实验二场效应晶体管(FET)特性参数测量

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验二场效应晶体管(FET)特性参数测量

实验二、场效应晶体管(FET)特性参数测量

一、实验设备

(1)半导体管特性图示仪(XJ4810A 型),(2)BJT 晶体管(S9014、S8050、S8550),(3)二极管(1N4001)

二、实验目的

1、熟悉BJT 晶体管特性参数测试原理;

2、掌握使用半导体管特性图示仪测量BJT 晶体管特性参数的方法;

3、学会利用手册的特性参数计算BJT 晶体管的混合π型EM1 模型参数的方法。

三、MOS 晶体管特性参数的测量原理

1、实验仪器

实验仪器为场效应管参数测试仪(BJ2922B),与测量双极晶体管直流参数相似,但由于所检测的场效应管是电压控制器件,测量中须将输入的基极电流改换为基极电压,这可将基极阶梯选择选用电压档(伏/级);也可选用电流档(毫安/级),但选用电流档必须在测试台的B-E 间外接一个电阻,将输入电流转换成输入电压。

测量时将场效应管的管脚与双极管脚一一对应,即G(栅极)B (基极); S(源极) E(发射极); D(漏极) C(集电极)。

值得注意的是,测量MOS管时,若没有外接电阻,必须避免阶梯选择直接采用电流档,以防止损坏管子。另外,由于场效应管输入阻抗很高,在栅极上感应出来的电荷很难通过输入电阻泄漏掉,电荷积累会造成电位升高。尤其在极间电容较小的情况下,常常在测试中造成MOS管感应击穿,使管子损坏或指标下降。因而在检测MOS管时,应尽量避免栅极悬空,且源极接地要良好,交流电源插头也最好采用三眼插头,并将地线(E接线柱)与机壳相通。存放时,要将管子三个电极引线短接。

2、参数定义

(1)、输出特性曲线与转移特性曲线

输出特性曲线(IDS-VDS)即漏极特性曲线,它与双极管的输出特性曲线相似,如图2-1所示。在曲线中,工作区可分为三部分: I 是可调电阻区(或称非饱和区);Ⅱ是饱和区;Ⅲ是击穿区。

转移特性曲线为IDS-VDS之间的关系曲线,它反映了场效应管栅极的控制能力。由于结型场效应晶体管都属于耗尽型,且栅源之间相当于一个二极管,所以当栅压正偏(VGS>0)并大于0.5V时,转移特性曲线开始弯曲,如图2-2中正向区域虚线所示。这是由于栅极正偏引起栅电流使输入电阻下降。这时如果外电路无保护措施,易将被测管烧毁,而MOS场效应管因其栅极有SiO2绝缘层,所以即使栅极正偏也不引起栅电流,曲线仍向上升。(2)、跨导(gm) 跨导是漏源电压一定时,栅压微分增量与由此而产生的漏电流微分增量之比。

跨导表征栅电压对漏电流的控制能力,是衡量场效应管放大作用的重要参数,类似于双极管的电流放大系数,测量方法也很相似。

跨导常以栅压变化1V时漏电流变化多少微安或毫安表示。它的单位是西门子,用S表示,1S=1A/V。或用欧姆的倒数“姆欧”表示,记作“ -1 ”。

(3)、夹断电压VP和开启电压VT

夹断电压VP是对耗尽型管而言,它表示在一定漏源电压VDS下,漏极电流减小到接近于零(或等于某一规定数值,如50μA)时的栅源电压。

开启电压VT是对增强型管而言。它表示在一定漏源电压VDS下,开始有漏电流时对应的栅

源电压值。

MOS管的夹断电压和开启电压又统称阈值电压。

(4)、最大饱和电流(IDSS)

当栅源电压VGS=0V、漏源电压VDS足够大时所对应的漏源饱和电流为最大饱和电流。它反映场效应管零栅压时原始沟道的导电能力。显然这一参数只对耗尽型管才有意义。对于增强型管,由于VGS = 0时尚未开启,当然就不会有饱和电流了。

(5)、源漏击穿电压(BVDS)

当栅源电压VGS为一定值时,使漏电流IDS开始急剧增加的漏源电压值,用BVDS表示。注意,当VGS不同时,BVDS亦不同,通常把VGS=0V时对应的漏源击穿电压记为BVDS。(6)、栅源击穿电压(BVGS)

栅源击穿电压是栅源之间所能承受的最高电压。结型场效应管的栅源击穿电压,实际上是单个pn结的击穿电压,因而测试方法与双极管BVEBO的测试方法相同。对MOS

管,由于栅极下面的缘绝层是Si02,击穿是破坏性的,因而不能用XJ4810图示仪测量MOS管的BVGS。

四、测量各相关参数

①IDSS测量(条件:VGS=0V,VDS=10V)

在负栅压情况下,取最上面一条输出特性曲线(VGS=0),取x轴电压VDS=10V时对应的Y 轴电流,便为IDSS值。

另一种方法是,将零电流与零电压扳键扳在“零电压”处,荧光屏上只显示VGS=0的一根曲线,可读得VDS=10V时对应的IDSS值。这种方法可以避免阶梯调零不准引起的误差。若

E、B间有外接电阻,扳键置于“零电流”档亦可进行IDSS测量。

②gm测量(条件VGS=0V,VDS=10V)

gm值随工作条件变化,一般情况下测量最大的gm值,即测量IDS=IDSS时的gm值若测量条件中IDS值较大(如3mA),则需利用正栅压下的曲线进行测量。

③Vp测量(条件:IDS=10μA,VDS=10V)

利用负栅压时的输出特性曲线,从最上面一条曲线向下数,每两条曲线之间的间隔对应一定的栅压值(例如-0.2V),一直数到IDS=10μA(对应于VDS=10V处,)便可得到VP值。IDS=10μA是一个小的值,可以通过改变Y轴上电流的量程读取。

④BVDS测量

将峰值电压旋钮转回原始位置,电压范围改为0~200V,x轴集电极电压改为5V/度,或10V/度,加大功耗电阻,再调节峰值电压,最

下面一条输出特性曲线的转折点处对应的x轴电压,即为BVDS值。BVGS测量对MOS管而言,栅源击穿是一种破坏性击穿,此处不测量。若样品袋中包含JFET,则需测量该电压。若样品袋中含有JFET,需加测此内容。

场效应管型号: 2SK241

测试参数

IDSS

VGS(th) 或VGS(off)

gm

测试条件

VDS=10 V,VGS= 0 V

VDS= 10 V,ID=10u A

VDS= 10V,VGS= 0V,f= 1KHz 测试结果

4.27mA

-0.87

9.87ms

相关文档
最新文档