第六章 2微生物的代谢实验
第6章微生物的代谢
又称厌氧呼吸,指一类呼吸链末端的氢受体为外源 无机或有机氧化物的生物氧化。 特点:底物经常规途径脱氢后,经部分呼吸链递氢, 最终由氧化态的无机物或有机物受氢,并完成氧化 磷酸化产能反应。
(1)硝酸盐呼吸 在厌氧条件下,兼性厌氧菌以硝酸盐作为最终电子受 体的生物氧化过程,也称为异化性硝酸盐还原作用、 反硝化作用。
第 六 章
微生物的代谢
代谢: 泛指发生在活细胞中的各种分解代谢(catabolism) 和合成代谢(anabolism)的总和 分解代谢酶系
复杂分子 简单分子 + ATP (有机物) 合成代谢酶系
分解代谢 物质代谢 合成代谢
+ [H]
代谢
能量代谢
产能代谢 耗能代谢
第一节 微生物的能量代谢
能量代谢: 是新陈代谢中的核心问题。 中心任务:把外界环境中的各种初级能源转换成 对一切生命活动都能使用的通用能源——ATP。
氧 化 磷 酸 化 与 质 子 梯 度 差
P/O比: 表示电子 传递链氧 化磷酸化 的产能效 率。
抑制氧化磷酸化的因素:
1)抑制电子传递链:KCN、NaN3、和CO等 细胞色素氧化酶抑制剂; 2)解偶联剂阻断ADP磷酸化:2,4二硝基 苯酚、短杆菌肽等
2. 无氧呼吸(anaerobic respiration)
1mol葡萄糖
1mol 乳酸+
1.5mol乙酸+ 2.5molATP
发酵途径的比较
2. 发酵类型
划分依据:发酵产物的种类 (1)乙醇发酵
类型:酵母菌乙醇发酵(EMP)和细菌乙醇发酵(ED)
A. 酵母菌乙醇发酵: 酵母的一型发酵 CO2 NADH
EMP
NAD+ 乙醇
微生物学-第六章-微生物的代谢课件
G
6-磷酸-果糖
特征性酶 磷酸己糖酮解酶
4-磷酸-赤藓糖 + 乙酰磷酸
6-磷酸-果糖
5-磷酸-木酮糖 ,5-磷酸-核糖
戊糖酮解酶
乙酸
3--磷酸甘油醛+ 乙酰磷酸
乳酸
乙酸
1 G 乳酸 + 1.5乙酸 + 2.5 ATP
三、发酵(fermentantion)
1、定义
广义:利用微生物生产有用代谢一种生产方式。 狭义:厌氧条件下,以自身内部某些中间代谢
氧化氮还原酶
反硝化意义:
1)使土壤中的氮(硝酸盐NO3-)还原成氮气而消失,降低土壤的肥力;
2)反硝化作用在氮素循环中起重要作用。
硫酸盐呼吸(硫酸盐还原)
——厌氧时,SO42- 、SO32-、S2O32- 等为末端电 子受体的呼吸过程。
特点:
a、严格厌氧; b、大多为古细菌 c、极大多专性化能异氧型,少数混合型; d、最终产物为H2S;
用所需的硝酸盐还原酶A亚硝酸还原酶等 c 兼性厌氧 细菌:铜绿假单胞、地衣芽孢杆菌等。
硝酸盐作用
同化性硝酸盐作用:
NO3- NH3 - N R - NH2 异化性硝酸盐作用:
无氧条件下,利用NO3-为最终氢受体
NO3- NO2 NO N2O N2
硝酸盐还原酶
亚硝酸还原酶
氧化亚氮还原酶
a、a1、a2、a4、b、b1、c、c1、c4、c5、d、o等; 末端氧化酶:
cyt a1、a2、a3、d、o,H2O2酶、过氧化物酶;呼吸链组分多变 存在分支呼吸链:
细菌的电子传递链更短并P/O比更低,在电子传递链的几个位置进入链和 通过几个位置的末端氧化酶而离开链。 E.coli (缺氧) CoQ cyt.b556 cyt.o
第六章 微生物的代谢
+
3NAD+ + FAD+
+
3H2O
+
CoA
+ ATP +
FADH2 + 3NADH2
经过EMP和TCA循环,1分子葡萄糖被彻底氧化成水 和CO2,并可产生高达38分子的ATP。其总反应式如下:
C6H12O6
+
6O2
+
38ADP
+
38Pi
6CO2
+
6H2O
+
38ATP
在微生物的物质代谢中,TCA循环在分解代谢和合成 代谢中都占有枢纽地位,具有重要的生物学意义: (1)可产生多种有机酸,这些有机酸是合成细胞物质的
的营养物合成细胞自身大分子物质的过程。在同化作用过
程中产生能量(ATP)和还原力。
(2)分解代谢(Catabolism,异化作用):指将细胞自 身的物质分解的过程。异化作用是耗能的过程。 微生物的代谢活动包括能量代谢和物质代谢。
第一节 能量代谢
微生物与其它生物一样,在生命活动过程中需要消 耗大量的能量,这些能量有的来自于物质代谢过程中产生 的化学能,有的来源于微生物细胞吸收的光能。无论何种 二、能量代谢的方式
4、三羧酸循环(Tricarboxylic acid cycle,TCA)
又称为柠檬酸环。丙酮酸首先在丙酮酸脱氢酶的催化
下氧化脱羧并与辅酶A结合,形成乙酰辅酶A,同时产生1 进入TCA循环。TCA循环总反应式如下:
CH3COOCoA + ADP + Pi 2CO2
分子NADH2。然后,乙酰辅酶A与草酰乙酸缩合成柠檬酸,
C6H12O6+ADP+H3PO4 2CH3CH2OH+2CO2+ATP
实验细菌的代谢产物
实验细菌的代谢产物一、摘要细菌是一类微生物,它们具有多样的代谢途径,可以在不同的环境中生存及繁衍。
在本实验中,我们通过对细菌进行培养和筛选,从细菌代谢产物中得到多种有机物质,并通过实验方法进行鉴定和分离。
通过本实验,我们能够更深入地了解细菌的代谢特点和其对人类和自然环境的影响。
二、背景细菌是一类原核生物,其细胞结构简单,具有多样的代谢途径。
细菌能够利用多种有机物和无机物进行代谢,如糖类、蛋白质、脂肪酸、氮气等。
随着科学技术的进步,人们发现了细菌产生的多种代谢产物,包括药物、抗生素、酶类等。
因此,研究细菌的代谢产物和代谢途径,对于药物开发和环境保护等方面都具有重要的意义。
本实验主要研究细菌的代谢产物,并通过实验方法进行鉴定和分离。
本实验重点介绍了实验方法和实验结果,并对实验结果进行了初步分析。
三、材料与方法3.1 实验材料•实验细菌:从实验室库存中挑选4株细菌,包括常见细菌和少见细菌。
•实验培养基:NA培养基、LB培养基等。
•实验试剂:甲醇、乙酸乙酯、氯仿、硫酸铵等。
3.2 实验方法1.细菌培养:将细菌接种于培养基中,放置于恒温箱内培养。
在培养后期,监测菌液中代谢产物的种类和含量。
2.代谢产物提取:将细菌菌株的培养基转移至离心管中,离心后取出上清液。
将上清液和甲醇充分混合,并放置于4℃下静置过夜。
第二天过滤提取的液体,并使用旋转蒸发器将溶液浓缩至一定程度。
3.代谢产物鉴定:将代谢产物溶液加入试管中,加入乙酸乙酯,并充分混合。
离心后取得液体,再加入氯仿充分混合。
待液体分层后,取上层液体用浓硫酸滴定,观察化学反应后液体颜色的变化,初步确定代谢产物的类别。
4.代谢产物分离:将代谢产物液体用层析仪分离,根据不同的极性和分子量进行分离和纯化。
四、结果与分析经过实验,我们得到了4株细菌的代谢产物,并对其进行了鉴定和分离。
我们发现,这些细菌代谢产物种类和含量均不同,有些细菌产生的代谢产物对人类和自然环境具有重要意义。
第六章微生物的新陈代谢
阳性
2020/4/21
阴性
甲 基 红 试 验
对照
大肠杆菌:+ 产气杆菌:—
2020/4/21
枸 橼 酸 利 用 试 验
大肠杆菌:— 产气杆菌:+
吲 哚 试 阳性 验
大肠杆菌:+ 产气杆菌:—
2020/4/21
2020/4/21
H2S 试验
尿
素
对照
阳性
阴性
酶
试
验
2020/4/21
1.发酵
发酵是一种在厌氧条件下发生的、不具有以氧或 无机物为电子受体的通过电子传递链传递电子的 生物氧化过程。该发酵被称为生理学发酵,与工业 上所称发酵完全不同。
供微生物发酵的有机物质主要是葡萄糖和其它单糖
工业上所说的发酵是指微生物在有氧或无氧条件下 通过分解与合成代谢将某些原料物质转化为特定微 生物产品的过程。如酵母菌、苏云金杆菌菌体生产, 抗生素发酵、乙醇发酵及柠檬酸发酵等。
第六章 微生物的新陈代谢
第一节微生物的能量代谢 第二节微生物对有机物的分解 第三节 分解代谢和合成代谢的联系 第四节 微生物独特合成代谢途径举例 第五节 微生物的代谢调节与发酵生产
2020/4/21
第一节 微生物的能量代谢
产能和耗能
2020/4/21
一、化能异养微生物的能量代谢
• 按照有无电子传递链,可将其分为底物 水平磷酸化和电子传递磷酸化两种类型 。 1.底物水平磷酸化 2.电子传递磷酸化
2020/4/21
2、HMP途径:
2020/4/21
反应过程:
2020/4/21
3、ED途径:
2020/4/21
第六章微生物代谢
TCA循环的重要特点
为糖类、脂类、蛋白质三大物质转化中心枢纽。 循环中的某些中间产物是一些重要物质生物合成的前体; 生物体提供能量的主要形式; 为人类利用生物发酵生产所需产品提供主要的代谢途径。如 柠檬酸发酵;Glu发酵等。
(二)递氢和受氢 经过上述4条途径脱氢后,通过呼吸链等方式 传递,最终可与氧、无机氧或有机物等氢受体相结
2、HMP途径
磷酸戊糖进一步代谢有两种结局:
①磷酸戊糖经转酮—转醛酶系催化,又生成磷酸己糖 和磷酸丙糖(3-磷酸甘油醛),磷酸丙糖借EMP途径 的一些酶,进一步转化为丙酮酸。称为不完全HMP途 径。
②由六个葡萄糖分子参加反应,经一系列反应,最后 回收五个葡萄糖分子,消耗了1分子葡萄糖(彻底氧化 成CO2 和水),称完全HMP途径。
CO2、H2O 还原型中间代谢 产物醇、酸 NO2、N2 次之 少
电子传递链
完整
不完整
无,底物水平磷 酸化
二、自养微生物产ATP和产还原力 按能量来源不同可分为:
化能自养型
光能自养型
(一)化能自养微生物 还原CO2所需要的ATP和[H]是通过氧化无机物而获得的
硝化细菌、铁细菌、硫细菌、氢细菌
自养微生物氧化磷酸化效率低
葡萄糖 磷酸二羟丙酮
②异型乳酸发酵
乙醇
ATP ADP NAD+ NADH
乙醛
乙酰CoA
NAD+ NADH
乙酰磷酸
葡萄糖
6-磷酸 葡萄糖
6-磷酸葡 5-磷酸 萄糖酸 -CO2 木酮糖 3-磷酸 -2H 甘油醛
2ADP 2ATP
乳酸
(3)Stickland反应
1934年Stickland发现Closterdium sporogenes(生孢梭菌)能 利用一些氨基酸同时作为碳源、氮源和能源, 以一种氨基酸作供氢体,以另一种氨基酸作为受氢体而实现 产能的独特发酵类型。 CH3 CHNH2 + 2 CH2NH2 COOH ADP+Pi
第6章-微生物的代谢
新陈代谢 = 分解代谢 + 合成代谢 分解代谢:指复杂的有机物分子通过分解代谢酶系 的催化,产生简单分子、腺苷三磷酸(ATP)形式 的能量和还原力的作用。
合成代谢:指在合成代谢酶系的催化下,由简单小 分子、ATP形式的能量和还原力一起合成复杂的大 分子的过程。
合成代谢按产物在机体中作用不同分: 初级代谢: 提供能量、前体、结构物质等生命活动所 必须的代谢物的代谢类型;产物:氨基酸、核苷酸等。 次级代谢: 在一定生长阶段出现非生命活动所必需的代 谢类型;产物:抗生素、色素、激素、生物碱等。
•反应步骤简单,产能效率低.
• 此途径可与EMP途径、HMP途径和TCA循环相连接, 可互相协调以满足微生物对能量、还原力和不同中间 代谢物的需要。好氧时与TCA循环相连,厌氧时进行 乙醇发酵.
相关的发酵生产:细菌酒精发酵
葡萄糖三条降解途径在不同微生物中的分布
菌名 酿酒酵母 产朊假丝酵母 灰色链霉菌 产黄青霉 大肠杆菌 铜绿假单胞菌 嗜糖假单胞菌 枯草杆菌 氧化葡萄糖杆菌 真养产碱菌 运动发酵单胞菌 藤黄八叠球菌
氧被消耗而造成局部的厌氧环境
硝酸盐还原细菌进行厌氧呼吸
土壤中植物能利用的氮 (硝酸盐NO3-)还原成 氮气而消失,从而降低 了土壤的肥力。
松土,排除过多的水分, 保证土壤中有良好的通 气条件。
反硝化作用在氮素循环中的重要作用
硝酸盐是一种容易溶解于水的物质, 通常通过水从土壤流入水域中。如果 没有反硝化作用,硝酸盐将在水中积 累,会导致水质变坏与地球上氮素循 环的中断。
2、 HMP途径 (戊糖磷酸途径)
(Hexose Monophophate Pathway)
葡萄糖经转化成6磷酸葡萄糖酸后, 在6-磷酸葡萄糖酸 脱氢酶的催化下, 裂解成5-磷酸戊糖 和CO2。
东华理工大学环境工程微生物学各章思考题
各章思考题第一章绪论1. 用具体事例说明人类与微生物的关系,为什么说微生物既是人类的敌人,更是我们的朋友?2. 为什么微生物能成为生命科学研究的“明星”?3. 为什么说巴斯德和柯赫是微生物学的奠基人?4.微生物有哪些特点?第二章病毒1、解释下列名词:病毒粒子、前噬菌体、溶源性。
病毒粒子:成熟的病毒感染单位,病毒复制的最后阶段,在宿主脂肪体细胞、血细胞和上皮细胞的核内复制,形成多边形和多角形的包含体,裸露或被囊膜包裹前噬菌体:整合在宿主基因组上的温和噬菌体的核酸溶源性:温和噬菌体DNA具有整合入宿主菌染色质DNA中的特性,成为与宿主菌共生的原噬菌体,能随宿主菌的染色质同步复制而传给子代,这种特性称为溶源性。
2、什么是病毒?病毒有哪些不同于其他微生物之处?(作业1)3、简述病毒的主要化学组成及其结构。
4、试用图示说明下列名词之间的关系:病毒粒子、核芯、衣壳、被膜。
(作业2)5、病毒有哪几种对称类型?每种对称类型病毒的形态是什么?试各举一例。
6、试以T系噬菌体为例说明病毒的增殖过程。
7、病毒是一种致病因子,也是一种具有遗传成分特点的因子,病毒的这种特性有什么生物学意义?(作业3)第三章原核微生物1、试根据细菌细胞结构的特点,分析并举例说明为什么它们能在自然界中分布广泛。
2、细菌、粘细菌、放线菌、霉菌、酵母在繁殖方式上各有什么特点?3、根据革兰氏阳性菌和阴性菌的细胞壁结构和化学组成,解释为什么革兰氏染色后G+呈紫色,G-呈红色?4、比较细菌和放线细群体培养特征的异同。
5、以产甲烷菌为例,总古细菌的特点及其与细菌的不同之处。
第四章真核微生物1、微生物由于个体微小一般都是以其群体形式进行研究或利用,这必然就要涉及到对微生物的培养。
能否找到一种培养基,使所有的微生物都能良好地生长?为什么?2、试结合微生物学实验课的内容,谈谈在选择、配制和使用培养基时应注意哪些方面的内容。
你们在实验中是如何做的?有何体会?3、试比较营养物质进入微生物细胞的几种方式的基本特点。
第六章 微生物的代谢ppt课件
无氧呼吸的类型:根据呼吸链末端的氢受体
无机盐呼吸 有机物呼吸
无氧呼吸的主要类型
硝酸盐呼吸(Nitrate respiration) 反硝化作用(Denitrification),以无机盐为最终电 子受体的无氧呼吸类型; 如硝酸盐还原细菌E. coli将NO3-还原为NO2-
C6H12O6+12NO3- → 6CO2+6H2O+12NO2延胡索酸呼吸(Fumarate Respiration)
以有机物延胡索酸为最终电子受体,将其还原成琥 珀酸的生物氧化。
发酵(Fermentation)
广义发酵
任何利用微生物来生产大量菌体或有用代谢产物或食 品饮料的一类生产方式。
狭义发酵 在无氧等外源受氢体(外源最终电子受体)条件下, 底物脱氢以后产生的还原力[H]未经过呼吸链传递而 直接交给某一内源中间代谢产物接受,以实现底物水 平磷酸化产能的生物氧化反应。 C6H12O6 →2CO2+2C2H5OH
发酵的特点
微生物部分氧化有机物获得发酵产物,释放少量能
量
氢供体与氢受体(内源性中间代谢产物)均为有机物
还原力[H]不经过呼吸链传递
产能方式:底物水平磷酸化反应
有氧呼吸、无氧呼吸与发酵的比较
呼吸类型
有氧呼吸 无氧呼吸
氧化基质 有机物 有机物
ห้องสมุดไป่ตู้发酵
有机物
最终电子受体 O2
产物 产能 CO2、H2O 多
(三) 发酵作用(fermentation)
如果电子供体是有机化合物,而最终电子受体也是有机化合物的生物氧 化过程称为发酵作用。酵母菌利用葡萄糖进行酒精发酵,其中只有 9.6×104J贮存于ATP中,其余又以热的形式丧失,反应式如下: C6H12O6+2ADP+2Pi--------→2C2H5OH+2CO2+2ATP
第六章 微生物的新陈代谢 第二节 分解代谢与合成代谢的联系-文档资料
的间隔程度低,故反应的控制主要在简单的酶分子
水平上进行。
二、代谢物回补顺序
代谢物回补顺序(anaplerotic sequence),又称代谢 物补偿途径或添补途径(replenishment pathway),
是指能补充两用代谢途径中因合成代谢而消耗的中间代谢
物的那些反应。
作用:当重要产能途径中的关键中间代谢物必须被
在乙醛酸循环中有两个关键酶——它们可使丙酮酸和乙酸等化合物 合成4C二羧酸,以保证微生物正常生物合成的需要。
乙醛酸循环的总反应式:2丙酮酸→琥珀酸+2CO2
乙醛酸循环中的两个关键反应:
具有乙醛酸循环的微生物,普遍是好氧菌, 例如可用乙酸作唯一碳源生长的一些细菌,包括 Acetobacter(醋杆菌属)、 Azotobacter(固氮菌属)、 E.coli、
径,可使TCA循环不仅具有高效产能功能,而且还兼有 可为许多重要生物合成反应提供有关中间代谢物的功 能,Eg.草酰乙酸可合成天冬氨酸, α -酮戊二酸可 合成谷氨酸,琥珀酸可合成叶卟啉等。
苹果酸合酶 (malate synthase,MS)
异柠檬酸裂合酶 (isocitrate lyase,ICL)
微生物学
浙江工业大学生物技术系
裘娟萍 钟卫鸿 邱乐泉 汪琨
第二节 分解代谢和合成 代谢的联系
分解代谢与合成代谢在生物
体内是偶联进行的,它们之间的
关系是对立统一的。
分解代谢与合成代谢的关系图
联接分解代谢与合成代谢的中间代谢物有12种。
一、两用代谢途径
凡在分解代谢和合成代谢中均具有功能的代谢途径, 称为两用代谢途径(amphibolic pathway)。
大量用作生物合成的原料而抽走时,仍可保证能量代 谢的正常进行。
第六章 微生物的代谢机制及其应用
• 对分支代谢途径来说,情况就较复杂。每种末 端产物仅专一地阻遏合成它的那条分支途径的 酶。 • 代谢途径分支点以前的“公共酶”仅受所有分 支途径末端产物的阻遏,此即称多价阻遏作用。 • 末端产物阻遏在代谢调节中有着重要的作用, 它可保证细胞内各种物质维持适当的浓度。
(2)分解代谢物阻遏 )
• 指细胞内同时有两种分解底物(碳源或氮源) 存在时,利用快的那种分解底物会阻遏利用慢 的底物的有关酶合成的现象。 • 分解代谢物的阻遏作用,并非由于快速利用的 甲碳源本身直接作用的结果,而是通过甲碳源 (或氮源等)在其分解过程中所产生的中间代 谢物所引起的阻遏作用。 • 因此,分解代谢物的阻遏作用,就是指代谢反 应链中,某些中间代谢物或末端代谢物的过量 累积而阻遏代谢途径中一些酶合成的现象。
酶合成的阻遏的机制 正调节 末端产物阻遏指某代谢途径末端产物过量累积引起的阻 遏。在直线反应途径中,末端产物阻遏较为简单,即 产物作用于代谢途径中的各种酶,使这些酶不能合成 终产物的反馈阻遏在转录水平上进行,终产物为辅阻遏 物,它可激活由调节基因R生成的无活性阻遏蛋白。辅 阻遏物与阻遏蛋白结合形成活化阻遏物,它能与操纵 O RNA S 基因O结合,阻止RNA聚合酶对结构基因S的转录。
• 与上述调节酶活性的反馈抑制等相比,调 节酶的合成(即产酶量)而实现代谢调节 的方式是一类较间接而缓慢的调节方式。 • 其优点则是通过阻止酶的过量合成,有利 于节约生物合成的原料和能量。 • 在正常代谢途径中,酶活性调节和酶合成 调节两者是同时存在且密切配合、协调进 行的。
二、酶合成调节的类型
(二)、微生物代谢调节机制的分类
1. 通过控制基因的酶生物合成调节 酶合成的调节是一种通过调节酶的合成量进而调节代谢 速率的调节机制,这是一种在基因水平上(在原核生物中主 要在转录水平上)的代谢调节。 这类调节机制又可分为诱导与阻遏两种方式:
微生物第六章2
Gammaproteobacteria ➢ 贝日阿托菌属(Beggiatoa) ➢ 硫发菌属(Thiothrix) ➢ 硫小杆菌属(Thiobacterium) ➢ 无色硫菌属(Achromatium) ➢ 硫螺菌属(Thiospira) ➢ 硫微螺菌属(Thiomicrospira)
11
硝化作用及其应用
硝化细菌将氨、亚硝酸氧化为硝酸的代谢作用,称为 硝化作用;
在自然环境中,硝化细菌在土壤和水体中分布广泛, 硝化作用可为陆生和水生植物、藻类提供氮肥,避免 因氨、亚硝酸积累所发生的毒害作用;
硝化细菌制剂是包含活菌或休眠菌的硝化细菌培养物, 用于降低养殖池水体中的氨和亚硝酸浓度,净化水体;
酸化多产生1ATP;
17
硫氧化细菌的产能效率
1分子H2S被氧化为亚硫酸,再经APS途径氧化为硫酸,
共释放8e,从不同位点进入呼吸链,有氧呼吸,平均
P/O=1.5,氧化磷酸化产生12ATP,加上底物水平磷酸 化产生的0.5ATP,共产12.5ATP; 但部分电子需逆呼吸链传递,消耗ATP产NAD(P)H; 兼性厌氧硫氧化细菌在无氧条件下,产能效率更低;
生物氧化
还原态无机物
氧化态无机物+NADPH +ATP
1
化能自养菌的能源和电子供体
不同的化能自养菌利用不同的无机物作为能源和电子供 体,根据所用无机物区分各种化能自养菌: ➢ 硝化细菌:氨、亚硝酸; ➢ 硫化细菌:硫、硫化氢、硫化物(FeS、CdS、Ag2S、 CuS、MoS2、 Sb2S3、ZnS、SnS、CuFeS2、 Cu5FeS4 )、硫代硫酸盐、亚硫酸盐等; ➢ 氢细菌:H2; ➢ 铁细菌:F2+(硫酸亚铁)、Mn2+;
6第六章 微生物的代谢
发酵的类型
1.由EMP途径中丙酮酸出发的发酵
丙酮酸EMP途径的关键产物,由丙酮酸出发,在 不同微生物中可进入不同的发酵途径,如:同型酒 精发酵、同型乳酸发酵、丙酸发酵、混合酸发酵、 丁酸发酵等。
2.通过HMP途径的发酵——异型乳酸发酵 (heterolactic fermentation)凡葡萄糖发酵后产生乳 酸、乙醇(乙酸)和CO2等多种产物的发酵即异型 乳酸发酵;相对的如只产生2分子乳酸的发酵则称 同型乳酸发酵(homolactic fermentation)
第六章 微生物的代谢
Microbial metabolism
概述
新陈代谢(metabolism)简称代谢,是指发生在活细胞 中的各种分解代谢(catabolism)和合成代谢 (anabolism)的总和。
分解代谢又称异化作用,指复杂的有机分子在分解代谢 酶系的催化下产生简单分子、能量和还原力的作用。
TCA循环在微生物生命活动中的意义:
(1)彻底氧化,为微生物生长提供大量的能 量。 (2) 位于一切分解代谢与合成代谢的中枢地 位,为有机物的合成提供大量的原料。 (3)工业生产中可利用这一途径生产柠檬酸、 苹果酸、琥珀酸、谷氨酸等工业原料。
6.1.1.2 递氢和受氢
在生物体中,贮存在葡萄糖等有机物中 的化学能,经上述的多种途径脱氢后, 经过呼吸链等方式递氢,最终与受氢体 (氧、无机物或有机物)结合,以释放 其化学潜能。
1.EMP途径(Embdem-Meyerhof-Parnas pathway)或糖酵解途径(Glycolysis Pathway )
是绝大多数生物所共有的一条主流代谢途径。
1分子葡萄糖,经10步反应,产生2分子丙酮 酸 苷、酸)2分和子2N分A子DAHT2(P。还原型烟酰胺腺嘌呤二核
微生物学课件 第六章 微生物代谢
ATP ADP+P
Fd
(Fe4S4)2
FeMoCo N2
3、CO2同化
①乙醛酸循环 ②丙酮酸羧化支路 ③甘油酸途径:乙醇酸、草酸、甘氨酸底物, 转化为乙醛酸,缩合成羟基丙酮酸半醛,还原成甘 油酸进入EMP途径。
4、糖类的合成
单糖的合成;多糖的合成。
5、氨基酸的合成
氨基化作用;转氨基作用;前体碳骨架合成。
e-
e- Bph
e- QA e- QB e-
Q库
ADP+Pi Cyt.bc1 ATP
逆电子传递 外源H2
NAD(P) NAD(P)H2
P700 e- Cyt.c2
外源电子供体H2S等
非环式光合磷酸化 (non-cyclic photophosphorylation)
1/202 2H+
叶绿素b
e- Ⅱ
③膜透性调节; ④能荷调节; ⑤诱导作用:类似物诱导; ⑥磷酸盐调节。
(1)CO2的固定:空气中的CO2同化成细胞物质的 过程。
①卡尔文循环
②还原性三羧酸循环固定CO2
乙酰CoA
丙酮酸
磷酸烯醇式丙酮酸
草酰乙
酸
琥珀酰CoA
α-酮戊二酸
柠檬酸
乙酸
乙酰CoA
③还原单酸循环
不消耗能量,Fd由H2或NADH2提供电子,由乙酰
CoA 丙酮酸
草酰乙酸
乙酸
2、生物固氮
固氮微生物(nitrogen –fixing organisms, diazotrophs)
代谢调控:利用遗传学方法或其它生物学方法,人 为地改变和控制生物的代谢途径,生产有用物质或进行 有益服务。
二、微生物产能代谢
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
与分解代谢有关的生化实验(二)
1、了解各生化实验的原理
2、能配制相应的培养基,选用合适的指示剂
3、能准确判断结果,并进行表示
1、VP试验
2、硫化氢试验
3、尿素酶试验
4、复合生化试验
①动力靛基质尿素酶试验 MIU
②克氏双糖铁培养基试验 KIA
克氏双糖铁培养基试验 KIA
KIA可能出现的四种颜色所表示的意义
讲授为主
实验报告
反复强调微生物实验操作的注意事项
复习:相关理论知识
引入:不同种类的微生物能产生不同的酶类,因此,不同的微生物能够利用的营养物质是不同的。
即使是针对相同的营养物质,不同的微生物有不同的利用方法(导致最终产物不同)。
人为的设计一些培养基和检测方法,可以比较方便的了解微生物的生理过程。
实验二与分解代谢有关的生化试验
5.VP试验
①培养基:葡萄糖蛋白胨水培养基(葡胨水)
②指示剂:VP试剂(VP甲液和VP乙液)
③原理:
④结果判断和表示方法
培养基颜色变红—————— + 培养基颜色不变(或变棕色)——————-
注意:
若滴加甲液和乙液后没有变色,不能马上判断结果为阴性。
乙酰甲基甲醇在碱性条件下被氧化需要一段时间。
再放入培养箱培养2—4h以后,判
断结果。
原理:
含硫氨基酸
2S + Fe 2+
,
+ Pb 2+
7. 尿素酶试验
尿素培养基配方:
蛋白胨 1g NaCl 5g
葡萄糖 1g 磷酸二氢钾 2g
尿素 终浓度2% 酚红溶液 3ml
蒸馏水 1000ml
①培养基:尿素培养基(pH6.8)
②指示剂:酚红
③原理: 尿素3, 指示剂变色,桔黄色红色
④结果判断和表示方法:
培养基颜色变红———— +
培养基颜色不变(桔黄)
————— —
6、硫化氢试验
8、复合生化试验
①动力靛基质尿素酶试验 MIU
MIU培养基配方:
胰蛋白胨 10g
NaCl 5g
葡萄糖 1g
磷酸二氢钾 2g
尿素终浓度2%
酚红溶液 2ml
琼脂 3g
蒸馏水 1000ml
结果判断和表示方法:
看穿刺线:模糊 + 清晰—
看培养基颜色:红色+ 无变化—
加靛基质试剂:红色+ 无变化—
②克氏双糖铁培养基试验 KIA
培养基配方:
蛋白胨 20g 乳糖 10g 牛肉膏 3g 葡萄糖 1g 酵母膏 3g 硫酸亚铁铵 0.3g NaCl 5g 硫代硫酸钠 0.5g 酚红溶液 6ml 琼脂粉 13g 蒸馏水 1000ml
可观察四种生化结果:
①是否利用葡萄糖②是否利用乳糖
③是否产生H2S ④是否产生气体
结果判断和表示方法:
例1:大肠杆菌在KIA上的生化表现为:上层黄色,下层黄色,培养基断裂,无黑色沉淀。
表示方法:AG/AG,-
例2:变形杆菌在KIA上的生化表现为:上层红色,下层黄色,有黑色沉淀,培养基没有断裂,也没有产生气泡。
表示方法?。