泡沫金属的介绍及制备

合集下载

泡沫金属的介绍及制备

泡沫金属的介绍及制备

泡沫金属的介绍及制备泡沫金属是一种具有网状结构的金属材料,具有多孔、轻质、吸能等特点,广泛应用于航天航空、汽车、石油化工、建筑和生物医学等领域。

泡沫金属的制备方法有物理发泡法、化学发泡法和合金熔浇法等。

物理发泡法是利用金属粉末与发泡剂混合,通过高温炉将混合物熔化,发泡剂在熔融过程中释放出气体,使金属熔液形成气泡。

通过调整熔融温度、发泡剂添加量和冷却速率等参数,可以控制泡沫金属的孔隙率、孔径大小和形状。

化学发泡法是在金属粉末中添加化学反应剂,如水和一些添加剂,通过反应产生氢气或其他气体。

在高温下,氢气被金属熔融体吸收,形成气泡,使金属熔液膨胀。

利用化学发泡法可以制备具有更高孔隙率和更大孔径的泡沫金属。

合金熔浇法是将金属合金熔化后注入预先制备好的多孔陶瓷模具中,通过真空抽吸或压力注入等手段,将金属熔液填充到模具中的孔隙中,然后经过冷却固化,形成泡沫金属。

合金熔浇法可以制备泡沫金属的孔隙形状和密度更加均匀,同时具有较高的抗压强度和较低的气孔率。

泡沫金属具有以下几个显著的特点:1.轻质高强:泡沫金属的孔隙率通常可以达到80%以上,因此具有很小的密度。

同时,由于金属的连续结构,泡沫金属具有优异的强度和刚度。

2.吸能减震:泡沫金属可以吸收和分散冲击能量,具有较好的减震和吸能性能。

在航天航空领域的燃料箱、汽车碰撞缓冲装置和防弹材料等方面具有广泛的应用。

3.导热性能好:由于泡沫金属的连续结构,其导热性能较好。

可以用作散热器材料,有效降低电子设备和发动机等高温部件的温度。

4.吸声性能好:泡沫金属的多孔结构可以有效吸收和分散声音能量,具有良好的吸音性能。

在建筑和汽车领域被广泛应用于隔音材料。

5.生物相容性好:由于泡沫金属具有金属的特性,如抗腐蚀性和生物相容性,因此可以在生物医学领域应用于植入材料。

总之,泡沫金属具有轻质高强、吸能减震、导热性能好、吸声性能好和生物相容性好等优良特性。

随着科学技术的发展,泡沫金属在各个领域的应用将会进一步扩大。

泡沫金属的介绍及制备3.1

泡沫金属的介绍及制备3.1
气泡间膜厚最薄处: 15 μm ~ 20 μm
密度 :150 kg /m3 ~ 300 kg /m3。
常见的泡沫金属?
1.泡沫铝及其合金质轻,具有吸音、隔热、减振、 吸收冲击能和电磁波等特性,适用于导弹、飞行器和 其回收部件的冲击保护层,汽车缓冲器,电子机械减 振装置,电磁波屏蔽罩等。
2.泡沫铜的导电性和延展性好,可将其用于制备电 池(载体)负极材料、催化剂载体和电磁屏蔽材料。
泡 沫 铝 电 极 电 池
6.泡沫铝有很强的电磁屏蔽性能。 与其它电磁屏蔽材料相比有以下优点:
( 1 ) 、超轻质量,低密度 ( 300 kg /m3 ~ 1 000 kg /m3) ; ( 2) 耐高温、低热导率、良好的阻尼性等; ( 3) 、可以成形为复杂的形状,是实体金属所不能比拟的。
泡沫铝板材属于优等级的电磁屏蔽材料,对频率200MHz以下电磁 波,屏蔽效能达到90dB。厚度20mm的铁板,附带泡沫塑料,其屏蔽 电磁波为50dB。单独20mm泡沫铝,屏蔽电磁波为90dB,重量是铁板 的1/50。
可以应用在一些需要屏蔽电磁波信号的设备上。如移动的坦克指战车 、歼20隐身飞机
7、隔声降噪 高速公路和高铁安装泡沫铝声屏障,经测量,泡沫铝声屏障 可以降噪10~20dB。是铝板声屏障降噪的两倍。
8、军事装备 笨重且防护性能低的钢筋混凝土导弹发射井盖用轻质防护性能高的泡沫铝 井盖所代替,每个井盖由120吨降低到20吨。 运20大飞机空军列装,用以空降20吨左右的重型装备,用泡沫铝板材缓冲 垫保障空降安全,舰船甲板、大桥防撞及制造应急支援大桥都可以应用泡沫铝 板材。
七、市场
人类发现金属有9000年历史,制造铝合金有200年历 史,研发泡沫材料不到100年历史,相比之下,泡沫铝 从50年代后期问世,到现在不到60年,是一个充满活力 的新型材料,产业为朝阳产业。他的发展势必促进军民 融合产业发展,有利于一带一路战略的快速发展。目前 行业的年发展速度超过50%,正处于爆发式发展的前夕 , 具有1000亿以上市场的巨大发展空间。随着新材料 战略的正确引领,通过科技研发领域的不断扩大,泡沫 铝行业正在进入一个健康的的高速发展期。

泡沫金属_精品文档

泡沫金属_精品文档

泡沫金属泡沫金属是一种与众不同的材料,它具有独特的结构和性能。

这种材料由金属薄片组成,形成一个类似于海绵的结构。

泡沫金属通常用于吸声、隔热、过滤和结构支撑等领域。

本文将介绍泡沫金属的制备方法、结构特点以及应用领域等内容。

一、制备方法泡沫金属的制备方法主要有两种:物理泡沫法和化学泡沫法。

物理泡沫法是将金属薄片堆叠在一起,然后在高温环境下进行烧结。

这个过程中,金属薄片之间的空隙被保留下来,形成了泡沫状结构。

物理泡沫法制备的泡沫金属具有均匀的孔隙结构和良好的机械性能。

化学泡沫法是通过在金属薄片上涂覆一层特殊的泡沫剂,然后在高温环境下进行热解或燃烧。

泡沫剂在高温下分解产生气体,形成气泡,使金属薄片膨胀并形成泡沫状结构。

化学泡沫法制备的泡沫金属具有较大的孔隙度和较低的密度。

二、结构特点泡沫金属的结构特点是其最大的优点之一。

泡沫金属的结构类似于海绵,具有大量的孔隙。

这些孔隙可以提供较大的表面积,从而增加与外界环境的接触面积。

此外,泡沫金属的孔隙大小和分布可以根据需求进行调节。

这种可调节的结构使得泡沫金属在吸声、隔热和过滤等领域具有广泛的应用。

泡沫金属的结构还具有良好的机械性能。

由于金属薄片之间的交叉连接,泡沫金属具有较高的强度和刚度。

这种结构可以使泡沫金属承受较大的载荷,从而在结构支撑方面具有潜力。

三、应用领域泡沫金属由于其独特的结构和性能,被广泛应用于各个领域。

在声学方面,泡沫金属因其良好的吸声性能被用于吸音材料的制备。

泡沫金属可以通过调节孔隙结构和密度来实现不同频率范围内的吸声效果。

因此,它在音响室、汽车制造和船舶建造等领域有着广泛的应用。

在隔热方面,泡沫金属可以作为保温隔热材料来减少能量的传导和散失。

由于泡沫金属的结构具有大量的孔隙,可以形成一个有效的隔热层。

这种材料在建筑、石油化工和航天航空等领域中被广泛应用。

在过滤方面,泡沫金属可用于空气和液体的过滤。

由于其高表面积和可调节的孔隙结构,泡沫金属可以有效地去除悬浮颗粒和杂质。

21世纪的新材料——泡沫金属与泡沫陶瓷

21世纪的新材料——泡沫金属与泡沫陶瓷

21世纪的新材料——泡沫金属与泡沫陶瓷进入二十一世纪,可持续发展已成为全人类共同关注的话题,我国政府高度重视可持续发展,将可持续发展确定为国家的重大发展战略。

如何开发新能源和新材料、减少已有能源与材料的消耗,是其中一个重要方面,已成为科技工作者共同努力的新课题,泡沫材料的开发就是在这种大背景下提出的。

泡沫材料按材料性质分为泡沫金属材料和泡沫陶瓷材料,按使用状态又可分为泡沫结构材料和泡沫功能材料。

一、轻质泡沫金属材料泡沫金属材料是八十年代后期国际上迅速发展起来的一种物理功能与结构一体化的新型工程材料。

多孔结构和金属特征使其得以具备其他实芯材料未有的功能,如防震、吸声、隔声、阻燃、屏蔽、耐候、耐湿、质轻、可渗透性等,在航空航天、交通运输、建筑、能源等高技术领域具有广阔的应用前景。

泡沫金属材料的制备方法大致可分为以下几种:(1)粉末冶金法,又可分为松散烧结和反应烧结两种;(2)渗流法;(3)喷射沉积法;(4)熔体发泡法。

在上述众多的制备方法中,除特殊要求外,作为工业大生产最有前途的是熔体发泡法,它的工艺简单,成本低廉。

熔体发泡法技术难点在于选择合适的金属发泡剂,一般要求发泡剂在金属熔点附近能迅速起泡。

世界泡沫金属材料技术开发具有两大热点,即泡沫镍和泡沫铝的开发。

泡沫镍的制备技术目前已很成熟,国内外均有不少厂家进行大批量连续化生产,如国内的长沙力元等,主要作为电池的极板材料应用于镍氢电池领域。

但随着世界锂离子电池的迅速发展,镍氢电池在世界可充电二次电池市场的需求已日趋饱和,因此泡沫镍的市场需求增长幅度逐年减缓。

泡沫铝制备技术则在航空航天、交通运输等行业的发展以及这些产业对综合性能优异的材料的巨大需求下得以迅速地发展,主要有合金气体发泡、合金发泡剂混合搅拌、金属及发泡剂混熔固结、熔融金属高压渗透等。

泡沫铝是一种高孔隙率、宏孔多孔材料。

它不仅具有优良的机械阻尼、消声降噪和电磁屏蔽等性能,而且具有轻便、坚固、耐热、美观等特点,在一些发达国家已经商品化,广泛地应用在噪声防护、电磁屏蔽、建筑装饰、吸能缓冲、医用植体、分离工程、生物工程以及国防高科技等领域。

泡沫金属的特点、应用、制备与发展

泡沫金属的特点、应用、制备与发展

收稿日期:2004-09-02作者简介:陈文革(1969-),男(汉),陕西澄城县人,副教授,博士学位,主要从事纳米与功能器件材料研究。

泡沫金属的特点、应用、制备与发展陈文革!,张强"(1.西安理工大学材料科学与工程学院,陕西西安710048;2.西安惠宇金属基复合材料公司,陕西西安710000)摘要:本文阐述了多孔泡沫金属的结构特点、性能、应用以及制备技术,并展望了泡沫金属今后的研究与发展。

关键词:泡沫金属;性能;制备;应用;综述中图分类号:TF 125.6文献标识码:A文章编号:1006-6543(2005)02-0037-06CHARACTER I ST I CS APPL I CAT I ON FABR I CAT I ON AND DEVELOP M ENT OF PORO S M ETALSCHEN W en -g e 1,ZHANG O ian g 2(1.S choo l o f M aterials S cience and En g i neeri n g ,X i ’an n ivers it y o f T echno lo gy ,X i ’an 710048,Ch i na ;2.M etal M atri x C om p os ite M aterial C or p oration o f X i ’an H ui y u ,X i ’an 710000,Ch i na )Abstract :T he struct ure ,characteristics ,a pp lication and f abrication o f p orous m etals are su mm a-rized.T he research and develo p m ent o f p orous m etals i n t he f ut ure are f orecast.K e y words :p orous m etal ;characteristic ;f abrication ;a pp lication ;su mm arization 多孔泡沫金属自1948年美国的S oS ni k 利用汞在熔融铝中气化而得,使人们对金属的认识发生了重大转变,认为面粉可以发酵长大,金属也可以通过类似的方法使之膨胀,从而打破了金属只有致密结构的传统概念。

泡沫金属的现有制备方法总结

泡沫金属的现有制备方法总结

1.2.1浇注法(A)熔体发泡法这种方法的工艺过程是:向熔融的金属中加入增粘剂,使其粘度提高,然后加入发泡剂,发泡剂在高温下分解产生气体,通过气体的膨胀使金属发泡,然后使其冷却下来或者浇注可以得到泡沫金属。

常用的发泡剂为TIHZ、ZrH:等金属氢化物。

(B)颗粒浇注法这种方法通过把熔融金属浇注到充满散状颗粒的模中,而获得具有连通的蜂窝状结构或海绵状结构的泡沫金属。

这些颗粒可以是耐热和可溶的(如氯化钠)时,它们可以从铸件中被浸洗掉,形成具有连通孔隙的多孔金属;当使用松散的非可溶性填料(如多孔陶土球、泡沫玻璃、空心刚玉球、泡沫碳等无机填料)时,则可获得金属一颗粒复合体。

(C)球形颗粒加入法先将金属在塔竭中熔化,然后加入颗粒或中空球并同时进行搅拌,使这些颗粒均匀地分散到金属熔体中去,使金属的温度降低,当金属熔体的粘度足以使金属熔体不再发生偏析和分层时,即颗粒物质在金属熔体中被固定了,此时停止搅拌并让熔体凝固下来。

这种方法适用于制备高熔点的泡沫金属,如泡沫钨等。

(D)失蜡浇注法此法采用液态高熔点物质充填海绵状泡沫塑料的孔隙,使之硬化后,加热使塑料气化而获得海绵状孔隙的铸型。

将液态金属浇入此铸型,冷却凝固后除去高熔点物质后,便得到与原海绵状泡沫塑料模具有相同结构的泡沫金属。

1.2.2沉积法(A)电镀法该方法是将所需的金属镀到经过硬化和化学预镀的聚氨基甲酸乙脂表面上,并达到所需的厚度,再通过热分解法将聚氨基甲酸乙脂去掉,得到具有非常均匀孔隙分布及相当高孔隙率的泡沫金属。

(B)阴极溅镀沉积法通过在一定的惰性气体压力下对一基片进行溅射,从而得到被捕获惰性气体原子均匀分布的金属片,然后把它加热到高于其熔点的温度,并一直加热到足以加热使那些被捕获的气体膨胀,形成具有封闭孔的蜂窝状的泡沫金属。

(C)气相蒸发沉积法在较高的惰性气氛中缓慢蒸发金属材料,形成金属烟。

金属烟在自身重力和惰性气流携带下沉积,疏松地堆砌起来,形成亚微米尺度的多孔泡沫结构。

泡沫金属的制备,力学性能及其应用

泡沫金属的制备,力学性能及其应用
控制温度和时间
在制备过程中,控制好温度和时间,可以提 高泡沫金属的性能。
优化发泡剂的类型和浓度
通过调整发泡剂的类型和浓度,可以控制泡 沫金属的孔径和孔隙率。
控制压力和气氛
在某些制备方法中,控制好压力和气氛,可 以提高泡沫金属的性能。
02 泡沫金属的力学性能
抗压性能
总结词
泡沫金属具有优异的抗压性能, 能够承受较大的压力而不会发生 变形或破裂。
复合技术
通过与其他材料的复合,可以发 挥泡沫金属和复合材料各自的优 点,制备出具有优异性能的复合
材料。
未来发展方向和挑战
拓展应用领域
泡沫金属作为一种功能材料,应积极探索其在新能源、生物医学、 航空航天等新兴领域的应用。
提高性能
继续优化制备工艺,提高泡沫金属的各项性能指标,以满足更广泛 的应用需求。
详细描述
由于其独特的结构和孔隙率,泡 沫金属在压缩载荷下展现出良好 的塑性和稳定性,可以有效地分 散压力,防止局部应力集中。
抗拉性能
总结词
泡沫金属的抗拉性能较弱,容易在拉 伸载荷下发生断裂。
详细描述
泡沫金属的抗拉强度较低,主要原因 是其孔隙结构在拉伸过程中容易产生 应力集中,导致材料断裂。
抗冲击性能
不同类型的发泡剂和浓度对泡 沫金属的孔径和孔隙率有显著 影响。
制备温度和时间
温度和时间是影响泡沫金属性 能的重要因素,温度和时间的 控制对制备高质量的泡沫金属 至关重要。
压力和气氛
在某些制备方法中,压力和气 氛也是重要的影响因素。
制备过程的优化策略
优化原料的粒度和纯度
选择合适的粒度和纯度的原料,可以提高泡 沫金属的性能。
渗流法
通过控制金属基体的孔径和孔隙率,使液体或气体渗入到基体中,然 后通过加热或加压使渗入的物质释放出气体,形成泡沫金属。

泡沫金属材料制备技术

泡沫金属材料制备技术

泡沫金属材料制备技术1.引言金属泡沫或金属多孔材料是80年代后期国际上迅速发展起来的一种具有优异的物理特性和良好的机械性能的新型工程材料。

它具备的优异物理性能,如比重小、刚度大、比表面大、减震性能好、消声效果好、电磁屏蔽性能高等,使其在一些高技术领域获得了广泛应用[1-3]。

泡沫铝合金材料是一种在铝合金基体中分布有大量微小气孔结构的超轻型铝合金材料。

其开发研究始于20世纪40年代,最早的泡沫铝制备工艺是Sosnick于1948年提出的在铝熔体中以气化汞为气体来源制备泡沫铝合金的做法,该工艺还申请了美国专利[2]。

1956年,美国科学家Elliot完善了泡沫铝制备理论,并提出以可热分解气体的发泡剂来代替汞,从而给泡沫金属材料的工艺发展指明了方向,同年他采用熔体发泡法成功制造出泡沫铝。

随后人们开发使用了多种发泡剂如TiH2、ZrH2、ErH2、MgH2等。

到了20世纪80年代末90年代初,泡沫铝材料的研究取得重大突破,日本九州工业研究所于1991年开发出泡沫铝工业化生产的工业路线。

1992年M. F. Ashby第一次系统总结了泡沫金属的制备、性能和应用。

90年代以来,国外科研机构和大学推出了多种制备高性能泡沫铝的工艺方法,如德国不来梅德夫雷霍夫实用材料研究所研制的粉末发泡法,德国的连续喷吹气体制备泡沫铝法(DE4139020),日本日立造船技术研究所的发泡法等。

目前已经实现了采用金属发泡法和渗流铸造法来生产各种尺寸规模的泡沫铝部件,从高速列车到航天飞机的一系列领域都可以找到泡沫铝的身影[1]。

国内研究机构对泡沫铝的研究起步于20世纪80年代中期,目前国内主要的研究机构有东南大学、东北大学、昆明理工大学、大连理工大学等。

我国学者研制了一些具有独创性的生产工艺,并进行了大量的理论和实验研究。

其中东南大学材料系开展研究的时间最早,尤其在粉末冶金法制备泡沫铝工艺方面的成就较突出。

金属泡沫材料既可作为许多场合的功能材料,也可作为某些场合的结构材料,而一般情况下它兼有功能和结构双重作用,是一种性能优异的多用途工程材料。

泡沫金属的介绍及制备

泡沫金属的介绍及制备

泡沫金属的介绍及制备泡沫金属,又称金属泡沫或多孔金属,是一种具有很高比表面积和极低密度的材料。

它是由金属表面的气泡组成,具有良好的热、声、电和机械性能,广泛应用于过滤、隔热、吸能和结构支撑等领域。

第一种制备方法是模板法。

这种方法首先需要制备一个具有特定孔洞结构的模板,常用的模板材料有泡沫聚苯乙烯、泡沫聚氨酯和陶瓷材料等。

然后,将金属溶液浸渍到模板中,再通过高温烧结或电解沉积等方法形成金属泡沫。

最后,将模板从金属泡沫中去除,得到所需的泡沫金属材料。

这种方法制备的金属泡沫具有规则的孔洞结构和良好的复制性。

第二种制备方法是粉末法。

这种方法是通过金属粉末与发泡剂混合,然后将混合物置于高温环境中进行烧结,使粉末粒子熔结在一起,形成金属泡沫。

这种方法制备的金属泡沫具有无规则的孔洞结构,适用于一些特殊领域的应用。

第三种制备方法是发泡燃烧法。

这种方法是利用金属粉末与可燃剂的混合物,在燃烧过程中生成大量的气体,从而形成金属泡沫。

这种方法制备的金属泡沫具有高比表面积和较低密度,适用于过滤和催化等领域。

最后一种制备方法是水泡发泡法。

这种方法是将金属粉末与表面活性剂和泡沫稳定剂混合,再将混合物加入水中,通过机械搅拌和超声波处理等方法形成稳定的泡沫液。

将泡沫液移至模具中,加热或烘干后,形成金属泡沫材料。

这种方法制备的金属泡沫具有较低的密度和较高的强度,适用于吸能和噪音控制等领域。

总的来说,泡沫金属是一种新型的多孔金属材料,具有独特的性能和广泛的应用前景。

通过不同的制备方法,可以得到具有不同结构和性能的泡沫金属材料,满足不同领域的需求。

泡沫金属材料制备技术

泡沫金属材料制备技术

泡沫金属材料制备技术1.引言金属泡沫或金属多孔材料是80年代后期国际上迅速发展起来的一种具有优异的物理特性和良好的机械性能的新型工程材料。

它具备的优异物理性能,如比重小、刚度大、比表面大、减震性能好、消声效果好、电磁屏蔽性能高等,使其在一些高技术领域获得了广泛应用[1-3]。

泡沫铝合金材料是一种在铝合金基体中分布有大量微小气孔结构的超轻型铝合金材料。

其开发研究始于20世纪40年代,最早的泡沫铝制备工艺是Sosnick于1948年提出的在铝熔体中以气化汞为气体来源制备泡沫铝合金的做法,该工艺还申请了美国专利[2]。

1956年,美国科学家Elliot完善了泡沫铝制备理论,并提出以可热分解气体的发泡剂来代替汞,从而给泡沫金属材料的工艺发展指明了方向,同年他采用熔体发泡法成功制造出泡沫铝。

随后人们开发使用了多种发泡剂如TiH2、ZrH2、ErH2、MgH2等。

到了20世纪80年代末90年代初,泡沫铝材料的研究取得重大突破,日本九州工业研究所于1991年开发出泡沫铝工业化生产的工业路线。

1992年M. F. Ashby第一次系统总结了泡沫金属的制备、性能和应用。

90年代以来,国外科研机构和大学推出了多种制备高性能泡沫铝的工艺方法,如德国不来梅德夫雷霍夫实用材料研究所研制的粉末发泡法,德国的连续喷吹气体制备泡沫铝法(DE4139020),日本日立造船技术研究所的发泡法等。

目前已经实现了采用金属发泡法和渗流铸造法来生产各种尺寸规模的泡沫铝部件,从高速列车到航天飞机的一系列领域都可以找到泡沫铝的身影[1]。

国内研究机构对泡沫铝的研究起步于20世纪80年代中期,目前国内主要的研究机构有东南大学、东北大学、昆明理工大学、大连理工大学等。

我国学者研制了一些具有独创性的生产工艺,并进行了大量的理论和实验研究。

其中东南大学材料系开展研究的时间最早,尤其在粉末冶金法制备泡沫铝工艺方面的成就较突出。

金属泡沫材料既可作为许多场合的功能材料,也可作为某些场合的结构材料,而一般情况下它兼有功能和结构双重作用,是一种性能优异的多用途工程材料。

泡沫金属的制备_性能及其在催化反应中的应用

泡沫金属的制备_性能及其在催化反应中的应用

催化剂与载体制备收稿日期:2006203203;修回日期:2006207210 基金项目:上海市科委纳米技术专项基金(0452nm017)作者简介:胡 海(1976-),男,湖北省武汉市人,在读博士研究生,从事光触媒材料以及光催化降解污染物的研究。

通讯联系人:上官文峰,教授,博士生导师。

E 2mail :shangguan @泡沫金属的制备、性能及其在催化反应中的应用胡 海,肖文浚,上官文峰(上海交通大学燃烧与环境技术研究中心,上海200030)摘 要:泡沫金属是一种具有独特结构和性能的新型功能材料。

介绍了泡沫金属材料常见的制备工艺(发泡法,烧结法,铸造法,沉积法)、物理性能和在催化反应中的应用(载体和催化剂),并对泡沫金属材料在应用中存在的问题和前景作了评述。

关键词:泡沫金属;制备;催化剂中图分类号:T B303;T B34;TQ426.94 文献标识码:A 文章编号:100821143(2006)1020055204Preparation and properties of foam metal and its application in catalysisHU Hai ,X IA O Wen 2j un ,S HA N GGUA N Wen 2f eng(Research Center for Combustion and Environment Technology ,Shanghai Jiaotong University ,Shanghai 200030,China )Abstract :Foam metal ,as a new 2type functional material ,has unique characteristics and structure.The preparation techniques ,properties of foam metal and its application in catalytic reaction were re 2viewed.Preparation techniques for foam metal include forming ,sintering ,casting and deposition.Foam metal can be used as both carrier and catalyst.K ey w ords :foam metal ;preparation ;catalystC LC numb er :T B303;T B34;TQ426.94 Docum ent cod e :A A rticle ID :100821143(2006)1020055204 泡沫金属是一种结构内部含有大量孔隙的、功能与结构一体化的新型功能材料,常见的有泡沫镍、泡沫铜、泡沫铁以及泡沫合金等。

泡沫金属的介绍及制备31

泡沫金属的介绍及制备31

泡沫金属的介绍及制备31泡沫金属的介绍及制备31泡沫金属是一种以金属材料为基础制成,具有类似泡沫状结构的材料。

它的制备过程中,首先需要选取合适的金属材料作为基材,常见的有铝、镍、钛等。

其次,在基材上加入一定比例的发泡剂,使金属材料呈现出气泡状态。

最后,通过烧结或热退火等工艺,使气泡中的气体逸出并固化,形成具有泡沫状结构的金属材料。

泡沫金属具有许多独特的性质和应用领域。

首先,由于其内部是由无数小气孔组成,泡沫金属具有极高的孔隙率和低密度,因此具有较轻的重量和优秀的吸能能力。

其次,泡沫金属具有优异的热传导性能,可用于制作热交换器、散热器等产品。

此外,泡沫金属还具有良好的声学特性和隔热性能,可用于制作噪音吸收材料和保温材料等。

此外,泡沫金属还具有良好的机械性能,可用于制作轻质结构材料和吸能缓冲材料等。

泡沫金属的制备方法主要分为多种,其中常用的有发泡剂法、模板法和金属粉末冶金法等。

发泡剂法是一种较为简单和经济的制备方法,其步骤包括:选取合适的金属粉末作为基材,加入一定比例的发泡剂。

然后,在一定的温度和压力下进行热处理,使基材中的发泡剂气化并形成泡沫结构。

模板法则需要制备一个具有所需孔隙结构的模板,然后通过烧结或电解沉积等工艺,在模板中填充金属材料,最后移除模板,获得泡沫金属。

金属粉末冶金法则以金属粉末作为原料,通过混合、压制和烧结等步骤,实现金属粉末的烧结和固化,形成金属泡沫。

综上所述,泡沫金属具有独特的结构和优异的性能,在航空航天、能源、汽车等领域有着广泛的应用。

随着制备工艺和材料研究的不断进步,泡沫金属的应用前景将变得更加广阔。

泡沫金属的研究与发展

泡沫金属的研究与发展

泡沫金属的研究与发展1泡沫金属的概念及特点泡沫金属指孔隙度达到90%以上,具有一定强度和刚度的多孔金属材料。

含有泡沫状气孔的金属材料与一般烧结多孔金属相比,泡沫金属的气孔率更高,孔径尺寸较大,可达7毫米。

由于泡沫金属是由金属基体骨架连续相和气孔分散相或连续相组成的两相复合材料,因此其性质取决于所用金属基体、气孔率和气孔结构,并受制备工艺的影响。

通常,泡沫金属的力学性能随气孔率的增加而降低,其导电性、导热性也相应呈指数关系降低。

当泡沫金属承受压力时,由于气孔塌陷导致的受力面积增加和材料应变硬化效应,使得泡沫金属具有优异的冲击能量吸收特性。

多种金属和合金可用于制备泡金属材料,如青铜、锲、钛、铝、不锈钢等。

由于泡沫金属的密度小、孔隙率高、比表面积大从而使其具有非泡沫金属所没有的优异特性:例如阻尼性能好,流体透过性强,声学性能优异热导率和电导率低等等。

作为一种新型功能材料,它在电子、通讯、化工、冶金、机械、建筑、交通运输业中,其至在航空航天技术中有着广泛的用途。

2泡沫金属的用途2.1 电极材料随着高档电器(便携式计算机、无纯电话等)的迅速发展,可重复使用的高体积比容量、高质量比容量的充电电池的消耗也越来越大。

高孔隙率(>95%)的泡沫金属对提高电池的这些性能提供了用武之地。

例如用电沉积法生产的泡沫锲作为电极材料用于Ni-Cd电池的电极时,电极的气液分离好、过电压低,能效可提高90%,容量可提高40%,并可快速充电,在电池行业中,锲镉电池、锲氢电池、可充电碱性电池一致趋向于采用泡沫锲作为正负极板以提高容量,这是电池行业的一个突破。

对电池电极用泡沫锲的性能参数要求已有较为深入的研究。

2.2 催化剂化学反应尤其是有机化学反应中,催化剂常常起着非常重要的作用,催化剂的表面积也是越大越好,高孔隙率使得泡沫金属具有大的比表面积,化工行业中可直接使用泡沫锲作锲催化剂,或将泡沫锲制成催化剂载体,高孔隙率的泡沫金属作为支撑物有可能使催化剂高度分散发挥更大的作用,其性能远远优越于陶瓷催化剂载体。

泡沫金属的制备及其力学性能

泡沫金属的制备及其力学性能

泡沫金属“三明治”夹芯板的制备及其力学性能摘要:本文首先介绍了轻质多孔材料的发展现状,接着重点介绍了泡沫金属的研究现状。

其中包括泡沫金属的不同制备工艺及力学性能。

泡沫金属的应用形式多种多样,本文从中选择了泡沫金属“三明治”夹芯板,介绍了的目前较为成熟的制备工艺方法。

关键词:超轻多孔材料金属泡沫制备性能一、绪论1.超轻多孔材料的由来超轻多孔金属材料具有体积密度小,相对质量轻,比表面积大,比力学性能高,阻尼性能好等特点,已成为一种优秀的新型功能结构材料。

由于优异的物理、力学性能,且兼具功能和结构的双重属性,超轻多孔金属材料被广泛地应用于航空航天、电子通讯、交通运输、医疗器械等领域,涉及到过滤、消声、热交换、吸能、电磁屏蔽、催化等诸多功能,在科学技术和国民经济建设中发挥着巨大的作用。

作为一种新型多功能结构化材料,超轻多孔金属材料在宏观结构上构按规则程度可分为有序和无序两大类,前者主要是以金属或复合材料为基体的点阵材料,后者主要是泡沫化金属和烧结金属多孔材料[1]。

其中,点阵材料主要包括四面体、金字塔型、Kagome、八面体和latticeblock构架等几种,其制备方法主要有基于金属纤维编织工艺基础之上的网系叠层点焊方案、熔模铸造方案和轧制-电镀焊接方案,原材料多为铝、钢等[2]。

2.泡沫金属及其应用泡沫金属是一类具有高孔隙率、低密度,在力学、声学等方面具有独特优势的新型材,根据胞元是否互相连通可以分为开孔泡沫与闭孔泡沫,如下图1所示。

图1.开孔泡沫与闭孔泡沫目前绝大多数商用泡沫金属均是基于泡沫铝和泡沫镍的产品。

作为一种新型材料,泡沫金属尚未得到充分的表征,其制备过程也没有得到很好的控制,所以性能还具有一定的不稳定性。

但是随着制备工艺的不断发展,泡沫金属在轻质刚性结构方面具有很广阔的前景。

近年来很多学者对泡沫金属的力学性能和结构组合方式进行了大量的研究,获得了一些较为实用的经验和数据。

下表1是泡沫金属在未来发展中的潜在用途举例。

多孔泡沫金属材料

多孔泡沫金属材料
3
多孔泡沫金属材料
分类方法介绍
孔 径 小 于0. 3mm,孔隙率在 45% ~ 90% 的,称 为多孔 金 属( porous metal) 孔径在 0. 5 ~ 6mm,孔隙率大于90% 的,称为泡沫金属 ( foam metal)
(1) 按孔径和孔隙 率的大小
通孔结构
(2) 按孔的形 状特征
闭孔结构
多孔泡沫金属的应用主要有吸声材料 、吸振材料、抗冲击材料、催化载体材 料、医学植入体等 。
(1)吸声吸振阻燃
11
多孔泡沫金属材料的特性及应用
泡沫金属的应用 (2)抗冲击材料
12
多孔泡沫金属材料的特性及应用
泡沫金属的应用 (3)生物医学植入体
利用 Ti 合金泡沫与人体的生物相容性, 可用于人体骨骼或牙齿的替代材料 ,M g 泡沫也有望作为人工骨头的材料
9
多孔泡沫金属材料的特性及应用
功能特性介绍 由于大量微小气孔的存在,多孔泡沫金属与实体结构材料相比 具有一系列的优良性能:密度小、比强度高、良好的可压缩性,独 特的压缩应力-应变曲线、在变形过程中泊松比的改变、可吸收较高 的冲击能量、减震、吸音、电磁屏蔽等。
10
多孔泡沫金属材料的特性及应用
泡沫金属的应用
(3)按其基体的种类进行分类: 多孔泡沫铝,多孔泡沫铸铁,多孔泡沫铝 合金,多孔泡沫镍等。
4
多孔泡沫金属材料
泡沫金属的结构特点
(1) 孔径大。多孔泡沫金属材料与普通的粉末冶金多 孔材料相比,孔径较大 ,贯通孔多 。
(2) 孔隙率高。多孔泡沫金属材料的孔隙率随其种类 不同而不同 ,在 40 %~ 98 %的范围内变化。 (3) 密度低。随孔隙率的提高, 泡沫金属的密度降低, 一般为同体积金属的 3/5 ~ 1/50 不等 。例如孔隙率大 于63 %的泡沫铝合金 , 其密度可达 1 g/cm3以下, 能够 浮于水面上。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

参考文献
(1)Sarac.B;ketkaew.J.popnoe.DC;Schroers.J.Honeycomb Stucture of Bulk Metallic Glasses[J].advanced functional material,2012.22.15;
(2) Kranlin.Niklaus;Niederberger.Markus.Wet-chemical preparation of copper foam monoliths with tunable densities and complex macroscopic shapes[J].Advanced materials materials,2012; (3)张华伟,李言祥,刘源。藕状规则多孔Cu气孔率的理论预测[J].金属学报。2006.42(11); (4)Asararisithchai S,Kennddy A R .The role of oxidation during compaction on the expansion a stability of Al foams made via RM route[J].advanced Engneering Materials 2006.8(6) (5)王雪。金属-气体共晶定向凝固理论与实验研究[博士论文].北京.清华大学.2008 (6)Berchem K,Mohr U,Bleck W.Controlling the degree of the pore opening of metal sponges,prepared by the infilitration preparation method [J].Material Science and Engineering; (7)Banhart J .Manuture,characterization and application of cellular metals foams[J].Progress in Materials Science.2001.46:559-632; (8)王志远.BP算法在泡沫金属复合材料研制中的应用[J]
当圆锥形凹坑非常狭小时, 会产生较大的附加压力,气泡很难形核;
当圆锥形凹坑非常平坦时,气泡与基 体的附着面小。 都 不能成为有效的异质形核位置
胚胎气泡体积越 小,越容易形核
胚胎体积与圆锥顶角的关系
三种形核机制对比
Gasar凝固的金属 - 气体共晶生长区
共生生长:两相协同生长,具有共同的生长界面,依靠溶质原 子在界面处沿两相的横向交互扩散,彼此为相邻对方提供生长 所需的组元使两相等速前行,耦合生长,形成共生共晶组织。
后处理
热处理是连续化带状泡沫镍生产中最后一道工序,其目的是去除有机物, 提高电镀镍层的柔韧性,分为先空气烧除而后还原烧结两步完成,还原气 氛为氨分解气氛,即氮、氢混合气氛。还原温度800度。炉温不当会出现 “起拱”的现象。
泡沫镍制备过程中各阶段样品基本上均保持了原泡沫模板的结构形貌,呈3维网络 状均匀结构,组成泡沫镍的丝纵横交错。
敏化
为了在非导体的塑料表面上,建立起以贵金属为核心的催化 中心准备条件,以便在活化处理时把催化金属还原出来
敏化液
氯化亚锡、盐酸
反应条件
室温,10min
反应后
水洗,二价锡水解
在塑料表面形成薄层的碱 式氯化亚锡的凝聚膜
活化
使塑料的表面建立起化学镀时所需要的贵金 属催化活性中心。
还原
用 甲醛作为还原剂是使银离子能充分地还原成银。浸 过银活化液的塑料表面,在活化后可直接浸渍还原液。
脉冲电沉积沉积镍
化学镀镍是在钯催化作用下,溶液中硫酸镍与还原剂次亚磷酸 钠发生氧化还原反应。泡沫模板经过化学镀镍后进行电镀加 厚。
镀镍液 反应条件
硫酸镍250 g/L,氯化镍40 g/L, 硼酸40 g/L,十二烷基硫酸钠0.05 g/L
发生反应
电流效率的影响
电流效率
电流效率是电极上通过单位电量时,某一反应所形成之 产物的实际质量与电化当量之比,即输入电解池的电量 中实际用于沉积金属所占的百分数。
固气共晶凝固法 (GASAR)
介绍
GASAR
金属气体发生共晶反应, 定向凝固,生成的圆柱型 气孔定向排列于基体中。
气孔壁光滑; 无气孔分支现象; 气孔分布短程有序; 孔径10nm-10mm; 孔隙率10%-70%。
与传统的方法制备的材料相 比,具有小的应力集中,高 的力学性能,良好的渗透能 力。
当系统处于稳定的共生区内,才能保障共生生长的稳定进行。 这是获得规则多孔结构和均匀的大小分布的前提。
需要过冷 到一定温 度
共生体两组元熔点相 近,扩散能力相近。
共生体两组元熔点 相差很大,低熔点 组元生长速度较快 。
Gasar凝固的金属 - 气体共晶生长区
Gasar是固-气共生系统,共生两相差别很大,使得二元相图很不对称,同时 共晶点还受外界气压的影响,从而使共生区严重倾斜。所以,必须扩大共生区 ,提高共生区的对称性。
Gasar原理
Gasar原理
气孔的大小、形貌、空间排列取决于熔体的气体含量、气压、化 学成分、凝固速率和凝固方向。
通过不同的凝固条件制备的多孔结构
GASAR凝固中气泡形核机制
区域1
气泡在凝固的金属中 形成,但形核阻力大
区域2
气泡在凝固界面处同固相同时 形成,气泡定向排列于固相中
区域3
气泡在液相中形成, 在熔体表面逸出
Gasar凝固的金属 - 气体共晶生长区
温度梯度越大,共生区越大的枝晶生长速度,从而使稳定的共生区扩 展。外界气压越大,饱和到熔体的氢气越多,溶解度增加,抑制 了枝晶生长。
冷却速度不是越快越好,凝固时外界气压不是越大越好。冷 却速度过高,会导致气体在凝固时来不及析出,气孔不能形 成;凝固时外界气压过高,熔体中的氢不易聚集形成气孔。
(4)纳米孔隙非晶态泡沫金属 结合非晶态和泡沫金属的性能
制备方法
电沉积法
原理
泡沫镍(发泡镍)是一种孔隙率高、比表面积大,质轻,具有三维网状结构 的金属材料,可做为镍-氢电池和镍-镉电池的电极基板,是二次电池的主要材料 之一。
步骤: 聚氨酯泡沫塑料为基体——预处理加导电层——电化学沉积——热处理,去聚 合物——多孔金属
气泡的可能位置
Gasar凝固的匀质临界形核状态
气泡半径与体积吉布斯自由能的的变化
匀质形核
Gasar凝固的匀质临界形核状态
Gasar凝固的非均质形核
平界面上异质形核
Gasar凝固的非均质形核
平界面上异质形核
Gasar凝固的非均质形核
圆锥形凹坑内异质形核
在氧化物夹杂的表面一般都存在很 多凹坑和裂纹。
聚合物泡沫 加导电层 电沉积 移除聚合物
导电层制备
由于泡沫塑料不导电,不能直接进行电沉积,必须在电沉积 前进行导电预处理,在泡沫表面附着一层均匀的金属层。
步骤:
化学除 油
粗化
敏化
活化
还原
化学除油
除去骨架内外表面残留的微量油污,增加其亲 水性
粗化
利用化学法提高泡沫表面的微观粗糙度和均匀性,使其表面由 疏水性变为亲水性,以提高镀层与基体的亲和力。
难题
方案 在配置镀液时所选用的添加剂或络合剂应尽量不参与阴极电极反应,
同时要创造条件,尽量使金属离子析出时不析出或少析出氢气。 镍在阴极析出的电极反应(M 代表阴极非惰性杂质):
方程式1越易进行,方程式2、3进行的越少,则阴极析出的 镍越纯,发泡镍质量越好,电流效率及设备效率也越高。
某一离子在阴极上开始析出的难易,可以用平衡电位来判断:
泡沫金属的介绍及制备
1 引言


2. 电沉积法制泡沫镍
3.固气共晶凝固法
目录
引言
泡沫金属结构
胞状 结构
三维网状结构
泡沫金属的用途
导热性 热交换

导电、 自支撑 能力多 孔电极
渗透性 过滤与 分离
泡沫 金属
比表面 积大 催化
消音降 噪
阻抗消 音器
吸能减 震
汽车减 震器
泡沫金属
(1)泡沫金属相变复合材料 将传统的相变材料填充在泡沫金属的胞中,导热率显著的 提高。 (3)泡沫金属高阻尼复合材料 将泡沫材料与弹性或无机非金属材料复合,形成复相阻尼、 结构阻尼、粘弹性阻尼等阻尼多种机制的叠加。
结果分析
不同电流密度下沉积层的XRD图谱
结果分析
不同电流密度下镍沉积层的磁滞回线
每条回线所围面积均很小,损耗低 ,其剩磁、矫顽力几乎为零,表现出 超顺磁性。磁滞回线显示的磁导率 与饱和磁化强度随着晶粒尺寸的增 加而变大。这是因为晶粒平均粒径 越小,存在于晶粒之间的晶界相对越 多,对磁畴壁移动产生阻碍作用越大 ,磁导率越低。
相关文档
最新文档