排列数与组合数的计算 ppt课件
合集下载
组合数学课件-第一章:排列与组合
积分性质
若G(x)是母函数,则它的不定积分∫G(x)dx (其中C为常数)也是母函数。
线性性质
若G1(x)和G2(x)是两个母函数,则它们的 线性组合k1*G1(x)+k2*G2(x)(k1和k2是 常数)也是母函数。
微分性质
若G(x)是母函数,则它的导数G'(x)也是母 函数。
乘积性质
若G1(x)和G2(x)是两个母函数,则它们的 乘积G1(x)*G2(x)也是母函数。
对称性
C(n,m) = C(n,n-m),即从n个元素中取出m个元 素的组合数与从n个元素中取出n-m个元素的组 合数相等。
递推关系
C(n,m) = C(n-1,m-1) + C(n-1,m),即当前组合 数等于前一个元素在组合中和不在组合中的两种 情况之和。
边界条件
C(n,0) = C(n,n) = 1,即从n个元素中取出0个或 n个元素的组合数均为1。
典型例题解析
例1
从10个数中任取4个数,求其中最大数为6的组合数。
解析
此问题等价于从6个数(1至6)中取4个数的组合数,即 C(6,4)。
例2
在所有的三位数中,各位数字之和等于10的三位数有 多少个?
解析
此问题可转化为从9个数字(1至9)中取3个数字的组合 数,即C(9,3),然后考虑三个数字的全排列,即3!,因此 总共有C(9,3) × 3!个符合条件的三位数。
组合与排列的关系
组合数可以看作是从n个元素中取出m个元素进行排 列的种数除以m的阶乘,即C(n,m)=A(n,m)/m!。 因此,在计算组合数时也可以利用排列数和容斥原 理来进行计算。
THANKS
隔板法
将n个相同的元素分成r组的方法数可以用母函数表示为 C(n+r-1,r),其中C表示组合数。
组合数学课件--第一章第三节组合意义的解释(共27张PPT)
21
:应用举例
码b与码a之间的汉明距离要大于或等于2r+1.
如果存在a与a的距离小于r,那么a与b的距离大于r。 解:先将1到999的整数都看作3位数,例如2就看作是002,这样从000到999。
试求从1到1000的整数中,0出现的次数。 求方程的非负整数的解的个数. 因此不合法的0的个数为 码b与码a之间的汉明距离要大于或等于2r+1. 9 *Stirling公式 35 C(m,0)+C(m,1)+C(m,2)+…+C(m,m)=2m
6
1.6.3 线性方程的整数解的个数问题:
x1+x2+…+xn=b,n和b都是非负整数;
求方程的非负整数的解的个数. 允许重复的组合模型是r个无标志的球放进n个有 区别的盒子的情况:
方程的非负整数的个数与b个无标志的球放进n个 有区别的盒子的情况一一对应.
C(n+b-1,b)
7
1.7 组合的解释
m[C(n,0)+C(n,1)+…+C(n,r)]≤2n
m
2n
C(n,0)C(n,1)...C(n,r)
***
23
1.9 司特林(Stirling公式)
n!~ 2n(n)n
e
2n (n)n
lim n
e 1 n!
***
24
1.9 例题
例:求小于10000的正整数中含有数字1的数的个数。
解:小于10000的正整数是1到9999,如果我们 把不到4位的数前面补零,
{1,2},{1,3}, {2,3},
如果允许重复,多了
{1,1}, {2,2}, {3,3}。
组合模型:
:应用举例
码b与码a之间的汉明距离要大于或等于2r+1.
如果存在a与a的距离小于r,那么a与b的距离大于r。 解:先将1到999的整数都看作3位数,例如2就看作是002,这样从000到999。
试求从1到1000的整数中,0出现的次数。 求方程的非负整数的解的个数. 因此不合法的0的个数为 码b与码a之间的汉明距离要大于或等于2r+1. 9 *Stirling公式 35 C(m,0)+C(m,1)+C(m,2)+…+C(m,m)=2m
6
1.6.3 线性方程的整数解的个数问题:
x1+x2+…+xn=b,n和b都是非负整数;
求方程的非负整数的解的个数. 允许重复的组合模型是r个无标志的球放进n个有 区别的盒子的情况:
方程的非负整数的个数与b个无标志的球放进n个 有区别的盒子的情况一一对应.
C(n+b-1,b)
7
1.7 组合的解释
m[C(n,0)+C(n,1)+…+C(n,r)]≤2n
m
2n
C(n,0)C(n,1)...C(n,r)
***
23
1.9 司特林(Stirling公式)
n!~ 2n(n)n
e
2n (n)n
lim n
e 1 n!
***
24
1.9 例题
例:求小于10000的正整数中含有数字1的数的个数。
解:小于10000的正整数是1到9999,如果我们 把不到4位的数前面补零,
{1,2},{1,3}, {2,3},
如果允许重复,多了
{1,1}, {2,2}, {3,3}。
组合模型:
排列与组合ppt课件
数。
从10个不同字母中取出 5个字母的所有排的个
数。
从8个不同数字中取出4 个数字的所有排列的个
数。
从n个不同元素中取出m 个元素的所有排列的个
数。
03
CHAPTER
组合的计算方法
组合的公式
组合的公式:C(n,k) = n! / (k!(n-k)!)
"!"表示阶乘,即n! = n * (n-1) * ... * 3 * 2 * 1。
3
排列组合在计算机科学中的应用
计算机科学中,排列组合用于算法设计和数据结 构分析。
排列与组合的未来发展
排列与组合理论的发展方向
随着数学和其他学科的发展,排列与组合理论将不断发展和完善,出现更多新 的公式和定理。
排列与组合的应用前景
随着科学技术的发展,排列与组合的应用领域将更加广泛,特别是在计算机科 学、统计学和信息论等领域的应用将更加深入。
在计算排列和组合时,使用的 公式和方法也不同。
02
CHAPTER
排列的计算方法
排列的公式
01
02
03
排列的公式
P(n, m) = n! / (n-m)!, 其中n是总的元素数量, m是需要选取的元素数量 。
排列的公式解释
表示从n个不同元素中取 出m个元素的所有排列的 个数。
排列的公式应用
适用于计算不同元素的排 列组合数,例如计算从n 个不同数字中取出m个数 字的所有排列的个数。
该公式用于计算从n 个不同元素中选取k 个元素(不放回)的 组合数。
组合的计算方法
直接使用组合公式进行计算。 当n和k较大时,需要注意计算的复杂性和准确性。
可以使用数学软件或在线工具进行计算。
从10个不同字母中取出 5个字母的所有排的个
数。
从8个不同数字中取出4 个数字的所有排列的个
数。
从n个不同元素中取出m 个元素的所有排列的个
数。
03
CHAPTER
组合的计算方法
组合的公式
组合的公式:C(n,k) = n! / (k!(n-k)!)
"!"表示阶乘,即n! = n * (n-1) * ... * 3 * 2 * 1。
3
排列组合在计算机科学中的应用
计算机科学中,排列组合用于算法设计和数据结 构分析。
排列与组合的未来发展
排列与组合理论的发展方向
随着数学和其他学科的发展,排列与组合理论将不断发展和完善,出现更多新 的公式和定理。
排列与组合的应用前景
随着科学技术的发展,排列与组合的应用领域将更加广泛,特别是在计算机科 学、统计学和信息论等领域的应用将更加深入。
在计算排列和组合时,使用的 公式和方法也不同。
02
CHAPTER
排列的计算方法
排列的公式
01
02
03
排列的公式
P(n, m) = n! / (n-m)!, 其中n是总的元素数量, m是需要选取的元素数量 。
排列的公式解释
表示从n个不同元素中取 出m个元素的所有排列的 个数。
排列的公式应用
适用于计算不同元素的排 列组合数,例如计算从n 个不同数字中取出m个数 字的所有排列的个数。
该公式用于计算从n 个不同元素中选取k 个元素(不放回)的 组合数。
组合的计算方法
直接使用组合公式进行计算。 当n和k较大时,需要注意计算的复杂性和准确性。
可以使用数学软件或在线工具进行计算。
组合与组合数公式PPT教学课件
排列与元素的顺序有关,而组合则与元素的顺序无关
想一想:ab与ba是相同的排列还是相同的组合?为什么?
两个相同的排列有什么特点?两个相同的组合呢?
判断下列问题是组合问题还是排列问题?
(1)设集合A={a,b,c,d,e},则集合A的含有3个元素的 子集有多少个? 组合问题
(2)某铁路线上有5个车站,则这条铁路线上共需准备 多少种车票? 排列问题 有多少种不同的火车票价? 组合问题
(3)10名同学分成人数相同的数学和英语两个学习小组, 共有多少种分法? 组合问题
(4)10人聚会,见面后每两人之间要握手相互问候,
共需握手多少次?
组合问题
(5)从4个风景点中选出2个安排游览,有多少种不同的方法? 组合问题
(6)从4个风景点中选出2个,并确定这2个风景点的游览 顺序,有多少种不同的方法? 排列问题
用紫砂壶泡茶不走味,盛暑越宿不易馊,使用时间越,器身 色泽越发光润,泡出的茶也更为醇郁芳香,“首世间茶具此 为”这是人们对它的高度评价。 紫砂花盆清丽雅致,栽花 置景具有朴质浑厚的韵味,紫砂盆有瓷器彩绘般的华丽雕刻 装饰,又有似瓦盆那样的吸水透气性能,因而用紫砂盆养花 植木有助于根须生长,有“不烂根、易生发、花时长、落叶 迟”之优点,以其布置厅堂、居令人心怡神宁。 紫砂雕塑, 陈设品具有一定的艺术价值和收藏价值。紫砂陶刻装饰集文 学、书画、诗歌、金石、 篆刻于一体,以刀代笔,有传统的 镌刻模印浮雕、印花等手法,画面构思新颖,题材广泛,清 雅潇洒,别具一格。
请赛,通过单循环决出冠亚军.
(1)列出所有各场比赛的双方;
(2)列出所有冠亚军的可能情况。
(1) 中国—美国 美国—古巴
中国—古巴 美国—俄罗斯
中国—俄罗斯 古巴—俄罗斯
想一想:ab与ba是相同的排列还是相同的组合?为什么?
两个相同的排列有什么特点?两个相同的组合呢?
判断下列问题是组合问题还是排列问题?
(1)设集合A={a,b,c,d,e},则集合A的含有3个元素的 子集有多少个? 组合问题
(2)某铁路线上有5个车站,则这条铁路线上共需准备 多少种车票? 排列问题 有多少种不同的火车票价? 组合问题
(3)10名同学分成人数相同的数学和英语两个学习小组, 共有多少种分法? 组合问题
(4)10人聚会,见面后每两人之间要握手相互问候,
共需握手多少次?
组合问题
(5)从4个风景点中选出2个安排游览,有多少种不同的方法? 组合问题
(6)从4个风景点中选出2个,并确定这2个风景点的游览 顺序,有多少种不同的方法? 排列问题
用紫砂壶泡茶不走味,盛暑越宿不易馊,使用时间越,器身 色泽越发光润,泡出的茶也更为醇郁芳香,“首世间茶具此 为”这是人们对它的高度评价。 紫砂花盆清丽雅致,栽花 置景具有朴质浑厚的韵味,紫砂盆有瓷器彩绘般的华丽雕刻 装饰,又有似瓦盆那样的吸水透气性能,因而用紫砂盆养花 植木有助于根须生长,有“不烂根、易生发、花时长、落叶 迟”之优点,以其布置厅堂、居令人心怡神宁。 紫砂雕塑, 陈设品具有一定的艺术价值和收藏价值。紫砂陶刻装饰集文 学、书画、诗歌、金石、 篆刻于一体,以刀代笔,有传统的 镌刻模印浮雕、印花等手法,画面构思新颖,题材广泛,清 雅潇洒,别具一格。
请赛,通过单循环决出冠亚军.
(1)列出所有各场比赛的双方;
(2)列出所有冠亚军的可能情况。
(1) 中国—美国 美国—古巴
中国—古巴 美国—俄罗斯
中国—俄罗斯 古巴—俄罗斯
组合与组合数公式课件
关系
超几何分布的概率值可以通过组合数公式进行计 算,特别是当总体大小远大于样本大小时。
二项式系数与组合数的关系
二项式系数
二项式系数表示在n次独立实验中成功k次的概率,通常表 示为C(n, k) = binomial(n, k) / k!
组合数公式
组合数公式是计算从n个不同元素中选取k个元素的不同方 式的数量。
关系
二项式系数是组合数的一种特例,当n次实验中每次成功 的概率为p时,二项式系数可以表示为C(n, k) = p^k * (1p)^(n-k)。
组合数与卡特兰数的关系
卡特兰数
卡特兰数是组合数学中的一类特殊数,通常用于计数排列、组合等 问题的解中选取k个元素的不同方式的数量 。
组合数的定义
总结词
组合数表示从n个不同元素中取出 m个元素的组合方式数量,记作 C(n, m)或C_n^m。
详细描述
组合数的定义基于组合的定义, 通过数学公式表示为C(n, m) = n! / (m!(n-m)!),其中"!"表示阶乘 。
组合数的性质
总结词
组合数具有一些重要的性质,包括组合数的递推关系、对称性、非负性等。
组合数的计算公式具有对称性 ,即C(n,m)=C(n,n-m),同 时还有C(n,0)=C(n,n)=1的 特殊性质。
组合数的性质在计算中的应用
利用组合数的性质可以简化组合数的计算,例如利用对称性可以避免一些不必要的 计算。
利用组合数的性质可以推导出一些重要的组合恒等式,例如二项式定理、帕斯卡三 角等。
当m=n时,排列就是组合;当取出元素不同时,排列和组合是不同的。
组合数的计算公式
组合数的计算公式为C(n, m)=n!/(m!(n-m)!),其中n是 总的元素个数,m是需要取出 的元素个数,C(n,m)表示从n 个元素中取出m个元素的组合 数。
超几何分布的概率值可以通过组合数公式进行计 算,特别是当总体大小远大于样本大小时。
二项式系数与组合数的关系
二项式系数
二项式系数表示在n次独立实验中成功k次的概率,通常表 示为C(n, k) = binomial(n, k) / k!
组合数公式
组合数公式是计算从n个不同元素中选取k个元素的不同方 式的数量。
关系
二项式系数是组合数的一种特例,当n次实验中每次成功 的概率为p时,二项式系数可以表示为C(n, k) = p^k * (1p)^(n-k)。
组合数与卡特兰数的关系
卡特兰数
卡特兰数是组合数学中的一类特殊数,通常用于计数排列、组合等 问题的解中选取k个元素的不同方式的数量 。
组合数的定义
总结词
组合数表示从n个不同元素中取出 m个元素的组合方式数量,记作 C(n, m)或C_n^m。
详细描述
组合数的定义基于组合的定义, 通过数学公式表示为C(n, m) = n! / (m!(n-m)!),其中"!"表示阶乘 。
组合数的性质
总结词
组合数具有一些重要的性质,包括组合数的递推关系、对称性、非负性等。
组合数的计算公式具有对称性 ,即C(n,m)=C(n,n-m),同 时还有C(n,0)=C(n,n)=1的 特殊性质。
组合数的性质在计算中的应用
利用组合数的性质可以简化组合数的计算,例如利用对称性可以避免一些不必要的 计算。
利用组合数的性质可以推导出一些重要的组合恒等式,例如二项式定理、帕斯卡三 角等。
当m=n时,排列就是组合;当取出元素不同时,排列和组合是不同的。
组合数的计算公式
组合数的计算公式为C(n, m)=n!/(m!(n-m)!),其中n是 总的元素个数,m是需要取出 的元素个数,C(n,m)表示从n 个元素中取出m个元素的组合 数。
组合与组合数的计算 PPT
bcd cbd dbc bdc cdb dcb
导入公式
A 求 求3P可 34 可分 分两 两步 考 步虑 考: 虑 : 4
C 第 一 步 ,3( 4 ) 个 ; 4
A 第 二 步 ,3( 6 ) 个 ; 3
A C A 根 据 分 步 计 数 原 理 , 3 4
3 3
4 3 .
3
C A 从 而
3 4
练习2: 1. 从6位同学中选出2人去参加座谈会,有 ___
种不同的选法.
C
2 6
15
种不同的选法.
2. 将4位同学平均分成两组去参加座谈会,有 ___ 种不同的选法.
3. 将6本书平均分成三堆,有 ___ 种不同的选 法.
4. 将6本分成1,1,4三堆,有 ___ 种不同的选法.
Tankertanker Design
结束
巩固练习
练习1: 中国、美国、古巴、俄罗斯四国女排邀请赛,
通过单循环决出冠亚军.
(1)列出所有各场比赛的双方; (2)列出所有冠亚军的可能情况.
(1) 中国—美国 美国—古巴
中国—古巴 美国—俄罗斯
中国—俄罗斯 古巴—俄罗斯
(2) 冠 军
中
中
中
美
美
美
古
古
古
俄
俄
俄
亚 军
美
古
俄
中
古
俄
中
美
俄
中
美
古
巩固练习
已知4个元素a , b , c , d ,写出每次取出两个元素的
所有组合.
a
b
c
bcd
cd
d
ab , ac , ad , bc , bd , cd 共有6个组合.
导入公式
A 求 求3P可 34 可分 分两 两步 考 步虑 考: 虑 : 4
C 第 一 步 ,3( 4 ) 个 ; 4
A 第 二 步 ,3( 6 ) 个 ; 3
A C A 根 据 分 步 计 数 原 理 , 3 4
3 3
4 3 .
3
C A 从 而
3 4
练习2: 1. 从6位同学中选出2人去参加座谈会,有 ___
种不同的选法.
C
2 6
15
种不同的选法.
2. 将4位同学平均分成两组去参加座谈会,有 ___ 种不同的选法.
3. 将6本书平均分成三堆,有 ___ 种不同的选 法.
4. 将6本分成1,1,4三堆,有 ___ 种不同的选法.
Tankertanker Design
结束
巩固练习
练习1: 中国、美国、古巴、俄罗斯四国女排邀请赛,
通过单循环决出冠亚军.
(1)列出所有各场比赛的双方; (2)列出所有冠亚军的可能情况.
(1) 中国—美国 美国—古巴
中国—古巴 美国—俄罗斯
中国—俄罗斯 古巴—俄罗斯
(2) 冠 军
中
中
中
美
美
美
古
古
古
俄
俄
俄
亚 军
美
古
俄
中
古
俄
中
美
俄
中
美
古
巩固练习
已知4个元素a , b , c , d ,写出每次取出两个元素的
所有组合.
a
b
c
bcd
cd
d
ab , ac , ad , bc , bd , cd 共有6个组合.
排列数与组合数
组合数用于确定样本的组合方式,例 如在统计分析中,样本的组合方式会 影响到统计结果。
在计算机科学中的应用
排列数用于确定计算机程序中的执行 顺序,例如在算法中,程序的执行顺 序会影响到程序的效率。
组合数用于确定计算机程序中的数据 结构,例如在数据库中,数据的组合 方式会影响到数据的查询效率。
04
排列数与组合数的区别与联 系
应用
负排列数和负组合数在数学、物理学和工程学等领域有广 泛的应用,例如在量子力学和统计力学的计算中。
感谢您的观看
THANKS
定义上的区别
排列数
从n个不同元素中取出m个元素(m≤n),按照一定的顺序排成一列,称为从n个不同 元素中取出m个元素的排列。
组合数
从n个不同元素中取出m个元素(m≤n),不考虑顺序,称为从n个不同元素中取出m 个元素的组合。
计算公式上的联系
排列数的计算公式
$A_{n}^{m} = frac{n!}{(n-m)!}$
超排列数
定义
超排列数是比排列数多一个元素的所有不同排列的个数。
计算公式
超排列数 = n! / (n-r+1)!,其中n是元素的总个数,r是排列的 长度。
应用
超排列数在组合数学、概率论和统计学等领域有广泛的应用。
多重组合数
定义
多重组合数是组合数的一种扩 展,允许重复使用元素。
计算公式
多重组合数 = n! / (r1! * r2! * ... * rn!),其中n是元素的总 个数,r1, r2, ..., rn分别是每
排列数的符号表示
用符号P(n,m)表示从n个不同元素中取出m个元素的排列数。
排列数的计算公式
排列数的计算公式
在计算机科学中的应用
排列数用于确定计算机程序中的执行 顺序,例如在算法中,程序的执行顺 序会影响到程序的效率。
组合数用于确定计算机程序中的数据 结构,例如在数据库中,数据的组合 方式会影响到数据的查询效率。
04
排列数与组合数的区别与联 系
应用
负排列数和负组合数在数学、物理学和工程学等领域有广 泛的应用,例如在量子力学和统计力学的计算中。
感谢您的观看
THANKS
定义上的区别
排列数
从n个不同元素中取出m个元素(m≤n),按照一定的顺序排成一列,称为从n个不同 元素中取出m个元素的排列。
组合数
从n个不同元素中取出m个元素(m≤n),不考虑顺序,称为从n个不同元素中取出m 个元素的组合。
计算公式上的联系
排列数的计算公式
$A_{n}^{m} = frac{n!}{(n-m)!}$
超排列数
定义
超排列数是比排列数多一个元素的所有不同排列的个数。
计算公式
超排列数 = n! / (n-r+1)!,其中n是元素的总个数,r是排列的 长度。
应用
超排列数在组合数学、概率论和统计学等领域有广泛的应用。
多重组合数
定义
多重组合数是组合数的一种扩 展,允许重复使用元素。
计算公式
多重组合数 = n! / (r1! * r2! * ... * rn!),其中n是元素的总 个数,r1, r2, ..., rn分别是每
排列数的符号表示
用符号P(n,m)表示从n个不同元素中取出m个元素的排列数。
排列数的计算公式
排列数的计算公式
精品课件:排列与组合
解析 (1)利用元素分析法(特殊元素优先安排),甲为特殊元素,故 先安排甲,左、右、中共三个位置可供甲选择,有 A13种,其余 6 人全排 列,有 A66种.
由分步乘法计数原理得 A13A66=2 160(种). (2)位置分析法(特殊位置优先安排),先排最左边,除去甲外,有 A16种, 余下的 6 个位置全排有 A66种,但应剔除乙在最右边的排法数 A15A55种. 则符合条件的排法共有 A16A66-A51A55=3 720(种). (3)捆绑法.将男生看成一个整体,进行全排列,再与其他元素进行 全排列,共有 A33A55=720(种).
A77=N×A33,∴N=AA7733=840(种). (7)与无任何限制的排列相同,有 A77=5 040(种). (8)从除甲、乙以外的 5 人中选 3 人排在甲、乙中间的排法有 A53种,
甲、乙和其余 2 人排成一排且甲、乙相邻的排法有 A22A33种,最后再把选 出的 3 人的排列插入到甲、乙之间即可,共有 A53×A22×A33=720(种).
24 种,于是符合题意的排法共有 144-24=120 种.
• 答案:B
• 角度二 特殊元素、特殊位置问题
• 2.1名老师和5位同学站成一排照相,老 师不站在两端的排法共有( )
• A.450种
B.460种
• C解.析:4解8法0一种 (元素分析法)先排老师D有.A14种50方0法种,再排学生有 A55
(3)无序均匀分组问题. 先分三步,则应是 C62C24C22种方法,但是这里出现了重复.不妨记六 本书为 A,B,C,D,E,F,若第一步取了 AB,第二步取了 CD,第三 步取了 EF,记该种分法为(AB,CD,EF),则 C26C24C22种分法中还有(AB, EF,CD),(CD,AB,EF),(CD,EF,AB),(EF,CD,AB),(EF,AB, CD),共有 A33种情况,而这 A33种情况仅是 AB,CD,EF 的顺序不同,因 此只能作为一种分法,故分配方式有C26AC2433C22=15(种). (4)有序均匀分组问题. 在(3)的基础上再分配给 3 个人, 共有分配方式C62AC2433C22·A33=C62C24C22=90(种).
第二节排列组合-PPT课件
1 4 2 3 3 2 4 1 ( 种 ) ……………… C C C C C C C C 2 6 4 ..6′ 4 6 46 4 6 46
方法二:“至少有1名女运动员”的反面为“全是男运动员”,故可 用间接法求解.
分析 (1)分步.(2)可分类也可用间接法.(3)可分类也可
用间接法.(4)分类. 解 (1)第一步:选3名男运动员,有 C 63 种选法. 第二步:选2名女运动员,有 C 42种选法. 共有 C 3 =120( 种)选法………………………………3′ C4
6 6
(2)方法一:“至少有1名女运动员”包括以下几种情况: 1女4男,2女3男,3女2男,4女1男…………………….4′ 由分类加法计数原理可得总选法数为:
参加,星期六、星期日各有1人参加,则不同的选派方法共
有种.
解析: 星期五有2人参加,则从5人中选2人的组合数为C 5 2 ,星 期六和星期天从剩余的3人中选2人进行排列,有
2 ). 2 =60(C 种 A 5 3
种,则共有 A 32
答案: 60 题型四 基本组合问题 【例4】(14分)有男运动员6名,女运动员4名,其中男女队 长各1名.选派5名外出比赛.在下列情形中各有多少种选派方法? (1)男运动员3名,女运动员2名; (2)至少有1名女运动员; (3)队长中至少有1名参加; (4)既要有队长,又要有女运动员.
=2 880A(种 )排法. 4
A 44 A 55
学后反思 本题集排列的多种类型于一题,充分体现了元素分析 法(优先考虑特殊元素)、位置分析法(优先考虑特殊位置)、 直接法、间接法(排除法)、捆绑法、等机会法、插空法等常 见的解题思路.
举一反三
3. (2019· 全国改编)从5位同学中选派4位同学在星期五、星 期六、星期日参加公益活动,每人一天,要求星期五有2人
方法二:“至少有1名女运动员”的反面为“全是男运动员”,故可 用间接法求解.
分析 (1)分步.(2)可分类也可用间接法.(3)可分类也可
用间接法.(4)分类. 解 (1)第一步:选3名男运动员,有 C 63 种选法. 第二步:选2名女运动员,有 C 42种选法. 共有 C 3 =120( 种)选法………………………………3′ C4
6 6
(2)方法一:“至少有1名女运动员”包括以下几种情况: 1女4男,2女3男,3女2男,4女1男…………………….4′ 由分类加法计数原理可得总选法数为:
参加,星期六、星期日各有1人参加,则不同的选派方法共
有种.
解析: 星期五有2人参加,则从5人中选2人的组合数为C 5 2 ,星 期六和星期天从剩余的3人中选2人进行排列,有
2 ). 2 =60(C 种 A 5 3
种,则共有 A 32
答案: 60 题型四 基本组合问题 【例4】(14分)有男运动员6名,女运动员4名,其中男女队 长各1名.选派5名外出比赛.在下列情形中各有多少种选派方法? (1)男运动员3名,女运动员2名; (2)至少有1名女运动员; (3)队长中至少有1名参加; (4)既要有队长,又要有女运动员.
=2 880A(种 )排法. 4
A 44 A 55
学后反思 本题集排列的多种类型于一题,充分体现了元素分析 法(优先考虑特殊元素)、位置分析法(优先考虑特殊位置)、 直接法、间接法(排除法)、捆绑法、等机会法、插空法等常 见的解题思路.
举一反三
3. (2019· 全国改编)从5位同学中选派4位同学在星期五、星 期六、星期日参加公益活动,每人一天,要求星期五有2人
《排列与组合自》课件
组合可以看作排列的一个特例
当一个组合中的元素都是相邻的时候,这个组合可以看作是 一个排列。
05
排列与组合的扩展知识
排列与组合的数学原理
排列的定义
从n个不同元素中取出m个元素(m≤n),按照一定的顺 序排成一列,称为从n个元素中取出m个元素的排列。
排列的计算公式
$A_{n}^{m} = n(n-1)(n-2)...(n-m+1)$
03
组合的计算方法
组合的公式
组合的公式
C(n,k) = n! / (k!(n-k)!)
组合公式的推导
通过数学归纳法证明组合公式。
组合公式的应用
利用组合公式计算从n个不同元素中取出k个元素 的组合数。
组合的实例
01
02
03
组合实例1
从5个不同的人中选出3个 人组成一个小组,有多少 种不同的选法?
用P(n,m)表示从n个不同元素中取出m个元 素的排列数。
排列的计算公式
P(n,m)=n×(n-1)×…×(n-m+1)
排列的特性
与元素的顺序有关,与元素的取出方式有 关。
组合的定义
组合的定义
从n个不同元素中取出m个元素(m≤n) ,不考虑顺序,称为从n个不同元素中取
出m个元素的组合。
组合的计算公式
《排列与组合》PPT课件
目录
• 排列与组合的定义 • 排列的计算方法 • 组合的计算方法 • 排列与组合的区别与联系 • 排列与组合的扩展知识
01
排列与组合的定义
排列的定义
排列的定义
排列的表示
从n个不同元素中取出m个元素(m≤n), 按照一定的顺序排成一列,称为从n个不同 元素中取出m个元素的排列。
当一个组合中的元素都是相邻的时候,这个组合可以看作是 一个排列。
05
排列与组合的扩展知识
排列与组合的数学原理
排列的定义
从n个不同元素中取出m个元素(m≤n),按照一定的顺 序排成一列,称为从n个元素中取出m个元素的排列。
排列的计算公式
$A_{n}^{m} = n(n-1)(n-2)...(n-m+1)$
03
组合的计算方法
组合的公式
组合的公式
C(n,k) = n! / (k!(n-k)!)
组合公式的推导
通过数学归纳法证明组合公式。
组合公式的应用
利用组合公式计算从n个不同元素中取出k个元素 的组合数。
组合的实例
01
02
03
组合实例1
从5个不同的人中选出3个 人组成一个小组,有多少 种不同的选法?
用P(n,m)表示从n个不同元素中取出m个元 素的排列数。
排列的计算公式
P(n,m)=n×(n-1)×…×(n-m+1)
排列的特性
与元素的顺序有关,与元素的取出方式有 关。
组合的定义
组合的定义
从n个不同元素中取出m个元素(m≤n) ,不考虑顺序,称为从n个不同元素中取
出m个元素的组合。
组合的计算公式
《排列与组合》PPT课件
目录
• 排列与组合的定义 • 排列的计算方法 • 组合的计算方法 • 排列与组合的区别与联系 • 排列与组合的扩展知识
01
排列与组合的定义
排列的定义
排列的定义
排列的表示
从n个不同元素中取出m个元素(m≤n), 按照一定的顺序排成一列,称为从n个不同 元素中取出m个元素的排列。
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
显示答案
ppt课件
13
典例剖析 【例1】【例2】 【例3】 方法总结
【例2】(1)若Am n 171615…54,
则n 1 7 ,m 1 4 ;
本题是排列数的逆用. 通过排列数公式的特点推 导出n和m的值.
(2)若nN,则(55n)(56n)(68n)(69n)
用排列数符号表示为
A 15
69n .
; 3 C 9 9 6 4 C 9 9 7 5 C 9 9 8 6 C 9 9 9 7
.
( 1 ) 原 式 6 0 2 4 3 5 6 5 5 . 3原式C926 C927 C928 C929
(2)原 式 C3 3C C 1 303 21 C 16 2 46 6 50 .C1 200… C396CC1309206CC9392671C8928820C. 929 C936
组合数公式的应用,培 养学生的计算能力.
【
解
】
(1
)
A
3 16
16 15 14
3360.
(
2
)
A
6 6
6 !
720.
(
3
)
A
4 6
6
5
4
3
360.
(
4
)
(
解
法
一
)
C
7 10
10
987 7!
6
5
4
120.
(
解
法
二
)
C
7 10
C
3 10
10 9 8 3!
120.
本题第(4)小题利用 组合数的性质解决问题, 要比纯用组合数的方式解
ppt课件
7
知识要点
2.组合
排列 组合 排列数公式
组合数公式
组合数的性质
从 n个不同元素中,任取m(m≤n)个不同元素组成一组
n个不同元素中取出m个元素的一个组合.
,叫做从
ppt课件
8
知识要点 排列 组合 排列数公式
3.排列数公式
组合数公式
组合数的性质
从n个不同元素中取出m(mn)个元素的所有排列的个数,叫
(
解
法
三
)
C
7 10
71!03!!
10 9 8 3!
120.
决问题方便得多.
例题分析
显示答案
关键点拨
变式练pp习t课件
12
典例剖析 【例1】 【例2】 【例3】 方法总结
【 变 式 训 练 1 】 求 值 : 1 3 A 5 2 A 4 4 C 3 7 3 ! ;
2 C 2 2 C 3 2 C 2 4 C 1 2 0 0
4.组合数公式
组合数公式
组合数的性质
从n个不同元素中取出m (mn)个元素的所有组合的个数, 叫做从n个不同元素中取出m个元素的组合数,用符号Cm n表示.
Cm n A Am nm m
nn1n2 nm1
m!
n!m!
n m!
(m
n)
.
ppt课件
10
知识要点 排列 组合 排列数公式
5.组合数的性质:
秦中
万物皆为数!——毕达哥拉斯
高
所有问题都可以转化为数学问题!——笛卡尔
问题才是数学的心脏。!——(美)(P·R·Halmos)哈尔莫斯
数学就是解题。 ——(匈-美)G·波利亚
1.依葫芦画瓢地模仿;2.利用现成的方法解决新的问题;3.提出 新的思路,创造新的方法,开辟新的研究领域。——华罗庚先生在 谈及数学研究时,提到了三种境界
( D )
【 提 示 】 由 C m n C n n m 得 n 3 4 7 .
2 .方 程 C 2 x 8 C 3 2 8 x 1 2 的 解 为 x A .1 0 或 6B .1 0 C .6 D .2 8
( C )
【 提 示 】 ① 由 C m n C n n m , x 3 x 1 2 2 8 , 得 x 1 0 . ② 由 x 3 x 1 2 ,得 x 6 .
A .5 B .6 C .7 D .8
【 提 示 】 3 x (x 1 )(x 2 ) x 2 (x 3 1 )x 6 x (x 1 ),得 x 5 . ppt课件
( A )
5
基础过关
5 .若 C 8 x C 8 x 1 C 3 9 ,则 x 3或6 .
【 提 示 】 由 C 8 x C 8 x 1 C 9 x C 9 3 ,得 x 3 或 6 .
做从n个不同元素中取出m个元素的排列数,用符号Am n表示.
Am n n n 1 n 2 n m 1 ,该公式一般适用于运算.
当nm时为全排列,Ann n(n1)(n2)321n ! .
排列数公式还可以表示成:Am n 公式用于化简较多.
n
n
! m
(规定0!1),该
!
ppt课件
9
知识要点 排列 组合 排列数公式
6 . 如 果 A 1 m 0 1 0 9 8 5 , 那 么 m 6 .
【提示】由10-m+1=5得
m=6.
ppt课件
6
知识要点
1.排列
排列 组合 排列数公式
组合数公式
组合数的性质
从 n个不同元素中,任取m(m≤n)个不同元素,按照一定的次序排成一列, 叫做从n个不同元素中取出m个元素的一个排列.
对排列数公式掌握透彻.
ppt课件
14
例题分析
显示答案
关键点拨
变式练习
典例剖析 【例1】 【例2】【例3】 方法总结
【 变 式 训 练 2 】 若 A m n 3 4 5 6 7 8 , 则 n 8 , m 6 .
数学好玩。 ——(美-中)陈省身
ppt课件
1
排列数与组合数的运算
陕西省秦岭中学——王 琪
ppt课件
2
教学目标
1. 理解排列、组合的意义,掌握排列数、组合数 的计算公式,理解组合数的两个性质;
2. 掌握排列数、组合数求值与证明技巧。
ppt课件
3
基础过关
1 . 若 C 3 n C n 4 ,则 n 的 值 为 A . 5 B . 6 C . 8 D . 7
ppt课件
4
基础过关
3 . 若 A 3 n 6 C n 4 , 则 n 等 于
( C )
A . 9 B . 8 C . 7 D . 6 【 提 示 】 由 题 意 得 n(n-1 )(n-2 )6 ( nn 1 ) (n2 )(n3 ),
432 1
化 简 得 n34 , n7 .
4 . 解 方 程 : 3 A x 3 = 2 A x 2 1 + 6 A x 2 , 得 x 等 于
组合数公式
组合数的性质
( 1 ) C m n C n n m ;
( 2 ) C m n 1
Cmn
Cm1 n
( m n ,且 m ,n N ) .
ppt课件
11
典例剖析 【例1】【例2】 【例3】 方法总结
本题考查排列数、
【 例 1 】 计 算 : ( 1 ) A 1 3 6 ,( 2 ) A 6 6 ,( 3 ) A 4 6 ,( 4 ) C 1 7 0 .