电介质中的静电场
大学物理 导体和电介质中的静电场
x
(1 2)S q (3 4)S q
1
2
3
4
q S
q S
0
1 4 0
2 3
ⅠⅡ Ⅲ
2 q / S
3 q / S
----电荷分布在极板内侧面
2020/1/14
由场强叠加原理有:
E1
2 2 0
3 2 0
2 2 0
3 2 0
4 2 0
2 0
q1 q2
2 0 S
E3
1 2 0
2 2 0
3 2 0
4 20/1/14
导体和电介质中的静电场
例: 点电荷 q = 4.0 × 10-10C, 处在不带电导体球壳的 中心,壳的内、外半径 分别为: R1=2.0 × 10-2m , R2=3.0 × 10-2m.
0
+ +
+
+ -
-
-q
+
+ -
+
Q
+
+
q
-+
+q
-
--q-
S
+
++
qi 0
S内
结论
空腔内有电荷q时,空腔内表面感应出等值异号 电量-q,导体外表面的电量为导体原带电量Q与感应 电量q的代数和.
2020/1/14
导体和电介质中的静电场
3. 静电平衡导体表面附近的电场强度与导体表面电荷的关系
3. 导体的静电平衡条件 导体内电荷的宏观定向运动完全停止.
第九章导体和电介质中的静电场
q3 0,
V1
1 4 0
( q1 R1
q2 R2
)
60(V ).
2.提示:未插金属板之前 E0
V d
,则选择题
2
可知两边场强,则所求金属
板的电势V
E
d 2
(E0
2 0
)
d 2
(V d
q )
2 0 S
d 2
V 2
qd 4 o S
。
3 . 提 示 :( 1 ) 据 有 介 质 时 的 高 斯 定 理 , 空 间 任 意 点 的
(1)系统静电能的改变。 (2)电场对电源作的功。 (3)外力对极板作的功。
参考答案 一、 选择题 1.(D) 2.(A) 3.(B) 4.(B) 5.(C) 6.(D) 7.(B) 8.(B) 9.(B) 10.(C)
二、填空题
1. 垂直于导体表面 0
q
2.
4 o R
3. r 一样
3.半径为 R0 的导体球带有电荷 Q,球外有一层均匀介质同心球壳,其内、外
半径分别为 R1, R2 ,相对介电常数为 r ,如图 18。求:
(1)介质内、外的电场 E 和电位移矢量 D。
(2)介质内的电板化强度 P 和表面上的极化电荷面密度 。
4.一平行板电容器极板面积为 S,间距为 d,接在电源上并保持电压为 V,若 将极板的距离拉开一倍,试求:
A
U
(Q2
Q1 )
U
2
(C2
C1 )
0S 2d
U
2
静电场中的导体和电介质
-
目录
静电场中的导体 和电介质
0
静电场中的导体和电介质
静电场中的导体和电介质
静电场是指在没有电流流动的情况下,电荷分布所产生的电场。在静电场中,导体和电介质 是两种不同的物质,它们的特性和作用也不同,本文将探讨导体和电介质在静电场中的性质 和应用 首先,我们需要了解导体和电介质的基本概念。导体是一种具有良好导电性能的物质,常见 的导体包括金属等。导体内的自由电子可以在外加电场的作用下移动,形成电流。而电介质 则是一种不良导电的物质,它的电导率远远低于导体。电介质在外加电场下无法形成连续的 电流,而是通过极化现象来响应电场的作用 在静电场中,导体和电介质的行为有很大的不同。对于导体来说,其特点是在静电平衡状态 下,内部电场为零。这是因为导体内的自由电子能够自由移动,它们会在外加电场的作用下 重新分布,直到达到平衡状态。这种现象被称为电荷运动的屏蔽效应。导体的另一个重要性 质是表面上的电荷分布是均匀的,这也是导体可以用来储存电荷的
与导体不同,电介质在静电场中的响应更加复杂。当外加电场作用于电介质时,电介 质分子会发生极化现象,即分子内部正、负电荷的分离。这种分离会导致电介质内部 产生电位移场,从而相应地改变电场分布。电介质的极化程度可以用极化强度来衡量 ,极化强度与外加电场的强度成正比。除了极化现象,电介质还可能发生击穿现象, 即在电场强度过高时,电介质内部的绝缘失效,导致电流的突然增加
0
静电场中的导体和电介质
导体在静电场中的一个重要应用 是电路中的导线。电路中的导线 由导体制成,它们能够有效地传 导电流。在电力系统中,导体连 接电源和电器设备,将电能传输 到目标地点。此外,在电子设备 制造中,导体用于制作电路板, 连接不同的电子元件,实现电信 号的传输和处理
2.静电场中的电介质
自由电荷 束缚电荷
1 E dS
S
0
q
S
0
1
0
P dS
S
( 0 E P) dS q0
S S
电位移矢量定义:
D 0E P
( 0 E P) dS q0
S S
自由电荷
3、极化(束缚)电荷与极化强度的关系: 对于均匀的电介质,极化电荷集中在它的表面。电介质 产生的一切宏观效果都是通过未抵消的束缚电荷来体现。
如图,在平板电容器两极板间的介 质内沿着方向取一长度为dl,横截面为 dS的小圆柱体,在其内部极化可视为 是均匀的。
dl
' dS
' dS
P
点的总场强为:
' 退极化场 是电介质中的总电场强度。 E E E 0 E0 是自由电荷产生的电场。
' E 是极化电荷产生的退极化场
E E0 E'
' '
2.电极化强度矢量
宏观上,电介质极化程度用电极化强度矢量来描述, 其定义式为:
P lim
pi
S S S in
Pn '
P dS dS
'
极化强度力线
在任一曲面内极化电荷的负值等于极化强度的通量。
四、电介质中的高斯定理
根据介质极化和 真空中高斯定律 ' P d S q
S S
S
电位移矢量
0
' ( q q 0 ) S
1 E dS
(2)对各向同性电介质( P e 0 E)
2.5介质中的静电场方程
ˆ qr D 4r 2
在 a<r<a+b
在r>a+b
D E
ˆ qr E 4r 2 ˆ qr E 4 0 r 2
a b qdr qdr q 1 r 1 (a) E dl ( ) 2 2 4r a b 4 0 r 4 a a b a a
D E
介质的结构方程
r
与坐标无关,是常数--均匀介质 与坐标有关,是函数--非均匀介质
(r )
与电场大小无关--线性介质 与电场大小有关——非线性介质 ( E )
与方向无关——各向同性介质 与方向有关——各向异性介质
各向异性介质的介电常数不是标量,而是矩阵
Dx 11 12 13 Ex D E y 21 22 23 y Dz 31 32 33 Ez
D(r ) dS q
S
积分形式
静电场高斯定理
E 0
D
微分形式
E dl 0
l
D E
E
电位方程
E
为常数时
2
图示平行板电容器中放入一块介质后,其D 线、E 线和P 线的分布。
1 1 ' ( 1) D
r
r
无源区的均匀介质中
' 0
r
4.高斯定律的积分形式
D
V 散度定理
DdV
S
V
dV
D dS q
D 的通量与介质无关,但不能认为D 的分布与介质无关。
9.第十二章导体和电介质存在时的静电场2(电介质)
S
dq′ σ'= dS
则介质表面的束缚电荷面密度 则介质表面的束缚电荷面密度
问题: 问题:
面元的法 线方向是 电介质极化时产生的极化电荷的面密度, 即:电介质极化时产生的极化电荷的面密度, 如何规定 的? 等于电极化强度沿外法线的分量. 等于电极化强度沿外法线的分量
r r σ ′ = P cosθ=P ⋅ n
14
∑q
int
= ∑q0+ q′ ∑
r r P ⋅ dS
由前, 由前,高斯面包围的束缚电荷为 ∴∑q' =− ∫ S r r r r ∴ ∫ ε0 E ⋅ dS = ∑q0 − ∫ P ⋅ dS 于是
S S
r r r ∴ ∫ (ε0 E + P) ⋅ dS = ∑q0 S r r r 引入电位移矢量 电位移矢量(electric displacement) D = ε0 E + P 引入电位移矢量
电介质体内任一封闭面内的束缚电荷q′ 电介质体内任一封闭面内的束缚电荷 ′内为
r r ′= q内 − ∫ S P ⋅ dS
可以证明:对均匀电介质,若电介质体内无自由电荷, 可以证明:对均匀电介质,若电介质体内无自由电荷,则不管 电场是否均匀, 电场是否均匀,电介质体内都无束缚电荷 (我们只讨论均匀电 我们只讨论均匀电 介质,即以后只考虑下面所说的表面上的束缚电荷) 介质,即以后只考虑下面所说的表面上的束缚电荷 .
4
3.描述极化强弱的物理量— 3.描述极化强弱的物理量—极化强度 (electric polarization) 描述极化强弱的物理量 电偶极子排列的有序程度反映了介 质被极化的程度 排列愈有序说明极化愈烈
∆V
宏观上无限小微观 上无限大的体积元
第二章 静电场中的导体和电介质:电容器的电容
P e 0 E
§2.8 电容器的电容
一.孤立导体的电容
q C V
单位:F(法拉)
C是与导体的尺寸和形状以及周围的电介质有 关,与q,V无关的常数。
1F 10 F 10 PF
6 12
例1 .求半径为R的孤立导体球的电容。
q1:q2: · :qn = C1:C2: · :Cn · · · ·
q qi (V A VB ) C i ,
i 1 i 1
n
n
n q C Ci VA VB i 1
并联电容器的总电容等 于各电容器的电容之和 2. 串联
C Ci
i 1
n
A +
VA +q –q +q –q 。
q dA udq dq C
从开始极板上无电荷直到极板上电量为Q的过 程中,电源作的功为
2 q 1 Q 1Q dq 0 qdq C C 2 C
A dA 0
Q
Q CU
U为极板上电量为Q时两板间的电势差
1 Q2 1 1 2 A CU QU 2 C 2 2
E
0
( r R1 , r R2 )
λ er 2πεr
B A
( R1 r R2 )
2
VA VB
R E dl R Edr
1
λdr R1 2πεr
R2
R2 q R2 λ ln ln 2πε R1 2πεL R1
q 2πεL C V A VB ln( R2 / R1 )
②所求的C = q/VA–VB一定与q和VA–VB无关,仅 由电容器本身的性质决定。
介质中静电场方程
在线性均匀媒质中,已知电位移矢量 D的z分量为
Dz 20n,C 极/ m化2 强度
Hale Waihona Puke P eˆx9 eˆy 21 eˆz15nC / m2
求:介质中的电场强度 E和电位移矢量 D。
解:由定义,知:D
0E
P
0
D
P
P D
(1
r
1
r
)D P
4P
r Pz …
s
E
ds
1
0
(
V
p
)dV
0 E p
自由电荷和极化电荷共同激发的结果
7
第二章 静电场分析
由于束缚电荷密度是很难通过直接测量获得, 将束缚电荷体密度表达式代入上式,引入辅 助的电位移矢量
p P
D 0E P
电场的Gauss定律变为:
p P 4 第二章 静电场分析
(1)线性均匀介质中,极化迁出的 电荷与迁入的电荷相等,不出 现极化体电荷分布。
(2)不均匀介质或由多种不同结构 物质混合而成的介质,可出现 极化体电荷。
(3)在两种不同均匀介质交界面上 的一个很薄的层内,由于两种 物质的极化强度不同,存在极 化面电荷分布。
D ds dV
s
V
D
它表示任意闭合曲面电位移矢量 D 的
通量等于该曲面包含自由电荷的代数和
8 第二章 静电场分析
介质中的电场的最终求解必须知道电场E和电 位移矢量D之间的关系(物质的本构关系)。
这种关系有两种途径可以获得:
1)直接测量出P 和E之间的关系 2)用理论方法计算P 和E之间的关系 对于线性均匀各向同性介质,极化强度P 和 电场强度E 有简单的线性关系
静电场中的电介质
有介质时的静电场基本方程:
r
rr
引入电位移矢量:D 0 E P
rr
Ò D dS q0
Sr r
3
Ñ l E dl 0
对各向同性线性电介质 D E
电场的能量
§3.7 电场的能量
一. 电场是能量的携带者
➢ 对平行板电容器
We
1 CU 2 2
1
(
S )( Ed )2
2d
1
2
E 2V
E2
静电能由电场携带,存在于电场中.
b uur r
Aab q E d l q(Ua Ub ) qUab (E pb E pa )
a
10
3. 电势叠加原理
(1)点电荷的电势分布:
(2)点电荷系的电势分布:
(3)任意带电体的电势分布:
电势的计算
11
叠加法 定义法
Ui dU
UP E dl P
静电场中的导体和电介质
一.静电场中的导体 1.导体静电平衡条件:
4 r R d 2
q '內
( r 1)q r
q '外
( r 1)q r
r R
空间的电势分布是三个带电球面的电势叠加:
r
r R:
Ur
q
4 0 R
q '內
4 0 R
q '外
40 R d
q ( r 1)q ( r 1)q q ( 1 r 1 ) 4 0 R 4 0 r R 4 0 r ( R d ) 4 0 r R R d
B
A
5.静电屏蔽问题:
E
空腔导体屏蔽外电场
13
接地导体壳有效的屏蔽了内电场
《电学》课件-第5章静电场中的电介质
ε πQ
=4 0
RB dr
r RA
2
Q
B
ε ++Q +
R+ 1+A
+
0 + ++
R2
=
Q
4π ε0
(
1 RA
1) RB
ε Q
C = UA U B
=
4π
R AR B
R 0 B
RA
讨论: 1. 电容计算之步骤:
E
UA UB
C
2. 电容器之电容和电容器之结构,几何
形状、尺寸有关。
3. 电容器是构成各种电子电路的重要器 件,也是电力工业中的一个重要设备。它的作 用有整流、隔直、延时、滤波、分频及提高
q
U外
=
q1 q
4pe0 r2
外球的电势改变为:
ΔU = U外
U2
=
r1q
4pe0
r2 2
=
(r1 2r2 ) q
4pe0
r2 2
2r2q
4pe0
r2 2
2. 点电荷q =4.0×10-10C,处在导体球 壳的中心,壳的内外半径分别为R1=2.0cm 和R2=3.0cm ,求:
(1)导体球壳的电势; (2)离球心r =1.0cm处的电势;
d
ε = ε0 εr
称ε为介电常数,或电容率。
有介质时电容器的电容不仅和电容器的 结构,几何形状、尺寸有关,还和极板间介 质的介电常数有关。
电介质的相对电容率和击穿场强
电介质
相对电容率 击穿场强
真空 空气 纯水 云母
1 1.00059
80 3.7~7.5
8.导体和介电质中的静电场大学物理习题答案
r R1 : E1
q 0 r ; 4 0 r 2 q 0 r 4 0 r 2
R1 r R2 : E 2 0 ;
3
2
1 q
R1 -q
r R2 : E 3
电势分布
q
r R1 : U E d l E1 d l E 3 d r
Q 1 1 1 1 1 1 [( ) ( ) ] 4 0 r R1 r R1 R2 R2
R1 r R2 : U 3 E d l E3 d r E 4 d r
r r R2
R2
Q 1 1 1 1 [ ( ) ] 4 0 r r R2 R2
3 B 球壳所带净电荷 Q ' q 'q Q q 4 3 (2)用导线将和相连,球上电荷与球壳内表面电荷相消。 Q" q' Q 4 2 8-3 两带有等量异号电荷的金属板 A 和 B, 相距 5.0mm,两板面积都是 150cm ,电量大小都是 2.66×l0 8C,
E dl
r
R0
r
E1 d l
R1
R0
E2 d r
R2
R2
R1
E3 d r
R2
E4 d r
R1
R0
Q dr 4 0 r 2
R2
R1
Q dr 4 0 r r 2
Q dr 4 0 r 2
第三章静电场中的电介质
1 E ds ( q0 q)
s
0
s内
s内
q P ds
s内 s
1 1 E dS q0 q q0 P dS 0 0 S S
0 E P dS q0
四、 有介质时的高斯定理应用
令D 0 E P
S
引入辅助物理量:电位移矢量(electric displacement)
D 0E P
介质存在时高斯定理:
D ds q0
s s内
电位移矢量对任意闭合曲面的通量等于该曲面内所有自由 电荷的代数和。 二、电位移矢量D 1、定义:
(S )
_
E0
内
ds
l
P dS q
( S内)
V
S
外
V 内的极化电荷总量 q P ds s P d s 该点的极化电荷体密度 ' s V
'
P ds / V
' s
* 此式为各点极化电荷体密度和该点极化强度的关系。
q' , ' , ' 分别表示极化电荷、体密度、面密度 • q0 , 0 , 0 分别表示自由电荷、体密度、面密度
•
二、极化电荷体密度与极化强度的关系:
1、以位移极化为例 极化分子电矩
p分子
ql
S
E0
ds
单位体积有 n 个分子 极化强度矢量
l
0
P np分子 nql
D E
第9章导体和电介质中的静电场(精)
第第九九章章导导体体和和电电介介质质中中的的静静电电场场引言:一、导体、电介质、半导体导体:导电性能很好的材料;例如:各种金属、电解质溶液。
电介质(绝缘体):导电性能很差的材料;例如:云母、胶木等。
半导体:导电性能介于导体和绝缘体之间的材料;二、本章内容简介三、本章重点和难点1. 重点(1)导体的静电平衡性质;(2)空腔导体及静电屏蔽;(3)电容、电容器;2. 难点导体静电平衡下电场强度矢量、电势和电荷分布的计算;第一节静电场中的导体一、静电感应静电平衡1. 静电感应(1)金属导体的电结构从微观角度来看,金属导体是由带正电的晶格点阵和自由电子构成,晶格不动,相当于骨架,而自由电子可自由运动,充满整个导体,是公有化的。
例如:金属铜中的自由电子密度为:nCu=8⨯1028(m-3)。
当没有外电场时,导体中的正负电荷等量均匀分布,宏观上呈电中性。
(2)静电感应当导体处于外电场E0中时,电子受力后作定向运动,引起导体中电荷的重新分布。
结果在导体一侧因电子的堆积而出现负电荷,在另一侧因相对缺少负电荷而出现正电荷。
这就是静电感应现象,出现的电荷叫感应电荷。
2. 静电平衡不管导体原来是否带电和有无外电场的作用,导体内部和表面都没有电荷的宏观定向运动的状态称为导体的静电平衡状态。
(a)自由电子定向运动(b)静电平衡状态3. 静电平衡条件(静电平衡态下导体的电性质)(1)导体内部任何一点处的电场强度为零;导体表面处电场强度的方向,都与导体表面垂直。
(2)在静电平衡时,导体内上的电势处处相等,导体是一个等势体。
E证明:假设导体表面电场强度有切向分量,即τ≠0,则自由电子将沿导体表面有宏观定向运动,导体未达到静电平衡状态,和命题条件矛盾。
dUdU =0,=0E内=0,Eτ=0dldτ因为,所以,即导体为等势体,导体表面为等势面。
二、静电平衡时导体上电荷的分布1. 实心导体(1)处于静电平衡态的实心导体,其内部各处净电荷为零,电荷只能分布于导体外表面。
大学物理第九章导体和介质中的静电场
第九章导体与介质中的静电场Electrostatic field in conductor and dielectric §9-1,2静电场中的导体§9-3电容器的电容§9-6电介质中的高斯定理§9-8 静电场的能量§9-1,2静电场中的导体一、导体的静电平衡( electrostatic equilibrium )1.导体绝缘体半导体1)导体(conductor)导电能力极强的物体(存在大量可自由移动的电荷)2)绝缘体(电介质,dielectric)导电能力极弱或不能导电的物体3)半导体(semiconductor)导电能力介于上述两者之间的物体EE E E iii E e E q F 导体静电平衡条件:导体内任一点的电场强度都等于零Ei E E2. 导体的静电平衡条件导体的内部和表面都没有电荷作任何宏观定向运动的状态.导体的静电平衡状态:静电感应E* 推论(静电平衡状态)证:在导体上任取两点p , ql d E V V i qpq pqp V V 0i Epq导体静电平衡条件:2)导体表面任一点场强方向垂直于表面1)导体为等势体,导体表面为等势面否则其切向分量将引起导体表面自由电子的运动,与静电平衡相矛盾。
3.导体上电荷的分布1)当带电导体处于静电平衡状态时,导体内部处处没有净电荷存在, 电荷只能分布于导体的表面上.qdV iiV证明:在导体内任取体积元dV由高斯定理体积元d v 任取导体带电只能在表面!iiqS d E 01 ,0 i E dVn e En e E E S d e E S d E nS E 0S2).导体表面附近的场强方向与表面垂直,大小与该处电荷的面密度成正比.ne ES结论:孤立的带电导体,外表面各处的电荷面密度与该处曲率半径成反比,410R Q V RRrr R ,44,22rRr R rR q Q r R R rQq1)导体表面凸出而尖锐的地方(曲率较大)电荷面密度较大2)导体表面平坦的地方(曲率较小)电荷面密度较小3)导体表面凹进去的地方(曲率为负)电荷面密度更小rq V r 041rq R Q V V R r 004141l d E 导体内,0l d E 腔沿电场线l d E (违反环路定理)在静电平衡状态下,导体空腔内各点的场强等于零,空腔的内表面上处处没有电荷分布.ld E l d E l d E导体内腔沿电场线二、空腔导体(带电荷Q )1 腔内无电荷,导体的电荷只能分布在外表面。
有导体和电介质存在时的静电场
③ 由极板电量和两极板电势差计算电容
C
Q U
此时您正浏览在第37页,共72页。
1、平行板电容器的电容
设两板相对表面积为S,两板间距为d,两板间为真空。 ① 设两板相对表面分别带+Q和-Q的电荷,求场强
+ -
③ 计算电容
忽略边缘效应,认为两板间场强均匀。
QA
S
B
d
E
0
Q
0S
② 根据场强求电势差
U AB
导体空腔内若无带电体,则导 体空腔必有下列性质:
+面S
① 内表面上无净电荷,所有静电 荷均分布在外表面
+
+ 证明:作高斯面S仅包围内表面
+ + ++
F
S
E
dS
1
0
qint
静电平衡,导体内部 E=0
qint 0
此时您正浏览在第24页,共72页。
++
+
+
+ +
+
+
+
- +--q+2+
qint 0有两种情况:
(2)将B板接地,求电荷分布
1 A 2 3 B 4
EI E II EIII
I
II Ⅲ
此时您正浏览在第11页,共72页。
1 A 2 3 B 4
EI E II EIII
I
II Ⅲ
分析:可利用静电平衡条件(Eint =0, ES⊥表面)、电荷守恒和静 电场的基本规律(场强叠加原理、
高斯定律等)进行求解。
r R3
此时您正浏览在第18页,共72页。
第6章 静电场中的导体与介质
第6章 静电场中的导体与电介质一、基本要求1.掌握导体静电平衡的条件和静电平衡条件下导体的性质,并能利用静电平衡条件解决有关问题。
2.理解电容的定义,掌握典型电容器电容的计算方法。
3.了解电介质极化的微观机制,理解电介质对静电场的影响。
掌握介质中静电场的基本规律,掌握应用介质中的高斯定理求解介质中静电场的电位移矢量和电场强度的计算方法。
4.理解静电场能量的概念,能计算一些对称情况下的电场能量。
二、知识框架三、知识要点 1.重点 (2)电介质中的高斯定理及其应用。
1C ++n C ++d 0L =⎰E l 保守场Sd q ⋅=∑⎰⎰D S 静电场能量密度:1四、基本概念及规律1.导体的静电平衡条件及其性质(1)导体的静电平衡条件 导体内部电场强度处处为零,即 0=内E (2)导体处于静电平衡时的性质 ① 导体是等势体,导体表面是等势面。
② 导体表面的场强处处与导体表面垂直,导体表面附近的场强大小与该处导体表面的面密度σ成正比,即0 E e nσε=表面 ③ 电荷只分布在导体外表面。
(3)静电屏蔽 在静电平衡条件下,空腔导体内部电场不受外部电场的影响,接地空腔导体内部与外部电场互不影响,这种现象称为静电屏蔽。
2.电容C(1)孤立导体的电容 Vq C =电容的物理意义:使导体每升高单位电势所需的电量。
(2)电容器的电容 BA V V qC -=(3)电容器两极板间充满电介质后的电容 0C C r ε= 其中C 0是两极板间为真空时的电容,r ε是电介质的相对介电常数。
(4)几种常见电容器的电容① 平行板电容器 dSC r εε0=② 同心球形电容器 AB BA rR R R R C -=επε04 (R B >R A )③ 同轴圆柱形电容器 AB rR R lC ln 20επε= (R B >R A ) (5)电容器的串并联① 电容器串联后的总电容3211111C C C C ++=+…+nC 1② 电容器并联后的总电容 C = C 1+ C 2 + C 3+ … + C n 3.电介质中的静电场(1)电极化强度 电介质中任一点的电极化强度等于单位体积中所有分子的电偶极矩的矢量和,即 iV∆∑P P =① 对于各向同性的电介质 00(1)r e εεχε-=P =E E 其中1-=r e εχ称为电介质的极化率。
《静电场中的电介质》课件
电介质的极化机制可以分为电子式极化、离子式极化和取向式极化三种。电子式极化是由于电介质中的电子受到 电场作用而产生的位移;离子式极化是由于电介质中的离子受到电场作用而产生的位移;取向式极化是由于电介 质中的分子或分子的取向受到电场作用而产生的改变。
02 静电场中的电介质
电介质在静电场中的表现
压电材料的研究涉及晶体、陶瓷、复合材料等多个领域,研究者通过优化材料成分、结 构及制备工艺,提高压电材料的性能,如压电常数、机电耦合系数等,以拓展其应用范
围。
新型电介质材料的研究
总结词
新型电介质材料在能源、环保、医疗等领域 具有广阔的应用前景。
详细描述
随着科技的发展,新型电介质材料不断涌现 ,如铁电材料、弛豫铁电体、多铁性材料等 。这些材料在储能、传感、信息处理等方面 展现出独特的优势,为相关领域的技术创新
VS
详细描述
压电材料中的电介质在受到外力作用时, 会发生形变导致分子间的电荷重新分布, 产生电压。这种现象称为压电效应。利用 压电效应可以制作传感器和换能器等器件 ,广泛应用于声学、电子学和物理学等领 域。
05 电介质在静电场中的研究进展
高介电常数材料的研究
总结词
高介电常数材料在静电场中表现出优异的电 学性能,是当前研究的热点之一。
电介质的极化机制包括电子极化、离子极化和取向极化等,这些机制在不同频率和 强度的电场中表现不同。
电介质的极化状态会影响其在静电场中的行为,如介电常数和电导率等,这些性质 在电子设备和电磁波传播等领域有重要应用。
电介质极化对电场的影响
01
电介质的极化状态会改变静电场的分布,因为电介质的存在会 导致电场畸变。
02
电介质在静电场中的行为可以用Maxwell方程组描述,通过求
电介质中的静电场
(1
e )C0
则 r 1 e
r0 (1 e )0
电介质内部场强减弱为外场的1/r 这一结论并不
普遍成立,但是场强减弱却是比较普遍的。
电介质中的静电场
介质球放入前电场为一均匀场
E0
电介质中的静电场
介质球放入后电力线发生弯曲
+++++++
E
电介质中的静电场
介质球内的场强
已经E在 例 题 中P求出为
§9-5 电介质中的静电场
空间 任一点总电 场 E E0 E
+
+
+
+
束缚电荷电场 总电场
+ +
+
外电场
+
+ຫໍສະໝຸດ +电介质内电场
E E0 E
E E0
0
0
E0
P
0
E0
eE
1 e
电介质中的静电场
两板间电势差
U Ed d 0 (1 e )
充满电介质时的电容为
C
q U
S
U
0 (1 e )S
E
与
30
E0方向相反
E
E0
P
3 0
P e0E
E
r
3
2
E0
+++++++
靠近球的外部空间,上下区域, 合场强减弱;左右区域,合场 强增强。
电介质中的静电场
介质球内的场强
已经E在 例题P中 求出为
E
与
30
E0方向相反
E
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
真空电容率 相对电容率 是一纯数
电容率
0r
★介质中合场强的大小为真空时场强的 1/εr Eo E’
E
医学物理学
P P 'S l ' V Sl
极化电荷面密度 σ’ = P 极化强度
均匀电介质中的静电场
E
E0
E
0 0
0
0 0
P
0
E0
eE
0 S
' 0
P e0E
d
E E0 0 0 0 1 e 0 (1 e ) 0r
E E0
r
0r
医学物理学
0 真空介电常数
r 相对介电常数
电介质中的静电场 极化电荷面密度
对于均匀极化的电介质,极化电荷只出现在介质的
表面上。在电介质内切出一个长度为l、底面积为S
的柱体,使极化强度P的方向与柱体的轴线相平行。
把整个柱体看为一个“大电偶极子”, ΔS
电矩:Sl,
柱体内分子电矩的矢量和:
p ( S)l
'
'
P
柱体的体积为 极化强度:
V Sl