脱硫吸收塔溢流管道的优化改造

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

脱硫吸收塔溢流管道的优化改造

史传红; 周桂萍

【期刊名称】《《山东电力技术》》

【年(卷),期】2017(044)010

【总页数】3页(P71-72,80)

【关键词】烟气脱硫(FGD); 浆液起泡溢流; 溢流管道; 优化改造

【作者】史传红; 周桂萍

【作者单位】华电潍坊发电有限公司山东潍坊 261204; 国网技术学院山东济南250002

【正文语种】中文

【中图分类】X701.3

石灰石-石膏湿法脱硫工艺在火电厂燃煤机组普遍采用,随着国家《煤电节能减排升级与改造行动计划2014—2020》及超低排放标准的执行,大部分电厂都进行了烟气脱硫设施的提效改造,改造后系统的性能和出力满足了超低排放的要求,但要实现二氧化硫的超低达标排放,脱硫设施的稳定运行尤为重要,这就对脱硫设施的稳定性和可靠性提出了更高的要求[1-2]。吸收塔浆液起泡溢流是湿法脱硫系统运行中的常见问题,如果不能采取有效预防和处理措施,就会造成运行过程中的超标排放,污染周边设施和环境,严重时会因浆液倒流导致增压风机叶片损坏等重大事故,带来极大的安全和环保隐患。预防和控制吸收塔起泡溢流,有多种方案和措施,通过对原始溢流管道的结构进行分析,结合实际运行中存在的问题,提出优

化改造方案并实施,消除了原始溢流管道结构上存在的不合理因素,提高了对吸收塔起泡溢流的防范和控制能力,同时有效解决了溢流管道的堵塞等安全隐患。

吸收塔浆液溢流主要有两大因素,一是运行人员操作调整不到位,或吸收塔液位测量表计不准确,造成实际液位升高,发生溢流;二是吸收塔内浆液中泡沫引起的“虚假液位”造成。脱硫设施运行过程中发生的溢流,大多是由于第二种因素造成。吸收塔内浆液产生泡沫溢流的主要原因有[3]:1)锅炉燃烧不充分或在运行过

程中投油,飞灰中部分未燃尽物质(包括碳颗粒或焦油)随烟气进入吸收塔,使吸收塔浆液中的有机物含量增加;2)烟气粉尘中Al2O3和Fe2O3、石灰石含有的

微量金属元素如Cd、Ni等、湿式球磨机的钢球磨损等也会引起吸收塔浆池中金属元素的富集。金属离子增多会使浆液表面张力增加,从而在浆液表面产生泡沫;3)石灰石中含有MgO含量若超标不仅影响脱硫效率,还与SO2-4反应会产生大量

泡沫。酸不溶物含量偏高也会随粉尘在吸收塔内聚集;4)溢流管设计不合理,产生虹吸、堵塞等现象;5)工艺水来源,如果工艺水来源为机组循环冷却塔排污水,需确认其缓蚀阻垢剂和杀菌剂的使用情况;若为城市中水,需确认COD含量[4];6)FGD脱水系统或废水处理系统不能正常投入,致使吸收塔浆液品质逐

渐恶化;7)在FGD系统运行过程中,氧化风机停运或启动浆液循环泵,会破坏

吸收塔的气液平衡,导致吸收塔浆液大量溢流。

吸收塔发生溢流时,一是运行人员首先要保证系统内其他设备的安全,正常的运行调整受到严重影响,一般情况下无法满足达标排放的要求;二是发生溢流的同时,吸收塔液位波动,浆液品质恶化,氧化风机方式调整,供浆量控制等,大大增加了达标排放的难度;三是溢流严重时,有可能发生浆液倒流的现象,沿吸收塔入口烟道倒流至增压风机(或引风机),造成风机振动大、叶片断裂等故障,机组被迫降负荷或停机。

脱硫吸收塔的结构设计中,为了防止塔内液位过高,威胁其他设备的安全,在吸收

塔允许的最大液位标高位置,设置了溢流管道。主要作用是控制吸收塔液位,防止浆液从原烟道中溢出影响上游设备,保证系统安全稳定运行。辅助作用是运行中可以通过溢流排放的方式,将吸收塔内浆液表面堆积的杂质外排。溢流管道的结构设计主要有图1所示3种模式。

华电潍坊发电有限公司2015年完成了4台机组脱硫设施的提效改造,改造方案为增加二级串联吸收塔。吸收塔溢流管道的以上3种结构均有实例,本文涉及的详细结构和说明,均以华电潍坊发电有限公司的脱硫设施为例。

图1(a)中,一级吸收塔设计溢流高度为12.5 m,溢流管口位置设计在塔体6.5 m标高位置,溢流管道顶部与大气连通,防止溢流时产生虹吸。此结构的优点是塔内部分结构简单,利用浆液实现烟气与大气的密封,且密封段长,不会发生烟气泄漏。缺点是实际运行中极易发生起泡溢流现象,泡沫为黑褐色,分析原因为脱硫工艺水取自循环水排污水,因COD成分在吸收塔内不断积累、分解、甚至碳化致浆液颜色变深。这些有害物质极易聚集在吸收塔浆液液面,超出临界胶束浓度后即形成黑褐色泡沫溢出[5]。

图1(b)中,一级吸收塔设计溢流高度为15.7 m,溢流管口位置即在塔体15.7 m标高位置,位于正常运行液位上部,为防止烟气泄漏,溢流管道出口插入吸收塔地坑,形成水封。此结构的优点的是塔内和塔外部分的结构都相对简单,且完全密封。缺点是在实际运行中,溢流管道下部很容易被堵塞,且无法及时发现,存在重大安全隐患。

图1(c)中,二级吸收塔设计溢流高度为11.5 m,塔壁溢流管口也设计在11.5 m标高位置,但该结构溢流管道与烟气间的密封方式,为在吸收塔内设置下弯管道,插入吸收塔液位以下1.5 m处,溢流管道在塔外的最高点与大气连通,防止溢流时产生虹吸。此结构的一个不合理因素,是对吸收塔的液位要求较高,运行液位偏低时会因塔内压力高发生溢流,运行液位接近8 m时,烟气会直接泄漏。

图1(a)、图1(c)两种结构,实际运行中还与吸收塔内的烟气压力有关,如GGH、除雾器堵塞比较严重时,烟风阻力增大,吸收塔内的烟气压力高,作用于吸收塔浆液表面,造成吸收塔溢流的概率大大增加。

针对以上3种吸收塔溢流结构在实际运行中存在的问题,逐项进行了分析对比,本着提前防范、有效控制的原则,对溢流管道进行优化改造。

优化改造主要解决以下问题:1)消除吸收塔内液位和压力变化的影响;2)解决溢流管道运行中的堵塞问题;3)实现塔内浆液表面杂质的外排;4)运行期间能够检查试验,确保溢流管道畅通。

经过多次试验和改进,最终确定了改造方案,如图2所示,并利用停机检修机会进行了改造,改造方案的具体内容为:1)取消塔内下弯管道;2)溢流管口设置在塔壁最高液位标高位置,溢流管道直接引至地面;3)在距地面2 m以下区域,设置溢流管道的“S”型密封装置,防止烟气外漏;4)在“S”型密封装置中,设置排空阀和冲洗水。

该装置具有以下特点:1)结构简单,取消了塔内部及塔外排空部分;2)可靠性高,溢流管口位置即为吸收塔最高液位,高于此液位直接溢流,不会因表计原因造成液位升高;3)排除了吸收塔内液位和压力的影响,设置的“S”型密封装置,不受塔内液位的影响,塔内压力的影响可以通过调整“S”型密封装置后部弯头的竖直段高度来调整;4)实现了运行期间的检查,通过排空管道能在运行过程中判断溢流管道是否堵塞,并通过冲洗水进行消堵处理;5)浆液表面杂质外排,根据需要随时可以通过排空管道排出浆液表面的杂质,提高浆液品质。

针对湿法脱硫吸收塔溢流问题进行了研究分析和优化改造,从改造溢流管道设计结构入手,有效地解决了吸收塔运行过程中长期存在的溢流风险,大大提高了脱硫设施的稳定性和可靠性。在改造方案的设计中,同时考虑了使用操作的方便性,并消除了管道堵塞的安全隐患。改造方案经近两年的实际应用,效果良好。运行期间未

相关文档
最新文档