酶生产与制备
纳米酶的设计与制备研究及其应用前景
纳米酶的设计与制备研究及其应用前景“酶”是一种可以加速生物或化学反应速度的蛋白质。
酶在生物体内具有极其重要的功能,如促进代谢、调控细胞周期、催化氧化还原等作用。
然而,传统的酶具有一些局限,如易受温度、pH、离子强度等环境因素的影响,从而导致其在生产与应用中的限制。
纳米技术的发展使得新型的酶——纳米酶得以设计与制备。
本文将从纳米酶的设计与制备、应用前景等方面进行探讨。
一、纳米酶的设计与制备纳米酶可以被定义为一种尺寸小于100nm的酶结构。
纳米酶表现出了许多传统酶所没有的特性,如高化学稳定性、高温度稳定性、抗蛋白酶降解,同时还可以在自然的生物环境下进行构造、修饰以及特异性修饰。
因此,纳米酶在生物学、修复学、环境科学以及药学等领域具有广泛的应用前景。
目前,用于纳米酶的制备方法主要有生物合成和化学合成两类。
其中,生物合成主要包括酶自组装、酶的载体修饰和基因工程等方法。
通过这些方法,可以大大提高酶的仿生的稳定性和活性,从而用于实现生命科学、医学以及环境保护等研究。
另一方面,化学合成主要是指利用有机合成化学方法,合成纳米酶单元或者通过物理化学方法进行制备。
这种方法发展较短,生产成本相对较高。
但与生物合成技术相比,这种方法的研究领域更广泛,尤其对于复杂的有机小分子的合成与修饰有很高的研究价值。
二、纳米酶的应用前景目前,纳米酶在生命科学、环境工程、能源技术以及材料学等领域都有了广泛的应用前景。
生命科学:纳米酶在生命科学中的应用,主要集中在检测、治疗以及组织工程方面。
例如,在检测领域,利用纳米酶对疾病标记物的高度识别能力,可以实现早期疾病的高效诊断。
在治疗方面,利用纳米酶内在的抗氧化和抗炎症作用,可以为克服炎症、让人体自身修复提供强大的技术支持。
另外,组织工程中利用纳米酶的转化作用,也能为人体细胞的重生与重组提供技术支持。
环境工程:纳米酶在环境污染治理领域也得到了广泛的应用。
例如,在生物膜中的运用,可以实现有机废水的生物降解。
文档:酶的制备
酶的制备酶的制备主要有两种方法,即直接提取法和微生物发酵生产法。
早期酶制剂是以动植物作为原料,从中直接提取的。
由于动植物生长周期长,又受地理、气候和季节等因素的影响,因此原料的来源受到限制,不适于大规模的工业生产。
目前,人们正越来越多地转向以微生物作为酶制备的主要来源。
—、酶的微生物发酵生产法1.微生物发酵生产法的优点酶的品种齐全微生物种类繁多,目前已鉴定的微生物约有20万种,几乎自然界中存在的所有的酶,我们都可以在微生物中找到。
酶的产量高微生物生长繁殖快,生活周期短,因而酶的产量高。
许多细菌在合适条件下20min左右就可繁殖一代,为大量制备酶制剂提供了极大的便利。
生产成本低培养微生物的原料,大部分比较廉价,与从动、医学教育|网搜集整理植物体内制备酶相比要经济得多。
便于提高酶制品获得率由于微生物具有较强的适应性和应变能力,可以通过适应、诱变等方法培育出高产量的菌种。
另外,结合基因工程、细胞融合等现代化的生物技术手段,可以完全按照人类的需要使微生物产生出目的酶。
正是由于微生物发酵生产具有这些独特的优点,因此目前工业上得到的酶,绝大多数来自于微生物,如淀粉酶类的α一淀粉酶、β一淀粉酶、葡萄糖淀粉酶以及异淀粉酶等都是从微生物中生产的。
2.微生物发酵生产法中尚待解决的问题尽管微生物发酵法生产酶制剂存在上述优点,但仍存在一些问题需要解决。
消除毒性微生物发酵法生产的酶制品中会带人一些细菌自身的生理活性物质,这些生理活性物质往往对人体有害,因此进行毒性实验是必需的。
优良产酶菌种的筛选、培育目前,大多数工业微生物制酶生产采用的菌种较少,仅局限于11种真菌、8种细菌和4种酵母菌。
只有不断寻找更多的适用的产酶菌种,才可能使越来越多的酶采用微生物发酵法进行工业化生产。
3.微生物发酵生产法的条件控制微生物酶的发酵生产是在人为控制的条件下有目的迸行的,因此条件控制是决定酶制剂质量好坏的关键因素。
条件控制包括以下几个方面。
酶产品工艺流程
酶产品工艺流程
酶产品是一种广泛应用于工业生产中的高效催化剂。
酶产品可以通过提取、精制和纯化等工艺步骤进行制备。
下面将详细介绍酶产品的工艺流程。
首先是酶的提取步骤。
酶可以从多种来源中提取得到,如微生物、植物和动物等。
对于微生物来源的酶,可以通过培养微生物菌种,然后收集并离心获得菌体。
接着,通过破碎细胞壁、离子交换、凝胶过滤等操作,将酶从细胞中提取出来。
其次是酶的精制步骤。
在提取过程中,酶会伴随着其他杂质存在,需要通过精制步骤进行去除。
首先是固体分离,通过离心、滤网等操作将固体杂质去除。
然后是液体分离,通过超滤、溶液过滤等操作将液体杂质去除。
最后是浓缩和干燥,将酶溶液经过浓缩、喷雾干燥等工艺,得到酶的粗品。
最后是酶的纯化步骤。
粗品酶仍然存在一些不纯的成分,需要进行纯化以提高酶的纯度。
首先是蛋白质分离,通过离子交换、凝胶过滤等操作将酶与其他蛋白质分离。
然后是酶的活性测定与分析,通过比色法、荧光法等方法检测酶的活性。
接着是纯化酶,可以通过柱层析、电泳等操作去除其他杂质,提高酶的纯度。
最后是酶的活性修饰,通过酶的修饰剂,如金属离子、有机物等,来调节酶的活性和稳定性。
总之,酶产品的工艺流程主要包括提取、精制和纯化等步骤。
在整个工艺流程中,需要使用各种不同的设备和试剂来实现对
酶的提取和纯化。
通过这些步骤,可以得到高纯度和高活性的酶产品,用于各种工业生产中的催化反应。
常用酶制剂的生产方法
常用酶制剂的生产方法引言:酶是生物体内一类高效催化剂,具有高效催化、高度特异性和温和条件下反应等特点。
其广泛应用于医药、食品工业、环境保护等领域。
本文将讨论常用酶制剂的生产方法。
一、酶的筛选酶的筛选是酶制剂生产过程中的关键步骤。
常用的筛选方法包括传统筛选、分子筛选和基因工程筛选。
1.传统筛选:传统筛选基于酶催化反应产物的定量或定性分析。
通过观察反应产物的形成情况,筛选出具有高催化活性的酶。
传统筛选方法常用于挑选一些常见酶制剂,如蛋白酶、淀粉酶等。
2.分子筛选:分子筛选基于酶底物和产物的结合力。
通过制备一系列结构类似的化合物,分析它们与酶的结合力,从中选择出对目标底物具有高结合力的分子。
分子筛选常用于筛选特定底物的酶制剂,如酯酶、脱氢酶等。
3.基因工程筛选:基因工程筛选基于对酶基因进行改造,通过体外酶活性的分析来筛选出符合要求的酶制剂。
常见的基因工程筛选方法包括突变筛选、重组融合和高通量筛选。
二、酶的提取和纯化酶的提取和纯化是酶制剂生产的重要步骤,常用的方法包括固液分离、沉淀、超滤等。
1.固液分离:固液分离是将酶从固态生物质或液态培养基中分离出来的过程。
常见的固液分离方法包括离心、过滤和压滤等。
该方法适用于酶制剂生产中的初步提取。
2.沉淀:通过添加盐类或有机溶剂,使酶沉淀成块,然后通过离心或过滤将其分离出来。
此方法可用于酶的粗提和初步分离。
3.超滤:超滤是一种利用超过膜孔大小的压力将溶液中的大分子物质与溶剂分离的方法。
通过选择合适的膜孔大小,可将酶和低分子物质分离开来,达到酶的纯化目的。
三、酶的固定化酶的固定化是将酶以固定形式嵌入在载体上,提高其稳定性和循环使用性能。
常用的固定化方法包括吸附、交联和包埋等。
1.吸附:酶通过静电作用、吸附剂(如硅胶、活性炭等)的架桥作用,被吸附在载体表面。
吸附方法简单易行,适用于大分子酶制剂。
2.交联:酶通过与载体交联剂的共价结合,被固定在载体上。
交联固定化技术可以提高酶制剂的稳定性和催化效率。
生物酶制备方法
生物酶制备方法全文共四篇示例,供读者参考第一篇示例:生物酶是一种生物催化剂,能够加速化学反应的速率,降低反应所需的能量,提高反应的效率。
生物酶在生物技术、制药和食品工业等领域起着至关重要的作用。
生物酶的制备方法有多种,包括基因工程法、筛选法、提取法等。
下面就来详细介绍一下生物酶的制备方法。
一、基因工程法基因工程法是目前生物酶制备的主要方法之一。
通过改造目的基因,将其插入到细胞内,使细胞具有产生特定酶的能力。
基因工程法的步骤可以分为以下几个部分:1.选择目的基因:首先需要确定想要制备的酶的基因序列,包括编码蛋白质的DNA序列。
2.构建表达载体:将目的基因插入到表达载体中,通常是一个质粒或病毒基因组,以便将其导入到宿主细胞中。
3.转染宿主细胞:将构建好的表达载体导入到宿主细胞中,使其具有表达目的基因的能力。
4.培养发酵:将转染宿主细胞进行培养和发酵,使其产生目的酶。
5.酶的纯化:通过离心、过滤、色谱等方法对酶进行分离和纯化。
基因工程法制备生物酶不仅可以大幅提高酶的产量,还可以实现对酶性质的精确调控,提高了生物酶的工业应用价值。
二、筛选法筛选法是一种通过筛选高产酶菌株的方法,主要包括自然选择和人工筛选。
1.自然选择:利用自然环境对酶产生菌株进行筛选,比如在含有特定底物的培养基上培养细菌,通过检测培养基的变化来筛选高产酶株。
2.人工筛选:通过改造细菌菌株,使其表达高效的酶,然后通过培养和筛选找到高产酶株。
筛选法制备生物酶虽然效率较低,但可以利用自然选择或人工筛选的方法获得具有特定性能的酶,是一种简单有效的制备方法。
三、提取法提取法是将含有酶的细菌或真菌通过破碎、搅拌等方式分离出酶,然后通过离心、过滤等方法对酶进行纯化。
1.破碎细胞:首先需要将含有酶的微生物体进行破碎,打破细胞壁,释放出酶。
2.提取酶:将破碎后的微生物体经过离心、过滤等方式分离出酶。
提取法虽然效率较低,但较为简便,适用于小规模制备生物酶的情况。
第三章酶的生产
2023年5月15日星期一
第三章 酶的生产制备
酶的生产方式
1.提取法: 植物、动物、微生物
2.化学合成法
生物合成法: 利用植物、动物、微生物细胞合成。 上个世纪50年代起利用微生物生产酶
。 1949年细菌发酵生产淀粉酶
上个世纪70年代以来利用植物细胞和 动物细胞培养技术生产酶。
木瓜细胞培养生产木瓜蛋白酶和木瓜 凝乳蛋白酶 人黑色素瘤细胞培养生 产血纤维蛋白溶酶原激活剂
34
2.生长偶联型中的特殊形式——中期合成型
酶的合成在细胞生长一段时间后才开始,而在细胞生 长进入平衡期以后,酶的合成也随着停止。 特点:酶的合成受产物的反馈阻遏或分解代谢物阻遏。
所对应的mRNA是不稳定的。
枯草杆菌碱性磷酸酶合成曲线 35
3.部分生长偶联型(又称延续合成型)
酶的合成在细胞的生长阶段开始,在细胞生长进入 平衡期后,酶还可以延续合成较长一段时间。 特点:可受诱导,一般不受分解代谢物和产物阻遏。
所对应的mRNA相当稳定。
黑曲霉聚半乳糖醛酸酶合成曲线 36
4. 非生长偶联型(又称滞后合成型)
只有当细胞生长进入平衡期以后,酶才开始合成并 大量积累。许多水解酶的生物合成都属于这一类型。 特点:受分解代谢物的阻遏作用。
所对应的mRNA稳定性高。
黑曲霉酸性蛋白酶合成曲线 37
总结:影响酶生物合成模式的主要因素
②发酵代谢调节:理想诱导物的添加,解除 反馈阻遏和分解代谢物阻遏(难利用的碳 氮源的使用,补料发酵)。
③降低产酶温度。
二、细胞生长动力学
微生物细胞生长的动力学方程:
Monod方程:
S-限制性基质浓度; μm—最大比生长速率; Ks —Monod常数
人工合成酶的设计与制备
人工合成酶的设计与制备酶是生物学中极其重要的一类生物大分子,是生命体系中的核心。
它们能够在细胞内参与代谢过程中的催化反应,常常起到高效催化剂的作用,相应地,合成酶的设计与制备也是近年来的追求之一。
从分类上来看,酶可以分为天然酶和人工合成酶,人工合成酶最大的特点是经过人工重组和设计,能够更好地满足实验或生产操作的需要,同时也可以优化该酶的性能,进而实现更高效率和高产的催化反应。
一、人工合成酶的设计原理人工合成酶的设计是从天然酶的结构和性能出发,结合计算机预测和仿真技术,通过不同的策略来设计出具有所需性质的新型酶,从而改善传统酶的不足之处。
人工合成酶的设计原理主要有以下几种:1、重组酶法重组酶法是通过基因重组技术将源自于不同菌株或不同类型的酶基因融合到一起,从而得到具有新特性的合成酶。
这种方法可以充分利用天然生物系统中的遗传物质优化酶的性能,而且结构稳定,催化效率高,成本低廉,被广泛应用于工业生产和科学研究领域。
2、模拟计算法模拟计算法是建立于天然酶基础上的计算机模拟,通过DNA shuffling, error-prone PCR 和overlap-extension PCR等技术,将源自于不同酶的进化优化的片段融合在一起,制备出重组的新酶。
这种方法可以有效降低生产成本和提高酶的活性和稳定性,成为人工合成酶设计的重要策略。
3、结构框架改变法结构框架改变法主要是通过改变酶的空间结构,控制催化反应所需的位置,从而实现酶活性调节。
相比其他的合成酶制备法,结构框架改变法最大的特点是能够快速地确定酶的结构,并在较短的时间内设计出符合需求的新型酶。
二、人工合成酶的制备方法人工合成酶的制备方法是指将经过设计和重组的DNA片段植入到宿主细胞中,利用细胞内自身的加工调节机制来制备出具有所需特性的人工酶。
人工合成酶的制备方法总体上分为以下几步:1、酶基因克隆首先,要确定需要改造的天然酶的基因。
从不同微生物、植物和动物的DNA库中克隆出酶基因,得到包含酶基因双链DNA片段的质粒或染色体。
《生物制药工艺技术》 酶工程制药技术
酶工程研究
有机相中酶反应的研究
5
酶工程研究
在工业、农业、医药和 食品等方面发挥着极其
重要的作用。
酶的抑制剂、激活剂的开发及 应用研究
6
抗体酶、核酸 酶的研究
7
模拟酶、合成酶及酶分子的人工设计、 合成的研究
8
一、酶工程制备氨基酸类 药物
利用化学合成、生物合成或天 然存在的氨基酸前体为原料,同 时培养具有相 应酶的微生物、 植物或动物细胞,然后将酶或细 胞进行固定化处理,再将固定化 酶或细胞装填于适当反应器中制 成所谓 “生物反应堆”,加入 相应底物合成特定氨 基酸,反 应液经分离纯化即得相应氨基酸 成品。
③清洗和更换部分固定化酶比较麻烦。床内有 自压缩倾向,易堵塞,且床内的压力降相当大 ,底物必须在加压下才能加入。
①需保持一定的流速,运转成本高,难于放大。
②由于流化床的空隙体积大,酶的浓度不高。
③能处理粉末状底物。 ④即使应用细粒子的催化剂,压力降也不会很高。
③由于底物高速流动使酶冲出,降低了转化率。
固定化细胞的制备
无需进行酶的分离纯化
01
细胞保持酶的原始状态,
02
固定化过程中酶的回收
率高
抗污染能力强
06
固定化细胞 的特点
细胞内酶比固定化酶稳
03
定性更高
细胞本身含多酶体系, 05
可催化一系列反应
04
细胞内酶的辅因子可以
自动再生
固定化细胞的 制备技术
固定化细胞的制备
载体结合法
载体结合法是将细胞悬浮液直接与水不溶性的载体相结合 的 固定化方法。
pH的影响
溶液的pH对酶活性影响很大。 在一定的pH范围内酶表现催化 活性。在某一pH时酶的催化活 性最大,此pH称为酶作用的最 适pH。偏离酶的最适pH愈远, 酶的活性愈小,过酸或过碱则可 使酶完全失去活性。
酶制剂生产工艺流程
酶制剂生产工艺流程酶制剂是一种由酶制备的药物,被广泛应用于医药、食品、化学工业等领域。
酶制剂的生产工艺流程主要包括五个步骤:原料准备、酶发酵、分离和纯化、干燥和包装。
首先,原料准备是酶制剂生产的第一步。
原料主要包括基础培养基、基因工程菌株和辅助物质。
基础培养基是酶发酵的基础,其中包含有机氮源、碳源、无机盐等成分,其他还需要加入一些辅助物质如缓冲剂、抗泡剂等。
基因工程菌株是通过基因重组技术构建的,用于产生目标酶。
辅助物质是为了提高发酵的效果和酶的稳定性。
第二步是酶发酵。
将准备好的基础培养基中添加基因工程菌株,并进行培养。
培养条件包括温度、pH值和气氛等。
通常情况下,酶发酵一般分为激活阶段、生长阶段和酶合成阶段。
在激活阶段,菌株将从冷冻状态中恢复活性。
在生长阶段,菌株将进行繁殖,并伴随有机物的消耗和产生。
在酶合成阶段,酶的合成量开始增加。
整个发酵过程需要严格控制各个参数,以确保酶的产量和质量。
第三步是分离和纯化。
将发酵后的培养液通过离心、过滤等分离方法,将酶分离出来。
之后,通过流动层析、离子交换等纯化方法,除去杂质,得到纯净的酶制剂。
分离和纯化过程中需要选择合适的材料和工艺条件,以确保酶的活性和稳定性。
第四步是干燥。
将纯化后的酶制剂进行干燥处理,以去除水分,防止酶的降解和微生物的污染。
干燥方法主要有喷雾干燥、冷冻干燥等。
选择适当的干燥方法可以减少酶的损失并提高产量。
最后一步是包装。
将干燥后的酶制剂进行包装,通常采用密封、无菌的包装方式,以确保酶的稳定性和长期保存。
综上所述,酶制剂的生产工艺流程主要包括原料准备、酶发酵、分离和纯化、干燥和包装等五个步骤。
每个步骤都需要严格控制各项参数,以确保酶制剂的产量和质量。
同时,工艺流程中的每个环节都需要选择适当的材料和工艺条件,以确保酶的活性和稳定性。
酶制剂的制备
酶制剂的制备全文共四篇示例,供读者参考第一篇示例:酶制剂是一种应用于生物工程领域的重要生物催化剂,广泛应用于食品、医药、农业等领域。
酶制剂的制备主要通过菌种培养、酶提取和纯化、酶活力测定等步骤完成。
本文将详细介绍酶制剂的制备的各个环节及其相关技术。
一、菌种培养1. 选择菌株:酶制剂的制备首先要选择适合生产目标酶的菌株。
常见的菌种有大肠杆菌、酵母菌、真菌等。
2. 培养条件:菌种培养需要控制适当的温度、PH值、营养液成分等条件。
常用的培养基有LB培养基、YP培养基等。
3. 菌种培养:将选定的菌株接种到含有适当培养基的培养皿中,进行静态或摇床培养,通过控制时间和条件,使菌株在培养基中生长繁殖。
二、酶提取和纯化1. 酶提取:将培养好的菌株经过离心、过滤等方法将酶提取出来。
不同的酶可采用不同的提取方法,如超声波法、冻融法、离心法等。
2. 酶纯化:提取出的酶一般含有其他杂质,需要经过一系列纯化步骤进行纯化。
纯化的方法包括离子交换层析、凝胶渗透层析等。
三、酶活力测定1. 酶活力测定:通过测定酶的活性来评估酶的品质。
常用的测定方法有比色法、荧光法、密度法等。
2. 酶活性稳定性:除了测定酶的活性,还需要考虑酶的活性稳定性,即在不同温度、PH值下酶的活性是否保持稳定。
四、酶制剂配方设计1. 酶活性强化:根据不同的应用需求,可以对酶进行改良,提高其催化性能和特异性。
2. 辅酶添加:在制备酶制剂的过程中,有时需要添加一些辅酶或辅因子来增强酶的活性。
五、酶制剂的应用1. 食品工业:酶制剂广泛应用于食品加工领域,如发酵剂、酶改良剂等。
2. 医药工业:酶制剂可用于药物合成、酶促反应等,对于特定靶标的酶抑制具有重要意义。
3. 农业领域:酶制剂在农业生产中起着促进土壤改良、提高作物产量等作用。
酶制剂的制备是一个涉及多学科知识的复杂工程,需要科研人员在菌种培养、酶提取和纯化、酶活力测定等方面进行深入研究,以提高酶制剂的生产效率和品质。
生物酶制备方法
生物酶制备方法
生物酶制备方法是指在一定的条件下,通过特定的工艺流程将酶基因进行表达、克隆、诱导表达,从而获得具有催化活性的蛋白质。
以下简要介绍几种常见的生物酶制备方法:
1. 发酵法:通过微生物发酵,利用其自身基因表达的蛋白酶
基因进行表达,再经过分离、纯化得到生物酶。
这种方法具有成本低、产量高等优点,但制备的酶种类有限。
2. 重组DNA技术:通过重组DNA技术将外源基因克隆到表达
载体中,然后进行诱导表达。
这种方法能够制备出许多不同的生物酶,包括用于催化反应、蛋白质修饰和组织工程的酶。
其中,诱导
表达的方法有多种,如温度诱导、添加诱导剂等。
3. 层析分离纯化法:在酶基因表达后,使用层析分离纯化法
将所需的生物酶分离、纯化出来。
这种方法具有操作简单、效率高、成本低等优点,适用于大规模生产。
4. 酶固定化技术:将酶固定在反应器中,使其能够连续长时
间地催化反应。
这种方法可以提高酶的稳定性,减少浪费,适用于
工业生产。
常用的固定化技术包括吸附法、包埋法等。
5. 纳米技术制备:利用纳米技术制备纳米级别的生物酶颗粒,具有高活性、高稳定性等优点。
这种方法适用于特殊用途的生物酶
制备,如组织工程、药物输送等。
总之,生物酶制备方法多种多样,每种方法都有其优缺点。
在实际应用中,应根据具体需求和条件选择合适的制备方法。
同时,
随着技术的不断进步,未来有望开发出更多高效、环保的生物酶制
备方法。
Chapter 3 酶的提取与分离纯化
Chapter 3 酶的分离与纯化我们要研究或使用一种酶,首先要采用相关方法先得到它,因此酶的分离与纯化是酶的生产、应用及酶学性质研究的基础。
Section 1 酶制剂的制备过程一个完整的酶制剂制备方案应该包括:酶活力测定体系的建立、材料的选择、材料的预处理、酶的酶学性质初步研究、酶的分离与纯化、酶制剂的保存。
一、材料的选择注意把握植物的季节性、微生物的生长期(对数生长期)和动物的生理状态等。
二、材料的预处理(一)细胞破碎上节课我们提到根据酶的分布,可将酶分为胞内酶和胞外酶。
若是胞外酶,就不存在细胞破碎的问题,但是胞外酶的种类很少,绝大多数酶都属于胞内酶。
要想获得胞内酶,就得先进行细胞破碎,使酶从细胞内释放出来,这样才能进一步进行酶的提取和分离纯化。
细胞破碎的方法很多,有机械破碎法、物理破碎法、化学破碎法和酶溶法。
在实际使用时,我们要根据细胞的特性和酶的特性选择适宜的方法,有时也可以联合采用2种或2种以上的方法,以达到细胞破碎的效果,而又不影响酶的活性。
1、机械破碎法按照所用破碎机械的不同,又可以分为捣碎法、研磨法和匀浆法。
(1)捣碎法:常用于动物内脏、植物叶芽等比较脆嫩的组织细胞的破碎,也可以用于微生物,特别是细菌的细胞破碎。
(2)研磨法:常用于微生物和植物组织细胞的破碎。
(3)匀浆法:常用于破碎易于分散、比较柔软、颗粒细小的组织细胞。
大块的组织或者细胞团需要先用组织捣碎机或研磨器械捣碎分散后才能进行匀浆。
2、物理破碎法根据物理力的不同,可分为冻融法、渗透压法和超声波破碎法。
(1)冻融法:适用于易于破碎的细胞,如革兰氏阴性菌。
如将-20℃冷冻的细胞突然放进沸水浴中,或沸水浴中的热细胞突然放进-70℃冷冻,这样都可以使细胞破坏。
但是,在酶的提取时,要注意不能在过高的温度下操作,以免引起酶的变性失活。
(2)渗透压法:适用于易于破碎的细胞,如动物细胞或革兰氏阴性菌。
使用时,先将细胞分离出来,悬浮在高渗透压的溶液中,平衡一段时间后,将细胞迅速转入低渗透压的蒸馏水或缓冲溶液中,由于渗透压的作用而使细胞破碎。
微生物酶制剂生产流程
微生物酶制剂生产流程
中文:微生物酶制剂生产流程
一、晶体育种和细胞培养:
1、从有机物源(如蔗糖)中收集富含微生物细胞的高纯度晶体悬液;
2、将悬液种类到培养皿中,并保持适宜的温度和湿度,以育种和培养微生物细胞;
3、观察晶体生长、菌种育种、液体培养和固体培养;
4、将晶体培养断裂并保存,用于生产。
二、酶制剂的生产:
1、在适宜的温度、湿度和氧气浓度下,在细胞培养液中加入氯化钠,改变液体环境条件,以较低的温度和pH值来代谢酶;
2、将酶回收有结晶体的悬液,收集反应液以获取原细胞培养液;
3、将原细胞培养液调整为适宜的pH,用离心机将其分离,以提取酶;
4、将分离的酶结晶,收集结晶体,用离心机再次分离酶,以获得酶制剂;
5、将酶制剂用水或溶液冲洗,以清除杂质,并使其达到最终生产标准。
三、酶制剂制备前的检测:
1、检查微生物细胞培养液的活力,并分析模拟培养液;
2、检查原细胞培养液中微生物的浓度;
3、检查细胞悬液和酶的浓度,以确定育种过程中酶的生产效果。
四、酶制剂的最终制备
1、使用超过60℃的高温水和酶,使其稳定;
2、按照规定的浓度将酶加入制备液,维持良好的稳定性;
3、加入抗氧化剂,保证酶活性;
4、按照不同的标准要求,将酶制剂装入容器;
5、检查完成的酶制剂,确保纯度和活性,达到生产标准。
酶的生产方法.ppt
(五)生产种子的制备
生产种子:由原始保藏菌种,经过活化,扩大培养,用 于发酵罐接种的大量菌体。
1、种子制备工艺过程
养
接种至发酵罐
(1 )菌种活化
目的:保藏的菌种在用于发酵生产之前,必须接 种于新鲜的斜面培养基上,在一定的条件下培养,以 恢复细胞的生命活动能力。
为此,在有些酶的发酵生产过程中,要在不同的发酵阶段 控制不同的温度,即在微生物生长阶段控制在生长的最适温度 范围,而在产酶阶段控制在产酶最适温度范围。
(3)温度的控制方法
一般采用热水升温,冷水降温。因此,在发酵罐中均设有 足够传热面积的热交换装置,如排管、蛇管,夹套、喷淋管等。
4、酵母
啤酒酵母:丙酮酸脱羧酶、醇脱氢酶等。
假丝酵母:脂肪酶、尿酸酶、尿囊酸酶、转化酶、醇脱氢 酶等。
工业规模应用的微生物酶和它们的某些来源
酶 α-淀粉酶
产酶微生物
枯草芽胞杆菌 地衣芽胞杆菌
米曲霉
用途
淀粉液化,织物退浆,消化 助剂,加酶洗涤剂
米曲霉,黑曲霉, 制造葡萄糖,发酵、酿酒等
葡萄糖淀粉酶
此外石油产品中12碳—16碳的碳氢化合物已成功用作微生 物培养基的碳源。
注意:在选择碳源时,应尽量选择对所需酶有诱导作用的 碳源,而不使用或少使用有分解代谢物阻遏作用的碳源。
2、氮源:提供氮元素。
来源:①有机氮:常利用农副产品的籽实榨油后的 副产品,如豆饼、花生饼、菜子饼等;
②无机氮:含氮的无机化合物,如(NH4)2SO4、 NH4NO3 、NaNO3和(NH4)3PO4等。
玉米粉 8%
豆饼粉 4%
磷酸氢二钠 0.8%
硫酸铵
0.4%
氯化钙
0.2%
氯化铵
酶制剂工厂生产工艺
酶制剂工厂生产工艺酶是生化反应中的催化剂,其生产工艺可以说是包含了生物技术、分离技术、化学工程等多个学科,使其成为了一个复杂而且综合性强的专业领域。
酶制剂工厂主要专注于酶的生产和提取。
以下就是酶制剂工厂的基本生产工艺。
一、种子培养生产工艺首先开始于微生物的种子培养。
选择高产酶的菌种,经过有丝分裂生长繁殖,菌体数量逐渐增加。
在具有优良的营养、适宜的温度和必要氧气的条件下,菌体逐渐从静态到活跃。
二、大规模发酵受控的环境是酶生产过程中的重点,因此,在大规模发酵阶段,必须确保提供适宜的生长环境,比如温度、pH值、搅拌、通风等,这样才能使菌种有最大限度的生长和产酶。
在发酵罐中,菌种在提供足够营养的同时,母液的组成被细心调控,以保证酶活性的最佳状态,同时也保证了微生物的稳定生长。
三、酶的提取发酵结束后,需要得到酶。
有两种类型的酶,一是细胞内酶,二是细胞外酶。
这两种酶的提取方式各不相同。
细胞外酶可以通过分离和浓缩技术直接从发酵液得到;而细胞内酶,则需要通过破碎细胞以便酶的释放。
四、酶的纯化提取后得到的酶往往含有其它的蛋白质、细胞残骸等杂质,需经过纯化过程以去除这些杂质。
纯化酶的一般方法包括沉淀、离心、超滤、层析等。
五、酶制剂的制备纯化后的酶需要进一步处理才能做为酶制剂使用。
按照制品的形式,可以分为液体制剂和固体制剂两种。
液体制剂常用于液态使用,如洗涤剂;固体制剂则在一些固态更稳定的生产过程中使用。
六、质量控制在生产过程中,需要一个严格的质量管理体系,以保证酶制剂的质量和稳定性。
生产过程中的原料的品质管理、工艺中的每个重要控制点的管理,都是保证制剂质量的关键。
以上就是酶制剂工厂的生产工艺。
虽然简单描述,但其实背后需要大量的科研支持,特别是各种生物技术、化学技术的支撑。
良好的工艺控制、材料的筛选以及产品的严格质量控制,都是保证酶制剂工厂顺利运行的重要因素。
高二生物 专题4 酶的研究与应用
各取一支分9组分别放入37度的恒温水箱中恒温加热.
酶量
待试管内温度稳定后,将果胶 1 酶2依次3加入4相同5温度6的苹果7 泥中8 9 mg mg mg mg mg mg mg mg mg
恒温保持20min
果汁量
过滤果汁,用量筒测量果汁的量,填入表格
高二生物 专题4 酶的研究与应用
1.探究不同种类加酶洗衣粉的效果
步骤
烧杯编号
Ⅰ
Ⅱ
Ⅲ
注入自来水 加入物质(等量)
500ml
奶渍布
500m l
奶渍布
500ml
奶渍布
控制水温
37℃ 37℃ 37℃
加入洗衣粉(等量)
蛋白酶 洗衣粉
复合酶 洗衣粉
脂肪酶 洗衣粉
用玻璃棒搅拌
ห้องสมุดไป่ตู้
5min 5min 5min
观察实验现象 高二生物 专题4 酶的研究与应用
3.下面三幅图是研究人员对黑曲霉A1果胶酶性质的研究结果,据图分析 温度、pH和Ca2+浓度等与酶活力的关系。
高二生物 专题4 酶的研究与应用
4.洗涤剂等方面的应用——加酶洗衣粉 酶的种类及洗涤原理
高二生物 专题4 酶的研究与应用
1.下图中横轴均表示酶的反应条件,纵轴为酶的反应速度,能 正确反映温度和pH与酶反应速度关系的是( )
A.甲和乙 C.甲和丙 答案:D
B.乙和丙 D.都是甲
高二生物 专题4 酶的研究与应用
高二生物 专题4 酶的研究与应用
5.某同学用实验来探究pH值对酶活性的影响。他准备了5份含有 等量果胶酶溶液的试管,用0.1%的盐酸或氢氧化钠溶液调节至不同 的pH值,每支试管加五块0.1 cm3的正方体苹果块,试管均置于25℃ 室温条件下。
酶发酵生产的工艺流程
酶发酵生产的工艺流程
《酶发酵生产工艺流程》
酶发酵生产是一种利用酶作用进行化学反应,产生有用产物的生产方式。
其工艺流程如下:
1. 酶的筛选和制备:首先在实验室中通过对不同来源的微生物、植物或动物进行筛选,找到适合用于发酵生产的酶。
然后通过培养这些微生物或组织来制备所需的酶。
2. 发酵培养基的制备:在发酵罐中,将适量的碳源、氮源、矿物质盐和生长因子等添加到培养基中,为酶的生长提供所需的营养物质。
3. 发酵罐的操作:将制备好的发酵培养基倒入发酵罐中,然后接种适量的酶菌,控制好温度、pH值、通氧量等参数,使酶
菌在合适的条件下进行生长。
4. 酶的提取和纯化:待发酵结束后,将发酵液通过离心、过滤等操作将酶菌分离出来。
然后进行酶的提取和纯化,以获得纯净的酶产品。
5. 反应条件的优化:在获得纯净的酶产品后,需要根据具体的生产需求,优化酶的活性和稳定性等性质,以获得更高的产量和更高的产品质量。
6. 产品的收获和精制:最后将优化后的酶产品收获下来,并进
行精制和包装,在保持其活性和稳定性的前提下,将其提供给用户使用。
酶发酵生产工艺流程是一个综合性的过程,需要对微生物、生物化学等多方面的知识有深入的了解,同时需要对反应条件进行精确的控制,才能获得高效的产物。
随着技术的不断进步,酶发酵生产工艺也在不断完善,为生产高质量酶产品提供了更多的可能性。
第八章 现代酶工程技术
Flash1
(四) L-苹果酸生产
L—苹果酸是一种重要的有机酸, 在医药和食品工业中有广泛用途。L— 苹果酸生产途径有(1)用葡萄糖直接 发酵:(2)用延胡索酸为原料酶法合 成;目前国内L—苹果酸工业化生产主 要是用延胡索酸为原料的酶法合成。普 遍使用的包埋载体是卡拉胶(K— carrageenan)。
•
三、 固定化酶技术 (一)固定化技术概述 (二)酶和菌体固定化技术 (三)固定化细胞的反应器
☆
(一)固定化技术概述
• 概说:酶已广泛应用工业及家庭日常生活 中。如 • 1、淀粉酶都采用酸解法,现在很多都用 酶解法。家庭所用甜酒药就是根霉。我们 知道还有 • 2、蛋白酶(如酱油、豆腐乳等); • 3、果胶酶(如酒类澄清、白莲脱皮); • 4、脂肪酶(如皮毛脱脂)等。
2.酶促效率明显提高 和固定化酶不同,菌体细胞在固定 化过程中通常不损伤细胞本身,细 胞内的酶系统也最大限度地保持着 天然状态,因此它具有较高的酶促 效率。
3.热稳定性增强 如恶臭假单孢菌经包埋后 最适反应温度较游离细胞提高 20℃,而且热稳定性也增强。
4.易产生副反应
微生物菌体细胞内含有庞大而复杂的酶系 统,其中一些酶在生产时是我们不需要的, 某些酶甚至是有害的,它们可催化生产影 响产品质量的物质。如包埋黄色短杆菌 (产延胡索酸酶)生产L—苹果酸时,便有 副产物琥珀酸产生,它是影响产品出口的 主要因素。生产上一般采用胆汁酸处理固 定化细胞,可显著降低琥珀酸的含量。
(四)菌体包埋 (1)卡拉胶熔化 生理盐水500Kg,卡拉胶20Kg, 加入1.5m3的搪瓷罐中,开搅拌, 夹套加热,升温到100℃,保温 10min,卡拉胶彻底熔化。降温到 50℃,夹套保温备用。
(四)菌体包埋 (2)混合 湿菌体114Kg,加100Kg生理盐水 放另一搪瓷罐中混匀,保温45℃, 然后压入卡拉胶罐中,恒温45℃, 搅拌10min。
食品中生物酶的制备与工艺优化研究
食品中生物酶的制备与工艺优化研究食品是我们日常生活中必不可少的一部分,而其中的生物酶则是食品加工中不可或缺的重要因素。
生物酶在食品制备过程中可以发挥不同的作用,促进糖化、蛋白质水解、食品发酵等。
因此,研究生物酶的制备和工艺优化对于食品工业具有重要意义。
一、生物酶的制备方法生物酶的制备方法主要分为两种:传统方法和基因工程方法。
传统方法是指通过从天然来源或原生微生物中获得酶,再通过提取和纯化等步骤得到具有较高酶活性的制剂。
而基因工程方法则是通过对酶基因进行改造和表达,利用重组DNA技术大量生产酶剂。
对于传统方法来说,提取和纯化是最为重要的步骤。
提取酶主要通过细胞破碎、超声波震荡和酶解等手段,将酶从细胞体系中释放出来。
纯化酶则可以通过离心、过滤、层析等分离技术来去除其他杂质,得到纯净的酶制剂。
而基因工程方法则可以根据需要选择合适的宿主菌,并将酶基因转入其体内进行表达。
利用重组 DNA 技术可以实现酶基因的高效表达,从而大规模生产具有高活性的酶制剂。
二、生物酶的工艺优化在食品制备过程中,生物酶的添加和应用需要进行工艺优化,以获得最佳效果。
1. 酶的添加时机和条件酶的添加时机和条件是影响酶催化效果的重要因素。
对于某些酶来说,添加时机过早或过晚都会导致反应不完全或活性损失。
因此,需要根据不同酶的特性和反应要求,选择合适的添加时机和条件。
2. 酶的活化和抑制剂酶活化剂可以促进酶的活性,提高反应速率,从而缩短加工时间。
而酶抑制剂则可以用来控制酶的活性,阻止或减缓反应的进行。
对于特定的食品制备过程,选择合适的酶活化剂或抑制剂可以实现更好的效果。
3. 酶的复合复合酶是指由两种或多种酶组成的混合物,能够协同作用,提高反应效率。
通过合理选择酶的复合组合,可以在食品制备中实现更多的功能和作用。
4. 酶工艺的监测和控制在食品制备中,对于酶的工艺过程需要进行实时监测和控制,以保证酶活性和反应效果。
利用先进的仪器设备和传感技术,可以对酶活性、温度、pH 值等参数进行在线监测和调控,以实现最佳的酶催化效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
蛋白质及其降解物 与碳源同 维生素 无机盐
蛋白质及其降解 物、有机氮化物、 无机与氮碳化源物同、氮
有些需要维生素等 生长因子 无机盐
应用:根霉能产生一些酶类,如淀 粉酶、果胶酶、脂肪酶等,是生产 这些酶类的菌种。在酿酒工业上常 用做糖化菌。有些根霉还能产生乳 酸、延胡索酸等有机酸。
酶生产与制备
(6)曲霉(Aspergillus)
分类:多数属于子囊菌亚门,少数 属于半知菌亚门。
分布:广泛分布于土壤、空气和谷 物上,可引起食物、谷物和果蔬的 霉腐变质,有的可产生致癌性的黄 曲霉毒素。
Amylase from Bacillus Protease from Bacillus Phosphatase from Bacillus Glucoamylase from Aspergillus …… Plant cell culture Animal cell culture
酶生产与制备
Few example
较复杂(包括酶的发酵及分离纯化两个过程);但是生产工 艺容易控制,可以实现大规模生产。 目前工业上应用的酶绝大多数用该方法生产。 化学合成法:利用化学的方法合成酶的过程。成本非常高, 而且合成的酶对分子量大小有要求。
酶生产与制备
3.1 酶的发酵生产
利用微生物产酶的优点归纳如下:
(1) 微生物种类繁多、酶种丰富,且菌株易诱变,菌 种多样,可以满足各类酶发酵生产的需求。
不是致病菌 发酵周期短,产酶量高 不易变异退化 最好是产生胞外酶的菌种,利于分离。 对医药和食品用酶,还应考虑安全性:
凡从可食部分或食品加工中传统使用的微生物生产的 酶,安全!
由非致病微生物制取的酶,需作短期毒性实验。 非常见微生物制取的酶,需做广泛的毒性实验,包括慢
性中毒实验。
酶生产与制备
第三章 酶的生产与 分离纯化
本章主要内容:
3.1 酶的发酵技术 3.2 酶的分离纯化 3.3 酶分离、纯化的评价 3.4 酶的剂型与保存
酶生产与制备
酶的生产方法
提取分离法 (Extraction)
生物合成法
化学合成法
(Biosynthesis) (chemicalsynthesis)
SOD - blood Papain-Papaya Chymotrypsin-Pancrea …… organ/tissue/cell
酶生产与制备
(4) 根霉(Rhizopus)
分类学上属于藻状菌纲,毛霉目, 根霉属。
根霉因有假根(Rhizoid)而得名 (假根的功能是在培养基上固着, 并吸收营养)。
分布于土壤、空气中,常见于淀粉 食品上,可引起霉腐变质和水果、 蔬菜的腐烂。
代表种:米根霉(R.oryzae)黑根 霉(R.nigrican)等。
而且营养要求低。
酶生产与制备
应用: 大肠杆菌能作为宿主供大量的细菌病毒生长繁殖 大肠杆菌也是最早用作基因工程的宿主菌 工业上生产谷氨酸脱羧酶、天冬酰胺酶和 制备天冬氨酸、苏氨酸及缬氨酸等.
酶生产与制备
(2) 醋酸杆菌(Acetobacter)
菌体从椭圆至杆状,单个、 成对或成链,革兰氏阴性, 运动(周毛)或不运动,不 生芽孢。好气。含糖、乙醇 和酵母膏的培养基上生长良 好。
(2) 微生物生长繁殖快,易提取酶,特别是胞外酶, 因此酶的生产周期非常短。
(3) 微生物培养基来源广泛、价格便宜,生产工艺不 受原材料的限制。
酶生产与制备
(4) 可以采用微电脑等新技术,控制酶发酵生产过程, 生产可连续化、自动化,经济效益高。
(5) 可以利用以基因工程为主的现代分子生物学技术, 选育菌种、增加酶产率和开发新酶种。因此,下面将 主要介绍微生物发酵法产酶的一般原理和工艺。
应用:有机酸(食醋等)葡 萄糖异构酶(高果糖浆 )山 梨糖 (维C中间体)
酶生产与制备
(3)枯草芽孢杆菌(Bacillus subtilis)
直状、近直状的杆菌, 周生或侧生鞭毛,革兰 氏阳性,无荚膜,芽孢 0.5×1.51.8m,中生 或近中生。
枯草芽孢杆菌是工业发 酵的重要菌种之一。生 产淀粉酶、蛋白酶、 5’-核苷酸酶、某些氨 基酸及核苷。
三种生产方法的比较:
提取分离法:直接从各种动植物材料中提取所需要的酶。在 早期的酶学研究中,该方法应用较多。该生产方法操作起来 比较简单(纯粹的蛋白分离纯化过程);缺点是材料较难收 集,生产工艺受到季节的限制。
常见的代表如:木瓜蛋白酶、凝乳蛋白酶 微生物发酵:利用微生物发酵的方法合成酶。操作过程相对
酶生产与制备
3.1.1 产酶微生物
菌种是发酵生产酶的重要条件。菌种不仅与产酶种类、产 量密切相关,而且与发酵条件、工艺等关系密切。已经在 自然界中发现的酶有数千种,目前投入工业发酵生产的酶 约有50~60种。它们的生产菌种十分广泛,包括细菌、放 线菌、酵母菌、霉菌。
酶生产与制备
常见产酶微生物
基本要求:
(1) 大肠埃希氏杆菌,简称为大肠杆菌,是最 为著名的原核生物。
形态:短杆或长杆状,0.5~1.0×1.0~3.0 um,革兰氏阴 性,运动(周毛)或不运动,无芽孢,一般无荚膜。菌落呈 白色至黄白色,扩展,光滑,闪光。
Escherich属菌株和大多数大肠杆菌是无害,但也有些大
肠杆菌是致病的,会引起腹泻和尿路感染。 大肠杆菌的名声主要因它易于在实验室操作、生长迅速,
代表种:黑曲霉Asp. Niger、黄曲 霉Asp.flavus
应用:是制酱、酿酒、制醋的主要 菌种。是生产酶制剂(蛋白酶、淀 粉酶、果胶酶)的菌种。生产有机 酸(如柠檬酸、葡萄糖酸等)。农 业上用作生产糖化饲料的菌种。
酶生产与制备
3.1.2 酶的发酵工艺条件与控制
1、培养基(营养要求) 2、发酵条件及控制(工艺要求) 3、提高产酶的措施
酶生产与制备
重要
3.1.2.1 培养基
培养基的营养成分是微生物发酵产酶的原料, 主要是碳源、氮源,其次是无机盐、生长因子 和产酶促进剂等。
酶生产与制备
各种生物对营养的需求
碳源 氮源 能源 生长因子 无机元素 水分
动物 (异养)
糖类、脂肪
微生物
异养
自养
糖、醇、有机酸等 二氧化碳、碳酸盐等绿Fra bibliotek植物 (自养)