高考概率知识点例题
高中数学第十章概率典型例题(带答案)
高中数学第十章概率典型例题单选题1、“某彩票的中奖概率为1100”意味着( )A .购买彩票中奖的可能性为1100 B .买100张彩票能中一次奖 C .买100张彩票一次奖也不中 D .买100张彩票就一定能中奖 答案:A分析:根据概率的定义,逐项判定,即可求解.对于A 中,根据概率的定义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,由某彩票的中奖概率为1100,可得购买彩票中奖的可能性为1100,所以A 正确;对于B 、C 中,买任何1张彩票的中奖率都是1100,都具有偶然性,可能中奖,还可能中奖多次,也可能不中奖,故B 、C 错误;对于D 选项、根据彩票总数目远大于100张,所以买100张也不一定中一次奖,故D 错误. 故选:A.2、北京2022年冬奥会新增了女子单人雪车、短道速滑混合团体接力、跳台滑雪混合团体、男子自由式滑雪大跳台、女子自由式滑雪大跳台、自由式滑雪空中技巧混合团体和单板滑雪障碍追逐混合团体等7个比赛小项,现有甲、乙两名志愿者分别从7个比赛小项中各任选一项参加志愿服务工作,且甲、乙两人的选择互不影响,那么甲、乙两名志愿者选择同一个比赛小项进行志愿服务工作的概率是( ) A .249B .649C .17D .27 答案:C分析:根据古典概型概率的计算公式直接计算.由题意可知甲、乙两名志愿者分别从7个比赛小项中各任选一项参加志愿服务工作共有7×7=49种情况, 其中甲、乙两名志愿者选择同一个比赛小项进行志愿服务工作共7种,所以甲、乙两名志愿者选择同一个比赛小项进行志愿服务工作的概率是749=17,故选:C.3、某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是()A.62%B.56%C.46%D.42%答案:C分析:记“该中学学生喜欢足球”为事件A,“该中学学生喜欢游泳”为事件B,则“该中学学生喜欢足球或游泳”为事件A+B,“该中学学生既喜欢足球又喜欢游泳”为事件A⋅B,然后根据积事件的概率公式P(A⋅B)=P(A)+P(B)−P(A+B)可得结果.记“该中学学生喜欢足球”为事件A,“该中学学生喜欢游泳”为事件B,则“该中学学生喜欢足球或游泳”为事件A+B,“该中学学生既喜欢足球又喜欢游泳”为事件A⋅B,则P(A)=0.6,P(B)=0.82,P(A+B)=0.96,所以P(A⋅B)=P(A)+P(B)−P(A+B)=0.6+0.82−0.96=0.46所以该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例为46%.故选:C.小提示:本题考查了积事件的概率公式,属于基础题.4、若随机事件A,B互斥,且P(A)=2−a,P(B)=3a−4,则实数a的取值范围为()A.(43,32]B.(1,32]C.(43,32)D.(12,43)答案:A分析:根据随机事件概率的范围以及互斥事件概率的关系列出不等式组,即可求解.由题意,知{0<P(A)<1 0<P(B)<1P(A)+P(B)≤1,即{0<2−a<10<3a−4<12a−2≤1,解得43<a≤32,所以实数a的取值范围为(43,32].故选:A.5、甲、乙两人投篮,投中的概率分别为0.6,0.7,若两人各投2次,则两人投中次数不等的概率是()A.0.6076B.0.7516C.0.3924D.0.2484答案:A分析:先求出两人投中次数相等的概率,再根据对立事件的概率公式可得两人投中次数不相等的概率.两人投中次数相等的概率P=0.42×0.32+C21×0.6×0.4×C21×0.7×0.3+0.62×0.72=0.3924,故两人投中次数不相等的概率为:1﹣0.3924=0.6076.故选:A.小提示:本题考查了对立事件的概率公式和独立事件的概率公式,属于基础题.6、下列各对事件中,不互为相互独立事件的是()A.掷一枚骰子一次,事件M“出现偶数点”;事件N“出现3点或6点”B.袋中有3白、2黑共5个大小相同的小球,依次有放回地摸两球,事件M“第一次摸到白球”,事件N“第二次摸到白球”C.袋中有3白、2黑共5个大小相同的小球,依次不放回地摸两球,事件M“第一次摸到白球”,事件N“第二次摸到黑球”D.甲组3名男生,2名女生;乙组2名男生,3名女生,现从甲、乙两组中各选1名同学参加演讲比赛,事件M“从甲组中选出1名男生”,事件N“从乙组中选出1名女生”答案:C分析:利用对立事件和相互独立事件的概念求解.解:对于选项A,事件M={2,4,6},事件N={3,6},事件MN={6},基本事件空间Ω={1,2,3,4,5,6},所以P(M)=36=12,P(N)=26=13,P(MN)=16=12×13,即P(MN)=P(N)P(M),因此事件M与事件N是相互独立事件;对于选项B,袋中有3白、2黑共5个大小相同的小球,依次有放回地摸两球,事件M“第一次摸到白球”,事件N“第二次摸到白球”,则事件M发生与否与N无关,同时,事件N发生与否与M无关,则事件M与事件N是相互独立事件;对于选项C,袋中有3白、2黑,5个大小相同的小球,依次不放回地摸两球,事件M“第一次摸到白球”,事件N “第二次摸到黑球”, 则事件M 发生与否和事件N 有关,故事件M 和事件N 与不是相互独立事件;对于选项D ,甲组3名男生,2名女生;乙组2名男生,3名女生,现从甲、乙两组中各选1名同学参加演讲比赛,事件M “从甲组中选出1名男生”,事件N “从乙组中选出1名女生”,则事件M 发生与否与N 无关,同时,事件N 发生与否与M 无关,则事件M 与事件N 是相互独立事件; 故选:C.7、2021年12月9日,中国空间站太空课堂以天地互动的方式,与设在北京、南宁、汶川、香港、澳门的地面课堂同步进行.假设香港、澳门参加互动的学生人数之比为5:3,其中香港课堂女生占35,澳门课堂女生占13,若主持人向这两个分课堂中的一名学生提问,则该学生恰好为女生的概率是( ) A .18B .38C .12D .58答案:C分析:利用互斥事件概率加法公式计算古典概型的概率即可得答案.解:因为香港、澳门参加互动的学生人数之比为5:3,其中香港课堂女生占35,澳门课堂女生占13, 所以香港女生数为总数的58×35=38,澳门女生数为总数的38×13=18,所以提问的学生恰好为女生的概率是38+18=12. 故选:C.8、某学校共有教职工120人,对他们进行年龄结构和受教育程度的调查,其结果如下表:60% B .该教职工具有研究生学历的概率超过50% C .该教职工的年龄在50岁以上的概率超过10%D .该教职工的年龄在35岁及以上且具有研究生学历的概率超过10% 答案:D分析:根据表中数据,用频率代替概率求解.A.该教职工具有本科学历的概率p=75120=58=62.5%>60%,故错误;B.该教职工具有研究生学历的概率p=45120=38=37.5%<50%,故错误;C.该教职工的年龄在50岁以上的概率p=10120=112≈8.3%<10%,故错误;D.该教职工的年龄在35岁及以上且具有研究生学历的概率p=15120=18=12.5%>10%,故正确.小提示:本题主要考查概率的求法,还考查了分析求解问题的能力,属于基础题.多选题9、下列有关古典概型的说法中,正确的是()A.试验的样本空间的样本点总数有限B.每个事件出现的可能性相等C.每个样本点出现的可能性相等D.已知样本点总数为n,若随机事件A包含k个样本点,则事件A发生的概率P(A)=kn答案:ACD分析:根据古典概型的定义逐项判断即可.由古典概型概念可知:试验的样本空间的样本点总数有限;每个样本点出现的可能性相等.故AC正确;每个事件不一定是样本点,可能包含若干个样本点,所以B不正确;根据古典概型的概率计算公式可知D正确.故选:ACD10、某学校为调查学生迷恋电子游戏情况,设计如下调查方案,每个被调查者先投掷一枚骰子,若出现向上的点数为3的倍数,则如实回答问题“投掷点数是不是奇数?”,反之,如实回答问题“你是不是迷恋电子游戏?”.已知被调查的150名学生中,共有30人回答“是”,则下列结论正确的是()A.这150名学生中,约有50人回答问题“投掷点数是不是奇数?”B.这150名学生中,必有5人迷恋电子游戏C.该校约有5%的学生迷恋电子游戏D.该校约有2%的学生迷恋电子游戏答案:AC分析:先由题意计算出回答问题一的人数50人,再计算出回答问题一“是”的人数25人,故可得到回答问题二“是”的人数5人,最后逐一分析四个选项即可.由题意可知掷出点数为3的倍数的情况为3,6,故掷出点数为3的倍数的概率为13,故理论上回答问题一的人数为150×13=50人.掷出点数为奇数的概率为12,理论上回答问题一的50人中有25人回答“是”,故回答问题二的学生中回答“是”的人数为30-25=5人.对于A, 抽样调查的这150名学生中,约有50人回答问题一,故A正确.对于B, 抽样调查的这150名学生中,约有5人迷恋电子游戏,“必有”过于绝对,故B错.对于C,抽样调查的150名学生中,50名学生回答问题一,故有100名学生回答问题二,有5名学生回答“是”,故该校迷恋电子游戏的学生约为5100=5%,故C正确.对于D,由C可知该校迷恋电子游戏的学生约为5100=5%,故D错.故选:AC.11、不透明的口袋内装有红色、绿色和蓝色卡片各2张,一次任意取出2张卡片,则与事件“2张卡片都为红色”互斥而不对立的事件有()A.2张卡片都不是红色B.2张卡片恰有一张红色C.2张卡片至少有一张红色D.2张卡片都为绿色答案:ABD分析:列举出所有情况,然后再利用互斥事件和对立事件的定义判断.解:6张卡片中一次取出2张卡片的所有情况有:“2张都为红色”、“2张都为绿色”、“2张都为蓝色”、“1张为红色1张为绿色”、“1张为红色1张为蓝色”、“1张为绿色1张为蓝色”,选项中给出的四个事件中与“2张都为红色”互斥而非对立的事件是:“2张都不是红色”,“2张恰有一张红色”,“2张都为绿色”,其中“2张至少一张为红色”包含事件“2张都为红色”,二者并非互斥.故选:ABD.12、设A,B分别为随机事件A,B的对立事件,已知0<P(A)<1,0<P(B)<1,则下列说法正确的是()A.P(B|A)+P(B|A)=1B.P(B|A)+P(B|A)=0C.若A,B是相互独立事件,则P(A|B)=P(A)D.若A,B是互斥事件,则P(B|A)=P(B)答案:AC分析:计算得AC正确;当A,B是相互独立事件时,P(B|A)+P(B|A)=2P(B)≠0,故B错误;因为A,B 是互斥事件,得P(B|A)=0,而P(B)∈(0,1),故D错误.解:P(B|A)+P(B|A)=P(AB)+P(AB)P(A)=P(A)P(A)=1,故A正确;当A,B是相互独立事件时,则P(B|A)+P(B|A)=2P(B)≠0,故B错误;因为A,B是相互独立事件,则P(AB)=P(A)P(B),所以P(A|B)=P(AB)P(B)=P(A),故C正确;因为A,B是互斥事件,P(AB)=0,则根据条件概率公式P(B|A)=0,而P(B)∈(0,1),故D错误.故选:AC.13、袋中有红球3个,白球2个,黑球1个,从中任取2个,则互斥的两个事件是()A.至少有一个白球与都是白球B.恰有一个红球与白、黑球各一个C.至少一个白球与至多有一个红球D.至少有一个红球与两个白球答案:BD分析:根据互斥事件的定义和性质判断.袋中装有红球3个、白球2个、黑球1个,从中任取2个,在A中,至少有一个白球和都是白球两个事件能同时发生,不是互斥事件,故A不成立.在B中,恰有一个红球和白、黑球各一个不能同时发生,是互斥事件,故B成立;在C中,至少一个白球与至多有一个红球,能同时发生,故C不成立;在D中,至少有一个红球与两个白球两个事件不能同时发生,是互斥事件,故D成立;故选:BD.小提示:本题考查互斥事件的判断,根据两个事件是否能同时发生即可判断,是基础题. 填空题14、甲、乙两队进行篮球决赛,采取三场二胜制(当一队赢得二场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以2:1获胜的概率是_____. 答案:0.3解析:甲队以2:1获胜的是指甲队前两场比赛中一胜一负,第三场比赛甲胜,利用独立事件的概率乘法公式和概率的加法公式能求出甲队以2:1获胜的概率. 甲队的主客场安排依次为“主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立, 甲队以2:1获胜的是指甲队前两场比赛中一胜一负,第三场比赛甲胜, 则甲队以2:1获胜的概率是:P =0.6×0.5×0.6+0.4×0.5×0.6=0.3. 所以答案是:0.3.小提示:本题考查概率的求法,考查相互独立事件概率乘法公式和互斥事件概率加法公式等基础知识,考查运算求解能力,是基础题.15、已知事件A ,B ,C 相互独立,若P (AB )=16,P(BC)=14,P(ABC)=112,则P (A )=______. 答案:13分析:根据相互独立事件的概率公式,列出P (A ),P (B ),P(C),P(B)的等式,根据对立逐一求解,可求出P (A )的值.根据相互独立事件的概率公式,可得{ P (A )P (B )=16P(B)P (C )=14P (A )P (B )P(C)=112,所以P (A )=13. 所以答案是:13.16、在一个口袋中有大小和质地相同的4个白球和3个红球,若不放回的依次从口袋中每次摸出一个球,直到摸出2个红球就停止,则连续摸4次停止的概率等于______.答案:935分析:根据题设写出基本事件,再应用互斥事件加法公式求概率.由题意知,连续依次摸出的4个球分别是:白白红红,白红白红,红白白红共3种情况,第一种摸出“白白红红”的概率为47×36×35×12=335,第二种摸出“白红白红”的概率为47×36×35×12=335,第三种摸出“红白白红”的概率为37×46×35×12=335,所以连续摸4次停止的概率等于935.所以答案是:935解答题17、数学兴趣小组设计了一份“你最喜欢的支付方式”的调查问卷(每人必选且只能选一种支付方式),在某商场随机调查了部分顾客,并将统计结果绘制成如下所示的两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)将条形统计图补充完整,在扇形统计图中表示“现金”支付的扇形圆心角的度数为多少?(2)若之前统计遗漏了15份问卷,已知这15份问卷都是采用“支付宝”进行支付,问重新统计后的众数所在的分类与之前统计的情况是否相同,并简要说明理由;(3)在一次购物中,嘉嘉和琪琪随机从“微信,支付宝,银行卡”三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.答案:(1)条形统计图见解析,90∘;(2)不同,理由见解析;(3)13.分析:(1)由两幅图可知,用现金、支付宝、其他支付共有人数110人,所占比例为1-15%-30%=55%,可得共调查了多少人,再根据用银行卡、微信支付的百分比可得答案(2)根据原数据的众数所在的分类为微信,加上遗漏的15份问卷后,数据的众数所在的分类为微信、支付宝可得答案;(3)将微信记为A 、支付宝记为B 、银行卡记为C ,画出树状图根据古典概型概率计算公式可得答案. (1)由条形统计图可知,用现金、支付宝、其他支付共有人数110人, 所占比例为1-15%-30%=55%,所以共调查了1100.55=200人,所以用银行卡支付的人有200×0.15=30人,用微信支付的人有200×0.3=60人, 用现金支付所占比例为50200=0.25,所以0.25×360∘=90∘,在扇形统计图中表示“现金”支付的扇形圆心角的度数为90°,补全统计图如图所示:(2)重新统计后的众数所在的分类与之前统计的情况不同,理由如下:原数据的众数所在的分类为微信,而加上遗漏的15份问卷后,数据的众数所在的分类为微信、支付宝. (3)将微信记为A 、支付宝记为B 、银行卡记为C ,画树状图如下:∵共有9种等可能的结果,其中两人恰好选择同一种支付方式的有3种, ∴两人恰好选择同一种支付方式的概率为39=13.18、某田径队有三名短跑运动员,根据平时训练情况统计甲、乙、丙三人100米跑(互不影响)的成绩在13s 内(称为合格)的概率分别为25,,13.若对这三名短跑运动员的100跑的成绩进行一次检测,则求:(Ⅰ)三人都合格的概率;34(Ⅱ)三人都不合格的概率;(Ⅲ)出现几人合格的概率最大.答案:(Ⅰ)110;(Ⅱ)110;(Ⅲ)1人. 分析:记甲、乙、丙三人100米跑成绩合格分别为事件A ,B ,C ,显然事件A ,B ,C 相互独立,则P(A)=25,P(B)=34,P(C)=13,从而根据不同事件的概率求法求得各小题.记甲、乙、丙三人100米跑成绩合格分别为事件A ,B ,C ,显然事件A ,B ,C 相互独立,则P(A)=25,P(B)=34,P(C)=13 设恰有k 人合格的概率为P k (k =0,1,2,3).(Ⅰ)三人都合格的概率:P 3=P(ABC)=P(A)⋅P(B)⋅P(C)=25×34×13=110(Ⅱ)三人都不合格的概率:P 0=P(ABC)=P(A)⋅P(B)⋅P(C)=35×14×23=110.(Ⅲ)恰有两人合格的概率:P 2=P(ABC)+P(ABC)+P(ABC)=25×34×23+25×14×13+35×34×13=2360. 恰有一人合格的概率:P 1=1−P 0−P 2−P 3=1−110−2360−110=2560=512.因为512>2360>110,所以出现1人合格的概率最大.。
高考概率大题及答案
高考概率大题及答案1.某市高中毕业生中有80%选择进入大学,20%选择就业。
已知选择就业的学生中,70%在第一年获得满意的工作,而选择进入大学的学生中,80%在第一年获得满意的工作。
现从该市高中毕业生中任选一人,问他第一年获得满意工作的概率是多少?解答:由全概率公式可知,某毕业生获得满意工作的概率可以分为两种情况:1)选择就业的情况下获得满意工作的概率:0.2 × 0.7 = 0.14 2)选择进入大学的情况下获得满意工作的概率:0.8 × 0.8 = 0.64因此,获得满意工作的总概率为:0.14 + 0.64 = 0.78所以,任选一人的第一年获得满意工作的概率为0.78。
2.一批产品某种型号有20%的不合格品。
现从中任意抽取2个进行检查,问两个都是合格品的概率是多少?解答:抽取两个产品都是合格品的概率可以通过计算来得到。
首先,第一次抽取的产品是合格品的概率为80%(不合格品的概率为20%)。
而第二次抽取的产品也是合格品的概率会受到第一次抽取的影响。
因为第一次抽取合格品后,剩下的产品中合格品的比例会减少。
假设第一次抽取合格品后,剩下的产品中有a个合格品和b个不合格品,则第二次抽取的产品也是合格品的概率为a/(a+b)。
因此,两个都是合格品的概率为:0.8 × (a/(a+b))具体数值需要根据实际情况来计算。
3.某门考试的通过率为60%,现已知通过考试的学生中,有70%是靠自己的努力而没有借助辅导班;而未通过考试的学生中,有30%是通过辅导班的帮助提高的。
现从所有参加考试的学生中任意选取一人,问他通过考试并没有借助辅导班的概率是多少?解答:通过考试并没有借助辅导班的概率可以分为两种情况:1)通过考试的学生中靠自己的努力的概率:0.6 × 0.7 = 0.42 2)通过辅导班帮助提高通过考试的概率:0.4 × 0.3 = 0.12因此,通过考试并没有借助辅导班的总概率为:0.42 + 0.12 = 0.54所以,任选一人通过考试并没有借助辅导班的概率为0.54。
(完整版)概率经典例题及解析、近年高考题50道带答案.doc
【经典例题】【例 1】( 2012 湖北) 如图,在圆心角为直角的扇形 OAB 中,分别以 OA , OB 为直径作两个半圆.在扇形OAB 内随机取一点,则此点取自阴影部分的概率是21 121 A .1- πB . 2 - πC . πD . π【答案】 A【解析】 令 OA=1,扇形 OAB 为对称图形, ACBD 围成面积为 S 1,围成 OC 为 S 2,作对称轴 OD ,则过 C 点. S 2 即为以 OA2 π 1 2 111 π -2 S2(2)-2×2×2=1为直径的半圆面积减去三角形OAC 的面积, S =8 .在扇形 OAD 中 2 为扇形面积减去三角S 2 S 1 1 21 S 2π -2 π -2π形 OAC 面积和 2 , 2 = 8 π×1 - 8 - 2 =16 , S 1+S 2= 4 ,扇形 OAB 面积 S= 4 ,选 A .【例 2】( 2013 湖北) 如图所示,将一个各面都涂了油漆的正方体,切割为 125 个同样大小的小正方体,经过搅拌后, 从中随机取一个小正方体,记它的涂漆面数为X ,则 X 的均值 E(X) = ( )1266 1687 A. 125B. 5C.125D. 5【答案】 B27 54 36 8 27【解析】 X 的取值为 0,1, 2,3 且 P(X = 0) =125,P(X = 1) =125,P(X = 2) = 125,P(X = 3) = 125,故 E(X) =0× 125+1× 54 36 8 6+2× +3× =,选B.125 125 125 5【例 3】( 2012 四川) 节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通 电后的 4 秒内任一时刻等可能发生,然后每串彩灯以 4 秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过 2 秒的概率是 ()1 1 3 7 A. 4B. 2C. 4D. 8【答案】 C【解析】 设第一串彩灯在通电后第 x 秒闪亮, 第二串彩灯在通电后第 y 秒闪亮,由题意 0≤ x ≤ 4,满足条件的关系式0≤y ≤4,根据几何概型可知, 事件全体的测度 ( 面积 ) 为 16 平方单位,而满足条件的事件测度( 阴影部分面积 ) 为 12 平方单位,123故概率为 16= 4.【例 4】( 2009 江苏) 现有 5 根竹竿,它们的长度(单位: m )分别为 2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2 根竹竿,则它们的长度恰好相差 0.3m 的概率为 .【答案】 0.2 【解析】 从 5 根竹竿中一次随机抽取 2 根的可能的事件总数为 10,它们的长度恰好相差 0.3m 的事件数为 2,分别是:2.5 和 2.8 , 2.6 和 2.9 ,所求概率为 0.2【例 5】( 2013 江苏) 现有某类病毒记作 X m Y n ,其中正整数 m , n(m ≤7, n ≤ 9)可以任意选取,则 m , n 都取到奇数的概率为 ________.20【答案】【解析】 基本事件共有 7×9= 63 种, m 可以取 1, 3, 5,7, n 可以取 1, 3,5, 7, 9. 所以 m ,n 都取到奇数共有 2020种,故所求概率为63.【例 6】( 2013 山东) 在区间 [- 3,3] 上随机取一个数 x ,使得 |x + 1|- |x - 2| ≥1成立的概率为 ________.【答案】13【解析】 当 x<- 1 时,不等式化为- x - 1+ x -2≥1,此时无解;当- 1≤x ≤2 时,不等式化为 x +1+ x -2≥1,解之得 x ≥1;当 x>2 时,不等式化为 x + 1- x +2≥1,此时恒成立, ∴|x + 1| - |x -2| ≥1的解集为 [ 1,+∞ ) . 在 [ -3, 3]上使不等式有解的区间为 [ 1,3] ,由几何概型的概率公式得 P = 3- 1 1 .3-(- 3) =3【例 7】( 2013 北京)下图是某市 3 月 1 日至 14 日的空气质量指数趋势图, 空气质量指数小于 100 表示空气质量优良, 空气质量指数大于 200 表示空气重度污染. 某人随机选择 3 月 1 日至 3 月 13 日中的某一天到达该市, 并停留 2 天.( 1)求此人到达当日空气重度污染的概率;( 2)设 X 是此人停留 期间空气质量优良的天数,求 X 的分布列与数学期望;( 3)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明 )【答案】 132; 1213; 3 月 5 日【解析】 设 Ai 表示事件“此人于3 月 i 日到达该市” (i = 1, 2, , 13) .1(i ≠j) .根据题意, P(Ai) = ,且 Ai ∩Aj =13( 1)设 B 为事件“此人到达当日空气重度污染”,则B =A5∪A8.2所以 P(B) =P(A5∪A8)= P(A5) + P(A8) = .13( 2)由题意可知, X 的所有可能取值为 0,1, 2,且P(X= 1) =P(A3∪A6∪A7 ∪A11)4=P(A3) + P(A6) + P(A7) + P(A11) =13,P(X= 2) =P(A1∪A2∪A12∪A13)4=P(A1) + P(A2) + P(A12) + P(A13) =13,5P(X= 0) = 1- P(X= 1) - P(X= 2) =13.所以 X 的分布列为X 0 1 2P 5 4 4 13 13 135 4 4 12故 X 的期望 E(X) =0×+1×+2×= .13 13 13 13( 3)从 3 月 5 日开始连续三天的空气质量指数方差最大.【例 8】(2013 福建)某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为2,中奖可以3 获得 2 分;方案乙的中奖率为2,中奖可以获得 3 分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中5奖与否互不影响,晚会结束后凭分数兑换奖品.( 1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为X ,求 X≤3的概率;(2)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的数学期望较大?【答案】1115;方案甲.2 2【解析】方法一:( 1)由已知得,小明中奖的概率为3,小红中奖的概率为5,且两人中奖与否互不影响.记“这2 人的累计得分X≤3”的事件为A,则事件 A 的对立事件为“ X=5”,2 2 411因为 P(X=5) =×=,所以P(A)=1-P(X=5)=,3 5 151511即这两人的累计得分X≤3的概率为15.( 2)设小明、小红都选择方案甲抽奖中奖次数为X1,都选择方案乙抽奖中奖次数为X2,则这两人选择方案甲抽奖累计得分的数学期望为E(2X1) ,选择方案乙抽奖累计得分的数学期望为E(3X2) .2 2由已知可得,X1~ B 2,3, X2~ B 2,5,2 42 4所以 E(X1) =2×3=3, E(X2) =2×5=5,812从而 E(2X1) = 2E(X1) =, E(3X2) = 3E(X2) =.3 5因为 E(2X1)>E(3X2) ,所以他们都选择方案甲进行抽奖时,累计得分的数学期望较大.方法二:( 1)由已知得,小明中奖的概率为2,小红中奖的概率为2,且两人中奖与否互不影响.35记“这两人的累计得分 X ≤3”的事件为 A ,则事件 A 包含有“ X =0”“ X =2”“ X =3”三个两两互斥的事件,2 2 1 2 2 22 22, 因为 P(X = 0) = 1-× 1- = ,P(X = 2) = × 1-= ,P(X =3) = 1- × = 15 355355 3 511所以 P(A) = P(X = 0) + P(X = 2) + P(X = 3) =15,11即这两人的累计得分 X ≤3的概率为 15.( 2)设小明、小红都选择方案甲所获得的累计得分为 X1,都选择方案乙所获得的累计得分为X2,则 X1, X2 的分布列如下:X1 0 2 4 X2 0 3 6 P14 4 P912 4 9 9 9 2525251448所以 E(X1) =0× 9+2× 9+4× 9= 3,E(X2) =0× 9 +3× 12+6× 4 = 12.25 25 25 5因为 E(X1)>E(X2) ,所以他们都选择方案甲进行抽奖时,累计得分的数学期望较大.【例 9】( 2013 浙江) 设袋子中装有 a 个红球, b 个黄球, c 个蓝球,且规定:取出一个红球得1 分,取出一个黄球得2 分,取出一个蓝球得3 分.( 1)当 a = 3, b = 2,c = 1 时,从该袋子中任取 (有放回,且每球取到的机会均等 )2 个球,记随机变量 ξ为取出此 2球所得分数之和,求 ξ的分布列;( 2)从该袋子中任取 (每球取到的机会均等 )1 个球,记随机变量 η为取出此球所得分数. 若 E η= 5,D η=5,求 a ∶ b ∶ c.3 9【答案】 3∶ 2∶ 1【解析】( 1)由题意得,ξ= 2, 3, 4, 5, 6.P(ξ= 2) = 3×3 1= ,6×6 4 P(ξ= 3) =2×3×2= 1,6×6 32×3×1+2×2 5 P(ξ= 4) = 6×6 = 18. P(ξ= 5) = 2×2×1 16×6= 9,P(ξ= 6) = 1×1 1,= 366×6 所以 ξ 的分布列为ξ 2 3 4 5 6 P1 1 5 1 1 4318936( 2)由题意知 η 的分布列为η 1 2 3Pa b ca +b +c a + b + ca +b +ca 2b3c5所以 E η= a + b + c + a +b + c + a +b + c = 3,5 a 5 b 5c5D η= 1- 32· a + b + c +2- 32· a + b + c +3- 32· a + b + c = 9, 2a - b - 4c = 0,解得 a = 3c , b = 2c , 化简得a + 4b -11c = 0,故 a ∶b ∶c =3∶2∶1.【例 10】( 2009 北京理) 某学生在上学路上要经过 4 个路口, 假设在各路口是否遇到红灯是相互独立的,遇到红灯的 概率都是 1,遇到红灯时停留的时间都是2min.3( 1)求这名学生在上学路上到第三个路口时首次遇到红灯的概率; ( 2)求这名学生在上学路上因遇到红灯停留的总时间的分布列及期望 .【答案】4;327 8【解析】 本题主要考查随机事件、互斥事件、相互独立事件等概率知识、考查离散型随机变量的分布列和期望等基础 知识,考查运用概率与统计知识解决实际问题的能力.( 1)设这名学生在上学路上到第三个路口时首次遇到红灯为事件 A ,因为事件 A 等于事件“这名学生在第一和第二个路口没有遇到红灯,在第三个路口遇到红灯”,所以事件A 的概率为PA11111 4 .333 27( 2)由题意,可得可能取的值为 0,2, 4, 6,8(单位: min ) .事件“2k ”等价于事件“该学生在路上遇到k 次红灯”( k 0, 1, 2,3, 4),k 4 k∴ P2kC k412k 0,1,2,3,4,33∴即 的分布列是0 246 8P16 32 8818181278181∴ 的期望是 E16 32 88 1 82468.818127 81813【课堂练习】1.( 2013 广东) 已知离散型随机变量X 的分布列为X 1 2 3P3 3 151010则 X 的数学期望 E(X) = () 35A. 2B . 2 C. 2 D . 32.( 2013 陕西) 如图,在矩形区域 ABCD 的 A ,C 两点处各有一个通信基站,假设其信号的覆盖范围分别是扇形区 域 ADE 和扇形区域 CBF( 该矩形区域内无其他信号来源,基站工作正常 ).若在该矩形区域内随机地选一地点,则该地点无 信号的概率是 ( ).A .1- π π π D . π4 B . -1 B .2- 42 23.在棱长分别为 1, 2, 3 的长方体上随机选取两个相异顶点,若每个顶点被选的概率相同,则选到两个顶点的距离 大于 3的概率为 ()4 3 2 3A .7B . 7C . 7D . 144.( 2009 安徽理) 考察正方体 6 个面的中心,甲从这 6 个点中任意选两个点连成直线,乙也从这6 个点中任意选两个点连成直线,则所得的两条直线相互平行但不重合的概率等于12 34?BA .B .C .D .75757575?F?C?D? E? A5.( 2009 江西理) 为了庆祝六一儿童节,某食品厂制作了3 种不同的精美卡片,每袋食品随机装入一张卡片,集齐3种卡片可获奖,现购买该种食品5 袋,能获奖的概率为()3133 C .4850A .B .81D ..8181816.( 2009 辽宁文) ABCD 为长方形, AB = 2, BC =1,O 为 AB 的中点,在长方形ABCD 内随机取一点,取到的点到O 的距离大于 1 的概率为A .B . 1C .8D . 18447.( 2009 上海理) 若事件 E 与 F 相互独立,且 P EP F1 的值等于,则P EI F4A . 01 C .11B .4D .1628.( 2013 广州) 在区间 [1,5] 和[2, 4]上分别取一个数,记为a ,b ,则方程 x 2 y 22+b 2= 1 表示焦点在 x 轴上且离心率小a于 3的椭圆的概率为 ()2C .1711531A .2B . 3232D . 321, 2,3,9.已知数列 {a } 满足 a = a+ n - 1(n ≥2,n ∈ N),一颗质地均匀的正方体骰子,其六个面上的点数分别为nnn -14, 5, 6,将这颗骰子连续抛掷三次,得到的点数分别记为 a , b , c ,则满足集合 {a ,b , c} = {a 1, a 2, a 3}(1 ≤a i ≤6,i = 1, 2, 3)的概率是 ()1B . 1C . 1D . 1A .72 36 24 1210.( 2009 湖北文) 甲、乙、丙三人将参加某项测试,他们能达标的概率分别是0.8、 0.6、 0.5,则三人都达标的概率是,三人中至少有一人达标的概率是 。
高中概率练习题及讲解讲解
高中概率练习题及讲解讲解一、基础题1. 题目:一个袋子里有5个红球和3个蓝球,随机取出一个球,求是红球的概率。
答案:首先计算总球数为8个,红球数为5个。
根据概率公式 P(A) = 事件发生的次数 / 总的可能次数,红球的概率 P(红球) = 5/8。
2. 题目:掷一枚均匀的硬币两次,求至少出现一次正面的概率。
答案:首先列出所有可能的结果:正正、正反、反正、反反。
其中正正和正反、反正是至少出现一次正面的情况。
根据概率公式,P(至少一次正面) = 3/4。
3. 题目:一个班级有30名学生,随机选取5名学生作为代表,求其中至少有一名男生的概率(假设班级男女比例为1:1)。
答案:首先计算总的选取方式,即从30名学生中选取5名的组合数。
然后计算没有男生的选取方式,即从15名女生中选取5名的组合数。
根据对立事件的概率计算,P(至少一名男生) = 1 - P(没有男生)。
二、进阶题1. 题目:一个工厂每天生产100个零件,其中有5%的次品。
今天工厂生产了200个零件,求至少有10个次品的概率。
答案:首先确定次品数为10、11、...、20。
使用二项分布公式P(X=k) = C(n, k) * p^k * (1-p)^(n-k),其中 n=200, p=0.05。
计算总概率P(X ≥ 10) = Σ P(X=k) (k=10 to 20)。
2. 题目:一个盒子里有10个球,编号为1到10。
随机抽取3个球,求抽取的球的编号之和大于15的概率。
答案:列出所有可能的抽取组合,计算和大于15的组合数。
然后根据概率公式计算概率。
3. 题目:一个班级有50名学生,其中男生30名,女生20名。
随机选取5名学生,求选取的学生中恰好有3名男生的概率。
答案:使用组合数计算选取3名男生和2名女生的组合数,然后除以总的选取方式数,即从50名学生中选取5名的组合数。
三、高难题1. 题目:一个连续掷骰子直到出现6点停止,求掷骰子次数的期望值。
高中概率分布练习题及讲解
高中概率分布练习题及讲解一、基础概念题1. 某班级有40名学生,其中男生20名,女生20名。
随机抽取一名学生,求抽到男生的概率。
2. 一个袋子里有5个红球和3个蓝球,每次抽取一个球后放回。
求连续抽取三次,至少出现一次红球的概率。
3. 一个骰子掷出数字1的概率是多少?二、条件概率题1. 已知一个事件A发生的概率为0.3,另一个事件B在A发生的条件下发生的概率为0.5。
求事件A和B同时发生的概率。
2. 一个班级有50名学生,其中20名是男生,30名是女生。
如果从班级中随机抽取一名学生,发现他是男生,那么他是班级中成绩最好的学生的概率是多少?(假设班级中成绩最好的学生是男生的概率为0.4)三、独立事件题1. 一个袋子里有10个球,其中2个是白球,8个是黑球。
如果从袋子中随机抽取一个球,观察颜色后放回,再抽取一次。
求两次都抽到白球的概率。
2. 一个家庭有两个孩子,假设生男生女的概率各为1/2。
求这个家庭有两个男孩的概率。
四、二项分布题1. 一个硬币连续投掷10次,求至少出现5次正面的概率。
2. 一个学生在10次考试中,每次考试通过的概率为0.7。
求这个学生至少通过8次考试的概率。
五、正态分布题1. 一个班级的学生数学成绩服从均值为80分,标准差为10分的正态分布。
求数学成绩在70到90分之间的学生所占的比例。
2. 一个工厂生产的零件长度服从均值为50厘米,标准差为1厘米的正态分布。
求长度在49到51厘米之间的零件所占的比例。
六、泊松分布题1. 一个电话服务中心平均每小时接到4个电话。
求在任意一个小时内接到6个或更多电话的概率。
2. 一个网站平均每分钟有2个访问者。
求在任意一分钟内有5个或更多访问者的概率。
七、综合题1. 一个班级有50名学生,其中30名是男生,20名是女生。
如果随机抽取5名学生,求至少有3名男生的概率。
2. 一个工厂每天生产100个零件,其中每个零件都是合格品的概率为0.95。
求工厂一天中生产的零件中有超过5个不合格品的概率。
高中概率问题练习题及讲解
高中概率问题练习题及讲解1. 掷骰子问题- 题目:一个均匀的六面骰子被掷两次,求两次掷出的点数之和为7的概率。
- 解析:首先确定所有可能的结果总数,即6*6=36种。
然后找出两次掷骰子点数和为7的组合,它们是(1,6)、(2,5)、(3,4)、(4,3)、(5,2)和(6,1),共6种。
因此,所求概率为6/36,简化后为1/6。
2. 抽卡片问题- 题目:从一副没有大小王的52张扑克牌中随机抽取一张,求抽到黑桃A的概率。
- 解析:一副标准扑克牌中有13张黑桃,其中只有1张是黑桃A。
因此,抽到黑桃A的概率为1/52。
3. 独立事件问题- 题目:如果一个事件A发生的概率是0.3,另一个事件B发生的概率是0.5,且A和B是相互独立的,求A和B同时发生的概率。
- 解析:独立事件同时发生的概率等于各自发生概率的乘积。
因此,A和B同时发生的概率为0.3*0.5=0.15。
4. 互斥事件问题- 题目:如果事件A和事件B是互斥的,且它们发生的概率分别为0.4和0.3,求至少有一个事件发生的概率。
- 解析:互斥事件至少有一个发生的概率等于它们各自发生概率的和,减去它们同时发生的概率(如果有的话)。
由于A和B互斥,它们不可能同时发生,所以同时发生的概率为0。
因此,至少有一个事件发生的概率为0.4+0.3=0.7。
5. 条件概率问题- 题目:已知事件A发生的概率为0.5,事件B在A发生条件下发生的概率为0.7,求事件B发生的概率。
- 解析:事件B发生的总概率等于事件A发生且B发生的概率加上事件A不发生且B发生的概率。
由于A和B在A发生条件下是相关的,我们只能计算A发生且B发生的概率,即0.5*0.7=0.35。
事件A不发生且B发生的概率需要额外信息才能计算。
6. 全概率公式问题- 题目:如果事件A1、A2、A3是两两互斥的事件,它们发生的概率分别为p1、p2、p3,且它们的并集概率为1,求事件B在这些条件下发生的概率,已知B在A1、A2、A3条件下发生的概率分别为p(B|A1)、p(B|A2)、p(B|A3)。
(word完整版)高考数学概率大题专项题型
高考概率大题专项题型一.解答题1.某年级星期一至星期五每天下午排3节课,每天下午随机选择1节作为综合实践课(上午不排该课程),张老师与王老师分别任教甲、乙两个班的综合实践课程.(1)求这两个班“在星期一不同时上综合实践课”的概率;(2)设这两个班“在一周中同时上综合实践课的节数”为X,求X的概率分布表与数学期望E(X).2.甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一个人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是,乙每轮猜对的概率是;每轮活动中甲、乙猜对与否互不影响.各轮结果亦互不影响.假设“星队”参加两轮活动,求:(I)“星队”至少猜对3个成语的概率;(II)“星队”两轮得分之和为X的分布列和数学期望EX.3.某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4,现从这10人中随机选出2人作为该组代表参加座谈会.(1)设A为事件“选出的2人参加义工活动次数之和为4”,求事件A发生的概率;(2)设X为选出的2人参加义工活动次数之差的绝对值,求随机变量X的分布列和数学期望.4.某商场一号电梯从1层出发后可以在2、3、4层停靠.已知该电梯在1层载有4位乘客,假设每位乘客在2、3、4层下电梯是等可能的.(Ⅰ)求这4位乘客中至少有一名乘客在第2层下电梯的概率;(Ⅱ)用X表示4名乘客在第4层下电梯的人数,求X的分布列和数学期望.5.集成电路E由3个不同的电子元件组成,现由于元件老化,三个电子元件能正常工作的概率分别降为,,,且每个电子元件能否正常工作相互独立,若三个电子元件中至少有2个正常工作,则E能正常工作,否则就需要维修,且维修集成电路E所需费用为100元.(Ⅰ)求集成电路E需要维修的概率;(Ⅱ)若某电子设备共由2个集成电路E组成,设X为该电子设备需要维修集成电路所需的费用,求X的分布列和期望.6.某商场举行优惠促销活动,顾客仅可以从以下两种优惠方案中选择一种,方案一:每满200元减50元:方案二:每满200元可抽奖一次.具体规则是依次从装有3个红球、1个白球的甲箱,装有2个红球、2个白球的乙箱,以及装有1个红球、3个白球的丙箱中各随机摸出1个球,所得结果和享受的优惠如下表:(注:所有小球仅颜色有区别)红球个数3210实际付款半价7折8折原价(Ⅰ)若两个顾客都选择方案二,各抽奖一次,求至少一个人获得半价优惠的概率;(Ⅱ)若某顾客购物金额为320元,用所学概率知识比较哪一种方案更划算?7.为丰富中学生的课余生活,增进中学生之间的交往与学习,某市甲乙两所中学举办一次中学生围棋擂台赛.比赛规则如下,双方各出3名队员并预先排定好出场顺序,双方的第一号选手首先对垒,双方的胜者留下进行下一局比赛,负者被淘汰出局,由第二号选手挑战上一局获胜的选手,依此类推,直到一方的队员全部被淘汰,另一方算获胜.假若双方队员的实力旗鼓相当(即取胜对手的概率彼此相等)(Ⅰ)在已知乙队先胜一局的情况下,求甲队获胜的概率.(Ⅱ)记双方结束比赛的局数为ξ,求ξ的分布列并求其数学期望Eξ.8.M公司从某大学招收毕业生,经过综合测试,录用了14名男生和6名女生,这20名毕业生的测试成绩如茎叶图所示(单位:分),公司规定:成绩在180分以上者到“甲部门”工作;180分以下者到“乙部门”工作.另外只有成绩高于180分的男生才能担任“助理工作”.(Ⅰ)如果用分层抽样的方法从“甲部分”人选和“乙部分”人选中选取8人,再从这8人中选3人,那么至少有一人是“甲部门”人选的概率是多少?(Ⅱ)若从所有“甲部门”人选中随机选3人,用X表示所选人员中能担任“助理工作”的人数,写出X的分布列,并求出X的数学期望.9.生产A,B两种元件,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品.现随机抽取这两种元件各100件进行检测,检测结果统计如下:测试指标[70,76)[76,82)[82,88)[88,94)[94,100]元件A81240328元件B71840296(Ⅰ)试分别估计元件A,元件B为正品的概率;(Ⅱ)生产一件元件A,若是正品可盈利40元,若是次品则亏损5元;生产一件元件B,若是正品可盈利50元,若是次品则亏损10元.在(Ⅰ)的前提下,(ⅰ)记X为生产1件元件A和1件元件B所得的总利润,求随机变量X的分布列和数学期望;(ⅱ)求生产5件元件B所获得的利润不少于140元的概率.10.一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取50个作为样本,称出它们的重量(单位:克),重量分组区间为[5,15],(15,25],(25,35],(35,45],由此得到样本的重量频率分布直方图(如图),(1)求a的值,并根据样本数据,试估计盒子中小球重量的众数与平均值;(2)从盒子中随机抽取3个小球,其中重量在[5,15]内的小球个数为X,求X 的分布列和数学期望.(以直方图中的频率作为概率)11.某企业准备招聘一批大学生到本单位就业,但在签约前要对他们的某项专业技能进行测试.在待测试的某一个小组中有男、女生共10人(其中女生人数多于男生人数),如果从中随机选2人参加测试,其中恰为一男一女的概率为;(1)求该小组中女生的人数;(2)假设此项专业技能测试对该小组的学生而言,每个女生通过的概率均为,每个男生通过的概率均为;现对该小组中男生甲、男生乙和女生丙3个人进行测试,记这3人中通过测试的人数为随机变量ξ,求ξ的分布列和数学期望.12.某大学准备在开学时举行一次大学一年级学生座谈会,拟邀请20名来自本校机械工程学院、海洋学院、医学院、经济学院的学生参加,各学院邀请的学生数如下表所示:海洋学院医学院经济学院学院机械工程学院人数4646(Ⅰ)从这20名学生中随机选出3名学生发言,求这3名学生中任意两个均不属于同一学院的概率;(Ⅱ)从这20名学生中随机选出3名学生发言,设来自医学院的学生数为ξ,求随机变量ξ的概率分布列和数学期望.13.甲、乙两名同学参加“汉字听写大赛”选拔测试,在相同测试条件下,两人5次测试的成绩(单位:分)如下表:第1次第2次第3次第4次第5次甲5855769288乙6582878595(Ⅰ)请画出甲、乙两人成绩的茎叶图.你认为选派谁参赛更好?说明理由(不用计算);(Ⅱ)若从甲、乙两人5次的成绩中各随机抽取一个成绩进行分析,设抽到的两个成绩中,90分以上的个数为X,求随机变量X的分布列和期望EX.14.某公司有10万元资金用于投资,如果投资甲项目,根据市场分析知道:一年后可能获利10%,可能损失10%,可能不赔不赚,这三种情况发生的概率分别为,,;如果投资乙项目,一年后可能获利20%,也可能损失20%,这两种情况发生的概率分别为α和β(α+β=1).(1)如果把10万元投资甲项目,用ξ表示投资收益(收益=回收资金﹣投资资金),求ξ的概率分布及Eξ;(2)若把10万元投资乙项目的平均收益不低于投资甲项目的平均收益,求α的取值范围.15.袋中装有围棋黑色和白色棋子共7枚,从中任取2枚棋子都是白色的概率为.现有甲、乙两人从袋中轮流摸取一枚棋子.甲先摸,乙后取,然后甲再取,…,取后均不放回,直到有一人取到白棋即终止.每枚棋子在每一次被摸出的机会都是等可能的.用X表示取棋子终止时所需的取棋子的次数.(1)求随机变量X的概率分布列和数学期望E(X);(2)求甲取到白球的概率.16.小王为了锻炼身体,每天坚持“健步走”,并用计步器进行统计.小王最近8天“健步走”步数的频数分布直方图(如图)及相应的消耗能量数据表(如表).健步走步数(千卡)16171819480520消耗能量(卡路里)40044(Ⅰ)求小王这8天“健步走”步数的平均数;(Ⅱ)从步数为16千步,17千步,18千步的几天中任选2天,设小王这2天通过健步走消耗的“能量和”为X,求X的分布列.17.某校从参加某次数学能力测试的学生中中抽查36名学生,统计了他们的数学成绩(成绩均为整数且满分为120分),成绩的频率直方图如图所示,其中成绩分组间是:[80,90),[90,100),[100,110),[110,120](1)在这36名学生中随机抽取3名学生,求同时满足下列条件的概率:(1)有且仅有1名学生成绩不低于110分;(2)成绩在[90,100)内至多1名学生;(2)在成绩是[80,100)内的学生中随机选取3名学生进行诊断问卷,设成绩在[90,100)内的人数为随机变量X,求X的分布列及数学期望EX.18.一批产品需要进行质量检验,检验方案是:先从这批产品中任取5件作检验,这5件产品中优质品的件数记为n.如果n=3,再从这批产品中任取2件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;如果n=5,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互独立.(1)求这批产品通过检验的概率;(2)已知每件产品检验费用为200元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为x(单位:元),求x的分布列.概率大题专项题型参考答案一.解答题1.某年级星期一至星期五每天下午排3节课,每天下午随机选择1节作为综合实践课(上午不排该课程),张老师与王老师分别任教甲、乙两个班的综合实践课程.(1)求这两个班“在星期一不同时上综合实践课”的概率;(2)设这两个班“在一周中同时上综合实践课的节数”为X,求X的概率分布表与数学期望E(X).【解答】解:(1)这两个班“在星期一不同时上综合实践课”的概率为.…(4分)(2)由题意得,.…(6分)所以X的概率分布表为:X012345P…(8分)所以,X的数学期望为.…(10分)2.甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一个人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是,乙每轮猜对的概率是;每轮活动中甲、乙猜对与否互不影响.各轮结果亦互不影响.假设“星队”参加两轮活动,求:(I)“星队”至少猜对3个成语的概率;(II)“星队”两轮得分之和为X的分布列和数学期望EX.【解答】解:(I)“星队”至少猜对3个成语包含“甲猜对1个,乙猜对2个”,“甲猜对2个,乙猜对1个”,“甲猜对2个,乙猜对2个”三个基本事件,故概率P=++=++=,(II)“星队”两轮得分之和为X可能为:0,1,2,3,4,6,则P(X=0)==,P(X=1)=2×[+]=,P(X=2)=+++=,P(X=3)=2×=,P(X=4)=2×[+]=P(X=6)==故X的分布列如下图所示:X012346P∴数学期望E(X)=0×+1×+2×+3×+4×+6×==3.某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4,现从这10人中随机选出2人作为该组代表参加座谈会.(1)设A为事件“选出的2人参加义工活动次数之和为4”,求事件A发生的概率;(2)设X为选出的2人参加义工活动次数之差的绝对值,求随机变量X的分布列和数学期望.【解答】解:(1)从10人中选出2人的选法共有=45种,事件A:参加次数的和为4,情况有:①1人参加1次,另1人参加3次,②2人都参加2次;共有+=15种,∴事件A发生概率:P==.(Ⅱ)X的可能取值为0,1,2.P(X=0)==P(X=1)==,P(X=2)==,∴X的分布列为:X012P∴EX=0×+1×+2×=1.4.某商场一号电梯从1层出发后可以在2、3、4层停靠.已知该电梯在1层载有4位乘客,假设每位乘客在2、3、4层下电梯是等可能的.(Ⅰ)求这4位乘客中至少有一名乘客在第2层下电梯的概率;(Ⅱ)用X表示4名乘客在第4层下电梯的人数,求X的分布列和数学期望.【解答】解:(Ⅰ)设4位乘客中至少有一名乘客在第2层下电梯的事件为A,…(1分)由题意可得每位乘客在第2层下电梯的概率都是,…(3分)则.…(6分)(Ⅱ)X的可能取值为0,1,2,3,4,…(7分)由题意可得每个人在第4层下电梯的概率均为,且每个人下电梯互不影响,所以,.…(9分)X01234P…(11分).…(13分)5.集成电路E由3个不同的电子元件组成,现由于元件老化,三个电子元件能正常工作的概率分别降为,,,且每个电子元件能否正常工作相互独立,若三个电子元件中至少有2个正常工作,则E能正常工作,否则就需要维修,且维修集成电路E所需费用为100元.(Ⅰ)求集成电路E需要维修的概率;(Ⅱ)若某电子设备共由2个集成电路E组成,设X为该电子设备需要维修集成电路所需的费用,求X的分布列和期望.【解答】解:(Ⅰ)三个电子元件能正常工作分别记为事件A,B,C,则P(A)=,P(B)=,P(C)=.依题意,集成电路E需要维修有两种情形:①3个元件都不能正常工作,概率为P1=P()=P()P()P()=××=.②3个元件中的2个不能正常工作,概率为P2=P(A)+P(B)+P(C)=++×=.所以,集成电路E需要维修的概率为P1+P2=+=.(Ⅱ)设ξ为维修集成电路的个数,则ξ服从B(2,),而X=100ξ,P(X=100ξ)=P(ξ=k)=••,k=0,1,2.X的分布列为:X0100200P∴EX=0×+100×+200×=.6.某商场举行优惠促销活动,顾客仅可以从以下两种优惠方案中选择一种,方案一:每满200元减50元:方案二:每满200元可抽奖一次.具体规则是依次从装有3个红球、1个白球的甲箱,装有2个红球、2个白球的乙箱,以及装有1个红球、3个白球的丙箱中各随机摸出1个球,所得结果和享受的优惠如下表:(注:所有小球仅颜色有区别)红球个数3210实际付款半价7折8折原价(Ⅰ)若两个顾客都选择方案二,各抽奖一次,求至少一个人获得半价优惠的概率;(Ⅱ)若某顾客购物金额为320元,用所学概率知识比较哪一种方案更划算?【解答】解:(Ⅰ)记顾客获得半价优惠为事件A,则P(A)==,两个顾客至少一个人获得半价优惠的概率:P=1﹣P()P()=1﹣(1﹣)2=.…(5分)(Ⅱ)若选择方案一,则付款金额为320﹣50=270元.若选择方案二,记付款金额为X元,则X可取160,224,256,320.P(X=160)=,P(X=224)==,P(X=256)==,P(X=320)==,则E(X)=160×+224×+256×+320×=240.∵270>240,∴第二种方案比较划算.…(12分)7.为丰富中学生的课余生活,增进中学生之间的交往与学习,某市甲乙两所中学举办一次中学生围棋擂台赛.比赛规则如下,双方各出3名队员并预先排定好出场顺序,双方的第一号选手首先对垒,双方的胜者留下进行下一局比赛,负者被淘汰出局,由第二号选手挑战上一局获胜的选手,依此类推,直到一方的队员全部被淘汰,另一方算获胜.假若双方队员的实力旗鼓相当(即取胜对手的概率彼此相等)(Ⅰ)在已知乙队先胜一局的情况下,求甲队获胜的概率.(Ⅱ)记双方结束比赛的局数为ξ,求ξ的分布列并求其数学期望Eξ.【解答】解:(Ⅰ)在已知乙队先胜一局的情况下,相当于乙校还有3名选手,而甲校还剩2名选手,甲校要想取胜,需要连胜3场,或者比赛四场要胜三场,且最后一场获胜,所以甲校获胜的概率是(Ⅱ)记双方结束比赛的局数为ξ,则ξ=3,4,5所以ξ的分布列为ξ345P数学期望.8.M公司从某大学招收毕业生,经过综合测试,录用了14名男生和6名女生,这20名毕业生的测试成绩如茎叶图所示(单位:分),公司规定:成绩在180分以上者到“甲部门”工作;180分以下者到“乙部门”工作.另外只有成绩高于180分的男生才能担任“助理工作”.(Ⅰ)如果用分层抽样的方法从“甲部分”人选和“乙部分”人选中选取8人,再从这8人中选3人,那么至少有一人是“甲部门”人选的概率是多少?(Ⅱ)若从所有“甲部门”人选中随机选3人,用X表示所选人员中能担任“助理工作”的人数,写出X的分布列,并求出X的数学期望.【解答】解:(I)用分层抽样的方法,每个人被抽中的概率为=,根据茎叶图,有“甲部门”人选10人,“乙部门”人选10人,所以选中的“甲部门”人选有10×=4人,“乙部门”人选有10×=4人,用事件A表示“至少有一名甲部门人被选中”,则它的对立事件表示“没有一名甲部门人被选中”,则P(A)=1﹣P()=1﹣=1﹣=.因此,至少有一人是“甲部门”人选的概率是;(Ⅱ)依据题意,所选毕业生中能担任“助理工作”的人数X的取值分别为0,1,2,3,P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==.因此,X的分布列如下:所以X的数学期望EX=0×+1×+2×+3×=.9.生产A,B两种元件,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品.现随机抽取这两种元件各100件进行检测,检测结果统计如下:测试指标[70,76)[76,82)[82,88)[88,94)[94,100]元件A81240328元件B71840296(Ⅰ)试分别估计元件A,元件B为正品的概率;(Ⅱ)生产一件元件A,若是正品可盈利40元,若是次品则亏损5元;生产一件元件B,若是正品可盈利50元,若是次品则亏损10元.在(Ⅰ)的前提下,(ⅰ)记X为生产1件元件A和1件元件B所得的总利润,求随机变量X的分布列和数学期望;(ⅱ)求生产5件元件B所获得的利润不少于140元的概率.【解答】解:(Ⅰ)元件A为正品的概率约为.元件B为正品的概率约为.(Ⅱ)(ⅰ)∵生产1件元件A和1件元件B可以分为以下四种情况:两件正品,A次B正,A正B次,A次B次.∴随机变量X的所有取值为90,45,30,﹣15.∵P(X=90)==;P(X=45)==;P(X=30)==;P(X=﹣15)==.∴随机变量X的分布列为:EX=.(ⅱ)设生产的5件元件B中正品有n件,则次品有5﹣n件.依题意得50n﹣10(5﹣n)≥140,解得.所以n=4或n=5.设“生产5件元件B所获得的利润不少于140元”为事件A,则P(A)==.10.一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取50个作为样本,称出它们的重量(单位:克),重量分组区间为[5,15],(15,25],(25,35],(35,45],由此得到样本的重量频率分布直方图(如图),(1)求a的值,并根据样本数据,试估计盒子中小球重量的众数与平均值;(2)从盒子中随机抽取3个小球,其中重量在[5,15]内的小球个数为X,求X 的分布列和数学期望.(以直方图中的频率作为概率)【解答】解:(1)由题意得,(0.02+0.032+a+0.018)×10=1解得a=0.03;又由最高矩形中点的横坐标为20,可估计盒子中小球重量的众数约为20,而50个样本小球重量的平均值为:=0.2×10+0.32×20+0.3×30+0.18×40=24.6(克)故估计盒子中小球重量的平均值约为24.6克.(2)利用样本估计总体,该盒子中小球的重量在[5,15]内的0.2;则X~B(3,),X=0,1,2,3;P(X=0)=×()3=;P(X=1)=×()2×=;P(X=2)=×()×()2=;P(X=3)=×()3=,∴X的分布列为:X0123P即E(X)=0×=.11.某企业准备招聘一批大学生到本单位就业,但在签约前要对他们的某项专业技能进行测试.在待测试的某一个小组中有男、女生共10人(其中女生人数多于男生人数),如果从中随机选2人参加测试,其中恰为一男一女的概率为;(1)求该小组中女生的人数;(2)假设此项专业技能测试对该小组的学生而言,每个女生通过的概率均为,每个男生通过的概率均为;现对该小组中男生甲、男生乙和女生丙3个人进行测试,记这3人中通过测试的人数为随机变量ξ,求ξ的分布列和数学期望.【解答】解:(1)设该小组中有n 个女生,根据题意,得解得n=6,n=4(舍去),∴该小组中有6个女生;(2)由题意,ξ的取值为0,1,2,3;P(ξ=0)=P(ξ=1)=P(ξ=3)=P(ξ=2)=1﹣∴ξ的分布列为:ξ0123P∴Eξ=1×12.某大学准备在开学时举行一次大学一年级学生座谈会,拟邀请20名来自本校机械工程学院、海洋学院、医学院、经济学院的学生参加,各学院邀请的学生数如下表所示:学院机械工程学海洋学院医学院经济学院院人数4646(Ⅰ)从这20名学生中随机选出3名学生发言,求这3名学生中任意两个均不属于同一学院的概率;(Ⅱ)从这20名学生中随机选出3名学生发言,设来自医学院的学生数为ξ,求随机变量ξ的概率分布列和数学期望.【解答】解:(Ⅰ)从20名学生随机选出3名的方法数为,选出3人中任意两个均不属于同一学院的方法数为:所以(Ⅱ)ξ可能的取值为0,1,2,3,,所以ξ的分布列为0123P所以13.甲、乙两名同学参加“汉字听写大赛”选拔测试,在相同测试条件下,两人5次测试的成绩(单位:分)如下表:第1次第2次第3次第4次第5次甲5855769288乙6582878595(Ⅰ)请画出甲、乙两人成绩的茎叶图.你认为选派谁参赛更好?说明理由(不用计算);(Ⅱ)若从甲、乙两人5次的成绩中各随机抽取一个成绩进行分析,设抽到的两个成绩中,90分以上的个数为X,求随机变量X的分布列和期望EX.【解答】解:(Ⅰ)茎叶图如图所示,由图可知,乙的平均成绩大于甲的平均成绩,且乙的方差小于甲的方差,因此应选派乙参赛更好.(Ⅱ)随机变量X的所有可能取值为0,1,2.,,,随机变量X的分布列是:X012P.14.某公司有10万元资金用于投资,如果投资甲项目,根据市场分析知道:一年后可能获利10%,可能损失10%,可能不赔不赚,这三种情况发生的概率分别为,,;如果投资乙项目,一年后可能获利20%,也可能损失20%,这两种情况发生的概率分别为α和β(α+β=1).(1)如果把10万元投资甲项目,用ξ表示投资收益(收益=回收资金﹣投资资金),求ξ的概率分布及Eξ;(2)若把10万元投资乙项目的平均收益不低于投资甲项目的平均收益,求α的取值范围.【解答】解:(1)依题意,ξ的可能取值为1,0,﹣1,P(ξ=1)=,P(ξ=0)=,P(ξ=﹣1)=,∴ξ的分布列为:ξ10﹣1pEξ=﹣=.…(6分)(2)设η表示10万元投资乙项目的收益,则η的可能取值为2,﹣2,P(η=2)=α,P(η=﹣2)=β,η的分布列为η2﹣2pαβ∴Eη=2α﹣2β=4α﹣2,∵把10万元投资乙项目的平均收益不低于投资甲项目的平均收益,∴4α﹣2≥,解得.…(12分)15.袋中装有围棋黑色和白色棋子共7枚,从中任取2枚棋子都是白色的概率为.现有甲、乙两人从袋中轮流摸取一枚棋子.甲先摸,乙后取,然后甲再取,…,取后均不放回,直到有一人取到白棋即终止.每枚棋子在每一次被摸出的机会都是等可能的.用X表示取棋子终止时所需的取棋子的次数.(1)求随机变量X的概率分布列和数学期望E(X);(2)求甲取到白球的概率.【解答】解:设袋中白球共有x个,则依题意知:=,即=,即x2﹣x﹣6=0,解之得x=3,(x=﹣2舍去).…(1分)(1)袋中的7枚棋子3白4黑,随机变量X的所有可能取值是1,2,3,4,5.P(x=1)==,P(x=2)==,P(x=3)==,P(x=4)==,P(x=5)==,…(5分)(注:此段(4分)的分配是每错1个扣(1分),错到4个即不得分.)随机变量X的概率分布列为:X12345P所以E(X)=1×+2×+3×+4×+5×=2.…(6分)(2)记事件A=“甲取到白球”,则事件A包括以下三个互斥事件:A1=“甲第1次取球时取出白球”;A2=“甲第2次取球时取出白球”;A3=“甲第3次取球时取出白球”.依题意知:P(A1)==,P(A2)==,P(A3)==,…(9分)(注:此段(3分)的分配是每错1个扣(1分),错到3个即不得分.)所以,甲取到白球的概率为P(A)=P(A1)+P(A2)+P(A3)=…(10分)16.小王为了锻炼身体,每天坚持“健步走”,并用计步器进行统计.小王最近8天“健步走”步数的频数分布直方图(如图)及相应的消耗能量数据表(如表).健步走步数(千卡)16171819480520消耗能量(卡路里)40044(Ⅰ)求小王这8天“健步走”步数的平均数;(Ⅱ)从步数为16千步,17千步,18千步的几天中任选2天,设小王这2天通过健步走消耗的“能量和”为X,求X的分布列.【解答】(本小题满分13分)解:(I)小王这8天“健步走”步数的平均数为:(千步).…..(4分)(II)X的各种取值可能为800,840,880,920.,,,,X的分布列为:X800840880920P…..(13分)17.某校从参加某次数学能力测试的学生中中抽查36名学生,统计了他们的数学成绩(成绩均为整数且满分为120分),成绩的频率直方图如图所示,其中成绩分组间是:[80,90),[90,100),[100,110),[110,120](1)在这36名学生中随机抽取3名学生,求同时满足下列条件的概率:(1)有且仅有1名学生成绩不低于110分;(2)成绩在[90,100)内至多1名学生;(2)在成绩是[80,100)内的学生中随机选取3名学生进行诊断问卷,设成绩在[90,100)内的人数为随机变量X,求X的分布列及数学期望EX.【解答】解:(1)由频率分布直方图,得;10a=1﹣(++)×10=,解得a=;∴成绩在[80,90)分的学生有36××10=3人,成绩在[90,100)分的学生有36××10=6人,成绩在[100,110)分的学生有36××10=18人,成绩在[110,120)分的学生有36××10=9人;记事件A为“抽取3名学生中同时满足条件①②的事件”,包括事件A1=“抽取3名学生中,1人成绩不低于110分,0人在[90,100)分之间”,事件A2=“抽取3名学生中,1人成绩不低于110分,1人在[90,100)分之间”,且A1、A2是互斥事件;∴P(A)=P(A1+A2)=P(A1)+P(A2)=+=+=;(2)随机变量X的可能取值为0,1,2,3;∴P(X=0)==,p(X=1)==,P(X=2)==,P(X=3)==;∴X的分布列为X0123P数学期望为EX=0×+1×+2×+3×=2.18.一批产品需要进行质量检验,检验方案是:先从这批产品中任取5件作检验,这5件产品中优质品的件数记为n.如果n=3,再从这批产品中任取2件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;如果n=5,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互独立.(1)求这批产品通过检验的概率;(2)已知每件产品检验费用为200元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为x(单位:元),求x的分布列.【解答】解:(1)由题意知:第一次取5件产品中,恰好有k件优质品的概率为:P(k)=,k=0,1,2,3,4,5,∴这批产品通过检验的概率:p==+5×+()5=.(2)由题意得X的可能取值为1000,1200,1400,P(X=1000)=()5=,P(X=1200)==,P(X=1400)=++=,X的分布列为:。
第十一章 概率(历年高考题分类)
第十一章概率第一节随机事件的概率知识点讲解题型1——随机事件及其概率讲例1 盒中仅有4只白球、5只黑球,从中任意取出1只球。
(1)“取出的球是黄球”是什么事件?它的概率是多少?(2)“取出的球是白球”是什么事件?它的概率是多少?(3)“取出的球是白球或黑球”是什么事件?它的概率是多少?变式演练1 (1)指出下列事件是必然事件,不可能事件,还是随机事件。
①长度为3、4、5的三条线段可以构成一个三角形;②长度为2、3、4的三条线段可以构成一个直角三角形;③在乒乓球比赛中,某运动员取胜。
(2)某射手在同一条件下进行射击,结果如下表所示:射击次数n 10 20 50 100 200 5008 19 44 92 178 455击中靶中心次数m击中靶心频率mn①计算表中击中靶心的各个频率;②这个射手射击一次,击中靶心的概率约是多少?题型2——等可能事件的概率讲例2(天津高考题)从4名男生和2名女生中任选3人参加演讲比赛。
(1)求所选3人都是男生的概率;(2)求所选3人中至少有1名女生的概率。
变式演练2 (2007年北京)某条公共汽车线路沿线共有11个车站(包括起点站和终点站).在起点站开出的一辆公共汽车上有6位乘客,假设每位乘客在起点站之外的各个站下车是等可能的.求:(1)这6位乘客在互不相同的车站下车的概率;(2)这6位乘客中恰有3人在终点下车的概率。
题型3——等可能事件概率的应用讲例 3 (湖北高考题)为防止某突发事件发生,有甲、乙、丙、丁四种相互独立的预防措施可供采用,单独采用甲、乙、丙、丁预防措施后突发事件不发生的概率(记为p)和所需费用如下表:预防措施甲乙丙丁p 0.9 0.8 0.7 0.6费用(万元)90 60 30 10预防方案可单独采用一种预防措施或联合采用几种预防措施,在总费用不超过120万元的前提下,请确定一个预防方案,使得此突发事件不发生的概率最大.变式演练3 从高一年级和高二年级共18名学生代表中,随机抽取2人到学生会担任干部,如每个年级恰好抽1人的概率是80153,而且知道高一年级的学生代表多于高二年级,求这两个年级各自的学生代表.巩固练习一、选择题1、(2007年辽宁)一个坛子里有编号为1,2,…,12的12个大小相同的球,其中1到6号球是红球,其余的是黑球,若从中任取两个球,则取到的都是红球,且至少有1个球的号码是偶数的概率是()A.122B.111C.322D.2112、(2008年重庆)从编号为1,2,…,10的10个大小相同的球中任取4个,则所取4个球的最大号码是6的概率为(A)184(B)121(C)25(D)353、(2008年辽宁)4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为( )A .13B .12C .23D .344、(2007年重庆)从5张100元,3张200元,2张300元的奥运预赛门票中任取3张,则所取3张中至少有2张价格相同的概率为(A )41 (B )12079 (C )43 (D )2423 5、(2008年江西)电子钟一天显示的时间是从00:00到23:59,每一时刻都由四个数字组成,则一天中任一时刻显示的四个数字之和为23的概率为 A .1180 B .1288 C .1360D .1480 6、(2007年山东)设集合{12}{123}A B ==,,,,,分别从集合A 和B 中随机取一个数a 和b ,确定平面上的一个点()P a b ,,记“点()P a b ,落在直线x y n +=上”为事件(25)n C n n ∈N ≤≤,,若事件n C 的概率最大,则n 的所有可能值为( )A .3B .4C .2和5D .3和47、连掷两次骰子得到的点数分别为m 和n ,记向量()m n ,a =与向量(11)=-,b 的夹角为θ,则0θπ⎛⎤∈ ⎥2⎝⎦,的概率是( )A .512B .12C .712D .56二、填空题1、(2007年广东)甲、乙两个袋中均装有红、白两种颜色的小球,这些小球除颜色外完全相同.其中甲袋装有4个红球,2个白球,乙袋装有1个红球,5个白球. 现分别从甲、乙两袋中各随机取出一个球,则取出的两球都是红球的概率为 .(答案用分数表示)2、(2007全国1)从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有 种.(用数字作答)三、解答题1、100件产品中,有95件合格品,5件次品.从中任取3件,求:(1)3件都是合格品的概率;(2)3件都是次品的概率;(3)2件是合格品、1件是次品的概率;2、在一次口试中,要从20道题中随机抽出6道题进行回答,答对了其中的5道就获得优秀,答对其中的4道就获得及格,某考生回答20道题中的8道题。
高考数学必做题--统计概率 (后附参考答案与详解)
统计概率-高考必做题12从这次考试成绩看,①在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是.②在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是.3交强险是车主必须为机动车购买的险种,若普通座以下私家车投保交强险第一年的费用(基准元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率就越高,具体浮动情况如表:交强险浮动因素和浮动费率比率表浮动因素浮动比率上一个年度未发生有责任道路交通事故下浮上两个年度未发生有责任道路交通事故下浮上三个及以上年度未发生有责任道路交通事故下浮上一个年度发生一次有责任不涉及死亡的道路交通事故上一个年度发生两次及两次以上有责任道路交通事故上浮上一个年度发生有责任道路交通死亡事故上浮某机构为了解某一品牌普通座以下私家车的投保情况,随机抽取了辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计如下表:45 67 89 1011 12 131415 161718 19 20 212223最近,张师傅和李师傅要将家中闲置资金进行投资理财. 现有两种投资方案,且一年后投资盈亏的情况如下:投资股市:购买基金:2425 26 272829现甲、乙两人分别有分钟和分钟时间用于赶往火车站.30统计概率-高考必做题12从这次考试成绩看,①在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是.②在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是.2.数学①乙;②按照全年级排名答案为语文靠前,按照班级排名答案为数学靠前.用样本估计总体3交强险是车主必须为机动车购买的险种,若普通座以下私家车投保交强险第一年的费用(基准元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率就越高,具体浮动情况如表:交强险浮动因素和浮动费率比率表浮动因素浮动比率上一个年度未发生有责任道路交通事故下浮上两个年度未发生有责任道路交通事故下浮上三个及以上年度未发生有责任道路交通事故下浮上一个年度发生一次有责任不涉及死亡的道路交通事故上一个年度发生两次及两次以上有责任道路交通事故上浮4567取有限值的离散型随机变量及其分布列取有限值的离散型随机变量的均值、方差910111213 1415集合与集合的表示方法集合的表示方法不等式与线性规划绝对值不等式绝对值不等式的解法计数原理加法原理、乘法原理两个计数原理的应用排列与组合排列组合的应用16故答案选B.计数原理排列与组合排列组合的应用17181920随机变量的分布列取有限值的离散型随机变量及其分布列取有限值的离散型随机变量的均值、方差21超几何分布取有限值的离散型随机变量的均值、方差计数原理排列与组合排列组合的应用222324事件与概率随机事件的概率随机事件的运算两个互斥事件的概率加法公式2526排列与组合排列、组合的概念2728概率事件与概率随机变量的分布列计数原理29现甲、乙两人分别有分钟和分钟时间用于赶往火车站.30。
概率高中练习题及讲解
概率高中练习题及讲解### 概率高中练习题及讲解#### 练习题一:掷骰子问题题目:一个公平的六面骰子被掷两次,求至少出现一次6点的概率。
解题思路:1. 首先确定总的可能结果数,即掷两次骰子的所有组合。
2. 然后确定至少出现一次6点的组合数。
3. 使用古典概型概率公式求解。
解答:- 总的可能结果数为 \(6 \times 6 = 36\) 种。
- 至少出现一次6点的组合数为 \(6 + 6 - 1 = 11\) 种(第一次出现6点,第二次出现6点,以及第一次和第二次都出现6点的组合)。
- 概率 \( P = \frac{11}{36} \)。
#### 练习题二:生日问题题目:在一个有30人的班级中,求至少有两人生日相同的概率。
解题思路:1. 考虑一年有365天,忽略闰年。
2. 使用生日问题的经典解法,即计算所有人都有不同生日的概率,然后用1减去这个概率。
解答:- 所有人都有不同生日的概率为 \( \frac{365}{365} \times\frac{364}{365} \times ... \times \frac{336}{365} \)。
- 至少有两人生日相同的概率为 \( 1 - \frac{365 \times 364\times ... \times 336}{365^{30}} \)。
#### 练习题三:独立事件问题题目:一个袋子里有5个红球和5个蓝球。
第一次随机取出一个球,不放回,然后第二次再取出一个球。
求第二次取出红球的概率。
解题思路:1. 确定第一次取出球后,第二次取球的总可能数和有利结果数。
2. 使用条件概率公式求解。
解答:- 第一次取出红球的概率为 \( \frac{5}{10} = 0.5 \),此时第二次取红球的概率为 \( \frac{4}{9} \)。
- 第一次取出蓝球的概率也为 \( 0.5 \),此时第二次取红球的概率为 \( \frac{5}{9} \)。
- 总概率为 \( 0.5 \times \frac{4}{9} + 0.5 \times \frac{5}{9} = \frac{9}{18} = 0.5 \)。
高考数学概率真题训练100题含参考答案
高考数学概率真题训练100题含答案学校:___________姓名:___________班级:___________考号:___________ 一、单选题1.在区间(0,1)随机取一个数,则取到的数小于13的概率为( )A .34B .23C .13D .162.向边长为4的正三角形区域投飞镖,则飞镖落在离三个顶点距离都不小于2的区域内的概率为( )A .1B .34C D .143.某公交车站的末班车在19:0019-:30间随机驶离该站,小明在19:1519-:30间随机到达该站,则小明赶上末班车的概率是( )A .18B .14C .12D .344.从1,2,3,4四个数字中任取两个不同数字,则这两个数字之积小于5的概率为 A .13B .12C .23D .565.将一颗质地均匀的骰子(它是一种各面上分别标有1,2,3,4,5,6点数的正方体玩具)先后抛掷2次,记第一次出现的点数为m ,记第二次出现的点数为n ,则3m n =的概率为( ) A .118B .112 C .19D .166.如图,先画一个正方形ABCD ,再将这个正方形各边的中点相连得到第2个正方形,依此类推,得到第4个正方形EFGH ,在正方形ABCD 内随机取一点,则此点取自正方形EFGH 内的概率是A .14B .16C .18D .1167.两名同学分3本不同的书,其中一人没有分到书,另一人分得3本书的概率为( ) A .12B .14C .13D .168.在区间[0,2]上随机取一个实数x ,则事件“3x -1<0”发生的概率为A.12B.13C.14D.169.在等腰直角三角形ABC中,角C为直角.在ACB∠内部任意作一条射线CM,与线段AB交于点M,则AM AC<的概率().A2B.12C.34D.1410.《孙子算经》是中国古代重要的数学著作,据书中记载,中国古代诸侯的等级从低到高分为五级:男、子、伯、侯、公.现有每个级别的诸侯各一人,共5人,要把80个橘子分完且每人都要分到橘子,级别每高一级就多分m个(m为正整数),若按这种方法分橘子,“子”恰好分得13个橘子的概率是()A.18B.17C.16D.1511.某公司安排甲、乙、丙3人到,A B两个城市出差,每人只去1个城市,且每个城市必须有人去,则A城市恰好只有甲去的概率为()A.15B.16C.13D.1412.从装有20个红球和30个白球的罐子里任取两个球,下列情况中是互斥而不是对立的两个事件是A.至少有一个红球,至少有一个白球B.恰有一个红球,都是白球C.至少有一个红球,都是白球D.至多有一个红球,都是红球13.写算,是一种格子乘法,也是笔算乘法的一种,用以区别筹算与珠算,它由明代数学家吴敬在其撰写的《九章算法比类大全》一书中提出,是从天元式的乘法演变而来.例如计算8965⨯,将被乘数89计入上行,乘数65计入右行.然后以乘数65的每位数字乘被乘数89的每位数字,将结果计入相应的格子中,最后从右下方开始按斜行加起来,满十向上斜行进一,如图,即得5785.类比此法画出648345⨯的表格,若从表内(表周边数据不算在内)任取一数,则恰取到奇数的概率是()A.518B.13C.1318D.2314.一只蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个表面的距离均大于1,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为A.4π81B.81-4π81C.127D.82715.五行学说最早出现在黄老、道家学说中,据《尚书·洪范》记载:“五行:一曰水,二曰火,三曰木,四曰金,五曰土.水曰润下,火曰炎上,木曰曲直,金曰从革,土曰稼穑.润下作咸,炎上作苦,曲直作酸,从革作辛,稼穑作甘.”后人根据对五行的认识,又创造了木、火、土、金、水五行相生相克理论,如金与木、金与火、水与火、水与土、土与木相克,若从5大类元素中任选2类,则2类元素相克的概率是()A.34B.25C.35D.1216.“垃圾分类”已成为当下最热议的话题,我们每个公民都应该认真履行,逐步养成“减量、循环、自觉、自治”的行为规范,某小区设置了“可回收垃圾”、“不可回收垃圾”、“厨余垃圾”、“其他垃圾”四种垃圾桶.一天,小区住户李四提着属于4个不同种类垃圾桶的4袋垃圾进行投放,发现每个桶只能再投一袋垃圾就满了,作为一个意识不到位份子,李四随机把4袋垃圾投放到了4个桶中,则有且仅有一袋垃圾投放正确的概率为()A.16B.23C.13D.1217.中国古代的贵族教育体系,开始于公元前1046年的周王朝,周王官学要求学生掌握的六种基本才能礼、乐、射、御、书、数.某中学为了传承古典文化,开设了六种选修课程,要求每位学生从中选择3门课程,扎西同学从中随机选择3门课程,则他选中“御”的概率为()A.16B.13C.12D.2318.不透明的袋中装有8个大小质地相同的小球,其中红色的小球6个,白色的小球2个,从袋中任取2个小球,则取出的2个小球中有1个是白色小球另1个是红色小球的概率为()A.314B.37C.67D.132819.同时投掷两个质地均匀的骰子,两个骰子的点数至少有一个是奇数的概率为()A.736B.1136C.1112D.3420.某人忘记了电话号码的最后一个数字,随意拨号,则拨号不超过两次而接通电话的概率为A.910B.310C.15D.11021.一块各面均涂有油漆的正方体被锯成1000个大小相同的小正方体,若将这些小正方体均匀地搅混在一起,则任意取出一个正方体其两面涂有油漆的概率是()A.112B.110C.325D.1212522.据人口普查统计,育龄妇女生男生女是等可能的,如果允许生育二胎,则某一育龄妇女两胎均是女孩的概率是A.12B.13C.14D.1523.若x A∈,则1Ax∈,就称集合A是“和谐集合”.任选集合111,,,1,3,423M⎧⎫=-⎨⎬⎩⎭的一个非空子集是“和谐集合”的概率为()A.110B.19C.731D.73224.张先生知道清晨从甲地到乙地有好、中、差三个班次的客车.但不知道具体谁先谁后.他打算:第一辆看后一定不坐,若第二辆比第一辆舒服,则乘第二辆;否则坐第三辆.问张先生坐到好车的概率和坐到差车的概率分别是A.、B.、C.、D.、25.在右图所示的电路中,5只箱子表示保险匣,箱中所示数值表示通电时保险丝被切断的概率,当开关合上时,电路畅通的概率是A.B.C.D.26.如图,阴影部分是由四个全等的直角三角形组成的图形, 在大正方形内随机取一点,这一点落在小正方形内的概率为15, 若直角三角形的两条直角边的长分别为(),a b a b >,则b a=A .13B .12C D 27.不定项选择题是高中物理选择题中必考题型之一,正确答案为A 、B 、C 、D 四个选项中的一个或多个,假设某考生对A 、B 、C 、D 选项正确与否完全不知道,则该考生猜对答案概率是( ) A .16B .114C .115D .11628.抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数的差为X ,则“4X >”表示试验的结果为 A .第一枚为5点,第二枚为1点 B .第一枚为5或6点,第二枚为1点 C .第一枚为6点,第二枚为1点D .第一枚为1点,第二枚为6点29.2021年湖北省新高考将实行“3+1+2”模式,即语文、数学、英语必选,物理、历史二选一,政治、地理、化学、生物四选二,共有12种选课模式,现有甲、乙、丙、丁4名学生都准备选物理与化学,并且他们都对政治、地理、生物三科没有偏好,则甲、乙、丙、丁4人中恰有2人选课相同的概率为( ) A .16B .512 C .58D .4930.《周髀算经》中对圆周率π有“径一而周三”的记载,已知两周率π小数点后20位数字分别为14159 26535 89793 23846.若从这20个数字的前10个数字和后10个数字中各随机抽取一个数字,则这两个数字均为奇数的概率为( )A .35B .3395C .21100D .72031.费马小定理:若p 是质数,且a ,p 互质,那么a 的()1p -次方除以p 所得的余数恒等于1.依此定理,若在数集{}2,3,5,6中任取两个数,其中一个作为p ,另一个作为a ,则所取的两个数符合费马小定理的概率为( )A .712 B .34C .23D .1232.一个矩形,如果从中截去一个最大的正方形,剩下的矩形的宽与长之比,与原矩形的一样(即剩下的矩形与原矩形相似)0.618≈,称为黄金比,称该矩形为黄金矩形.黄金矩形可以用上述方法无限地分割下去.已知ABCD 是黄金矩形,按上述方法分割若干次以后,得如图所示图形.若在ABCD 内任取一点,则该点取自阴影内部的概率为( )A .4⎝⎭B .6⎝⎭C .7⎝⎭D .8⎝⎭33.现有三张识字卡片,分别写有“中”、“国”、“梦”这三个字.将这三张卡片随机排序,则能组成“中国梦”的概率是( ) A .13B .16C .19D .11234.抛掷一枚质地均匀的硬币,每次正反面出现的概率相同,连续抛掷5次,至少连续出现3次正面朝上的概率是A .14B .13C .532D .31635.在正方体1111ABCD A B C D -中,从1,,,A B C B 四个点中任取两个点,这两点连线平行于平面11AC D 的概率为( ) A .23B .12C .13D .5636.同时抛掷两枚硬币,“向上面都是正面”为事件M ,“至少有一枚的向上面是正面”为事件N ,则有( ) A .M N ⊆B .M N ⊇C .M ND .M N <37.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”,如图是在“赵爽弦图”的基础上创作出的一个“数学风车”,其中正方形ABCD 内部为“赵爽弦图”,正方形ABCD 外部四个阴影部分的三角形称为“风叶”.现从该“数学风车”的8个顶点中任取2个顶点,则2个顶点取自同一片“风叶”的概率为( )A .37B .47C .314D .111438.抛一枚均匀硬币,正,反面出现的概率都是12,反复投掷,数列{}n a 定义如下:1({-1(n n a n =第次投掷出现正面)第次投掷出现反面),若*12()n n S a a a n N =+++∈,则事件40S >的概率为A .516B .14C .116D .1239.在区间[]0,1上任取两个数,则这两个数之和小于65的概率是( )A .1225B .1625C .1725D .182540.如图,在矩形OABC 中的曲线分别是sin y x =,cos y x =的一部分,,02A π⎛⎫ ⎪⎝⎭,()0,1C ,在矩形OABC 内随机取一点,若此点取自阴影部分的概率为1P ,取自非阴影部分的概率为2P ,则( )A .12P P <B .12P P >C .12P P =D .大小关系不能确定41.已知在10件产品中可能存在次品,从中抽取2件检查,记次品数为X ,已知16(1)45P X ==,且该产品的次品率不超过40%,则这10件产品的次品数为( ) A .2件 B .4件 C .6件 D .8件42.函数()()22846f x x x x =-++-≤≤,在其定义域内任取一点0x ,使()00f x ≥的概率是 A .310B .23C .35D .4543.设k 是一个正整数,在(1+)k x k的展开式中,第四项的系数为116,记函数2yx 与y kx =的图象所围成的阴影部分面积为S ,任取[0,4]x ∈,[0,16]y ∈,则点(,)x y 恰好落在阴影区域S 内的概率是( ) A .23B .13C .25D .1644.在2015年全国青运会火炬传递活动中,有编号为1,2,3,4,5的5名火炬手,若从中任选2人,则选出的火炬手的编号不相连的概率为 A .310 B .35C .710 D .2545.《世界数学史简编》的封面有一图案(如图),该图案的正方形内有一内切圆,圆内有一内接正三角形,在此图案内随机取一点,则此点取自阴影部分的概率为A .2πB .4πC .4πD .2π46.将长为1的小捧随机拆成3小段,则这3小段能构成三角形的概率为 A .12 B .13C .14D .1547.已知函数,若在[1,8]上任取一个实数,则不等式成立的概率是A .B .C .D .48.由1,2,3,4,5组成的没有重复数字的五位数,从中任意抽取一个,则其恰好为“前3个数字保持递减,后3个数字保持递增”(如五位数“43125”,前3个数字“431”保持递减,后3个数字“125”保持递增)的概率是( ) A .120B .112C .110 D .16二、填空题49.(理)一盒中装有12个同样大小的球,其中5个红球,4个黑球,2个白球,1个绿球.从中随机取出1个球,则取出的1个球是红球或黑球或白球的概率为__________. 50.已知某市的1路公交车每5分钟发车一次,小明到达起点站乘车的时刻是随机的,则他候车时间不超过2分钟的概率是______.51.已知某运动员在一次射击中,射中10环、9环、8环、7环、7环以下的概率分别为0.24、0.28、0.19、0.16、0.13,则该运动员在一次射击中,至少射中8环的概率是_______. 52.如图,靶子由一个中心圆面I 和两个同心圆环Ⅱ、Ⅱ构成,射手命中I 、Ⅱ、Ⅱ的概率分别为0.33、0.29、0.26,则脱靶的概率是______.53.下列命题中,正确的是______.(填序号)Ⅱ事件A 发生的概率()P A 等于事件A 发生的频率()n f A ;Ⅱ一颗质地均匀的骰子掷一次得到3点的概率是16,说明这个骰子掷6次一定会出现一次3点;Ⅱ掷两枚质地均匀的硬币,事件A 为“一枚正面朝上,一枚反面朝上”,事件B 为“两枚都是正面朝上”,则()()2P A P B =;54.袋子中有四个小球,分别写有“四”“校”“联”“考”四个字,有放回地从中任取一个小球,取到“联”就停止,用随机模拟的方法估计直到第二次停止的概率:先由计算器产生1到4之间取整数值的随机数,且用1,2,3,4表示取出小球上分别写有“四”“校”“联”“考”四个字,以每两个随机数为一组,代表两次的结果,经随机模拟产生了20组随机数:13 24 12 32 43 14 24 32 31 21 23 13 32 21 24 42 13 32 23 34据此估计,直到第二次就停止的概率为______.55.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为__________.56.已知甲罐中有四个相同的小球,标号为1,2,3,4;乙罐中有五个相同的小球,标号为1,2,3,5,6,现从甲罐、乙罐中分别随机抽取1个小球,记事件A =“抽取的两个小球标号之和大于5”,事件B =“抽取的两个小球标号之积大于8”,则正确命题的序号是______.Ⅱ事件A 发生的概率为12;Ⅱ事件A B 发生的概率为1120; Ⅱ事件A B 发生的概率为25;Ⅱ从甲罐中抽到标号为2的小球的概率为15.57.随机抽取10个同学中至少有2个同学在同一月份生日的概率为__(精确到0.001). 58..从分别写上数字1,2,3,9,的9张卡片中,任意取出两张,观察上面的数字,则两数积是完全平方数的概率为________________59.如图,有四根木棒穿过一堵墙,两人分别站在墙的左、右两边,各选该边的一根木棒.若每边每根木棒被选中的机会相等,则两人选到同一根木棒的概率为__________.60.抛掷一枚质地均匀的骰子(骰子的六个面上分别标有1、2、3、4、5、6个点)一次,观察掷出向上的点数,设事件A 为“向上的为奇数点”,事件B 为“向上的为4点”,则()P A B =______.61.盒子里装有大小质量完全相同且分别标有数字1、2、3、4、5的五个小球,从盒子里随机摸出两个小球,那么事件“摸出的小球上标有的数字之和不小于5”的概率是______.62.已知向量(2,1),(,)a b x y ==,若{}{}1,0,1,2,1,0,1x y ∈-∈-,则向量//a b 的概率为_______.63.某微信群中四人同时抢3个红包(金额不同),假设每人抢到的几率相同且每人最多抢一个,则其中甲、乙都抢到红包的概率为 _____.64.将3个小球任意地放入4个大玻璃杯中,一个杯子中球的最多个数记为X ,则X 的分布列是________.65.如图,已知圆的半径为10,其内接三角形ABC 的内角A ,B 分别为60°和45°,现向圆内随机撒一粒豆子,则豆子落在三角形ABC 内的概率为_______66.2022北京冬奥会期间,吉祥物冰墩墩成为“顶流”,吸引了许多人购买,使一“墩”难求.甲、乙、丙3人为了能购买到冰墩墩,商定3人分别去不同的官方特许零售店购买,若甲、乙2人中至少有1人购买到冰墩墩的概率为12,丙购买到冰墩墩的概率为13,则甲,乙、丙3人中至少有1人购买到冰墩墩的概率为___________.67.设a ,b 随机取自集合{}1,2,3,则直线30ax by ++=与圆221x y +=有公共点的概率是________. 三、解答题68.一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4,先从袋中随机取一个球,该球的编号为m ,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n .求(1)用列举法,列出所有结果; (2)求事件2n m <+的概率.69.电影公司随机收集了电影的有关数据,经分类整理得到下表:好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.假设所有电影是否获得好评相互独立.从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;70.为了适应新高考改革,某校组织了一次新高考质量测评(总分100分),在成绩统计分析中,抽取12名学生的成绩以茎叶图形式表示如图,学校规定测试成绩低于87分的为“未达标”,分数不低于87分的为“达标”.(1)求这组数据的众数和平均数;(2)在这12名学生中从测试成绩介于80~90之间的学生中任选2人,求至少有1人“达标”的概率.71.共享单车进驻城市,绿色出行引领时尚.某市有统计数据显示,2020年该市共享单车用户年龄等级分布如图1所示,一周内市民使用单车的频率分布扇形图如图2所示.若将共享单车用户按照年龄分为“年轻人”(20岁-39岁)和“非年轻人”(19岁及以下或者40岁及以上)两类,将一周内使用的次数为6次或6次以上的称为“经常使用单车用户”,使用次数为5次或不足5次的称为“不常使用单车用户”.已知在“经常使用单车用户”中有56是“年轻人”.图1共享单车用户年龄等级分布图2共享单车使用频率分布(1)现对该市市民进行“经常使用共享单车与年龄关系”的调查,采用随机抽样的方法,抽取一个容量为200的样本,请你根据图表中的数据,补全下列22列联表,并根据列联表的独立性检验,判断是否有85%的把握认为经常使用共享单车与年龄有关?使用共享单车情况与年龄列联表:(2)现从不常使用共享单车的人中分层抽样抽出4人跟踪调查,若从这4人中随机抽取2人,求2人都是年轻人的概率. 参考数据:独立性检验界值表:其中,()()()()()22n ad bc K a b c d a c b d -=++++,n a b c d =+++.72.为了提高学生的身体素质,某校高一、高二两个年级共336名学生同时参与了“我运动,我健康,我快乐”的跳绳、踢毽等系列体育健身活动.为了了解学生的运动状况,采用分层抽样的方法从高一、高二两个年级的学生中分别抽取7名和5名学生进行测试.下表是高二年级的5名学生的测试数据(单位:个/分钟):(1)求高一、高二两个年级各有多少人?(2)设某学生跳绳m 个/分钟,踢毽n 个/分钟.当175m ≥,且75n ≥时,称该学生为“运动达人”.Ⅱ从高二年级的学生中任选一人,试估计该学生为“运动达人”的概率;Ⅱ从高二年级抽出的上述5名学生中,随机抽取3人,求抽取的3名学生中为“运动达人”的人数ξ的分布列和数学期望.73.若养殖场每个月生猪的死亡率不超过1%,则该养殖场考核为合格,该养殖场在2019年1月到8月养殖生猪的相关数据如下表所示:(1)从该养殖场2019年2月到6月这5个月中任意选取3个月,求恰好有2个月考核获得合格的概率;(2)根据1月到8月的数据,求出月利润y (十万元)关于月养殖量x (千只)的线性回归方程(精确到0.001).(3)预计在今后的养殖中,月利润与月养殖量仍然服从(2)中的关系,若9月份的养殖量为1.5万只,试估计:该月利润约为多少万元?附:线性回归方程ˆˆˆya bx =+中斜率和截距用最小二乘法估计计算公式如下:1221ˆni ii nii x ynx ybxnx ==-=-∑∑,ˆˆay bx =- 参考数据:88211460,379.5ii i i i x x y ====∑∑.74.某次社会实践活动中,甲、乙两个班的同学共同在一个社区进行民意调查.参加活动的甲、乙两班的人数之比为5Ⅱ3,其中甲班中女生占35,乙班中女生占13.求该社区居民遇到一位进行民意调查的同学恰好是女生的概率. 75.设袋中有5个黄球,3个红球,2个绿球,试按:(1)有放回摸球三次,每次摸一球,求第三次才摸到绿球的概率; (2)不放回摸球三次,每次摸一球,求第三次才摸到绿球的概率.76.将一枚质地均匀且四个面上分别标有1,2,3,4的正四面体先后抛掷两次,其底面落于桌面上,记第一次朝下面的数字为x ,第二次朝下面的数字为y ,用(),x y 表示一个基本事件. (1)求满足条件“xy为整数”的事件的概率; (2)求满足条件“2x y -<”的事件的概率.77.投掷一个质地均匀、每个面上标有一个数字的正方体玩具,它的六个面中,有两个面的数字是0,两个面的数字是2,两个面的数字是4.将此玩具连续抛掷两次,以两次朝上一面出现的数字分别作为点P的横坐标和纵坐标.(1)求点P落在区域C:x2+y2≤10上的概率;(2)若以落在区域C上的所有点为顶点作面积最大的多边形区域M,在区域C上随机撒一粒豆子,求豆子落在区域M上的概率.78.如今我们的互联网生活日益丰富,网购开始成为不少人日常生活中不可或缺的一部分,某校学生管理机构为了了解学生网购消费情况,从全校学生中抽取了100人进行分析,得到如下表格(单位:人)参考公式:22()()()()()n ad bcKa b c d a c b d-=++++,其中n a b c d=+++参考数据如下:(1)根据表中数据,能否在犯错误的概率不超过0.05的前提下认为学生网购的情况与性别有关?(2)现从所调查的女生中利用分层抽样的方法抽取了5人,其中经常网购的女生分别是:,,A B C,偶尔或从不网购的女生分别是,a b,从这5人中随机选出2人,求选出的2人中至少有1人经常网购的概率79.已知甲袋中有4个白球2个黑球,乙袋中有3个白球2个黑球.现从甲袋中任取2个球放入乙袋,然后再从乙袋中任取1个球.(1)求甲袋中任取出的2个球为同色球的概率;(2)求乙袋中任取出1球为白球的概率.80.全世界越来越关注环境保护问题,某监测站点于2016年8月某日起连续n天监测空气质量指数()AQI,数据统计如下:(1)根据所给统计表和频率分布直方图中的信息求出,n m的值,并完成频率分布直方图:(2)由频率分布直方图,求该组数据的平均数与中位数;-的监测数据中,用分层抽样的方法抽取5 (3)在空气质量指数分别为51100-和151200天,从中任意选取2天,求事件A“两天空气都为良”发生的概率.81.甲、乙两人参加一次考试.已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题,规定每次考试都从各选题中随机抽出3题进行测试,至少答对2题才算合格.(1)分别求甲、乙两人考试合格的概率;(2)求甲、乙两人至少有一人考试合格的概率.82.某医院为促进行风建设,拟对医院的服务质量进行量化考核,每个患者就医后可以对医院进行打分,最高分为100分.上个月该医院对100名患者进行了回访调查,将他们按所打分数分成以下几组:第一组[0,20),第二组[20,40),第三组[40,60),第四组80,100,得到频率分布直方图,如图所示.[60,80),第五组[](1)求所打分数不低于60分的患者人数;(2)该医院在第二、三组患者中按分层抽样的方法抽取6名患者进行深入调查,之后将从这6人中随机抽取2人聘为医院行风监督员,求行风监督员来自不同组的概率. 83.某人忘记了电话号码的最后一个数字,因而他随意地拨号,假设拨过了的号码不再重复,试求下列事件的概率:(1)第3次拨号才接通电话;(2)拨号不超过3次而接通电话.84.浙江省新高考采用“3+3”模式,其中语文、数学、外语三科为必考科目,另外考生根据自己实际需要在政治、历史、地理、物理、化学、生物、技术7 门科目中自选 3 门参加考试.下面是某校高一200 名学生在一次检测中的物理、化学、生物三科总分成绩,以组距20 分成7组:[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300],画出频率分布直方图如下图所示.(1)求频率分布直方图中a的值;(2)由频率分布直方图,求物理、化学、生物三科总分成绩的第60 百分位数;(3)若小明决定从“物理、化学、生物、政治、技术”五门学科中选择三门作为自己的选考科目,求小明选中“技术”的概率.85.某学校在学校内招募了12名男志愿者和18名女志愿者,将这30名志愿者的身高编成如茎叶图所示(单位:cm),若身高在175cm以上(包括175cm)定义为“高个子”,身高在175cm以下(不包括175cm)定义为“非高个子”.(Ⅱ)根据数据分别写出男、女两组身高的中位数;(Ⅱ)如果用分层抽样的方法从“高个子”和“非高个子”中抽取5人,则各抽几人?(Ⅱ)在(Ⅱ)的基础上,从这5人中选2人,那么至少有一人是“高个子”的概率是多少?86.2020年江西省旅游产业发展大会于6月12日至6月13日在赣州顺利召开.为让广学生子解赣州旅游文化,赣州市旅游局在赣州市各中小学校开展“赣州市旅游知识网络竞赛”活动.为了更好地分析中学生和小学生对赣州市旅游知识掌握情况,将中学组和小学组的所有参赛选手按成绩分为优秀、良好、一般三个等级,随机从中抽取了100名选手进行调查,下面是根据调查结果绘制的选手等级人数的条形图.(1)若将一般和良好等级合称为合格等级,根据已知条件完成下面的22⨯列联表,并据此资料你是否有95%的把握认为选手成绩“优秀”与文化程度有关?(2)若某县参赛选手共80人,用频率估计概率,试估计该县参赛选手中优秀等级的人数;(3)如果在优秀等级的选手中取3名,在良好等级的选手中取2名,再从这5人中任选3人组成一个比赛团队,求所选团队中恰有2名选手的等级为优秀的概率.注:()()()()()22n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.。
高考概率复习题
高考概率复习题高考概率复习题高考是每个学生都经历的一场考试,它对于学生的未来有着重要的影响。
而在高考数学中,概率是一个重要的考点。
掌握概率的知识,不仅可以帮助我们解决实际生活中的问题,还能在高考中获得更好的成绩。
下面,我们就来复习一些高考概率题。
1. 有一批产品,其中10%的产品是次品。
现从中随机抽取3个产品,求至少有一个次品的概率。
解析:我们可以利用概率的互补事件来解决这个问题。
首先,求没有次品的概率,即全是良品的概率。
第一个产品是良品的概率为90%,第二个产品也是良品的概率为90%,第三个产品也是良品的概率为90%。
所以全是良品的概率为0.9 × 0.9 × 0.9 = 0.729。
那么至少有一个次品的概率就是1减去全是良品的概率,即1 - 0.729 = 0.271。
2. 有一批产品,其中60%的产品是A型号,40%的产品是B型号。
现从中随机抽取2个产品,求两个产品都是A型号的概率。
解析:我们可以利用概率的乘法定理来解决这个问题。
首先,求第一个产品是A型号的概率,即60%。
然后,求第二个产品是A型号的概率,由于第一个产品已经确定是A型号,所以第二个产品是A型号的概率仍为60%。
所以两个产品都是A型号的概率为0.6 × 0.6 = 0.36。
3. 有一批产品,其中30%的产品是不合格品。
现从中随机抽取3个产品,求至少有一个合格品的概率。
解析:我们可以利用概率的互补事件来解决这个问题。
首先,求没有合格品的概率,即全是不合格品的概率。
第一个产品是不合格品的概率为30%,第二个产品也是不合格品的概率为30%,第三个产品也是不合格品的概率为30%。
所以全是不合格品的概率为0.3 × 0.3 × 0.3 = 0.027。
那么至少有一个合格品的概率就是1减去全是不合格品的概率,即1 - 0.027 = 0.973。
4. 有一批产品,其中20%的产品是次品,80%的产品是良品。
高考概率经典解答题及答案
高考概率经典解答题及答案下面是一些经典的高考概率题目及其答案:1. 问题:在一副扑克牌中,从中任意抽取一张牌,求抽到红桃的概率是多少?问题:在一副扑克牌中,从中任意抽取一张牌,求抽到红桃的概率是多少?答案:扑克牌中一共有52张牌,其中红桃有13张。
因此抽到红桃的概率为13/52,即1/4。
:扑克牌中一共有52张牌,其中红桃有13张。
因此抽到红桃的概率为13/52,即1/4。
2. 问题:有一个包含5只黑球和7只白球的箱子,从中不放回地随机抽取两个球,求抽到一黑一白的概率是多少?问题:有一个包含5只黑球和7只白球的箱子,从中不放回地随机抽取两个球,求抽到一黑一白的概率是多少?答案:抽取第一个球时,有5/12的概率抽到黑球,7/12的概率抽到白球。
抽取第二个球时,则有4/11的概率抽到与第一个球不同颜色的球。
:抽取第一个球时,有5/12的概率抽到黑球,7/12的概率抽到白球。
抽取第二个球时,则有4/11的概率抽到与第一个球不同颜色的球。
因此,抽到一黑一白的概率为(5/12) * (7/11) + (7/12) * (5/11) = 35/66。
3. 问题:有标准的六面骰子,投掷两次,求两次投掷的点数之和为7的概率是多少?问题:有标准的六面骰子,投掷两次,求两次投掷的点数之和为7的概率是多少?答案:投掷两次骰子,每次投掷的点数都有6种可能结果。
共有36种不同的点数组合。
:投掷两次骰子,每次投掷的点数都有6种可能结果。
共有36种不同的点数组合。
其中,和为7的组合有(1,6)、(2,5)、(3,4)、(4,3)、(5,2)和(6,1)这6种组合。
因此,两次投掷的点数之和为7的概率为6/36,即1/6。
以上是一些经典的高考概率题目及其答案,希望对您有帮助。
高中数学概率知识点及例题自己整理
1.事件的关系:⑴事件B 包含事件A :事件A 发生,事件B 一定发生,记作B A ⊆; ⑵事件A 与事件B 相等:若A B B A ⊆⊆,,则事件A 与B 相等,记作;⑶并(和)事件:某事件发生,当且仅当事件A 发生或B 发生,记作B A ⋃(或B A +); ⑷并(积)事件:某事件发生,当且仅当事件A 发生且B 发生,记作B A ⋂(或AB ) ; ⑸事件A 与事件B 互斥:若B A ⋂为不可能事件(φ=⋂B A ),则事件A 与互斥; ⑹对立事件:B A ⋂为不可能事件,B A ⋃为必然事件,则A 与B 互为对立事件。
2.概率公式:⑴互斥事件(有一个发生)概率公式:P()(A)(B); ⑵古典概型:基本事件的总数包含的基本事件的个数A A P =)(;⑶几何概型:等)区域长度(面积或体积试验的全部结果构成的积等)的区域长度(面积或体构成事件A A P =)( ;3. 随机变量的分布列 ⑴随机变量的分布列:①随机变量分布列的性质:≥01,2,…; p 12+…=1; ②离散型随机变量:期望:= x 1p 1 + x 2p 2 + … + + … ;方差:=⋅⋅⋅+-+⋅⋅⋅+-+-n n p EX x p EX x p EX x 2222121)()()( ; 注:DX a b aX D b aEX b aX E 2)(;)(=++=+; ③两点分布:X 0 1 期望:=p ;方差:=p(1).P 1-p p①超几何分布:一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则},,min{,,1,0,)(n M m m k C C C k X P nNk n MN k M ====-- 其中,N M N n ≤≤,。
称分布列X 0 1 … mP nN n MN M C C C 00-- n N n M N M C C C 11-- … n Nm n M N m M C C C -- 为超几何分布列, 称X 服从超几何分布。
概率大题练习题及讲解高中
概率大题练习题及讲解高中概率论是高中数学中的一个重要分支,它涉及到随机事件及其发生的可能性。
以下是一些概率大题的练习题及简要讲解,供高中生参考和练习。
练习题1:一个袋子里有5个红球和3个蓝球,随机从袋子中取出一个球,观察其颜色。
求取出红球的概率。
解答:总共有8个球,其中5个是红球。
取出红球的概率为红球数除以总球数,即:\[ P(\text{红球}) = \frac{5}{8} \]练习题2:一个班级有50名学生,其中30名男生和20名女生。
现在随机抽取3名学生,求至少有1名女生的概率。
解答:首先计算没有女生的概率,即抽取的3名学生都是男生的概率。
从30名男生中抽取3名,总共有\[ C_{30}^{3} \]种组合,而从50名学生中抽取3名,总共有\[ C_{50}^{3} \]种组合。
因此,没有女生的概率为:\[ P(\text{无女生}) = \frac{C_{30}^{3}}{C_{50}^{3}} \]至少有1名女生的概率为1减去没有女生的概率:\[ P(\text{至少1名女生}) = 1 - P(\text{无女生}) \]练习题3:一个工厂生产的零件中,有2%是次品。
现在随机抽取10个零件进行检查,求至少有1个次品的概率。
解答:这是一个二项分布问题。
次品的概率为0.02,非次品的概率为0.98。
使用二项分布公式计算至少有1个次品的概率:\[ P(\text{至少1个次品}) = 1 - P(\text{0个次品}) - P(\text{1个次品}) \]其中,\( P(\text{0个次品}) \)和\( P(\text{1个次品}) \)分别使用二项分布公式计算。
练习题4:一个骰子有6个面,每个面上的数字是1到6。
投掷骰子两次,求两次投掷结果之和为7的概率。
解答:两次投掷结果之和为7的情况有(1,6)、(2,5)、(3,4)、(4,3)、(5,2)、(6,1)六种。
每次投掷有6种可能,所以总共有\[ 6 \times 6 \]种可能的组合。
2023高考数学概率知识点练习及答案
2023高考数学概率知识点练习及答案高考数学概率知识点练习及答案一、选择题1.现采用随机模拟的方法估计某运动员射击4次,至少击中3次的概率:先由计算器给出0到9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7,8,9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组随机数:7527 0293 7140 9857 0347 4373 8636 69471417 4698 0371 6233 2616 8045 6011 36619597 7424 7610 4281根据以上数据估计该射击运动员射击4次至少击中3次的概率为( )A.0.852B.0.819 2C.0.8D.0.75答案:D 命题立意:本题主要考查随机模拟法,考查考生的逻辑思维能力.解题思路:因为射击4次至多击中2次对应的随机数组为7140,1417,0371,6011,7610,共5组,所以射击4次至少击中3次的概率为1-=0.75,故选D.2.在菱形ABCD中,ABC=30°,BC=4,若在菱形ABCD内任取一点,则该点到四个顶点的距离均不小于1的概率是( )A. 1/2B.2C. -1D.1答案:D 命题立意:本题主要考查几何概型,意在考查考生的运算求解能力.解题思路:如图,以菱形的四个顶点为圆心作半径为1的圆,图中阴影部分即为到四个顶点的距离均不小于1的区域,由几何概型的概率计算公式可知,所求概率P==.3.设集合A={1,2},B={1,2,3},分别从集合A和B中随机取一个数a和b,确定平面上的一个点P(a,b),记“点P(a,b)落在直线x+y=n上”为事件Cn(2≤n≤5,nN) ,若事件Cn的概率最大,则n的所有可能值为( )A.3B.4C.2和5D.3和4答案:D 解题思路:分别从集合A和B中随机取出一个数,确定平面上的一个点P(a,b),则有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),共6种情况,a+b=2的有1种情况,a+b=3的有2种情况,a+b=4的有2种情况,a+b=5的有1种情况,所以可知若事件Cn的概率最大,则n的所有可能值为3和4,故选D.4.记a,b分别是投掷两次骰子所得的数字,则方程x2-ax+2b=0有两个不同实根的概率为( )A. 3/4B.1/2C. 1/3D.1/4答案:B 解题思路:由题意知投掷两次骰子所得的数字分别为a,b,则基本事件有:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),…,(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共有36个.而方程x2-ax+2b=0有两个不同实根的条件是a2-8b>0,因此满足此条件的基本事件有:(3,1),(4,1),(5,1),(5,2),(5,3),(6,1),(6,2),(6,3),(6,4),共有9个,故所求的概率为=.5.在区间内随机取两个数分别为a,b,则使得函数f(x)=x2+2ax-b2+π2有零点的概率为( )A.1-B.1-C.1-D.1-答案:B 解题思路:函数f(x)=x2+2ax-b2+π2有零点,需Δ=4a2-4(-b2+π2)≥0,即a2+b2≥π2成立.而a,b[-π,π],建立平面直角坐标系,满足a2+b2≥π2的点(a,b)如图阴影部分所示,所求事件的概率为P===1-,故选B.6.袋中共有6个除了颜色外完全相同的球,其中有1个红球、2个白球和3个黑球.从袋中任取两球,两球颜色为一白一黑的概率等于( )A.5/6B.11/12C. 1/2D.3/4答案:B 解题思路:将同色小球编号,从袋中任取两球,所有基本事件为:(红,白1),(红,白2),(红,黑1),(红,黑2),(红,黑3),(白1,白2),(白1,黑1),(白1,黑2),(白1,黑3),(白2,黑1),(白2,黑2),(白2,黑3),(黑1,黑2),(黑1,黑3),(黑2,黑3),共有15个基本事件,而为一白一黑的共有6个基本事件,所以所求概率P==.故选B.二、填空题7.已知集合表示的平面区域为Ω,若在区域Ω内任取一点P(x,y),则点P的坐标满足不等式x2+y2≤2的概率为________.答案:命题立意:本题考查线性规划知识以及几何概型的概率求解,正确作出点对应的平面区域是解答本题的关键,难度中等.解题思路:如图阴影部分为不等式组表示的平面区域,满足条件x2+y2≤2的点分布在以为半径的四分之一圆面内,以面积作为事件的几何度量,由几何概型可得所求概率为=.8.从5名学生中选2名学生参加周六、周日社会实践活动,学生甲被选中而学生乙未被选中的概率是________.答案:命题立意:本题主要考查古典概型,意在考查考生分析问题的能力.解题思路:设5名学生分别为a1,a2,a3,a4,a5(其中甲是a1,乙是a2),从5名学生中选2名的选法有(a1,a2),(a1,a3) ,(a1,a4),(a1,a5),(a2,a3),(a2,a4),(a2,a5),(a3,a4),(a3,a5),(a4,a5),共10种,学生甲被选中而学生乙未被选中的选法有(a1,a3),(a1,a4),(a1,a5),共3种,故所求概率为.9.已知函数f(x)=kx+1,其中实数k随机选自区间,则对x∈[-1,1],都有f(x)≥0恒成立的概率是________.答案:命题立意:本题主要考查几何概型,意在考查数形结合思想.解题思路:f(x)=kx+1过定点(0,1),数形结合可知,当且仅当k[-1,1]时满足f(x)≥0在x[-1,1]上恒成立,而区间[-1,1],[-2,1]的区间长度分别是2,3,故所求的概率为.10.若实数m,n{-2,-1,1,2,3},且m≠n,则方程+=1表示焦点在y轴上的双曲线的概率是________.解题思路:实数m,n满足m≠n的基本事件有20种,如下表所示.-2 -1 1 2 3 -2 (-2,-1) (-2,1) (-2,2) (-2,3) -1 (-1,-2) (-1,1) (-1,2) (-1,3) 1 (1,-2) (1,-1) (1,2) (1,3) 2 (2,-2) (2,-1) (2,1) (2,3) 3 (3,-2) (3,-1) (3,1) (3,2) 其中表示焦点在y轴上的双曲线的事件有(-2,1),(-2,2),(-2,3),(-1,1),(-1,2),(-1,3),共6种,因此方程+=1表示焦点在y轴上的双曲线的概率为P==.三、解答题11.袋内装有6个球,这些球依次被编号为1,2,3,…,6,设编号为n的球重n2-6n+12(单位:克),这些球等可能地从袋里取出(不受重量、编号的影响).(1)从袋中任意取出1个球,求其重量大于其编号的概率;(2)如果不放回地任意取出2个球,求它们重量相等的概率.命题立意:本题主要考查古典概型的基础知识,考查考生的计算能力.解析:(1)若编号为n的球的重量大于其编号,则n2-6n+12>n,即n2-7n+12>0.解得n<3或n>4.所以n=1,2,5,6.所以从袋中任意取出1个球,其重量大于其编号的概率P==.(2)不放回地任意取出2个球,这2个球编号的所有可能情形为:1,2;1,3;1,4;1,5;1,6;2,3;2,4;2,5;2,6;3,4;3,5;3,6;4,5;4,6;5,6.共有15种可能的情形.设编号分别为m与n(m,n{1,2,3,4,5,6},且m≠n)的球的重量相等,则有m2-6m+12=n2-6n+12,即有(m-n)(m+n-6)=0.所以m=n(舍去)或m+n=6.满足m+n=6的情形为1,5;2,4,共2种情形.故所求事件的概率为.12.一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.(1)从袋中随机抽取一个球,将其编号记为a,然后从袋中余下的三个球中再随机抽取一个球,将其编号记为b,求关于x 的一元二次方程x2+2ax+b2=0有实根的概率;(2)先从袋中随机取一个球,该球的编号记为m,将球放回袋中,然后从袋中随机取一个球,该球的编号记为n.若以(m,n)作为点P的坐标,求点P落在区域内的概率.命题立意:(1)不放回抽球,列举基本事件的个数时,注意不要出现重复的号码;(2)有放回抽球,列举基本事件的个数时,可以出现重复的号码,然后找出其中随机事件含有的基本事件个数,按照古典概型的公式进行计算.解析:(1)设事件A为“方程x2+2ax+b2=0有实根”.当a>0,b>0时,方程x2+2ax+b2=0有实根的充要条件为a≥b.以下第一个数表示a的取值,第二个数表示b的取值.基本事件共12个:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3).事件A中包含6个基本事件:(2,1),(3,1),(3,2),(4,1),(4,2),(4,3).事件A发生的概率为P(A)==.(2)先从袋中随机取一个球,放回后再从袋中随机取一个球,点P(m,n)的所有可能情况为:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个.落在区域内的有(1,1),(2,1),(2,2),(3,1),共4个,所以点P落在区域内的概率为.13.某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),…,[90,100]后得到如图所示的频率分布直方图.(1)求图中实数a的值;(2)若该校高一年级共有学生640人,试估计该校高一年级期中考试数学成绩不低于60分的人数;(3)若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,求这2名学生的数学成绩之差的绝对值不大于10的概率.命题立意:本题以频率分布直方图为载体,考查概率、统计等基础知识,考查数据处理能力、推理论证能力和运算求解能力,考查数形结合、化归与转化等数学思想方法.解析:(1)由已知,得10×(0.005+0.01+0.02+a+0.025+0.01)=1,解得a=0.03.(2)根据频率分布直方图可知,成绩不低于60分的频率为1-10×(0.005+0.01)=0.85.由于该校高一年级共有学生640人,利用样本估计总体的思想,可估计该校高一年级期中考试数学成绩不低于60分的人数约为640×0.85=544.(3)易知成绩在[40,50)分数段内的人数为40×0.05=2,这2人分别记为A,B;成绩在[90,100]分数段内的人数为40×0.1=4,这4人分别记为C,D,E,F.若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,则所有的基本事件有:(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共15个.如果2名学生的数学成绩都在[40,50)分数段内或都在[90,100]分数段内,那么这2名学生的数学成绩之差的绝对值一定不大于10.如果一个成绩在[40,50)分数段内,另一个成绩在[90,100]分数段内,那么这2名学生的数学成绩之差的绝对值一定大于10.记“这2名学生的数学成绩之差的绝对值不大于10”为事件M,则事件M包含的基本事件有:(A,B),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共7个.所以所求概率为P(M)=.14.新能源汽车是指利用除汽油、柴油之外其他能源的汽车,包括燃料电池汽车、混合动力汽车、氢能源动力汽车和太阳能汽车等,其废气排放量比较低,为了配合我国“节能减排”战略,某汽车厂决定转型生产新能源汽车中的燃料电池轿车、混合动力轿车和氢能源动力轿车,每类轿车均有标准型和豪华型两种型号,某月的产量如下表(单位:辆):燃料电池轿车混合动力轿车氢能源动力轿车标准型 100 150 y 豪华型 300 450 600 按能源类型用分层抽样的方法在这个月生产的轿车中抽取50辆,其中燃料电池轿车有10辆.(1)求y的值;(2)用分层抽样的方法在氢能源动力轿车中抽取一个容量为5的样本,将该样本看成一个总体,从中任取2辆轿车,求至少有1辆标准型轿车的概率;(3)用随机抽样的方法从混合动力标准型轿车中抽取10辆进行质量检测,经检测它们的得分如下:9.3,8.7,9.1,9.5,8.8,9.4,9.0,8.2,9.6,8.4.把这10辆轿车的得分看作一个样本,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.4的概率.命题立意:本题主要考查概率与统计的相关知识,考查学生的运算求解能力以及分析问题、解决问题的能力.对于第(1)问,设该厂这个月生产轿车n辆,根据分层抽样的方法在这个月生产的轿车中抽取50辆,其中有燃料电池轿车10辆,列出关系式,得到n的值,进而得到y值;对于第(2)问,由题意知本题是一个古典概型,用列举法求出试验发生包含的事件数和满足条件的事件数,根据古典概型的概率公式得到结果;对于第(3)问,首先求出样本的平均数,求出事件发生包含的事件数和满足条件的事件数,根据古典概型的概率公式得到结果.解析:(1)设该厂这个月共生产轿车n辆,由题意,得=,n=2 000,y=2 000-(100+300)-150-450-600=400.(2)设所抽样本中有a辆标准型轿车,由题意得a=2.因此抽取的容量为5的样本中,有2辆标准型轿车,3辆豪华型轿车,用A1,A2表示2辆标准型轿车,用B1,B2,B3表示3辆豪华型轿车,用E表示事件“在该样本中任取2辆轿车,其中至少有1辆标准型轿车”,则总的基本事件有(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),(B1,B2),(B1,B3),(B2,B3),共10个,事件E包含的基本事件有(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),共7个,故所求概率为P(E)=.(3)样本平均数=×(9.3+8.7+9.1+9.5+8.8+9.4+9.0+8.2+9.6+8.4)=9.设D表示事件“从样本中任取一个数,该数与样本平均数之差的绝对值不超过0.4”,则总的基本事件有10个,事件D包括的基本事件有9.3,8.7,9.1,8.8,9.4,9.0,共6个.所求概率为P(D)==.。
高考概率大题必练20题(理科)-含答案
高考大题概率训练1、在甲、乙等6个单位参加的一次“唱读讲传”演出活动中,每个单位的节目集中安排在一起,若采用抽签的方式随机确定各单位的演出顺序(序号为1,2,……6),求:(I)甲、乙两单位的演出序号至少有一个为奇数的概率;(II)甲、乙两单位之间的演出单位个数ξ的分布列与期望。
2、某迷宫有三个通道,进入迷宫的每个人都要经过一扇智能门。
首次到达此门,系统会随机(即等可能)为你打开一个通道,若是1号通道,则需要1小时走出迷宫;若是2号、3号通道,则分别需要2小时、3小时返回智能门。
再次到达智能门时,系统会随机打开一个你未到过...的通道,直至走完迷宫为止。
令ξ表示走出迷宫所需的时间。
(1)求ξ的分布列;(2)求ξ的数学期望。
3、某同学参加3门课程的考试。
假设该同学第一门课程取得优秀成绩的概率为45,第二、第三门课程取得优秀成绩的概率分别为p,q(p>q),且不同课程是否取得优秀成绩相互独立。
记ξ为该生取得优秀成绩的课程数,其分布列为(Ⅰ)求该生至少有(Ⅱ)求p,q的值;(Ⅲ)求数学期望Eξ。
4、某种有奖销售的饮料,瓶盖内印有“奖励一瓶”或“谢谢购买”字样,购买一瓶若其瓶盖内印有“奖励一瓶”字样即为中奖,中奖概率为16.甲、乙、丙三位同学每人购买了一瓶该饮料。
(Ⅰ)求甲中奖且乙、丙都没有中奖的概率;(Ⅱ)求中奖人数ξ的分布列及数学期望Eξ.5、某射手每次射击击中目标的概率是23,且各次射击的结果互不影响。
(Ⅰ)假设这名射手射击5次,求恰有2次击中目标的概率(Ⅱ)假设这名射手射击5次,求有3次连续击中目标。
另外2次未击中目标的概率;(Ⅲ)假设这名射手射击3次,每次射击,击中目标得1分,未击中目标得0分,在3次射击中,若有2次连续击中,而另外1次未击中,则额外加1分;若3次全击中,则额外加3分,记ξ为射手射击3次后的总的分数,求ξ的分布列。
6、某食品厂为了检查一条自动包装流水线的生产情况,随即抽取该流水线上40件产品作为样本算出他们的重量(单位:克)重量的分组区间为(490,]495,(495,]500,……(510,]515,由此得到样本的频率分布直方图,如图4所示.(1)根据频率分布直方图,求重量超过505克的产品数量. (2)在上述抽取的40件产品中任取2件,设Y 为重量超过505克的产品数量,求Y 的分布列.(3)从流水线上任取5件产品,求恰有2件产品合格的重量超过505克的概率.7、某食品企业一个月内被消费者投诉的次数用ξ表示,据统计,随机变量ξ的概率分布如下表:(1)求a 的值和ξ的数学期望;(2)假设一月份与二月份被消费投诉的次数互不影响,求该企业在这两个月内共被 消费者投诉2次的概率.8、一个袋中有大小相同的标有1,2,3,4,5,6的6个小球,某人做如下游戏,每次从袋中拿一个球(拿后放回),记下标号。
概率经典例题和解析、近年高考题50道带答案解析
【经典例题】【例1】(2012湖北)如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆.在扇形OAB 内随机取一点,则此点取自阴影部分的概率是A .1-2π B . 12 - 1π C . 2π D . 1π【答案】A【解析】令OA=1,扇形OAB 为对称图形,ACBD 围成面积为S 1,围成OC 为S 2,作对称轴OD ,则过C 点.S 2即为以OA 为直径的半圆面积减去三角形OAC 的面积,S 2=π2 ( 12 )2- 12 × 12 × 12 = π-28 .在扇形OAD 中 S 12为扇形面积减去三角形OAC 面积和S 22, S 12 = 18 π×12- 18 - S 22 = π-216 ,S 1+S 2= π-24 ,扇形OAB 面积S= π4,选A . 【例2】(2013湖北)如图所示,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过搅拌后,从中随机取一个小正方体,记它的涂漆面数为X ,则X 的均值E(X)=( )A. 126125B. 65C. 168125D. 75 【答案】B【解析】X 的取值为0,1,2,3且P(X =0)=27125,P(X =1)=54125,P(X =2)=36125,P(X =3)=8125,故E(X)=0×27125+1×54125+2×36125+3×8125=65,选B.【例3】(2012四川)节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是( )A. 14B. 12C. 34D. 78【答案】C【解析】设第一串彩灯在通电后第x 秒闪亮,第二串彩灯在通电后第y 秒闪亮,由题意⎩⎪⎨⎪⎧0≤x≤4,0≤y≤4,满足条件的关系式为-2≤x-y≤2.根据几何概型可知,事件全体的测度(面积)为16平方单位,而满足条件的事件测度(阴影部分面积)为12平方单位,故概率为1216=34.【例4】(2009江苏)现有5根竹竿,它们的长度(单位:m )分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.3m 的概率为 . 【答案】0.2【解析】从5根竹竿中一次随机抽取2根的可能的事件总数为10,它们的长度恰好相差0.3m 的事件数为2,分别是:2.5和2.8,2.6和2.9,所求概率为0.2 【例5】(2013江苏)现有某类病毒记作X m Y n ,其中正整数m ,n(m≤7,n≤9)可以任意选取,则m ,n 都取到奇数的概率为________. 【答案】2063【解析】基本事件共有7×9=63种,m 可以取1,3,5,7,n 可以取1,3,5,7,9.所以m ,n 都取到奇数共有20种,故所求概率为2063.【例6】(2013山东)在区间[-3,3]上随机取一个数x ,使得|x +1|-|x -2|≥1成立的概率为________. 【答案】13【解析】当x<-1时,不等式化为-x -1+x -2≥1,此时无解;当-1≤x≤2时,不等式化为x +1+x -2≥1,解之得x≥1;当x>2时,不等式化为x +1-x +2≥1,此时恒成立,∴|x+1|-|x -2|≥1的解集为[)1,+∞.在[]-3,3上使不等式有解的区间为[]1,3,由几何概型的概率公式得P =3-13-(-3)=13.【例7】(2013北京)下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.(1)求此人到达当日空气重度污染的概率;(2)设X 是此人停留期间空气质量优良的天数,求X 的分布列与数学期望; (3)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明) 【答案】213;1213;3月5日【解析】设Ai 表示事件“此人于3月i 日到达该市”(i=1,2,…,13).根据题意,P(Ai)=113,且Ai∩Aj=.(1)设B 为事件“此人到达当日空气重度污染”,则B =A5∪A8. 所以P(B)=P(A5∪A8)=P(A5)+P(A8)=213.(2)由题意可知,X 的所有可能取值为0,1,2,且P(X =1)=P(A3∪A6∪A7∪A11) =P(A3)+P(A6)+P(A7)+P(A11)=413,P(X =2)=P(A1∪A2∪A12∪A13) =P(A1)+P(A2)+P(A12)+P(A13)=413,P(X =0)=1-P(X =1)-P(X =2)=513.所以X 的分布列为故X 的期望E(X)=0×513+1×413+2×413=1213.(3)从3月5日开始连续三天的空气质量指数方差最大.【例8】(2013福建)某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为23,中奖可以获得2分;方案乙的中奖率为25,中奖可以获得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品.(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为X ,求X≤3的概率;(2)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的数学期望较大?【答案】1115;方案甲.【解析】方法一:(1)由已知得,小明中奖的概率为23,小红中奖的概率为25,且两人中奖与否互不影响.记“这2人的累计得分X≤3”的事件为A ,则事件A 的对立事件为“X=5”,因为P(X =5)=23×25=415,所以P(A)=1-P(X =5)=1115,即这两人的累计得分X≤3的概率为1115.(2)设小明、小红都选择方案甲抽奖中奖次数为X1,都选择方案乙抽奖中奖次数为X2,则这两人选择方案甲抽奖累计得分的数学期望为E(2X1),选择方案乙抽奖累计得分的数学期望为E(3X2).由已知可得,X1~B ⎝ ⎛⎭⎪⎫2,23,X2~B ⎝ ⎛⎭⎪⎫2,25, 所以E(X1)=2×23=43,E(X2)=2×25=45,从而E(2X1)=2E(X1)=83,E(3X2)=3E(X2)=125.因为E(2X1)>E(3X2),所以他们都选择方案甲进行抽奖时,累计得分的数学期望较大.方法二:(1)由已知得,小明中奖的概率为23,小红中奖的概率为25,且两人中奖与否互不影响.记“这两人的累计得分X≤3”的事件为A ,则事件A 包含有“X=0”“X=2”“X=3”三个两两互斥的事件,因为P(X =0)=⎝ ⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫1-25=15,P(X =2)=23×⎝ ⎛⎭⎪⎫1-25=25,P(X =3)=⎝ ⎛⎭⎪⎫1-23×25=215,所以P(A)=P(X =0)+P(X =2)+P(X =3)=1115,即这两人的累计得分X≤3的概率为1115.(2)设小明、小红都选择方案甲所获得的累计得分为X1,都选择方案乙所获得的累计得分为X2,则X1,X2的分布列如下:所以E(X1)=0×19+2×49+4×49=83,E(X2)=0×925+3×1225+6×425=125.因为E(X1)>E(X2),所以他们都选择方案甲进行抽奖时,累计得分的数学期望较大.【例9】(2013浙江)设袋子中装有a 个红球,b 个黄球,c 个蓝球,且规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分.(1)当a =3,b =2,c =1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和,求ξ的分布列; (2)从该袋子中任取(每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若Eη=53,Dη=59,求a∶b∶c.【答案】3∶2∶1 【解析】(1)由题意得,ξ=2,3,4,5,6.P(ξ=2)=3×36×6=14,P(ξ=3)=2×3×26×6=13,P(ξ=4)=2×3×1+2×26×6=518.P(ξ=5)=2×2×16×6=19,P(ξ=6)=1×16×6=136,所以ξ的分布列为(2)由题意知η的分布列为所以Eη=a a +b +c +2b a +b +c +3c a +b +c =53,Dη=1-532·a a +b +c +2-532·b a +b +c +3-532·c a +b +c =59,化简得⎩⎪⎨⎪⎧2a -b -4c =0,a +4b -11c =0,解得a =3c ,b =2c ,故a∶b∶c=3∶2∶1.【例10】(2009北京理)某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是13,遇到红灯时停留的时间都是2min. (1)求这名学生在上学路上到第三个路口时首次遇到红灯的概率; (2)求这名学生在上学路上因遇到红灯停留的总时间ξ的分布列及期望. 【答案】427;38【解析】本题主要考查随机事件、互斥事件、相互独立事件等概率知识、考查离散型随机变量的分布列和期望等基础知识,考查运用概率与统计知识解决实际问题的能力.(1)设这名学生在上学路上到第三个路口时首次遇到红灯为事件A ,因为事件A 等于事件“这名学生在第一和第二个路口没有遇到红灯,在第三个路口遇到红灯”,所以事件A 的概率为()11141133327P A ⎛⎫⎛⎫=-⨯-⨯= ⎪ ⎪⎝⎭⎝⎭. (2)由题意,可得ξ可能取的值为0,2,4,6,8(单位:min ).事件“2k ξ=”等价于事件“该学生在路上遇到k 次红灯”(k =0,1,2,3,4),∴()()441220,1,2,3,433kkkP k C k ξ-⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,∴即ξ的分布列是∴ξ的期望是0246881812781813E ξ=⨯+⨯+⨯+⨯+⨯=.【课堂练习】1.(2013广东)已知离散型随机变量则X 的数学期望E(X)=( )A. 32 B .2 C. 52D .3 2.(2013陕西)如图,在矩形区域ABCD 的A ,C 两点处各有一个通信基站,假设其信号的覆盖范围分别是扇形区域ADE 和扇形区域CBF(该矩形区域内无其他信号来源,基站工作正常).若在该矩形区域内随机地选一地点,则该地点无.信号的概率是( ) A .1-π4 B .π2-1 B .2-π2 D .π43.在棱长分别为1,2,3的长方体上随机选取两个相异顶点,若每个顶点被选的概率相同,则选到两个顶点的距离大于3的概率为( )A .47B .37C .27D .3144.(2009安徽理)考察正方体6个面的中心,甲从这6个点中任意选两个点连成直线,乙也从这6个点中任意选两个点连成直线,则所得的两条直线相互平行但不重合的概率等于 A .175 B . 275 C .375 D .4755.(2009江西理)为了庆祝六一儿童节,某食品厂制作了3种不同的精美卡片,每袋食品随机装入一张卡片,集齐3种卡片可获奖,现购买该种食品5袋,能获奖的概率为( )A .3181 B .3381 C .4881 D .5081. 6.(2009辽宁文)ABCD 为长方形,AB =2,BC =1,O 为AB 的中点,在长方形ABCD 内随机取一点,取到的点到O 的距离大于1的概率为A .4πB .14π-C .8π D .18π-7.(2009上海理)若事件E 与F 相互独立,且()()14P E P F ==,则()P E F I 的值等于A .0B .116C .14D .12∙A ∙∙∙∙∙BC D EF8.(2013广州)在区间[1,5]和[2,4]上分别取一个数,记为a ,b ,则方程x 2a 2+y2b 2=1表示焦点在x 轴上且离心率小于32的椭圆的概率为( ) A .12 B .1532 C .1732 D .31329.已知数列{a n }满足a n =a n -1+n -1(n≥2,n∈N ),一颗质地均匀的正方体骰子,其六个面上的点数分别为1,2,3,4,5,6,将这颗骰子连续抛掷三次,得到的点数分别记为a ,b ,c ,则满足集合{a ,b ,c}={a 1,a 2,a 3}(1≤a i ≤6,i =1,2,3)的概率是( )A .172B .136C .124D .11210.(2009湖北文)甲、乙、丙三人将参加某项测试,他们能达标的概率分别是0.8、0.6、0.5,则三人都达标的概率是 ,三人中至少有一人达标的概率是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率知识要点3.1.随机事件的概率3.1.1 随机事件的概率1、必然事件:一般地,把在条件S 下,一定会发生的事件叫做相对于条件S 的必然事件。
2、不可能事件:把在条件S 下,一定不会发生的事件叫做相对于条件S 的不可能事件。
3、确定事件:必然事件和不可能事件统称相对于条件S 的确定事件。
4、随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件。
5、频数:在相同条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数。
6、频率:事件A 出现的比例()=A n n A nf 。
7、概率:随机事件A 的概率是频率的稳定值,反之,频率是概率的近似值.3.1.2 概率的意义1、概率的正确解释:随机事件在一次试验中发生与否是随机的,但随机性中含有规律性。
认识了这种随机中的规律性,可以比较准确地预测随机事件发生的可能性。
2、游戏的公平性:抽签的公平性。
3、决策中的概率思想:从多个可选答案中挑选出正确答案的决策任务,那么“使得样本出现的可能性最大”可以作为决策的准则。
——极大似然法、小概率事件4、天气预报的概率解释:明天本地降水概率为70%解释是“明天本地下雨的机会是70%”。
5、试验与发现:孟德尔的豌豆试验。
6、遗传机理中的统计规律。
3.1.3 概率的基本性质1、事件的关系与运算(1)包含。
对于事件A与事件B,如果事件A发生,则事件B一定发生,称事件B包含事件A(或事件A包含于事件B),记作(或A B)。
⊇⊆B A不可能事件记作∅。
(2)相等。
若B A A B且,则称事件A与事件B相等,记作A=B。
⊇⊇(3)事件A与事件B的并事件(和事件):某事件发生当且仅当事件A发生或事件B发生。
(4)事件A与事件B的交事件(积事件):某事件发生当且仅当事件A发生且事件B发生。
(5)事件A与事件B互斥:A B为不可能事件,即=A B∅,即事件A与事件B在任何一次试验中并不会同时发生。
(6)事件A与事件B互为对立事件:A B为不可能事件,A B为必然事件,即事件A与事件B在任何一次试验中有且仅有一个发生。
2、概率的几个基本性质(1)0()1≤≤.P A(2)必然事件的概率为1.()1P E=.(3)不可能事件的概率为0. ()0P F=.(4)事件A 与事件B 互斥时,P(A B)=P(A)+P(B)——概率的加法公式。
(5)若事件B 与事件A 互为对立事件,,则A B 为必然事件,()1P A B =.3.2 古典概型3.2.1 古典概型1、基本事件:基本事件的特点:(1)任何两个事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本时间的和。
2、古典概型:(1)试验中所有可能出现的基本事件只有有限个;(2)每个基本事件出现的可能性相等。
具有这两个特点的概率模型称为古典概型。
3、公式:()=A P A 包含的基本事件的个数基本事件的总数3.2.2 (整数值)随机数的产生如何用计算器产生指定的两个整数之间的取整数值的随机数?——书上例题。
3.3 几何概型3.3.1 几何概型1、几何概型:每个事件发生的概率只有与构成该事件区域的长度(面积或体积)成比例的概率模型。
2、几何概型中,事件A 发生的概率计算公式:()P A =构成事件A 的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积)3.3.2 均匀随机数的产生常用的是[]0,1上的均匀随机数,可以用计算器来产生0~1之间的均匀随机数。
本章知识小结(1)在具体情境中,了解随机事件发生的不确定性和频率的稳定性,进一步了解概率的意义以及频率与概率的区别。
(2)通过实例,了解两个互斥事件的概率加法公式。
(3)通过实例,理解古典概型及其概率计算公式,会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。
(4)了解随机数的意义,能运用模拟方法(包括计算器产生随机数来进行模拟)估计概率,初步体会几何概型的意义(参见例3)。
(5)通过阅读材料,了解人类认识随机现象的过程。
重难点的归纳:重点: 随机事件 频率 概率,概率的意义与性质应用概率解决实际问题古典概型 几何概型 随机数与随机模拟1、了解随机事件发生的不确定性和频率的稳定性,正确理解概率的意义.2、理解古典概型及其概率计算公式.3、关于几何概型的概率计算4、体会随机模拟中的统计思想:用样本估计总体.难点:1、理解频率与概率的关系.2、设计和运用模拟方法近似计算概率.3、把求未知量的问题转化为几何概型求概率的问题.(二)高考概率概率考试内容:随机事件的概率.等可能性事件的概率.互斥事件有一个发生的概率.相互独立事件同时发生的概率.独立重复试验.考试要求:(1)了解随机事件的发生存在着规律性和随机事件概率的意义.(2)了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。
(3)了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率.(4)会计算事件在 n 次独立重复试验中恰好发生κ次的概率.以下归纳9个常见考点:解析概率与统计试题是高考的必考内容。
它是以实际应用问题为载体,以排列组合和概率统计等知识为工具,以考查对五个概率事件的判断识别及其概率的计算和随机变量概率分布列性质及其应用为目标的中档师,预计这也是今后高考概率统计试题的考查特点和命题趋向。
下面对其常见题型和考点进行解析。
考点 1考查等可能事件概率计算。
在一次实验中可能出现的结果有n个,而且所有结果出现的可能性都相等。
如果事件A包含的结果有m个,那么()mP A。
这就是等可能事件的n判断方法及其概率的计n算公式。
高考常借助不同背景的材料考查等可能事件概率的计算方法以及分析和解决实际问题的能力。
例 1(2004 天津)从4名男生和2名女生中任3人参加演讲比赛.(I)求所选3人都是男生的概率;(II)求所选3人中恰有1名女生的概率;(III)求所选3人中至少有1名女生的概率.考点 2 考查互斥事件至少有一个发生与相互独立事件同时发生概率计算。
不可能同时发生的两个事件A、B叫做互斥事件,它们至少有一个发生的事件为A+B,用概率的加法公式P(A+B)=P(A)+P(B)计算。
事件A(或B)是否发生对事件B(或A)发生的概率没有影响,则A、B叫做相互独立事件,它们同时发生的事件为AB。
用概率的乘法公式P(AB)=P(A)P(B)计算。
高考常结合考试竞赛、上网工作等问题对这两个事件的识别及其概率的综合计算能力进行考查。
例 2.(2005 全国卷Ⅲ)设甲、乙、丙三台机器是否需要照顾相互之间没有影响。
已知在某一小时内,甲、乙都需要照顾的概率为0.05,甲、丙都需要照顾的概率为0.1,乙、丙都需要照顾的概率为0.125,(Ⅰ)求甲、乙、丙每台机器在这个小时内需要照顾的概率分别是多少;(Ⅱ)计算这个小时内至少有一台需要照顾的概率。
考点 3 考查对立事件概率计算。
必有一个发生的两个互斥事件A、B叫做互为对立事件。
用概率的减法公式P(A)=1-P(A)计算其概率。
高考常结合射击、电路、交通等问题对对立事件的判断识别及其概率计算进行考查。
例 3.(2005 福建卷文)甲、乙两人在罚球线投球命中的概率分别为122和5。
(Ⅰ)甲、乙两人在罚球线各投球一次,求恰好命中一次的概率;(Ⅱ)甲、乙两人在罚球线各投球二次,求这四次投球中至少一次命中的概率;考点 4 考查独立重复试验概率计算。
若n次重复试验中,每次试验结果的概率都不依赖其它各次试验的结果,则此试验叫做n次独立重复试验。
若在1次试验中事件A发生的概率为 P,则在n次独立重复试验中,事件A恰好发生k次的概率为Pn(k)=n ()(1)k k n knP A C p p-=-。
高考结合实际应用问题考查n次独立重复试验中某事件恰好发生k次的概率的计算方法和化归转化、分类讨论等数学思想方法的应用。
例 4.(2005 湖北卷)某会议室用5盏灯照明,每盏灯各使用灯泡一只,且型号相同。
假定每盏灯能否正常照明只与灯泡的寿命有关,该型号的灯泡寿命为1年以上的概率为p1,寿命为2年以上的概率为p2。
从使用之日起每满1年进行一次灯泡更换工作,只更换已坏的灯泡,平时不换。
(Ⅰ)在第一次灯泡更换工作中,求不需要换灯泡的概率和更换2只灯泡的概率;(Ⅱ)在第二次灯泡更换工作中,对其中的某一盏灯来说,求该盏灯需要更换灯泡的概率;(Ⅲ)当p1=0.8,p2=0.3时,求在第二次灯泡更换工作,至少需要更换4只灯泡的概率(结果保留两个有效数字)考点 5考查随机变量概率分布与期望计算。
解决此类问题时,首先应明确随机变量可能取哪些值,然后按照相互独立事件同时发生概率的法公式去计算这些可能取值的概率值即可等到分布列,最后根据分布列和期望、方差公式去获解。
以此考查离散型随机变量分布列和数学期望等概念和运用概率知识解决实际问题的能力。
例 5.(2005 湖北卷)某地最近出台一项机动车驾照考试规定;每位考试者一年之内最多有4次参加考试的机会,一旦某次考试通过,使可领取驾照,不再参加以后的考试,否则就一直考到第4次为止。
如果李明决定参加驾照考试,设他每次参加考试通过的概率依次为0.6,0.7,0.8,0.9,求在一年内李明参加驾照考试次数ξ的分布列和ξ的期望,并求李明在一年内领到驾照的概率。
考点 6考查随机变量概率分布列与其他知识点结合1、考查随机变量概率分布列与函数结合。
例 6.(2005 湖南卷)某城市有甲、乙、丙3个旅游景点,一位客人游览这三个景点的概率分别是0.4,0.5,0.6,且客人是否游览哪个景点互不影响,设ξ表示客人离开该城市时游览的景点数与没有游览的景点数之差的绝对值。
(Ⅰ)求ξ的分布及数学期望;(Ⅱ)记“函数f(x)=x2-3ξx+1在区间[2,+∞)上单调递增”为事件A,求事件A的概率。
2、考查随机变量概率分布列与数列结合。
例 7甲乙两人做射击游戏,甲乙两人射击击中与否是相互独立事件,规则如下:若射击一次击中,原射击者继续射击,若射击一次不中,就由对方接替射击。
已知甲乙两人射击一次击中的概率均为7,且第一次由甲开始射击。
(1)求前4次射击中,甲恰好射击3次的概率。
(2)若第n次由甲射击的概率为an ,求数列{an}的通项公式;求lim an,并说明极n→∞限值的实际意义。
3、考查随机变量概率分布列与线形规划结合。
例 8(2005 辽宁卷)某工厂生产甲、乙两种产品,每种产品都是经过第一和第二工序加工而成,两道工序的加工结果相互独立,每道工序的加工结果均有A、B两个等级对每种产品,两道工序的加工结果都为A级时,产品为一等品,其余均为二等品。
(Ⅰ)已知甲、乙两种产品每一道工序的加工结果为A级的概率如表一所示,分别求生产出的甲、乙产品为一等品的概P(甲)、P(乙);(Ⅱ)已知一件产品的利润如表二所示,用ξ、η分别表示一件甲、乙产品的利润,在(I)的条件下,求ξ、η的分布列及Eξ、Eη;(Ⅲ)已知生产一件产品需用的工人数和资金额如表三所示.该工厂有工人40名,可用资金60万元。