比较网架结构与网壳结构异同.doc

合集下载

网架与网壳对比及网壳结构主要缺点

网架与网壳对比及网壳结构主要缺点

网架与网壳对比及网壳结构主要缺点
在节点荷载作用下,各杆件主要承受轴向的拉力或压力,能充分发挥材料的强度,节省钢材。

平板网架与网壳相比,它是一种无水平推力和拉力的空间结构,支座构造较为简单,一般简支支座即可,便于下部支承结构处理。

而网壳结构受力更趋于合理,且可以实现更美观建筑造型。

网壳结构的主要缺点在于:杆件和节点几何尺寸的偏差以及曲面的偏离对网壳的内力、整体稳定性和施工精度影响较大,给结构设计和施工帯来了一定困难。

为了减小网壳结构的这种缺陷,对于杆件和节点的加工精度要求就较高,因此加工难度也増大。

此外,网壳的矢高很大时,增加了屋面面积和不必要的建筑内部空间,建筑材料和能源的消耗也随之增加。

这些问题在大跨度网壳中显得更加突出。

由于网架、网壳结构组合有规律,大量杆件和节点的形状、尺寸相同,并且杆件和节点规格少,便于工厂成批逆,产品质量高,现场进行拼装容易,施工速度快。

广厦钢结构之网架和网壳结构cad教程

广厦钢结构之网架和网壳结构cad教程

第〇章第4章网架和网壳结构CAD1基础知识1.1关于网架和网壳结构的概述空间网架和网壳结构是近几年来非常流行的大跨度钢结构形式, 其盛行的原因主要有两方面。

一是受力好和空间刚架好, 二是工厂化生成和安装方便。

以节点划分主要有两种类型: 焊接球与螺栓球, 尤以螺栓球较为普遍。

螺栓球网架和网壳中构件主要有: 杆件、螺栓球、封板锥头、高强螺栓和套筒(无纹螺母)。

以基本单元几何构成来分就很多了, 常用的是正交正放四角锥。

不同位置构件的称谓见图:1.2设计流程1.3了解一些AutoCADGDCAD的图形平台是AutoCAD R14;需要利用其右边的屏幕菜单, 如果AutoCAD R14的屏幕菜单被关闭, 请点击菜单“Tools—Preferences—Display”, 在第一项关于“Screen Menu”上作出选择。

2GDCAD中常用的命令是“Dview”, 主要用来看模型的空间透视图, 具体在command: 下键入“DV”回车然后选择对象, 键入“CA”后可动态显示透视图。

3AutoCAD 与用户的交流主要是对话框与文本区, 按“F2”可显示或关闭文本提示区。

4一个平板网架的工程实例4.1建立工程点击桌面上“网架网壳CAD”快捷方式, 进入主菜单, 点击“工程—新工程”, 在工程卡片上填写工程名比如“GDTEST”, 指定工程存放路径及AutoCAD R14的路径, 程序自动在工程存放路径下建立“GDTEST”子目录(或称文件夹), 以后所有与该工程有关的文件全部放在其下面。

4.2建立零部件库文件4.3点击“零部件规格—重组规格”, 屏幕出现规格卡片, 左边是读取路径, GDCAD安装完成后, 程序目录下带有一“DATA”子目录, 内部包含某一种网架加工厂家的零部件规格系列, 因此缺省的读取路径指向“DATA”子目录, 点击“读取”按钮, 显示钢管等零部件序列编号, 如果不准备采用某一序号, 请点击该序号去掉其前面的“(”选择符。

浅谈网架结构与网壳结构的区别与联系

浅谈网架结构与网壳结构的区别与联系

浅谈网架与网壳结构的区别与联系陈露(东南大学09级土木工程学院结构1班)摘要:空间结构以前轻巧的外形及合理的受力受到了广泛运用,本文对两种主要的空间结构——网架结构与网壳结构作了一些简单的比较,通过对组成、内力、动力下的特点等方面的比较,加深对网架与网壳结构的认识,希望对网架与网壳的研究、分析与设计有所帮助。

关键字:网架网壳比较目前,大跨空间结构发展迅速,空间结构以其优美的建筑外形和良好的受力性能被广泛运用于工程实践中。

网架与网壳是空间结构的主要形式,他们有许多类似的地方,同时又有各自的特点。

(前言)1.网架与网壳的定义网格结构是由很多杆件通过节点,按照规律的几何图形组成的空间结构。

网格结构中,双层或多层平板形网格结构称为网架结构,而曲面形网格称为网壳结构。

网架与网壳结构都属于空间网格结构范畴,结构形式较为新颖,杆件的布置形式都具有很强的规律性。

2.网架与网壳结构的组成与连接网架结构形似一块大板,一般分为平行桁架系网架、四角锥体系网架、三角锥体系网架、混合型三层网架等;网壳结构为空间曲面形式,分为单层和双层网壳两种,单层网壳结构依靠单层杆件找形,双层网壳依靠上弦杆件找形,腹杆和下弦杆可按相应的平面桁架体系、四角锥体系或三角锥体系。

根据其组成可以判断,网架结构及双层网壳结构的节点允许采用铰接或刚接形式,而单层网壳结构中,杆件之间的节点只允许采用刚接,否则将使单层网壳形成机构。

空间铰接杆系的一个节点有三个自由度,在网架为几何不变的前提下,可用下式判断整个结构的超静定次数。

W=3J-B-S (1) J——网架的节点数B——网架的杆件数S——支座约束数假设某双层正交正放网架上弦的网格数为N×N,下弦网格数为(N-1)×(N-1),则节点数为2N2+2N+1,网架杆件数为8N2,W=-2N2+6N+3-S。

对于大跨结构,一般情况下N较大,设N=10,且上弦点支承,约束数为S=4N,则W=-177.超静定次数为177.可见,网架和双层铰节点网壳结构的冗余度较大,具有较高的安全储备。

网架、网壳结构

网架、网壳结构
– 双层网壳根据厚度的不同,有等厚度与变厚度之分
网壳结构的分类
• 按材料
– 木网壳、钢筋混凝土网壳、钢网壳、铝合金网壳、塑 料网壳、玻璃钢网壳等。
• 木网壳结构
– 仅在早期的少数建筑中采用,近年来,在一些木材丰 富的国家也有采用胶合木建造网壳的,有的跨度已超 过100m。但总的来说,木结构网壳用得并不多。
10.2 网架选型
根据建筑平面形状和跨度大小,支承方式、荷载 大小、屋面构造和材料、制作安装方法等因素。 《网架结构设计与施工规程》JGJ 7-91 ➢ 大跨度为60m以上 ➢ 中跨度为30~60m ➢ 小跨度为30m以下
1 网架结构的支承及其选型
支承方式:
➢周边支承 ➢点支承 ➢周边支承与点支承相结合 ➢两边和三边支承等。
3 网架的挠度要求及屋面排水坡度
➢ 容许挠度:用作屋盖—L2/250,用作楼盖—L2/300 ➢ 排水坡度:3%~5% ➢ 起拱要求:L2/300
找坡立柱
(a)用小立柱 网架屋面找坡
(b)起拱
10.3 网壳结构
• 网壳,即为网状壳体,是格构化的壳体,或者说是曲 面状的网架结构。
• 20世纪50~60年代,钢筋混凝土壳体得到了较大的发 展;但钢筋混凝土壳体结构很大一部分材料是用来承 受自重的,只有较少部分的材料用来承担外荷载,并 且施工很费事。
周边支承
l/3 l l/3
l/4 l
l
l/3
l
l
l/4
l/3
点支承 图 3—18 点支承
➢ 点支承网架受力与钢筋混凝土无梁楼盖相似。 ➢ 为减小跨中正弯矩及挠度,设计时应尽量带有悬挑,
多点支承网架的悬挑长度可取跨度的1/4~1/3 。
周边支承与点支承结合

网架、网壳结构

网架、网壳结构
– 2.由于它可以来用各种壳体结构的曲面形式,在外 观上可以与薄壳结构一样具有丰富的造型,无论是 建筑平面或建筑形体,网壳结构都能给设计人员以 充分的设计自由和想象空间,通过使结构动静对比、 明暗对比、虚实对比,把建筑美与结构美有机地结 合起来,使建筑更易于与环境相协调。
• 网壳结构的优点
– 3.由于杆件尺寸与整个网壳结构的尺寸相比很小, 可把网壳结构近似地看成各向同性或各向异性的连 续体,利用钢筋混凝土薄壳结构的分析结果进行定 性的分析。
上(图b)。 ➢ 当柱子直接支承上弦节点时,也可在网架内设置伞形柱帽
(图c),这种柱帽承载力较低,适用于中小跨度网架。
支承方式
周 边 支 承
常用网架选型表
平面形状
跨度
网架形式
斜放四角锥网架、两向正交正放网架、两向正
≤60m
交斜放网架、正放四角锥网架、棋盘形四角锥网 架、正放抽空四角锥网架、蜂窝形三角锥网架、
正放抽空四角锥网架
棋盘形四角锥网架
正放四角锥网架周边四角锥不变,中间四角锥间隔抽空,下弦杆呈 正交斜放,上弦杆呈正交正放。上弦杆比下弦杆短,受力合理。克服了 斜放四角锥网架屋面板类型多,屋面组织排水较困难的缺点。适用于中、 小跨度周边支承方形或接近方形平面的网架。
斜放四角锥网架
上弦杆比下弦杆短,受 力合理。杆件数量少,屋 面板类型多,屋面组织排 水较困难。适用于中、小 跨度周边支承,或周边支 承与点支承相结合的矩形 平面情况。
双斜杆型
三向网格型
10.3.3 双层筒网壳
• 按几何组成规律分类
– 平面桁架体系双层筒网壳
• 由两个或二个方向的平面桁架交叉构成。
正交正放型
两向斜交斜放型
三向桁架型

比较网架结构与网壳结构异同.doc

比较网架结构与网壳结构异同.doc

比较网架结构与网壳结构异同张晓亚 121071网架结构是一种空间杆系结构,受力杆件通过节点有机地结合起来。

节点一般设计成铰接,杆件主要承受轴力作用,杆件截面尺寸相对较小。

这些空间交汇的杆件又互为支撑,将受力杆件与支撑系统有机地结合起来,因而用料经济。

由于结构组合有规律,大量的杆和节点的形状、尺寸相同,便于工厂化生产,便于工地安装。

网架结构一般是高次超静定结构,具有较高的安全储备,能较好的承受集中荷载、动力荷载和非对称荷载,抗震性能好。

网架结构就整体而言是一个受弯的平板,反应了很多平面结构的特性,大跨度的网架设计对跨度方向的网架刚度要求很大,因而总弯矩基本上是随着跨度二次方增加的。

网壳结构则是主要承受薄膜内力的壳体,主要以其合理的形体来抵抗外荷载的作用。

因此在一般情况下,同等条件特别是大跨度的情况下,网壳要比网架节约许多钢材。

1.网架结构与网壳结构分类网架结构按结构组成分为双层网架、三层网架和组合网架,按支承情况分为周边支承网架、点支撑网架和周边支承与点支撑相结合的网架,按网格形式分为交叉平面桁架体系、四角锥体系和三角锥体系。

一般来说,网壳结构按层数可划分为单层网壳和双层网壳。

单层网壳的网格常用形式有圆柱面单层网壳、球面单层网壳、椭圆抛物面单层网壳和双曲抛物面单层网壳。

双层网壳是由两个同心或不同心的单层网壳通过斜腹杆连接而成。

2.静力分析比较在用空间桁架位移法计算网架结构内力和变形时,作了如下假定:①网架节点为铰接,每个节点有三个自由度;②荷载作用在网架节点上,杆件只承受轴力;③材料在弹性阶段工作,符合胡克定律;④网架变形很小,由此产生的影响予以忽略。

双层网壳结构多采用空间杆系有限元法分析节点位移和杆件内力。

与平板网架假设类似,节点假设为铰接,每个节点有三个线位移u、v、w。

不同的是,下部结构的不同约束状况将使网壳结构的内力和位移产生显著变化。

3.动力特性异同网架与其他结构相比跨度较大,结构相对较柔,有其自身的动力特性:①网架的振型可以分为水平振型和竖向振型两类,水平振型以承受水平振动为主。

22结构篇之网架和网壳

22结构篇之网架和网壳

筑龙网W W W.SI N O AE C.C OM@ 筑龙网 《全国民用建筑工程设计技术措施》结构篇之22网架与网壳 资料编号:MYJZGCSJJS2003全国民用建筑工程设计技术措施结 构第22章 网架与网壳筑 龙 网建设部工程质量安全监督与行业发展司CS-JG22 @中国建筑标准设计研究所筑龙网W W W.SI NO AE C.C OM@ 筑龙网 《全国民用建筑工程设计技术措施》结构篇之22网架与网壳 资料编号:MYJZGCSJJS 目 录目 录.......................................................................2 22.1 网架结构.................................................................3 22.2 网壳结构................................................................13 22.3 常见的设计质置问题及预防措施............................................20 附录一 超限高层建筑工程抗震设防管理规定......................................22 附录二 构配件计算书表达内容及格式............................................25 附录三 粱端削弱式和粱端加强式连接............................................29 附录四 连续组合梁变形计算公式 (33)CS-JG22 @筑龙网WW W.SI NO AE C.C OM@ 筑龙网 《全国民用建筑工程设计技术措施》结构篇之22网架与网壳 资料编号:MYJZGCSJJS22 网架与网壳22.1 网架结构22.1.1 一般规定1 网架结构系指由许多杆件按照一定规律布置通过节点连接而成的平板型网格状结构体系,适用于工业与民用建筑的屋盖及楼盖,其中屋盖跨度不宜大于120m,楼层跨度不宜大于40m。

网架与网壳的异同点全面归纳

网架与网壳的异同点全面归纳

大跨空间结构小论文《网架和网壳结构的异同点分析》姓名:学号:专业:土木工程网架与网壳结构异同点分析摘要:空间结构以轻巧的外形及合理的受力受到了广泛运用,本文对两种主要的空间结构——网架结构与网壳结构作了一些简单的比较,罗列了一些异同点,加深对网架与网壳结构的认识,希望对网架与网壳的研究、分析与设计有所帮助。

关键字:网架网壳异同点为了满足社会生活和居住环境的需要,人们向建筑物提出更高要求,需要足够的跨度来达到更大的覆盖空间的目的,而像网架和网壳这种空间结构就应运而生。

所谓空间结构是指建筑结构的形状具有三维空间形状,在荷载作用下具有三维受力特性、呈立体工作状态的结构。

本文旨在探讨网架和网壳的异同点,但是因为他们的有些特性的界线不是很明显,故只能粗中有细地进行分析。

首先讨论它们的相同或类似的部分。

1、网架和网壳隶属体系相同。

它们同属于刚性空间结构体系,一般是由钢杆件按一定规律组成的网格状高次超静定空间杆系结构,具有很好刚度的结构体系。

2、具有一些相似的优缺点。

(1)结构组成灵活多样但又有高度的规律性,便于采用,并适用各种建筑方面的要求。

(2)节点连接简单可靠,加工制作机械化程度高,并已全部工厂化。

(3)用料经济,受力合理,能用较少的材料跨越较大的跨度,节约钢材。

(4)分析计算成熟,已采用计算机辅助设计,大大缩短了设计周期。

(6)适应建筑工业化、商品化的要求。

(7)节点用钢量较大,加工制作费用仍较平面桁架为高。

(8)是汇交于节点上的杆件数量较多,制作安装较平面结构复杂.3、结构形式均多种多样。

网架结构按结构组成分,有双层和三层网架;按支撑条件,可分为周边支撑、点支撑、三边支撑和两边支撑、周边支撑与点支撑相结合的混合支撑等;按网格组成主要分三类:第一类是由平面桁架系组成,有两向正交正放网架、两向正交斜放网架、两向斜交斜放网架及三向网架四种形式;第二类由四角锥体单元组成,有正放四角锥网架、正放抽空四角锥网架、斜放四角锥网架、棋盘形四角锥网架及星形四角锥网架五种形式;第三类由三角锥体单元组成,有三角锥网架、抽空三角锥网架及蜂窝形三角锥网架三种形式。

空间网格结构(网架与网壳结构)的三大优势分析

空间网格结构(网架与网壳结构)的三大优势分析

网格结构是在20世纪中叶以来特别是近30多年发展最快的空间结构形式,它是将多根杆件,按照某种有规律的几何图形,通过节点连接成的一种网格状的三维杆系结构。

空间网格结构的外形可以成平板状,也可以呈曲面状。

前者称为平板网架结构,常简称为网架;后者称为曲面网架或壳形网架结构,常简称为网壳。

网格结构是网架与网壳的总称。

网架与网壳结构统称为空间网格结构。

网格结构在国内外应用广泛且发展速度很快,这主要是由于其具有以下优点:
(1)网格结构为三向受力的空间结构,受力合理,可以跨越较大的跨度,节约钢材。

网架结构比单向受力的平面结构(如平面桁架)自重轻、钢材用量少。

网壳结构中虽然曲面多样化,但从整体上来看主要承受压力,通过增大刚度,减小变形,精心设计可使网壳受力合理均匀,同样达到节省钢材的目的。

(2)工业化程度高,施工工期短,综合经济指标较好。

网格结构的组成特点是用小构件组成跨度很大的空间结构,其构件和节点比较单一而且定型化,网格可以做成标准尺寸的预制单元、预制节点和零件,加工制作机械化程度高,可全部工厂化生产,成品质量高、工期短;预制单元和节点零件尺寸小、重量轻,便于存放、装卸、运输、拼装;节点连接简便可靠,现场施工安装操作简单快捷、灵活,且质量可靠,尤其网架结构,现场仅需简单的拼装,技术简单,工作量小,安装不需要大型起重设备。

(3)网格结构应用范围广泛,适用于各种跨度的工业建筑、体育建筑、公共建筑,满
足建筑功能或工艺灵活和复杂的各种要求,且网格结构可拆可装、便于建筑物的扩建、改建或移动搬迁。

而且,网架结构中,可利用其上下弦之间的空间布置各种设备及管道等,能有效地利用空间,经济合理且使用方便。

网架、网壳、桁架的区别

网架、网壳、桁架的区别

网壳与网架是有本质的区别:前者空间受力,单层为刚接节点,也可以为双层、多层壳....网架,桁架以铰结节点来传递荷载。

从几何拓扑方面来说,我们可以这样理解。

网架是板的格构化形式;网壳是壳的格构化形式;桁架是格构化的梁。

网架不一定就是平面的,也可以是曲面的,关键是它的厚跨比。

如果网架的厚(高)跨比比较大,具有板(包括平面板和曲面板)的受力性能,那么仍就称之为网架。

而壳体一般是比较薄的,也就是说,厚跨比很小,在整体受力方面接近于壳的特性,这时我们称其格构化形式为网壳。

网壳是一般是曲面的,尤其是单层网壳,否则我们不好保证其结构的几何不变性。

此二者均为空间网格结构。

桁架从材料布局(或分布)来看,整体可以看成是格构化的梁,其整体受力性能与梁相似。

在细部结构上,利用各杆重新引导力流(各杆之间的节点未铰接,不能传递弯矩),整体上与主应力迹线的布局基本是一致的。

各杆件均为二力杆,只受拉压。

桁架,尤其是空间的管桁架,经常是做成拱的形式。

但此时,拱并非纯压拱,整体仍以受弯为主,我们在一定意义也可以认为是曲线梁。

当然,起拱可以增加跨越能力,此时的“梁”内的“轴力”作用也不可以忽视了,只是大多数情形下,尤其是矢跨比较小时,整体上仍以受弯为主。

网架技术参数网架零构件主要规格1 螺栓球100 110 120 130 150 180 200 220 230 250 3002 高强螺栓M20 M22 M24 M27 M30 M33 M36 M39 M42 M48 M52 M56 M643 焊件断面48*3.5 60*3.5 75*3.75 88.5*4 114*4 140*4.5 165*4.5 114*6 133*6 140*8 140*10 159*10 159*12 180*144 网架结构体系及支承类型网架结构分为正放四角锥网架、三角锥网架、三向桁架、曲面网架和异形网架等几种类型。

网架支承类型有周边支承网架、点支承网架、周边支承和点支承结合网架。

3.1网壳结构的形式及特性09

3.1网壳结构的形式及特性09

预应力网壳——攀枝花市体育馆, 1994年,三向 短程线型双层球面网壳,74.8×74.8花瓣八边形, 矢高8.89m, 49㎏/㎡ .
(4) 用相互直交的子午线族构成。
(5)混合划分法
网格更均匀
2 单层球面网壳的形式(按网格划分)
(1)肋环型球面网壳
球顶节点构造复杂。
1967年建成的郑州体育馆
将一根直线的两端沿两根在空间倾斜、不 相交的直线移动而形成。
高斯曲率<0。
或从马鞍形曲面中按一定的方式沿直线方向截 取一部分,如ABCD,覆盖的面是矩形平面。
扭曲面网壳
单块扭网壳
下倾
扭壳的 各种组 合形式
上 倾
(7)切割或组合形成的曲面网壳
球面网壳采用切割方法组成三角形、六边形和多 边形平面形成新的网壳形式。 球面与柱面也可组成新的网壳。
矩形截面的环梁以45°的倾角斜置在三角形框架的顶端节点上,其截 面主轴与网壳支承处的切线方向一致,也与三角形框架斜柱的方向一致。 根据计算,在不同工况的荷载作用下,网壳支承反力相对于水平面的倾 角在39 °~53 °之间变化。 所以,当环梁按45 °布置时,其所受的扭矩和横向弯矩相对较小。
环梁由两个各长105m的直线段和 两个各长135.4m的半圆周组成,总周 长480.8m。 环梁的截面巨大,为了避免温度 变化在环梁和支承框架之间产生巨大 的温度内力,本工程将环梁分成十段, 相互独立(图3)。 直梁段的最大长度 为45m,圆弧部份的梁段长度为67.7m。 每个梁段的工作犹如支承在若干个 框架上的多跨连续梁。
内部网架
三、双曲抛物面网壳的形式
双曲抛物面网壳在几何学上的特点是其曲面的
形成方式属移动式,具有直纹性。 即曲面是由无数根斜交的直线组成。 通过一定的组合,双曲抛物面网壳还可以发展出 不同的造型。

网架与网壳

网架与网壳

⑥单向折线形网架 这种网架是由正放四角锥网架演变而来的。当建筑平面为 狭长的矩形时,短向传力明显,此时网架长向弦杆内力很 小,可将此取消,因此就形成了折线形网架。此种网架适 用于狭长矩形平面的建筑。
(3)六角锥体网架 这种网架由六角锥体单元组成。但由于此种网架的杆件多, 节点构造复杂,屋面板为三角形或六角形,施工较困难, 现已很少采用。
3、按材料分类 网壳结构所采用的材料较多,主要是钢筋混凝土、钢材、 木材、铝合金、塑料及复合材料。主要发展趋势是轻质高 强材料的大量使用。材料的选择取决于网壳的型式、跨度 与荷载、计算模型、节点体系、材料来源与价格,以及制 造与安装条件等。 (1)钢筋混凝土网壳
(2)钢网壳 钢网壳结构通常采用的是HPB235级钢,也有采用高强度 低合金钢的。杆件形式主要采用钢管、工字钢、角钢、槽 钢、冷弯薄壁型钢或钢板焊接工字形或者箱形截面。 (3)铝合金网壳 铝合金型材具有自重轻、强度高、耐腐蚀,易于加工、制 造和安装,很适合于控制空间受力的网壳结构。 (4)木网壳 (5)塑料网壳及其他材料
10.2.2网壳的分类
当网壳结构的曲面形式确定后,根据曲面结构的特性,支 承的数目、位置、形式,杆件材料和节点形式等,便可确 定网壳的构造型式和几何构成。其中重要的问题是曲面网 格划分(分割)。进行网格划分时,一是要求杆件和节点的 规格尽可能少以便工业化生产和快速安装;二是要求使结 构为几何不变体系。不同的网格划分方法,将得到不同形 式的网壳结构。网壳结构形式较多,可按不同方法分类。
(2)两向正交斜放网架 这种网架是由两组相互交叉成90度的平面桁架组成,且两组桁架分 别与建筑平面边线成45度。 从这种网架的布置方法看,各榀桁架长短不一,但最长桁架长度等于 为平面短边,它的长度并不因平面长边的增加而改变,而且是两方向 传递荷载,因此克服了两向正交正放网架在建筑平面为长条矩形时接 近于单向受力状态的缺点。

3.1网壳结构的形式及特性09.

3.1网壳结构的形式及特性09.

(4)三向网格型球面网壳
在水平投影面上,通过圆心作夹角为±60 的三个轴,将轴n等分并连线,形成正三角形 网格,再投影到球面上形成。
(5)凯威特型(简称K型)球面网壳
(扇形三向网格)
由 n(n=6,8,12,···)根径肋把球面分为 n个对称扇形曲面。每个扇形面内,再由环杆和 斜杆组成大小较匀称的三角形网格。它综合了旋 转式与均分三角形划分法的优点,不但网格大小 勻称,内力分布也均匀。
曲面呈马鞍形,高斯曲 率K<0。
水平截面是一对分离的双曲线, 竖向主截面是抛物线。
沿曲面斜向垂直切开为直线。
适用于矩形、椭圆形和圆形等平面。
(5)扭曲面网壳(也是双曲抛物面)
将一根直线的两端沿两根在空间倾斜、不 相交的直线移动而形成。
高斯曲率<0。
或从马鞍形曲面中按一定的方式沿直线方向截 取一部分,如ABCD,覆盖的面是矩形平面。
两个主曲率是正交的,主曲率半径分别用R1、 R2表示。
k
R
, k

R
该点的高斯曲率:
K
k k

R

R
(1)零高斯曲率的网壳
曲面一个方向的主曲率 半径R1= (即k1= 0);另一 个 主 曲 率 半 径 R2=±a , ( 即 k2≠ 0),为单曲网壳。
层状穹顶
(2) 由三个方向的大圆构成的均匀三角形 网格。
格子穹顶
(3) 以球面内接的多面体棱边投射到球面上, 构成的网格体系,称短程线(测地线)穹顶。
预应力网壳——攀枝花市体育馆, 1994年,三向 短程线型双层球面网壳,74.8×74.8花瓣八边形, 矢高8.89m, 49㎏/㎡ .
(4) 用相互直交的子午线族构成。

第十一章 网架与网壳2

第十一章  网架与网壳2

d)联方型球面网壳
e)三向网格型球面网壳
网架和网壳结构(12) 网架和网壳结构(12)
a)肋环型四角锥球面网壳
b)联方型四角锥球面网壳
c)联方型三角锥球面网壳
双层球面网壳的网格形式 1.交叉桁架体系 只需将单层球面网壳中的杆件用平面网片代替(略) 2.角锥体系(常见四种) a):肋环型四角锥球面网壳, b):联方型四角锥球面网壳 c):联方型三角锥球面网壳, d):平板组成式球面网壳 d)平板组成式球面网壳
网架和网壳结构(9) 网架和网壳结构(9)
♣ 网壳类别(以曲面外形分类)
•柱面网壳
单层柱面网壳的网格形式 a)单斜杆柱面网壳:杆件数量少,节点构造简单;刚度差 b)人字形柱面网壳:亦称弗普尔形柱面网壳 c)双斜杆柱面网:壳杆件数量多;刚度好 d)联方网格柱面网壳:杆件组成菱形,夹角为30°∼ 50° e)三向网格柱面网壳:联方网格柱面加纵向杆件
网架和网壳结构(1) 网架和网壳结构(1)
♣ 特点
•多向传力,空间刚度大,抗震性能好 •适应性强 •经济指标好 ♣ 网架类别(以网架构成方式分类) •由平面桁架构成(四种)
网架表示法
两向正交正放
网架和网壳结构(2) 网架和网壳结构(2)
两向正交斜放
两向斜交斜放 两向正交斜放 短桁架对长桁架有嵌固作用,受力有利 角部产生拔力,常取无角部形式 两向斜交斜放 适用于两个方向网格尺寸不同的情形 受力性能欠佳,节点构造较复杂
•点支承的柱帽形式
网架和网壳结构(7) 网架和网壳结构(7)
♣ 网架选型
•周边支承的矩形平面形状 长短边之比≤1.5时: 斜放四角锥网架,棋盘形四角锥网架,正放抽空四角锥网架 对于中(30m∼ 60m)小(<30m)跨度,亦可选星形四角锥网架,蜂窝形三角锥网架 长短边之比>1.5时: 宜选正放类网架----两向正交正放网架,正放四角锥网架,正放抽空四角锥网架 •点支承的矩形平面形状 两向正交正放网架,正放四角锥网架,正放抽空四角锥网架 •圆形,多边形平面形状 宜选三向网架,三角锥网架,抽空三角锥网架 •两边或三边支承的矩形平面形状 自由边作处理后可按周边支承情形考虑。自由边的两种处理方法: (a)整个网架高度加大,自由边杆件截面增大 (b)自由边局部增加网架层数(形成反梁) 反梁

浅析网架与网壳结构之异同

浅析网架与网壳结构之异同

浅析网架与网壳结构之异同田伟1.结构组成形式多根杆件按照某种规律的几何图形通过节点连接起来的空间结构称为网格结构,当网格为双层或多层平板型时即为网架,而当网格为曲面形状并具有壳体的结构特性时即为网壳。

网架的建筑造型轻巧、美观、大方,便于建筑处理和装饰。

平面布置灵活,施工安装简便,屋盖平整,有利于吊顶、安装管道和设备,但其屋面铺装需要利用支托来找坡排水。

网壳的建筑选型灵活多变,而且十分的优美,不论建筑平面,立面或型体都能给人以美的感受。

另外较之平板网架,网壳结构具有自动排水的功能,2.结构受力特点网架通过上下弦工作原理受力:通过腹杆的连接,上弦受压,下弦受拉从而产生承载力。

其优点为空间工作,传力途径简捷,刚度大,抗震性能好(水平地震作用效应小),结构计算及设计相对简单并已成熟;缺点为各杆件工作内力相差较大,设计时杆件规格归并后存在“强度过剩”问题。

网壳是典型的三维结构,其强度和刚度利用了其几何形状的合理性,以材料直接受压来代替弯曲内力,从而充分发挥材料的潜力。

合理的曲面可以使结构力流均匀,各杆件协同工作,内力分布相对均匀,应力峰值较小,从而可以节约钢材。

网壳结构尤其是单层网壳,在设计中需要考虑的首要问题是非线性稳定计算,以及几何缺陷对结构稳定的影响。

此外,对于寻求网壳结构的合理型体,网壳结构的动力特性分析以及抗风、抗震(水平地震作用效应显著)设计等问题也较网架结构复杂。

3.结构适用性网架及网壳结构一般跨度较大,多用于公用建筑、重要建筑或大型工业厂房。

网架结构的主要优点是经济性强,设计和计算简单,制作安装方便,相对于土建工程能在更短的时间内完成设计和施工。

网壳有杆系结构构造简单和薄壳结构受力合理的特点,造型丰富多彩,不论是建筑平面还是空间曲面外形,都可根据创作要求任意选取,是一种颇受关注、较有前景的空间结构。

4.个人体会网架和网壳结构能够被广泛使用并不断发展,用结构设计的“安全、合理、先进、经济”这一评价指标可做一简单解释。

网架、网壳结构

网架、网壳结构

网架、网壳结构网架结构形式有哪几种?1)由平面桁架系组成的两向正交正放网架(图4-1a)、两向正交斜放网架(图4-1b)、两向斜交斜放网架、三向网架、单向折线网架。

2)由四角锥体组成的正放四角锥网架、正放抽空四角锥网架、棋盘形四角锥网架(图4-1c)、斜放四角锥网架、星形四角锥网架(图4-1d)。

3)由三角锥体组成的三角锥网架、抽空三角锥网架、蜂窝形三角形网架。

网壳结构形式有哪几种?网壳结构有单层或双层,有以下常用形式:圆柱面网壳、球面网壳、椭圆抛物面网壳(双曲扁壳)及双曲抛物面网壳(鞍形网壳、扭网壳),见图4-2 什么是焊接空心球节点?它的节点构成和特点是什么?焊接球是由两个半球焊接面成的空心球,可分为不加肋和肋两种(图4-3,图4-4),用于连接杆件,成为焊接球接点。

图4-3 不加肋的空心球图4-4 加肋的空心球它的结构特点是:由于球体是各向同性的,所以可以与任意方向的杆件相连(图4-5,图4-6),且杆件的轴线均通过轴心而不会产生偏心。

当球体上汇交的杆件较多时这个优点更为突出。

因此,以空心球作为网架的连接节点,适应性强。

图4-5 空心球节点图4-6 加套管连接各种类型的网架,无论跨度和作用荷载的大小,当网架杆件采用圆钢管时,其节点均可采用焊接空心球的连接形式。

尤其是对三向交叉网架、三角锥网架、四角锥网架和六角锥网架更为适宜。

什么是螺栓球节点?螺栓球节点由螺栓、钢球、销子(或螺栓)、套筒和锥头或封板等零件组成,用于连接钢管杆件,见图4-7、图4-8。

螺栓球节点组合零件的作用是什么?1)高强螺栓(图4-9)的作用是连接杆件与螺栓球。

0.65d 图4-9 高强度螺栓外形图2)封板(用于钢管杆件直径<60㎜时)和锥头(用于钢管杆件直径>60㎜时)的作用是焊在杆件两端,使高强度螺栓与球连接(图4-10)。

图4-10 杆件组合图3)套筒的作用是拧紧高强螺栓,使杆件与球连接。

图4-11所示为设置紧固螺钉时的长形六角套筒。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

比较网架结构与网壳结构异同
张晓亚 121071
网架结构是一种空间杆系结构,受力杆件通过节点有机地结合起来。

节点一般设计成铰接,杆件主要承受轴力作用,杆件截面尺寸相对较小。

这些空间交汇的杆件又互为支撑,将受力杆件与支撑系统有机地结合起来,因而用料经济。

由于结构组合有规律,大量的杆和节点的形状、尺寸相同,便于工厂化生产,便于工地安装。

网架结构一般是高次超静定结构,具有较高的安全储备,能较好的承受集中荷载、动力荷载和非对称荷载,抗震性能好。

网架结构就整体而言是一个受弯的平板,反应了很多平面结构的特性,大跨度的网架设计对跨度方向的网架刚度要求很大,因而总弯矩基本上是随着跨度二次方增加的。

网壳结构则是主要承受薄膜内力的壳体,主要以其合理的形体来抵抗外荷载的作用。

因此在一般情况下,同等条件特别是大跨度的情况下,网壳要比网架节约许多钢材。

1.网架结构与网壳结构分类
网架结构按结构组成分为双层网架、三层网架和组合网架,按支承情况分为周边支承网架、点支撑网架和周边支承与点支撑相结合的网架,按网格形式分为交叉平面桁架体系、四角锥体系和三角锥体系。

一般来说,网壳结构按层数可划分为单层网壳和双层网壳。

单层网壳的网格常用形式有圆柱面单层网壳、球面单层网壳、椭圆抛物面单层网壳和双曲抛物面单层网壳。

双层网壳是由两个同心或不同心的单层网壳通过斜腹杆连接而成。

2.静力分析比较
在用空间桁架位移法计算网架结构内力和变形时,作了如下假定:①网架节点为铰接,每个节点有三个自由度;②荷载作用在网架节点上,杆件只承受轴力;③材料在弹性阶段工作,符合胡克定律;④网架变形很小,由此产生的影响予以忽略。

双层网壳结构多采用空间杆系有限元法分析节点位移和杆件内力。

与平板网架假设类似,节点假设为铰接,每个节点有三个线位移u、v、w。

不同的是,下部结构的不同约束状况将使网壳结构的内力和位移产生显著变化。

3.动力特性异同
网架与其他结构相比跨度较大,结构相对较柔,有其自身的动力特性:①网架的振型可以分为水平振型和竖向振型两类,水平振型以承受水平振动为主。

其节点位移水平分量较大,竖向分量较小;竖向振型以承受竖向振动为主,其节点位移竖向分量较大,水平分量较小。

网架的第一振型均为竖向振型。

②振动频率非常密集,网架结构的频率密集程度较其他结构更为显著。

③网架的基本周期与网架的短向跨度L2关系很大,跨度越大则基本周期越大;与网架的长向跨度L1也有关,但改变的幅度不大;与支座的强弱、荷载的大小等略有关系;不同类型但具有相同跨度的网架基本周期比较接近。

④常用周边支承网架的基本周期约在0.3s至0.7s左右。

⑤网架结构对称。

荷载对称时,网架的第一振型呈对称性。

由于网壳结构具有很强的非线性性能,因此抗震分析一般采用时程分析法,分两阶段。

第一阶段为多遇地震作用下的分析。

网壳结构在多遇地震作用时处于弹性阶段,因此应作弹性时程分析,根据求得的内力,按荷载组合的规则进行杆件和节点的设计。

二是为罕遇地震作用下的分析。

网壳在罕遇地震作用下处于弹塑性阶段,因此应作弹塑性时程分析用以校核网壳结构的位移以及是否会发生倒塌。

网壳结构抗震分析的基本假定:①网壳的节点均为完全刚性的空间节点,每一个节点有六个自由度、三个位移、三个转角。

②质量集中在各节点上,仅考虑线位移加速度引起的惯性力,不考虑角加速度引起的惯性力。

③作用在质点上的阻尼力与对地面的相对速度成正比,但不考虑由角加速度引起的阻尼力。

④支承网壳的基础按地面的地震波运动。

4.网架结构、网壳结构选型与杆件、节点设计
网架结构的杆件一般采用Q235和Q345钢,当荷载较大或跨度较大时,宜采用16Mn钢,以减轻结构自重,节约钢材。

网架结构杆件对钢材材质的要求与普通钢结构相同。

钢杆件截面形式分为圆钢管、角钢、薄壁型钢三种。

薄壁圆管钢因其相对回转半径大和其截面特性无方向性,对受压和受扭有利,故一般情况下,圆钢管截面比其他型钢截面可节约20%的用钢量。

网架的节点构造形式很多,国内常用的有焊接空心球节点和螺栓球节点。

二者相比,前者的安装变形小于后者。

故采用焊接空心球节点时,网架高度可取得小些;采用螺栓球节点时,网架高度可取得大些。

螺栓球节点是在设有螺纹孔的钢球体上,通过高强度螺栓将交汇于节点处的焊有锥头或封板的圆钢管杆件连接起来的节点。

这种节点对空间汇交的圆钢管杆件适应性强,杆件连接不会产生偏心,没有现场焊接作业,运输、安装方便。

当网架杆件内力很大(一般>750kN)时,若仍采用螺栓球节点,会造成钢球过大而使用钢量增多。

此时应考虑采用焊接空心球节点。

焊接空心球节点传力明确,构造简单,造型美观,连接方便,适应性强。

但用钢量大,节点用钢量占网架总用钢量的20%-25%,焊接质量要求较高。

网壳结构与网架结构相比有相似之处,更有其特性。

一般来说,单层网壳构造简单,重量轻,但其稳定性较差,只适合中小跨度的网壳。

在单层网壳设计中为加强整体稳定性,其节点相对也复杂一些,必须采用刚性节点。

而双层网壳适合跨度大于40m 的结构,其节点可采用铰接节点。

对于大跨度的网壳结构,其矢高对受力性能影响颇大,应选用矢高较大的球面或柱面网壳,构造较为合理、经济;当跨度较小时,可选用矢高较小的双曲扁网壳或落地式的双曲抛物面网壳。

在网壳结构中,非对称荷载、集中荷载对单层网壳的稳定性危害极大,在结构选型时,应优先选用结构稳定性较好的结构。

网壳结构的分析内容,不仅包括了结构的强度、刚度、稳定性分析,往往其几何外形在设计中也是重点考虑的因素。

风荷载在网壳结构中特别是大跨度网壳结构中的作用产生了根本性的变化,有时对结构的安全性起到主导作用。

对于大跨度网壳结构,即使体型简单,也应进行风洞试验。

5.网壳结构的稳定性
单层网壳和厚度较小的双层网壳均存在着局部失稳和整体失稳的可能,需进行稳定性计算。

前者结构局部刚度出现软化、消失,此时,在荷载与位移的对应关系中会突然偏离平衡位置,产生一个动态跳跃,局部出现很大的几何变位。

而整体失稳是整个结构突然屈曲至完全不同于初试软化形状的变形形式,出现偏离平衡位置的大位移。

局部失稳往往是局部的高集中荷载作用或局部缺陷造成的,像单杆失稳、点失稳;而整体失稳往往是从局部失稳开始逐渐形成的。

影响网壳稳定性的因素极其复杂,除与网壳结构的非线性性能有关外,结构的形状、材料缺陷、节点刚度、杆件制作安装误差、支承条件、荷载类型都会影响网壳结构的稳定性。

大跨度总是强烈吸引着建筑师及工程师们,空间结构提供了一种既方便又经济的覆盖大面积的方法,由于其结构形式的有点及造型美观,常常为建筑师和工程师所采用。

今年来。

空间结构发展迅速,各种新型的空间结构不断涌现,空间结构的发展水平已成为标志一个国家建筑技术发展水平的重要指标。

知识改变命运。

相关文档
最新文档