹式量热计示意图 讨论: (1)测得的是QV还是QP? (2)适用所有反应吗?
2. 盖斯定律 (Hess’ Law)
“the heat evolved or absorbed in a chemical process is the same whether the process takes place in one or in several steps”(1840年)
Δf Hm(物质,相态,温度)
注意: •未规定温度,通常298.15 K时的数据有表可查; •生成热是相对值,最稳定单质的生成焓值等于零;
最稳定单质
最稳定单质:在标态及指定温度下能稳定存在的单质
如:
稳定态单质 Δf Hm
H2(g), Hg(l), Na(s) 是
0
H2(l), Hg(g), Na(g) 否
产生的焓变,ΔrHm(T)。单位:kJ·mol-1或J·mol -1
5.热化学方程式
要求:• 反应物、产物要配平
• 标明物质的状态,注明物态、温度、压力等。对于固 态还应注明结晶状态。
• 反应的焓变(反应热)
例 已知下列热化学方程式:298.15 K时
H2(g,p)+I2 (g,p)=2HI(g,p)
大学化学第一章(化学工业出版社).doc
第一章化学反应的基本原理1.某乙醇溶液的质量为196.07g,其中H2O为180g,求所含C2H5OH物质的量。
解:由题意可知:n(C2H5OH)=m/M=(196.07-180)/46=0.35mol2.已知化学反应方程式:CaCO3(s)=CaO(s)+CO2(g),求1t含95%碳酸钙的石灰石在完全分解时最多能得到氧化钙和二氧化碳各多少千克?解:由题意可知:m(CaO)=(56×1000×95%)/100=532kgm(CO2)=( 44×1000×95%)/100=418kg3.已知铝氧化反应方程式:4Al(s)+3 O2(g)=2Al2O3(s),试问:当反应过程中消耗掉2molAl时,该反应的反应进度为多少?分别用Al,O2,Al2O3进行计算。
解:由题意可知:4Al(s)+3 O2(g)=2Al2O3(s)ξ(Al)=Δn(Al)/ν(Al)=(-2mol)/(-4)=0.5molξ(O2)= Δn(O2)/ν(O2)=(-1.5mol)/(-3)=0.5molξ(Al2O3)= Δn(Al2O3)/ν(Al2O3)=1mol/2=0.5mol4.水分解反应方程式:H2O(l)=H2(g)+1/2O2(g),反应进度ξ=3mol时,问消耗掉多少H2O,生成了多少O2?解:H2O(l)=H2(g)+1/2O2(g), ξ=3molΔn(H2O)= ξ×ν(H2O)= (-1) ×3mol=-3molΔn (O2)= ξ×ν(H2O)= (1/2) ×3mol=1.5mol5.甲烷是天然气的主要成分,试利用标准生成焓的数据,计算甲烷完全燃烧时反应的标准焓变Δr H mθ(298.15K)。
1molCH4完全燃烧时能释放多少热能?解:由题意可知:CH4(g) + 2O2(g) = CO2(g) + 2H2O(l)Δf H mθ/ kJ·mol-1 -74.85 0 -393.50 -241.82Δr H mθ(298.15K)={Δf H mθ(CO2)+2Δf H mθ(H2O)-Δf H mθ(CH4)-2Δf H mθ(O2)}=-802.29kJ·mol-16.已知N2H4(l)和N2O4(g)在298.15K时的标准摩尔生成焓分别为50.63kJ·mol-1.和9.66kJ·mol-1。
大学无机化学第一章
3. 蒸气压的计算
1 蒸气压的对数与 T 的直线关系:
2.00
32/37
lg p = A/T + B A = - (ΔHvap)/2.303R
1.00
ΔHvap 为气体的摩尔 蒸发热
0.00 2.6 3.0 3.4 3.8
1 × 103/K-1 T
3. 蒸气压的计算 (描述气-液平衡)
克拉佩龙-克劳修斯Clapeyron-Clausius 方程:
36/37
11/37
1.1.2 气体分压定律 理想混合气体: 几种气体混合后不发生化学反应、分 子间相互作用力以及分子本身所占体积可 以忽略时,称理想混合气体。 分压: 恒温条件下,混合气体中每一组分气 体单独占有整个混合气体容积时所产生的 压力,称该组分气体的分压。
分压定律
混合气体的总压等于混合气体中各组分 气体分压之和。 p = p1 + p2 + ⋅⋅⋅ 或 p = ∑ pi
27/37
2. 液体的气化:蒸发 与 沸腾
28/37
蒸发: 液体表面的气化现象叫蒸发(evaporation)。
分子的 动能: 红色:大 黑色:中 蓝色:低
a
b
吸热过程
沸腾
带活塞容器, 活塞压力为 P
当温度升 高到蒸气 压与外界 气压相等 时,液体 就沸腾, 这个温度 就是沸点。 沸点与外界压 力有关。外界 压力等于101 kPa (1 atm)时 的沸点为正常 沸点,简称沸 点。 沸腾是在液体的表 面和内部同时气化。
64.04g × 0.164mol m(NH4NO2) = 1mol
= 10.5 g
思考
A、B两种气体在一定温度下,在一容器 中混合,混合后下面表达式是否正确?
(完整版)大学化学课后习题答案解析..
第一章化学反应热教学内容1.系统、环境等基本概念; 2. 热力学第一定律; 3. 化学反应的热效应。
教学要求掌握系统、环境、功、热(恒容反应热和恒压反应热)、状态函数、标准态、标准生成焓、反应进度等概念;熟悉热力学第一定律;掌握化学反应标准焓变的计算方法。
知识点与考核点1.系统(体系)被划定的研究对象。
化学反应系统是由大量微观粒子(分子、原子和离子等)组成的宏观集合体。
2.环境(外界)系统以外与之密切相关的部分。
系统和环境的划分具有一定的人为性,划分的原则是使研究问题比较方便。
系统又可以分为敞开系统(系统与环境之间既有物质交换,又有能量交换);封闭体系(系统与环境之间没有..能量交换);..物质交换,只有孤立系统(体系与环境之间没有物质交换,也没有能量交换)系统与环境之间具有边界,这一边界可以是实际的相界面,也可以是人为的边界,目的是确定研究对象的空间范围。
3.相系统中物理性质和化学性质完全相同的均匀部分。
在同一个系统中,同一个相可以是连续的,也可以是不连续的。
例如油水混合物中,有时水是连续相,有时油是连续相。
4.状态函数状态是系统宏观性质(T、p、V、U等)的综合表现,系统的状态是通过这些宏观性质描述的,这些宏观性质又称为系统的状态函数。
状态函数的特点:①状态函数之间往往相互制约(例如理想气体状态方程式中p、V、n、T之间互为函数关系);②其变化量只与系统的始、末态有关,与变化的途径无关。
5*.过程系统状态的变化(例如:等容过程、等压过程、等温可逆过程等)6*.途径完成某过程的路径。
若系统的始、末态相同,而途径不同时,状态函数的变量是相同的。
7*.容量性质这种性质的数值与系统中的物质的量成正比,具有加合性,例如m(质量)V、U、G等。
8*.强度性质这种性质的数值与系统中的物质的量无关,不具有加合性,例如T、 (密度)、p(压强)等。
9.功(W)温差以外的强度性质引起的能量交换形式 [W=W体+W有]。
大学化学第二版(科学出版社)第一章第一节
ξ=△nR/vR= [nR(ξ) - nR(0)]/vR
反应进度的微变定义为:
dξ= dnR/vR
说 明: (1) vR 符号: 反应物为负(-);生成物为正(+)。
(2) 化学反应进度(ξ)的单位:mol。 (3)反应进度表示的意义:若ξ=1, 表明发生了1mol反应。
例如: 合成氨反应的有关数据见下表。试比较下列 两个反应式中反应进度是否相同? 反应式 (1) N2 + 3H2 = 2NH3 vR -1 -3 2 开始时物质的量/mol 10 20 0 t 时刻物质的量/mol 9 17 2
b.体积功W(膨胀功,expansile work)
在恒定外压下 W = - p外 • △V
C.热和功不是体系的状态函数,它们是途径函数。
六、反应进度(ξ)
1.定义: 反应进度是用来定量地描述和表征化学反应进行程度的物 理量。符号:ξ ,单位:mol 2.化学反应的一般形式:
对于某一反应:
可写为:
2.焓和焓变
焓(enthalpy)
焓变
根据 △U = U2-U1 = QP - P (V2-V1) 则有 QP=(U2-U1 )+P (V2-V1 )=(U2+Pபைடு நூலகம்2)-(U1 +PV1) 令: H = U + P V 则 : QP = H2-H1 = △H 即:△H = QP
结论:恒压过程的热效应在数值上等于该系统在变化过程中的焓变。
热化学与能量转化—热和功
五、热和功
1、热 ( heat , Q) 体系和环境间因存在温度差而传递的能量。
2、功 ( work, W )
除热以外其它各种形式传递的能量,统称为功。 W =W(体积功) + W′(非体积功) 说明:a 热力学规定:
南昌大学大学化学第一章课后答案
南昌⼤学⼤学化学第⼀章课后答案第⼀章1.⽤作消毒剂的过氧化氢溶液中过氧化氢的质量分数为0.030,这种⽔溶液的密度为1.0g?mL-1,请计算这种⽔溶液中过氧化氢的质量摩尔浓度、物质的量浓度和摩尔分数。
解:1L溶液中,m( H2O2) = 1000mL?1.0g?mL-1?0.030 = 30gm( H2O) = 1000mL?1.0g?mL-1?(1-0.030) = 9.7?102gn( H2O2) = 30g/34g?moL-1=0.88moln( H2O) = 970g/18g.?mol-1=54molb( H2O2)= 0.88mol /0.97kg = 0.91mol?kg-1c( H2O2)= 0.88mol/1L = 0.88mol?L-1x( H2O2) = 0.88/(0.88.+54) = 0.0162.计算5.0%的蔗糖(C12H22O11)⽔溶液与5.0%的葡萄糖(C6H12O6)⽔溶液的沸点。
解:b(C12H22O11)=5.0g/(342g.?mol-1?0.095kg)=0.15mol?kg-1b(C6H12O6)=5.0g/(180g.?mol-1?0.095kg)=0.29mol?kg-1蔗糖溶液沸点上升T b=K bb(C12H22O11)= 0.52Kkgmol-10.15molkg-1=0.078K蔗糖溶液沸点为:373.15K+0.078K=373.23K葡萄糖溶液沸点上升T b=K bb(C6H12O6)= 0.52Kkgmol-10.29molkg-1=0.15K葡萄糖溶液沸点为:373.15K + 0.15K = 373.30K3.⽐较下列各⽔溶液的指定性质的⾼低(或⼤⼩)次序。
(l)凝固点: 0.1mol?kg-1 C12H22O11溶液,0.1mol?kg-1 CH3COOH溶液,0.1mol?kg-1 KCl溶液。
(2)渗透压:0.1mol?L-1 C6H12O6溶液,0.1mol?L-1CaCl2溶液,0.1mol?L-1 KCl溶液,1mol?L-1 CaCl2溶液。
工科大学化学--第一章
1.2.3 水资源保护
(3)水体的富营养化
污水中碳、 氮、 磷等植物生长所必需的营养物质过剩, 使得藻类、 浮游生物迅速繁殖, 不但大量消耗掉水中的氧, 而且遮挡阳光, 导致水中的 鱼类和其他生物大量死亡、腐烂, 水质恶化, 这种现象称为水体富营养化。
富营养化污染发生于海洋,将使海洋中的浮游生物暴发性增殖、聚集而 引起水体变色, 称为赤潮。 富营养化污染发生于淡水, 将引起蓝藻、绿藻、 硅藻等藻类迅速生长, 使水体呈蓝色或绿色, 称为水华。
(2) 生活污染源 这种污染源主要为家庭炉灶排气, 是一类排放量大、 分布广、 危害性不容忽视的空气污染源。
(3) 汽车尾气 汽车尾气污染指由汽车排放的废气造成的环境污染, 主要污染物为碳氢化合物、 氮氧化物、 一氧化碳等, 可以引起光化学烟雾。
1.1.3 大气污染与防治
3. 大气污染物
(1)颗粒物 颗粒物指除气体之外, 包含于大气中的物质, 包 括各种固体、 液体和气溶其中有固体的灰尘、 烟雾以及液体的云雾和雾滴, 其粒径范围主要在 200 ~ 0. 1μm 之间。
3. 质量摩尔浓度
在溶液中,溶质B的物质的量nB除以溶剂A的质量mA,即为溶质B的 质量摩尔浓度,用bB表示,单位为mol·kg-1。
4. 摩尔浓度
在溶液中,物质B的物质的量nB为mol·L-1。
1.2.2 稀溶液的依数性
1.液体的蒸气压下降
分压等于相同温度下, 组分气体单独占有与混合气体相同体积时具 有的压强。
混合气体的总压等于各组分气体的分压之和, 这种关系称为道尔顿 分压定律。
pB
nB n
p=yB p
(nB/n)是组分气体B的物质的量分数(摩尔分数),可用yB表示,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反应放出的热 水吸收的热 钢弹组件吸收的热
反应放出的热量等于水所吸收的热和钢弹组 合件所吸收的热之和。
q=-{q(H2O)+qb}=-{C(H2O)·ΔT+C b·ΔT} =-∑C·ΔT
23
填空
使可燃样品(1.0000克)在弹式热量计内完全燃 烧,以测定其反应热,必须知道 、 、 和 。
24
体系热力学能净增为20kJ
32
1.2.2化学反应的反应热与焓
1)定容反应热 在恒容、不做非体积功条件下: ΔV=0, w=-pΔV=0,ΔU=q+w qv=ΔU 定容热效应qv 在数值上等于系统的热力学能 的改变量 qv,m=ΔrUm
33
2)定压反应热 在恒压、只做体积功条件下: ΔU=q+w=qp+w =qp-pΔV U2-U1=qp-(pV2-pV1) qp=U2+pV2-(U1+pV1) 令 H=U+pV H: 系统的焓(Enthalpy) qp =H2-H1=ΔH qp,m=ΔrHm ΔH:系统焓变,吸热为正,放热为负。 定压热效应qp 在数值上等于焓变。
A)氢气在盛有氯气的密闭绝热容器中燃烧
B)反应N2O4(g) 2NO2(g)在密闭容器中进行
C)氢氧化钠与盐酸在敞口的烧杯中反应
D)用水壶烧开水
答案:B
6
③相、单相,多相
(Phase\Homogeneous phase\Heterogeneous phase)
相: 系统内物理性质和化学性质完全相同的 部分为相。相内所包含的物质既可以是单一的 纯物质,也可以是混合物。不同相之间有明显 的界面分开。
如何知道硫酸与氢氧化钠在 水溶液中反应所放出热量值?
反应所放出的热量等于溶液所吸收的热量。溶 液吸收热量后温度会升高到某一定值。
18
q c m (T T ) C Δ T s s 2 1 S 1 K 1; c 溶 液 的 比 热 , 单 位 J kg 容 s 1; m 溶 液 的 质 量 , 单 位 kg s 1 C 溶 液 的 热 , 单 位 J K 容 S
热效应可分为定容热效应和定压热效应,分 别以qV 和qp表示 。 (Heat of reaction at constant volume Heat of reaction at constant pressure) 一般“实测的反应热(精确)‖ qV ―反应热” qp 反应热与反应进度之比为摩尔反应热
(2)同一化学反应如果化学反应方程式的写 法不同(亦即B不同),反应进度不同。
16
⑦反应的热效应(反应热)(Heat of reaction)
化学反应时所放出或吸收的热。
用q表示;吸热为正,放热为负。 填空题:
反应放热q
反应吸热q
(大于、等于、小于)零,
(大于、等于、小于)零,
17
1.1.2.反应热的测量
2
1.1 反应热的测量
1.1.1 几个概念 ①热力学(热化学):
热力学:是研究热和其它形式能量相互转化之
间关系的科学。
化学热力学(热化学) :利用热力学的基本
原理研究化学反应中能量转化的科学称为 化学热力学。
3
②系统和环境(System and Surroundings)
热力学将所研究的对象(物质和空间)叫系统,
9
④状态与状态函数 (State and State function) 状态:系统的温度,压力,体积,质量和组成 等物理性质和化学性质的总和。 状态函数:描写系统状态的这些个别性质和物 理量。如(T、P、V、n…) 状态函数的关系:
状态函数之间有一定联系
根据理想气体状态方程:PV=nRT。
10
(I)加 压
第一章
内容:
热化学与能源
1、反应热的测量 2、反应热的理论计算 3、能源中的燃料的反应热
1
要求:
1)了解用弹式热量计测量定容热效应(qv )的 原理,熟悉qv的实验计算法。 2)了解状态函数、反应进度、标准状态的概 念和热化学定律。理解定压热效应(qp )与 反应焓变的关系;定容热效应(qv)与热 力学能变的关系。初步掌握化学反应的标 准摩尔焓变(Δ rHm )的近似计算。 3)适当了解能源中的燃料反应的热效应。
12
可逆过程: 系统经过某过程由状态Ⅰ变到状态Ⅱ之后, 当系统沿该过程的逆过程回到原来状态时, 若原来过程对环境产生的影响同时被消除, 这种理想化的过程。
13
⑥化学计量数和反应进度 ( Stoichiometric number and Extent of reaction) 化学式前面的系数称为化学计量数,表示 为:(B)——物质B的化学计量数。 并规定:生成物为正,反应物为负。
系统以外的有关物质和空间统称为环境。 系统分类(按系统与环境之间的物质和能量 传递情况):封闭系统,敞开系统和隔离系统 (孤立系统)。
4
三种系统与环境之间物质和能量的交换情况
敞开系统
封闭系统
隔离系统
有物质交换 没有物质交换 没有物质交换 有能量交换 有能量交换 没有能量交换
5
选择题:
下列情况中属于封闭体系的是( )
36
问题:H为状态函数吗? H是系统的状态函数 H 无法确定;△ H:可确定
37
选择题: 1)如果某一封闭体系经过一系列变化最后又 变到初始状态,则体系的() A) q=0 w=0 Δ U=0 Δ H=0 B) q≠0 w=0 Δ U=0 Δ H=q C) q=-w Δ U=q+w Δ H=0 D) q≠-w Δ U=q+w Δ H=0 2)某一理想气体,经过循环0 B)w=0 C) q=0 D) Δ U<0 3)下列函数中,不属于状态函数的是( ) A) T B) Δ H C)p D)U E) q
B
B
d = B-1 d nB 或 △ = B-1 △ nB = B-1 △ nB 式中:nB为B物质的量, B为B的化学计量数, 为反应进度,单位为mol 。
15
使用 时应注意: (1)反应进度的值与选用反应式中何种物质 的量的变化进行计算无关。
Δ n(A) Δ n(B) Δ n(C) Δ n(D) ξ ν (A) ν (B) ν (C) ν (D)
34
问题:
qp 与qv 之间的关系?
● qp = H = U + p V = qv + nRT ●对液态和固态反应,H ≈ U, qp ≈ qv , ●对于有气体参加的反应, V ≠ 0, qp ≠ qv
35
例:用弹式量热计测得298K时,燃烧1mol正 庚烷 的恒容反应热为- 4807.12 kJmol-1,求其 q p值 解:C7H16(l) + 11O2(g) 7CO2(g)+ 8H2O(l) n = 7 - 11 = - 4 qp = qv + nRT = - 4807.12 + (- 4) 8.314 298/1000 = - 4817.03 kJmol-1
问题:U 是否为系统的状态函数?
27
热力学能的特点: ① U是状态函数,只要状态一定,内能的数值 即为一定值。当状态发生变化时,U的值只取 决于系统的始态和终态。 ②由于物质结构的复杂性和内部相互作用的多 样性,尚不能确定内能的绝对值,可确定内能 的相对值。 U 无法确定;△ U:可确定
28
2.能量守恒定律 在任何过程中能量是不会自生自灭的,只能从— 一种形式转化成另一种形式,在转化过程中能 量的总值不变。
始
P1=101.3kPa T1=373K V1=2m3
P1=202.6kPa T1=373K V1=1m3
终
态 P3=303.9kPa T3=473K (II)加压、升温 V3=0.845m3 减压、降温
态
11
5.过程和可逆过程 (Process and Reversible process) 过程:系统状态发生任何的变化称为过程。 途径:实现这个过程的具体步骤被称为途径。 状态函数的特点是:其变化值只取决于系统的 起始状态和终了状态,而与系统变化所经历的 具体途径无关。
如, WO3(s)+6H2(g )= 6H2O(l)+W(s), ( WO3) = -1, (H2)= -6, (H2O)=6, (W)=1, 表明消耗1mol WO3和6mol H2, 生成6mol H2O和1mol W。
14
反应进度():表示化学反应进行程度的物理量。 例如:对化学计量方程: aA+bB = cC+dD 0 ν B
qm
q ξ
25
(1)许多化学反应通常是在定压下进行的,定压 热效应如何求得?
(2)有些反应的热效应难以直接通过实验测得?
26
1.2 反应热效应的理论计算
1.2.1 热力学第一定律 (First law of thermodynamics)
1.内能(热力学能)(Internal energy) 系统内部能的总和。包括分子平动能,转 动能,振动能,分子间势能,原子间键能, 电子运动能,核内基本粒子间核能等。以 U 表示。
19
弹式热量计 对于设计气体的反应, 或者对于反应热很大的 反应,常用弹式热量计 来测定反应热。
20
Parr 6400 Calorimeter
21
用弹式热量计测量反应热的步骤: (1)将已知精确质量的反应物全部装入钢弹 内; (2)需通氧气的按说明书充到一定的压力; (3)将钢弹密封后安放在一金属(钢质)容 器中,往此容器中加入已知质量的吸热介质 水,将钢弹淹没在金属容器的水中,与外界 绝热; (4)精确测定起始温度T1; (5)用电火花引发反应,测定最高温度(即 为终态温度T2 ) 。
30