∥3套精选试卷∥2021年常州市某达标实验中学七年级下学期数学期末经典试题
常州市2021年七年级下学期数学期末考试试卷D卷
常州市2021年七年级下学期数学期末考试试卷D卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019八下·涡阳期末) 实数a,b在数轴上的位置如图所示,则化简 - +b 的结果是()A . 1B . b+1C . 2aD . 1-2a2. (2分)如图,在条件:①∠5=∠6,②∠7=∠2,③∠3+∠8=180°,④∠3=∠2,⑤∠4+∠1=180°中,能判定a∥b的条件有()A . 4个B . 3个C . 2个D . 1个3. (2分)以下的各组数值是方程组的解的是()A .B .C .D .4. (2分) (2017七下·常州期中) 下列说法正确的是()A . 两直线平行,同旁内角可能相等B . 同底数幂相乘,底数相乘,指数相加C . 一个图形和它经过平移所得的图形中,两组对应点的连线一定平行D . 任何数的0次幂等于15. (2分) (2019七上·文昌期末) 下列运算正确的是A .B .C .D .6. (2分) (2019七下·安康期中) 若点P(x,y)的坐标满足xy=0(x≠y),则点P在()A . 原点上B . x轴上C . y轴上D . 坐标轴上7. (2分)在一个不透明的口袋里,装了只有颜色不同的黄球、白球若干只.某小组做摸球实验:将球搅匀后从中随机摸出一个,记下颜色,再放回袋中,不断重复.下表是活动中的一组数据,则摸到黄球的概率约是()摸球的次数n1001502005008001000摸到黄球的次数m526996266393507摸到黄球的频率0.520.460.480.5320.4910.507A . 0.4B . 0.5C . 0.6D . 0.78. (2分) (2017七下·岱岳期中) 下列命题是真命题的有几个?()①对顶角相等;②相等的角是对顶角;③若两个角不相等,则这两个角一定不是对顶角;④若两个角不是对顶角,则这两个角不相等.A . 1个B . 2个C . 3个D . 4个9. (2分) (2017七下·荔湾期末) 以下问题,不适合使用全面调查的是()A . 对旅客上飞机前的安检B . 航天飞机升空前的安全检查C . 了解全班学生的体重D . 了解广州市中学生每周使用手机所用的时间10. (2分)在下列各数中,属于无理数的是()。
【3套打包】常州市七年级下册数学期末考试试题(含答案)(1)
最新七年级(下)数学期末考试试题(答案)一、选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.下列各数中,是无理数的是( )A B C .311 D .3.142.在平面直角坐标系中,点P (-5,0)在( )A .第二象限B .第四象限C .x 轴上D .y 轴上3.不等式组111x x -≥-⎧⎨⎩>的解集在数轴上表示正确的是( ) A . B . C . D .4.下列命题中,是真命题的是( )A .两条直线被第三条直线所截,内错角相等B .邻补角互补C .相等的角是对顶角D .两个锐角的和是钝角5.已知a >b ,下列不等式成立的是( )A .a-2<b-2B .-3a >-3bC .a 2>b 2D .a-b >6.为了解2018年某市参加中考的21000名学生的视力情况,从中抽查了1000名学生的视力进行统计分析,下面判断正确的是( )A.21000名学生是总体B.上述调查是普查C.每名学生是总体的一个个体D.该1000名学生的视力是总体的一个样本7.如图,若图形A经过平移与下方图形拼成一个长方形,则正确的平移方式是()A.向右平移4格,再向下平移4格B.向右平移6格,再向下平移5格C.向右平移4格,再向下平移3格D.向右平移5格,再向下平移3格8.为了了解某校七年级学生的体能情况,随机调查了其中100名学生,测试学生在1分钟内跳绳的次数,并绘制成如图所示的频数分布直方图.请根据图形计算,跳绳次数(x)在120≤x<200范围内人数占抽查学生总人数的百分比为()A.43% B.50% C.57% D.73%9.如图,下列能判定AB∥EF的条件有()①∠B+∠BFE=180°②∠1=∠2③∠3=∠4④∠B=∠5.A.1个B.2个C.3个D.4个10.如图,将正方形ABCD的一角折叠,折痕为AE,点B恰好落在点B'处,∠BAD比∠BAE大48°.设∠BAE和∠BAD的度数分别为x°和y°,那么所适合的一个方程组是()A.4890y xy x-+⎧⎨⎩==B.482y xy x⎨⎩-⎧==C.48290x yy x⎨⎩-+⎧==D.48290y xy x⎨⎩-+⎧==二、填空题(本大题共6小题,每小题4分,共24分)请将下列各题的正确答案写在答题卡相应的位置上.相交于点O,OM⊥AB于O,若∠MOD=35°,则∠COB= 度.14.如图,直线AB,CD点B落在点B′的位置上,若∠DEA′=40°,则∠1+∠2= °.17.计算:20.如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,求∠C的度数.21.某区举办科技比赛,某校参加科技比赛(包括电子百拼、航模、机器人、建模四个类别)的参赛人数统计图如图.(1)该校参加机器人的人数是人;“航模”所在扇形的圆心角的度数是°;(2)补全条形统计图;(3)从全区参加科技比赛选手中随机抽取80人,其中有16人获奖,已知全区参加科技比赛人数共有3215人,请你估算全区参加科技比赛的获奖人数约是多少人?22.如图,已知Rt△ABC的三个顶点分别为A(-3,2),B(-3,-2),C(3,-2).将△ABC 平移,使点A与点M(2,3)重合,得到△MNP.(1)将△ABC向平移个单位长度,然后再向平移个单位长度,可以得到△MNP.(2)画出△MNP.(3)在(1)的平移过程中,线段AC扫过的面积为(只需填入数值,不必写单位).五、解答题(三)(本大题共3小题,每小题9分,共27分)23.在荔枝种植基地有A、B两个品种的树苗出售,已知A种比B种每株多20元,买1株A种树苗和2株B种树苗共需200元.(1)问A、B两种树苗每株分别是多少元?(2)为扩大种植,某农户准备购买A、B两种树苗共36株,且A种树苗数量不少于B种数量的一半,请求出费用最省的购买方案.24.如图,已知四边形ABCD,AB∥CD,点E是BC延长线上一点,连接AC、AE,AE 交CD于点F,∠1=∠2,∠3=∠4.证明:(1)∠BAE=∠DAC;(2)∠3=∠BAE;(3)AD∥BE.25.如图1,在平面直角坐标系中,点A,B的坐标分别是(-2,0),(4,0),现同时将点A、B分别向上平移2个单位长度,再向右平移2个单位长度,得到A,B的对应点C,D.连接AC、BD、CD.(1)点C的坐标为,点D的坐标为,四边形ABDC的面积为.(2)在x轴上是否存在一点E,使得△DEC的面积是△DEB面积的2倍?若存在,请求出点E的坐标;若不存在,请说明理由.参考答案及试题解析1.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A是整数,是有理数,选项错误;B是无理数,选项正确;C、311是分数,是有理数,选项错误;D、3.14是有限小数是有理数,选项错误.故选:B.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.【分析】根据点的坐标特点判断即可.【解答】解:在平面直角坐标系中,点P(-5,0)在x轴上,故选:C.【点评】此题考查了点的坐标,熟练掌握平面直角坐标系中点的特征是解本题的关键.3.【分析】先求出两个不等式的解集,再求其公共解.【解答】解:111xx-≥⎨-⎧⎩>①②,解不等式①,得x>2.所以原不等式组的解集为x>2.故选:A.【点评】本题主要考查了不等式组的解法,注意在表示解集x>a时,a用空心的点,而x≥a,则a用实心的点.4.【分析】利用平行线的性质、邻补角的定义及对顶角的定义等知识分别判断后即可确定正确的选项.【解答】解:A、两条平行直线被第三条直线所截,内错角相等,故错误,是假命题;B、邻补角互补,正确,是真命题;C、相等的角不一定是对顶角,故错误,是假命题;D、两个锐角的和不一定是钝角,故错误,是假命题,故选:B.【点评】本题考查了命题与定理的知识,解题的关键是了解平行线的性质、邻补角的定义及对顶角的定义等知识,难度不大.5.【分析】依据不等式的性质求解即可.【解答】解:A、由不等式的性质1可知,A错误,与要求不符;B、由不等式的性质3可知,B错误,与要求不符;C、此选项无法判断,与要求不符;D、由不等式的性质1可知,D正确,与要求相符.故选:D.【点评】本题主要考查的是不等式的性质,掌握不等式的性质是解题的关键.6.【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:A、21000名学生的视力是总体,故此选项错误;B、上述调查是抽样调查,不是普查,故此选项错误;C、每名学生的视力是总体的一个个体,故此选项错误;D、1000名学生的视力是总体的一个样本,故此选项正确;故选:D.【点评】本题考查统计知识的总体,样本,个体,普查与抽查等相关知识点.易错易混点:学生易对总体和个体的意义理解不清而错选.7.【分析】根据图形A与下方图形中空白部分的位置解答即可.【解答】解:由图可知,正确的平移方式向右平移4格,再向下平移4格.故选:A.【点评】本题考查了平移的性质,比较简单,准确识图是解题的关键.8.【分析】用120≤x<200范围内人数除以总人数即可.【解答】解:总人数为10+33+40+17=100人,120≤x<200范围内人数为40+17=57人,在120≤x<200范围内人数占抽查学生总人数的百分比为57100=57%.故选:C.【点评】本题考查了频数分布直方图,把图分析透彻是解题的关键.9.【分析】根据平行线的判定定理对各小题进行逐一判断即可.【解答】解:①∵∠B+∠BFE=180°,∴AB∥EF,故本小题正确;②∵∠1=∠2,∴DE∥BC,故本小题错误;③∵∠3=∠4,∴AB∥EF,故本小题正确;④∵∠B=∠5,∴AB∥EF,故本小题正确.故选:C.【点评】本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.10.【分析】设∠BAE和∠BAD的度数分别为x,y,根据将正方形ABCD的一角折叠,折痕为AE,∠BAD比∠BAE大48°可列出方程组.【解答】解:设∠BAE和∠BAD的度数分别为x°和y°,根据题意可得:48290 y xy x⎨⎩-+⎧==.故选:D.【点评】本题考查由实际问题抽象出二元一次方程组,以及翻折变换的问题,关键知道正方形的四个角都是直角.11.【分析】直接利用二次根式的性质化简求出即可.【解答】.故答案为:5.【点评】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.12【分析】方程去括号,移项合并,把x系数化为1,即可求出解.【解答】解:方程去括号得:3x=2x+2,解得:x=2.故答案为:x=2【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.13【分析】先求出不等式的解集,再求出整数解即可.【解答】解:2x+5≤12,2x≤12-5,2x≤7,x≤3.5,所以不等式2x+5≤12的正整数解是1,2,3,故答案为:1,2,3.【点评】本题考查了解一元一次不等式和不等式的整数解,能根据不等式的性质求出不等式的解集是解此题的关键.14.【分析】根据垂直定义可得∠AOM的度数,然后再根据角的和差关系可得∠AOD,再利用对顶角相等可得答案.【解答】解:∵OM⊥AB,∴∠AOM=90°,∵∠MOD=35°,∴∠AOD=90°+35°=125°,∴∠COB=125°,故答案为:125.【点评】此题主要考查了垂线,关键是掌握当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,掌握对顶角相等.15.【分析】两个方程相加即可得出4a+4b的值,再得出a+b的值即可.【解答】解:51234a ba b+-⎧⎨⎩=①=②,①+②得4a+4b=16,则a+b=4.故答案为:4.【点评】考查了二元一次方程组的解,要想求得二元一次方程组里两个未知数的和,有两种方法:求得两个未知数,让其相加;观察后让两个方程式(或整理后的)直接相加或相减.16.【分析】依据平行线的性质以及折叠的性质,即可得到∠2的度数,依据折叠的性质即可得到∠1的度数,进而得出∠1+∠2=70°+50°=120°.【解答】解:∵AD∥BC,∠DEA′=40°,∴∠EA'F=40°,又∵∠B'A'E=∠BAD=90°,∴∠2=90°-40°=50°,由折叠可得,∠1=12∠AEA'=12(180°-∠DEA')=12(180°-40°)=70°,∴∠1+∠2=70°+50°=120°.故答案为:120.【点评】本题主要考查了折叠问题以及平行线的性质,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.17.【分析】直接利用二次根式的性质以及立方根的性质、绝对值的性质分别化简得出答案.【解答】解:原式=32-()-4-1=32-2+=-51 2+【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.【分析】方程①中y的系数是1,用含x的式子表示y比较简便.【解答】解:由①,得y=2x-3③,代入②,得3x+4×(2x-3)=10,解得x=2,把x=2代入③,解得y=1.∴原方程组的解为21x y ⎧⎨⎩==【点评】注意观察两个方程的系数特点,选择简便的方法进行代入.19. 【分析】分别求出各不等式的解集,再求出其公共解集,由x 的取值范围即可得出结论.【解答】解:()302133x x x +-+≥⎧⎨⎩>①②,由①得x >-3;由②得x≤1故此不等式组的解集为:-3<x≤1,所以-1不是该不等式组的解.【点评】本题考查的是解一元一次不等式组及估算无理数的大小,根据题意求出x 的取值范围是解答此题的关键.20. 【分析】首先根据平行线的性质可得∠1=∠B ,∠2=∠C ,再根据AD 是∠EAC 的平分线,可得∠1=∠2.利用等量代换可得∠B=∠C=30°.【解答】解:∵AD ∥BC ,∴∠1=∠B ,∠2=∠C ,又∵AD 平分∠EAC ,∴∠1=∠2,∴∠C=∠B=30°.【点评】此题主要考查了平行线的性质,以及角平分线的性质,关键是掌握平行线性质定理: 定理1:两直线平行,同位角相等;定理2:两直线平行,同旁内角互补;定理3:两直线平行,内错角相等.21. 【分析】(1)由条形图可得机器人人数,用360°乘以建模对应百分比可得;(2)先求出总人数,再根据各类别人数之和等于总人数求得电子百拼人数即可补全图形;(3)总人数乘以获奖人数所占比例可得.【解答】解:(1)该校参加机器人的人数是4,“航模”所在扇形的圆心角的度数是360°×25%=90°,故答案为:4、90;(2)∵被调查的总人数为6÷25%=24人,∴电子百拼的人数为24-(6+4+6)=8人,补全图形如下:(3)估算全区参加科技比赛的获奖人数约是3215×1680=643人. 【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22. 【分析】(1)利用网格特点和平移的性质得出答案;(2)再利用(1)中平移的性质得出△MNP ;(3)先由AC 平移到A 1C 1,再由A 1C 1平移到MP ,所以线段AC 扫过的部分为两个平行四边形,于是根据平行四边形的面积公式可计算出线段AC 扫过的面积.【解答】解:(1)将△ABC 向右平移5个单位长度,然后再向上平移1个单位长度,可以得到△MNP ;故答案为:右,5,上,1;(2)如图所示:△MNP ,即为所求;(3)线段AC 扫过的面积为:4×5+1×6=26.故答案为:26.【点评】本题考查了作图-平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离;作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形23. 【分析】(1)设A 种树苗每株x 元,B 种树苗每株y 元,根据条件“A 种比B 种每株多20元,买1株A 种树苗和2株B 种树苗共需200元”建立方程求出其解即可;(2)设A 种树苗购买a 株,则B 种树苗购买(36-a )株,根据条件A 种树苗数量不少于B 种数量的一半建立不等式,求出其解即可.【解答】解:(1)设A 种树苗每株x 元,B 种树苗每株y 元,由题意,得202200x y x y ⎨⎩-+⎧==, 解得8060x y ⎧⎨⎩==,答:A 种树苗每株80元,B 种树苗每株60元.(2)设购买A 种树苗a 株,由题意得: x≥12(36-a ), 解得:a≥12,∵A 种树苗价格高,∴尽量少买a 种树苗,最新七年级(下)数学期末考试试题(答案)一、选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.下列各数中,是无理数的是( )AB C .311 D .3.142.在平面直角坐标系中,点P (-5,0)在( )A .第二象限B .第四象限C .x 轴上D .y 轴上3.不等式组111x x -≥-⎧⎨⎩>的解集在数轴上表示正确的是( ) A . B . C . D .4.下列命题中,是真命题的是( )A .两条直线被第三条直线所截,内错角相等B .邻补角互补C .相等的角是对顶角D .两个锐角的和是钝角5.已知a >b ,下列不等式成立的是( )A .a-2<b-2B .-3a >-3bC .a 2>b 2D .a-b >06.为了解2018年某市参加中考的21000名学生的视力情况,从中抽查了1000名学生的视力进行统计分析,下面判断正确的是()A .21000名学生是总体B.上述调查是普查C.每名学生是总体的一个个体D.该1000名学生的视力是总体的一个样本7.如图,若图形A经过平移与下方图形拼成一个长方形,则正确的平移方式是()A.向右平移4格,再向下平移4格B.向右平移6格,再向下平移5格C.向右平移4格,再向下平移3格D.向右平移5格,再向下平移3格8.为了了解某校七年级学生的体能情况,随机调查了其中100名学生,测试学生在1分钟内跳绳的次数,并绘制成如图所示的频数分布直方图.请根据图形计算,跳绳次数(x)在120≤x<200范围内人数占抽查学生总人数的百分比为()A.43% B.50% C.57% D.73%9.如图,下列能判定AB∥EF的条件有()①∠B+∠BFE=180°②∠1=∠2③∠3=∠4④∠B=∠5.A.1个 B .2个 C .3个 D .4个10.如图,将正方形ABCD 的一角折叠,折痕为AE ,点B 恰好落在点B'处,∠BAD 比∠BAE 大48°.设∠BAE 和∠BAD 的度数分别为x°和y°,那么所适合的一个方程组是( )A .4890y x y x -+⎧⎨⎩==B . 482y x y x⎨⎩-⎧== C .48290x y y x ⎨⎩-+⎧== D .48290y x y x ⎨⎩-+⎧==14.如图,直线AB,CD相交于点O,OM⊥AB于O,若∠MOD=35°,则∠COB= 度.16.如图,把一张长方形纸片ABCD沿EF折叠后,点A与点A′重合(点A在BC边上),点B落在点B′的位置上,若∠DEA′=40°,则∠1+∠2= °.17.计算:21.某区举办科技比赛,某校参加科技比赛(包括电子百拼、航模、机器人、建模四个类别)的参赛人数统计图如图.(1)该校参加机器人的人数是人;“航模”所在扇形的圆心角的度数是°;(2)补全条形统计图;(3)从全区参加科技比赛选手中随机抽取80人,其中有16人获奖,已知全区参加科技比赛人数共有3215人,请你估算全区参加科技比赛的获奖人数约是多少人?22.如图,已知Rt△ABC的三个顶点分别为A(-3,2),B(-3,-2),C(3,-2).将△ABC 平移,使点A与点M(2,3)重合,得到△MNP.(1)将△ABC向平移个单位长度,然后再向平移个单位长度,可以得到△MNP.(2)画出△MNP.(3)在(1)的平移过程中,线段AC扫过的面积为(只需填入数值,不必写单位).五、解答题(三)(本大题共3小题,每小题9分,共27分)23.在荔枝种植基地有A、B两个品种的树苗出售,已知A种比B种每株多20元,买1株A种树苗和2株B种树苗共需200元.(1)问A、B两种树苗每株分别是多少元?(2)为扩大种植,某农户准备购买A、B两种树苗共36株,且A种树苗数量不少于B种数量的一半,请求出费用最省的购买方案.24.如图,已知四边形ABCD,AB∥CD,点E是BC延长线上一点,连接AC、AE,AE 交CD于点F,∠1=∠2,∠3=∠4.证明:(1)∠BAE=∠DAC;(2)∠3=∠BAE;(3)AD∥BE.25.如图1,在平面直角坐标系中,点A,B的坐标分别是(-2,0),(4,0),现同时将点A、B分别向上平移2个单位长度,再向右平移2个单位长度,得到A,B的对应点C,D.连接AC、BD、CD.(1)点C的坐标为,点D的坐标为,四边形ABDC的面积为.(2)在x轴上是否存在一点E,使得△DEC的面积是△DEB面积的2倍?若存在,请求出点E的坐标;若不存在,请说明理由.参考答案及试题解析1.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A是整数,是有理数,选项错误;B是无理数,选项正确;C、311是分数,是有理数,选项错误;D、3.14是有限小数是有理数,选项错误.故选:B.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.【分析】根据点的坐标特点判断即可.【解答】解:在平面直角坐标系中,点P(-5,0)在x轴上,故选:C.【点评】此题考查了点的坐标,熟练掌握平面直角坐标系中点的特征是解本题的关键.3.【分析】先求出两个不等式的解集,再求其公共解.【解答】解:111xx-≥⎨-⎧⎩>①②,解不等式①,得x>2.所以原不等式组的解集为x>2.故选:A.【点评】本题主要考查了不等式组的解法,注意在表示解集x>a时,a用空心的点,而x≥a,则a用实心的点.4.【分析】利用平行线的性质、邻补角的定义及对顶角的定义等知识分别判断后即可确定正确的选项.【解答】解:A、两条平行直线被第三条直线所截,内错角相等,故错误,是假命题;B、邻补角互补,正确,是真命题;C、相等的角不一定是对顶角,故错误,是假命题;D、两个锐角的和不一定是钝角,故错误,是假命题,故选:B.【点评】本题考查了命题与定理的知识,解题的关键是了解平行线的性质、邻补角的定义及对顶角的定义等知识,难度不大.5.【分析】依据不等式的性质求解即可.【解答】解:A、由不等式的性质1可知,A错误,与要求不符;B、由不等式的性质3可知,B错误,与要求不符;C、此选项无法判断,与要求不符;D、由不等式的性质1可知,D正确,与要求相符.故选:D.【点评】本题主要考查的是不等式的性质,掌握不等式的性质是解题的关键.6.【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:A、21000名学生的视力是总体,故此选项错误;B、上述调查是抽样调查,不是普查,故此选项错误;C、每名学生的视力是总体的一个个体,故此选项错误;D、1000名学生的视力是总体的一个样本,故此选项正确;故选:D.【点评】本题考查统计知识的总体,样本,个体,普查与抽查等相关知识点.易错易混点:学生易对总体和个体的意义理解不清而错选.7.【分析】根据图形A与下方图形中空白部分的位置解答即可.【解答】解:由图可知,正确的平移方式向右平移4格,再向下平移4格.故选:A.【点评】本题考查了平移的性质,比较简单,准确识图是解题的关键.8.【分析】用120≤x<200范围内人数除以总人数即可.【解答】解:总人数为10+33+40+17=100人,120≤x<200范围内人数为40+17=57人,在120≤x<200范围内人数占抽查学生总人数的百分比为57100=57%.故选:C.【点评】本题考查了频数分布直方图,把图分析透彻是解题的关键.9.【分析】根据平行线的判定定理对各小题进行逐一判断即可.【解答】解:①∵∠B+∠BFE=180°,∴AB∥EF,故本小题正确;②∵∠1=∠2,∴DE∥BC,故本小题错误;③∵∠3=∠4,∴AB∥EF,故本小题正确;④∵∠B=∠5,∴AB∥EF,故本小题正确.故选:C.【点评】本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.10.【分析】设∠BAE和∠BAD的度数分别为x,y,根据将正方形ABCD的一角折叠,折痕为AE,∠BAD比∠BAE大48°可列出方程组.【解答】解:设∠BAE和∠BAD的度数分别为x°和y°,根据题意可得:48290 y xy x⎨⎩-+⎧==.故选:D.【点评】本题考查由实际问题抽象出二元一次方程组,以及翻折变换的问题,关键知道正方形的四个角都是直角.11.【分析】直接利用二次根式的性质化简求出即可.【解答】.故答案为:5.【点评】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.12【分析】方程去括号,移项合并,把x系数化为1,即可求出解.【解答】解:方程去括号得:3x=2x+2,解得:x=2.故答案为:x=2【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.13【分析】先求出不等式的解集,再求出整数解即可.【解答】解:2x+5≤12,2x≤12-5,2x≤7,x≤3.5,所以不等式2x+5≤12的正整数解是1,2,3,故答案为:1,2,3.【点评】本题考查了解一元一次不等式和不等式的整数解,能根据不等式的性质求出不等式的解集是解此题的关键.14.【分析】根据垂直定义可得∠AOM的度数,然后再根据角的和差关系可得∠AOD,再利用对顶角相等可得答案.【解答】解:∵OM⊥AB,∴∠AOM=90°,∵∠MOD=35°,∴∠AOD=90°+35°=125°,∴∠COB=125°,故答案为:125.【点评】此题主要考查了垂线,关键是掌握当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,掌握对顶角相等.15.【分析】两个方程相加即可得出4a+4b的值,再得出a+b的值即可.【解答】解:51234a ba b+-⎧⎨⎩=①=②,①+②得4a+4b=16,则a+b=4.故答案为:4.【点评】考查了二元一次方程组的解,要想求得二元一次方程组里两个未知数的和,有两种方法:求得两个未知数,让其相加;观察后让两个方程式(或整理后的)直接相加或相减.16.【分析】依据平行线的性质以及折叠的性质,即可得到∠2的度数,依据折叠的性质即可得到∠1的度数,进而得出∠1+∠2=70°+50°=120°.【解答】解:∵AD∥BC,∠DEA′=40°,∴∠EA'F=40°,又∵∠B'A'E=∠BAD=90°,∴∠2=90°-40°=50°,由折叠可得,∠1=12∠AEA'=12(180°-∠DEA')=12(180°-40°)=70°,∴∠1+∠2=70°+50°=120°.故答案为:120.【点评】本题主要考查了折叠问题以及平行线的性质,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.17.【分析】直接利用二次根式的性质以及立方根的性质、绝对值的性质分别化简得出答案.【解答】解:原式=32-()-4-1=32-2+=-51 2+【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.【分析】方程①中y的系数是1,用含x的式子表示y比较简便.【解答】解:由①,得y=2x-3③,代入②,得3x+4×(2x-3)=10,解得x=2,把x=2代入③,解得y=1.∴原方程组的解为21 xy⎧⎨⎩==【点评】注意观察两个方程的系数特点,选择简便的方法进行代入.19. 【分析】分别求出各不等式的解集,再求出其公共解集,由x 的取值范围即可得出结论.【解答】解:()302133x x x +-+≥⎧⎨⎩>①②,由①得x >-3;由②得x≤1故此不等式组的解集为:-3<x≤1,所以-1不是该不等式组的解.【点评】本题考查的是解一元一次不等式组及估算无理数的大小,根据题意求出x 的取值范围是解答此题的关键.20. 【分析】首先根据平行线的性质可得∠1=∠B ,∠2=∠C ,再根据AD 是∠EAC 的平分线,可得∠1=∠2.利用等量代换可得∠B=∠C=30°.【解答】解:∵AD ∥BC ,∴∠1=∠B ,∠2=∠C ,又∵AD 平分∠EAC ,∴∠1=∠2,∴∠C=∠B=30°.【点评】此题主要考查了平行线的性质,以及角平分线的性质,关键是掌握平行线性质定理: 定理1:两直线平行,同位角相等;定理2:两直线平行,同旁内角互补;定理3:两直线平行,内错角相等.21. 【分析】(1)由条形图可得机器人人数,用360°乘以建模对应百分比可得;(2)先求出总人数,再根据各类别人数之和等于总人数求得电子百拼人数即可补全图形;(3)总人数乘以获奖人数所占比例可得.【解答】解:(1)该校参加机器人的人数是4,“航模”所在扇形的圆心角的度数是360°×25%=90°,故答案为:4、90;(2)∵被调查的总人数为6÷25%=24人,。
<合集试卷3套>2021年常州市某达标实验中学七年级下学期数学期末学业水平测试试题
七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.下面因式分解正确的是( )A .222()a b a b +=+B .22()()a b a b a b +=+-C .223(3)(1)x x x x +-=+-D .2(3)(3)9x x x +-=- 【答案】C【解析】分别利用完全平方公式以及平方差公式分解因式进而判断得出即可.【详解】A 、a 2+b 2,无法分解因式,故此选项不符合题意;B 、a 2+b 2,无法分解因式,故此选项不符合题意;C 、x 2+2x−3=(x +3)(x−1)故此选项符合题意;D 、(x +3)(x−3)=x 2−9,是多项式乘法,不是因式分解,故此选项不符合题意;故选:C .【点睛】本题考查分解因式,熟练掌握分解因式的方法和平方差公式的结构特点是解题的关键.2.将32.0510-⨯用小数表示为( )A .0.000205B .0.0205C .0.00205D .-0.00205 【答案】C【解析】解:32.0510-⨯=0.1.故选C .考点:科学记数法—原数.3.某居民小区开展节约用电活动,对该小区30户家庭的节电量情况进行了统计,五月份与四月份相比,节电情况如下表: 节电量(度)10 20 30 40 户数[来源:学#科#网] 2 15 10 3 则五月份这30户家庭节电量的众数与中位数分别为( )A .20,20B .20,25C .30,25D .40,20【答案】A【解析】试题解析:由表格中的数据可得,五月份这30户家庭节电量的众数是:20,中位数是20,故选A .4.下列算式中错误的是A.B.C.D.【答案】C【解析】A选项,A正确;B选项,B正确;C选项,C错误;D选项,D正确.故选C.5.4的算术平方根是()A.16 B.±2 C.2 D2【答案】C【解析】根据算术平方根的定义解答即可.【详解】∵2的平方为4,∴4的算术平方根为2.故选C.【点睛】本题考查了平方根的意义,如果个一个数x的平方等于a,即x2=a,那么这个数x叫做a的平方根,正数a 的平方根记作a正数a有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根. 6.“黑发不知勤学早,白首方悔读书迟。
江苏省常州市2021年七年级下学期数学期末考试试卷(II)卷
江苏省常州市2021年七年级下学期数学期末考试试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分) (2018八上·寮步月考) 下列图形具有稳定性的是()A .B .C .D .2. (2分)(2016·呼伦贝尔) 下列调查适合做抽样调查的是()A . 对某小区的卫生死角进行调查B . 审核书稿中的错别字C . 对八名同学的身高情况进行调查D . 对中学生目前的睡眠情况进行调查3. (2分) (2019七上·威海期末) 如果一个三角形的两边分别为2和4,则第三边长可能是()A . 8B . 6C . 4D . 24. (2分)如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的边长为A .B .C . 4D . 85. (2分) (2019八上·天台月考) 用直角三角板,作△ 的高,下列作法正确的是A .B .C .D .6. (2分) (2019八下·廉江期末) 某市一周日最高气温如图所示,则该市这周的日最高气温的众数是()A . 25B . 26C . 27D . 287. (2分)(2017·高邮模拟) 若数轴上的A、B、C三点表示的实数分别为a、1、﹣1,则|a+1|表示()A . A、B两点间的距离B . A、C两点间的距离C . A、B两点到原点的距离之和D . A、C两点到原点的距离之和8. (2分)若方程组的解中x与y的值相等,则k为()A . 4B . 3C . 2D . 1二、填空题 (共10题;共12分)9. (1分)(2019·武汉) 计算的结果是________10. (1分)(2017·广东) 一个n边形的内角和是720°,则n=________.11. (2分) (2017七下·桥东期中) 如图,△ABC中,∠B=58°,AB∥CD,∠ADC=∠DAC ,∠ACB的平分线交DA的延长线于点E,则∠E的度数为________°.12. (1分) (2018九上·潮南期末) 将二次函数的图象沿x轴向左平移2个单位,则平移后的抛物线对应的二次函数的表达式为________.13. (2分) (2018八上·汪清期末) 如图,直线l过正方形ABCD的顶点B,点A、点B到直线l的距离分别是3和4,则该正方形的面积是________.14. (1分)某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打________折.15. (1分) (2019八上·江汉期中) 如图,△A BC的边BC上有一点D,取AD的中点E,连接BE,CE,如果△ABC 的面积为2,则图中阴影部分的面积为________16. (1分) (2019八下·辽阳月考) 如图,在中,、的垂直平分线、相交于点,若等于,则等于________17. (1分)甲、乙两人练习跑步,速度分别为x m/h和y m/h(x>y),乙在甲的前方30m处,若两人同时起跑,方向相同,20s时甲赶上乙,则x、y应满足________.18. (1分)如图,AC=BC,DC=EC,∠ACB=∠ECD=90°,且∠EBD=38°,则∠AEB=________.三、综合题 (共8题;共63分)19. (5分)(2020·陕西模拟) 计算:20. (5分)如图,在△ABC中,已知∠1=∠2,BE=CD.(1)求证:△ABE≌△ACD;(2)请写出图中所有等腰三角形.21. (10分)解下列方程组(1)(2).22. (5分)(2018·北京) 解不等式组:.23. (5分)如图,在每个小正方形的边长均为1个单位长度的方格纸中,有△ABC和一点O,△ABC的顶点和点O均与小正方形的顶点重合.①在方格纸中,将△ABC向下平移5个单位长度得到△A1B1C1,请画出△A1B1C1;②在方格纸中,将△ABC绕点O旋转180°得到△A2B2C2,请画出△A2B2C2.24. (11分) (2020七上·银川期末) 银川市2019年5月1日---20日的气温(单位:℃)如下:22 31 25 15 18 23 21 20 27 1720 12 18 21 21 16 20 24 26 19解答下列问题:(1)将下表补充完整:气温分组12≤x<1717≤x<2222≤x<2727≤x<32频数32百分比15%25%(2)补全频数直方图25. (10分)(2019·张掖模拟) 如图,在△ABC中,AD是△ABC的中线,点E是AD的中点,连接BE并延长,交AC于点F.(1)根据题意补全图形.(2)如果AF=1,求CF的长.26. (12分) (2020七上·邛崃期末) 如图,两个形状,大小完全相同的含有30°,60°的三角板如图①放置,PA,PB与直线MN重合,且三角板PAC与三角板PBD均可绕点P逆时针旋转。
【精选5份合集】2020-2021年常州市某达标实验中学七年级下学期期末综合测试数学试题
七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.不等式6﹣4x≥3x﹣8的非负整数解为()A.2个B.3个C.4个D.5个【答案】B【解析】移项得,﹣4x﹣3x≥﹣8﹣6,合并同类项得,﹣7x≥﹣14,系数化为1得,x≤1.故其非负整数解为:0,1,1,共3个.故选B.2.如图,在下列给出的条件中,不能判定AB∥DF的是()A.∠A+∠2=180°B.∠1=∠A C.∠1=∠4 D.∠A=∠3【答案】B【解析】利用平行线的判定定理,逐一判断,容易得出结论.【详解】A选项:∵∠2+∠A=180°,∴AB∥DF(同旁内角互补,两直线平行);B选项:∵∠1=∠A,∴AC∥DE(同位角相等,两直线平行),不能证出AB∥DF;C选项:∵∠1=∠4,∴AB∥DF(内错角相等,两直线平行).D选项:∵∠A=∠3,∴AB∥DF(同位角相等,两直线平行)故选B.【点睛】考查了平行线的判定;正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.3.空气是由多种气体混合而成的,为了直观地介绍空气各成分的百分比,最适合使用的统计图是()A.扇形图B.直方图C.条形图D.折线图【答案】A【解析】扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;频数分布直方图,清楚显示在各个不同区间内取值,各组频数分布情况,易于显示各组之间频数的差别.条形统计图能清楚地表示出每个项目的具体数目;折线统计图表示的是事物的变化情况;【详解】解:根据题意得:要求直观反映空气的组成情况,即各部分在总体中所占的百分比,结合统计图各自的特点,应选择扇形统计图.故选:A.【点睛】此题考查扇形统计图、折线统计图、条形统计图,频数分布直方图各自的特点.掌握它们的特点是解题的关键.4.下列图形中,∠1与∠2不是互补关系的是()A.B.C.D.【答案】C【解析】根据互补的两个角的和为180︒判定即可.【详解】解:A.∠1与∠2是互补关系,故本选项不合题意;B.由平行线的性质可知∠1与∠2是互补关系,故本选项不合题意;C.由对顶角的定义可知∠1与∠2是对顶角,不一定具有互补关系,故本选项符合题意;D.∠1+∠2=180°,即∠1与∠2是互补关系,故本选项不合题意.故选:C.【点睛】本题主要考查了补角的定义、邻补角、对顶角、平行线的性质,熟记补角的定义是解答本题的关键.→→→的路径匀速前进到D为止,在这5.如图,在四边形ABCD中,动点P从点A开始沿A B C D∆的面积S随时间t的变化关系用图象表示正确的是()个过程中,APDA.B.C.D.【答案】C【解析】根据点P的运动过程可知:APD∆的底边为AD,而且AD始终不变,点P到直线AD的距离为APD∆的高,根据高的变化即可判断S与t的函数图象.【详解】解:设点P到直线AD的距离为h,APD∴∆的面积为:1·2S AD h =,当P在线段AB运动时,此时h不断增大,S也不端增大当P在线段BC上运动时,此时h不变,S也不变,当P在线段CD上运动时,此时h不断减小,S不断减少,又因为匀速行驶且CD AB>,所以在线段CD上运动的时间大于在线段AB上运动的时间故选C.【点睛】本题考查函数图象,解题的关键是根据点P到直线AD的距离来判断s与t的关系,本题属于基础题型.6.已知a<b,则下列不等式中不正确的是()A.4a<4b B.a+4<b+4 C.a﹣4<b﹣4 D.﹣4a<﹣4b【答案】D【解析】根据不等式的性质逐个判断即可.【详解】A、∵a<b,∴4a<4b,故本选项不符合题意;B、∵a<b,∴a+4<b+4,故本选项不符合题意;C、∵a<b,∴a﹣4<b﹣4,故本选项不符合题意;D、∵a<b,∴﹣4a>﹣4b,故本选项符合题意;故选:D.【点睛】本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键.7.若不等式(a+1)x>a+1的解集是x<1,则a必满足()A.a<﹣1 B.a>﹣1 C.a<0 D.a<1【答案】A【解析】由已知不等式的解集,利用不等式的基本性质判断即可确定出a的范围.【详解】∵不等式(a+1)x>a+1的解集是x<1,∴a+1<0,解得:a<−1.故选A.【点睛】此题考查不等式的解集,解题关键在于掌握运算法则8.不等式组5243x x +>⎧⎨-≥⎩的最小整数解是( ) A .﹣3B .﹣2C .0D .1 【答案】B【解析】先求出每个不等式的解集,再求出不等式组的解集,即可得出答案.【详解】解:5243x x +⎧⎨-≥⎩>①②,解不等式①得:x >﹣3,解不等式②得:x≤1,∴不等式组的解集为﹣3<x≤1,∴不等式组的最小整数解是﹣2,故选:B .【点睛】本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的解集得出不等式组的解集是解此题的关键.9.在0、2212 3.14160.2380.373773777373π-、、、、、(它的位数无限且相邻两个“3”之间“7”的个数依次加1个),这十个数中,无理数的个数是( )A .1B .2C .3D .4 【答案】D【解析】根据无理数的定义,即可得到答案【详解】∵0、2212 3.14160.23873-、、、、0.3737737773π、(它的位数无限且相邻两个“3”之间“7”的个数依次加1个)是无理数,∴无理数的个数有4个.故选D .【点睛】本题主要考查无理数的定义,掌握无限不循环小数是无理数,是解题的关键.10.如图,直线a ∥b ,∠1=120°,∠2=40°,则∠3等于( )A.60°B.70°C.80°D.90°【答案】C【解析】试题分析:如图,∵a∥b,∴∠1=∠4=120°,∵∠4=∠2+∠3,而∠2=40°,∴120°=40°+∠3,∴∠3=80°.故选C.考点:平行线的性质.二、填空题题11.如果一个多边形的内角和等于外角和的3倍,那么这个多边形的边数n=____.【答案】1.【解析】根据多边形的内角和公式及外角的特征计算.【详解】多边形的外角和是360°,根据题意得:110°•(n-2)=3×360°解得n=1.故答案为:1.【点睛】本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.12.在同一平面内,不重合的两条直线的位置关系有_____.【答案】相交或平行【解析】根据同一平面内,不重合的两条直线的位置关系可知.【详解】在同一平面内,不重合的两条直线有2种位置关系,它们是相交或平行.故答案为相交或平行【点睛】本题是基础题型,主要考查了在同一平面内,不重合的两条直线的两种位置关系.13.已知1{8xy==-是方程31mx y-=-的解,则m=____________【答案】3-.【解析】把x=1,y=﹣8代入3mx﹣y=﹣1,即可求出m的值.【详解】把x=1,y=﹣8代入3mx﹣y=﹣1得,3m+8=﹣1,∴m=-3.故答案为-3.【点睛】本题考查了二元一次方程的解,熟练掌握能使二元一次方程左右两边相等的未知数的值是方程的解是解答本题的关键.14.一个含30°角和另一个含45°角的三角板按如图所示放置,直角顶点重合,且两条斜边//AB EF,则ACE∠=__________°.【答案】15【解析】根据//AB EF求出∠BDF=60°,即可求出∠DCF=15°,根据∠DCF+∠DCE=∠ACE+∠DCE即可求出∠ACE=∠DCF=15°.【详解】∵//AB EF,∴∠BDF=∠B=60°,∵∠BDF=∠F+∠DCF,∠F=45°,∴∠DCF=15°,∵∠DCF+∠DCE=∠ACE+∠DCE=90°,∴∠ACE=∠DCF=15°故答案为:15.【点睛】此题考查平行线的性质,三角形外角的性质,正确理解图形中各角度之间的关系是解题的关键.15.如图,将边长为12的正方形ABCD 沿其对角线AC 剪开,再把△ABC 沿AD 方向平移8个单位长度到△A'B'C'的位置,则图中阴影部分面积为______.【答案】32【解析】由正方形性质可得AD=CD=12,∠DAC=45°,由平移的性质可得AA'=8,A'B'⊥AD ,即可求A'E=8,A'D=4,即可求阴影部分面积.【详解】解:∵四边形ABCD 是正方形,∴AD=CD=12,∠DAC=45°,∵把△ABC 沿AD 方向平移8个单位长度到△A'B'C'的位置,∴AA'=8,A'B'⊥AD ,且∠DAC=45°,∴A'E=AA'=8,∵A'D=AD-AA'=4,∴阴影部分面积=A'E×A'D=8×4=32,故答案为:32.【点睛】本题考查了正方形的性质,平移的性质,等腰直角三角形的判定与性质,熟记平移的性质并用平移距离表示出重叠部分的底与高是解题的关键.16.已知点P 在第四象限,距离x 轴4个单位长度,距离y 轴2个单位长度,则点P 的坐标为__________.【答案】()2,4-【解析】根据点到x 轴的距离是纵坐标的绝对值,点到y 轴的距离是横坐标的绝对值,各象限点的坐标特征,可得答案.【详解】解:点P 在第四象限,距离x 轴4个单位长度,距离y 轴2个单位长度,得点P 的坐标为(2,-4).【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).17.如果2(29)60x y x y -+++-=,则x-y=_______.【答案】-2【解析】分析:由于(x-2y+9)2和|x+y-6|都是非负数,而它们的和为3,由此可以得到它们每一个都等于3,然后即可求出x 、y 的值.详解:∵()22960x y x y -+++-=,而(x-2y+9)2≥3,|x+y-6|≥3,∴(x-2y+9)2=3,|x+y-6|=3,∴29060x y x y -+⎧⎨+-⎩==, 解得x=1,y=1.∴x-y=1-1=-2.故答案为:-2.点睛:本题考查了非负数的性质,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为3时,必须满足其中的每一项都等于3.根据这个结论可以求解这类题目.三、解答题18.对于平面直角坐标系xOy 中的点(, )P a b ,若点P '的坐标为(,)a kb ka b ++(其中k 为常数,且0k ≠),则称点P '为点P 的“k 属派生点”.例如:(1,2)P 的“4属派生点”为(142,412)P '+⨯⨯+,即(9,6)P '.(1)点(2,3)P -的“2属派生点”P '的坐标为________;(2)若点P 的“3属派生点”P '的坐标为(9,11),求点P 的坐标;(3)若点P 在y 轴的正半轴上,点P 的“k 属派生点”为P '点,且点P '到y 轴的距离不小于线段OP 长度的5倍,则k 的取值范围是________________.【答案】(1)(4,1)P '-;(2)(3,2);(3)5k 或5k -【解析】(1)根据“k 属派生点”的概念计算;(2)设点P 的坐标为(x ,y ),根据“k 属派生点”的概念列出方程组,解方程组得到答案;(3)设点P 的坐标为(0,b ),根据“k 属派生点”的概念求出P′点的坐标,根据题意列出不等式,解不等式得到答案.【详解】(1)(1)点P (-2,3)的“2属派生点”P′的坐标为(-2+2×3,3-2×2),即(4,-1),故答案为:(4,-1);(2)设P 点为(,)x y 根据题意39311x y x y +=⎧⎨+=⎩ 解得32x y =⎧⎨=⎩则点P 的坐标为(3,2)(3)设点P 的坐标为(0,b ),则点P 的“k 属派生点”P′点的坐标为(kb ,b ),由题意得,|kb|≥5b ,当k >0时,k≥5,当k <0时,k≤-5,则k 的取值范围是k≥5或k≤-5,故答案为: 5k 或5k -.【点睛】本题考查的是“k 属派生点”的概念、点的坐标特征、二元一次方程组的解法,掌握“k 属派生点”的概念是解题的关键.19.观察下面给出的等式,回答下列问题: ①112⨯=1﹣12②123⨯=12﹣13③134⨯=1341- (1)猜想:第n 个等式是(2)计算:112⨯ +123⨯+134⨯+……+1910⨯; (3)若11111(1)(2)(2)(3)(3)(4)(19)(20)20x x x x x x x x x +++⋯+=+++++++++,求x 的值. 【答案】(1)111n n -+;(2)910;(3)x =1 【解析】(1)根据已知算式得出答案即可;(2)根据已知得出的规律进行变形,再求出即可;(3)根据已知得出的规律进行变形,再求出即可.【详解】(1)第n 个等式是111(1)1n n n n =-++, 故答案为: 111(1)1n n n n =-++;(2)1111122334910+++⋯⋯+⨯⨯⨯⨯ =11111111,122334910-+--+⋯+- =1﹣110 =910; (3)11111(1)(2)(2)(3)(3)(4)(19)(20)20x x x x x x x x x +++⋯+=+++++++++, 11111111223192020x x x x x x x -+-+⋯+-=+++++++, 11112020x x x -=+++, 12120x x =++, 方程两边都乘以(x+1)(x+20)得:x+20=2(x+1),解得:x =1,经检验x =1是原方程的解,所以x =1.【点睛】本题考查了有理数的混合运算、解分式方程和数字的变化类,能根据已知算式得出规律是解此题的关键. 20.解下列方程组或不等式组(1)253218x y x y -=⎧⎨+=⎩ ; (2)324313x x x x +⎧⎪+⎨-≤-⎪⎩< 【答案】(1)43x y =⎧⎨=⎩;(2)34x ≤<. 【解析】(1)两个方程相加即可消去y 求得x 的值,然后把x 的值代入第一个方程求得y 的值; (2)分别解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【详解】解:(1)253218x y x y -=⎧⎨+=⎩①②, ①×2+②得7x=28,解得:x=4,把x=4代入①得8-y=5,解得:y=1.则不等式组的解集是:43x y =⎧⎨=⎩; (2)324313x x x x +⎧⎪⎨+-≤-⎪⎩<①②, 解①得4x <,解②得3x ≥.则不等式组的解集是:34x ≤<.【点睛】本题考查了一元一次不等式组的解法,用加减消元法解二元一次方程组,掌握一元一次不等式组的解法,用加减消元法解二元一次方程组是解题的关键.21.某商场对今年端午节这天销售A 、B 、C 三种品牌粽子的情况进行统计,并绘制出了如图1和图2所示的统计图,根据图中信息解答下列问题:(1)这天共销售了多少个粽子?(2)销售B 品牌粽子多少个?并补全图1中的条形图;(3)求出A 品牌粽子在图2中所对应的圆心角的度数;(4)根据上述统计信息,明年端午节期间该商场对A 、B 、C 三种品牌的粽子如何进货?请你提一条合理化的建议.【答案】 (1) 2400 个;(2) 800 个;(3) 60°;(4)见解析.【解析】(1)用C 品牌的销售量除以它所占的百分比即可得销售这三种品牌粽子总个数;(2)B 品牌的销售量=总销售量−1200−400=800个,补全图形即可;(3)A 品牌粽子在图中所对应的圆心角的度数=360°×(400÷2400)=60°;(4)由于C 品牌的销售量最大,所以建议多进C 种.【详解】(1)销售粽子总数为12000500=2400(个); (2)销售B 品牌粽子个数为2400﹣1200﹣400=800(个),补全图1中的条形图,如下:(3)A 品牌粽子在图7中所对应的圆心角的度数为4002400×360°=60°; (4)根据上述统计信息,明年端午节期间该商场应多进C 品牌的粽子,或者少进A 品牌的粽子等.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.如图,已知//BC GE ,//AF DE ,140︒∠=.(1)求AFG ∠的值.(2)若AQ 平分FAC ∠,交BC 于点Q ,且15Q ∠=,求ACQ ∠的度数.【答案】 (1)40AFG ︒∠=; (2)110ACQ ︒∠=【解析】根据平行线的性质得到∠E=∠1,再根据平行线的性质即可求解;(2)根据三角形外角定理得到∠AHD=55°,根据平行线的性质及角平分线的性质得到∠CAQ=55°,再由三角形的内角和即可求解.【详解】∵//BC GE ,∴∠E=140︒∠=.∵//AF DE∴AFG ∠=∠E=40︒(2)∵140︒∠=,15Q ∠=∴∠AHD=55°,∵AF ∥DE ,∴∠FAQ=∠AHD=55°,∵AQ 平分FAC ∠,∴∠CAQ=55°∴∠ACQ=180°-∠CAQ-Q ∠=110︒ 【点睛】此题主要考查平行线的性质,角平分线的定义及三角形的外角性质,解题的关键是熟知角平分线的性质. 23.计算下列各式:(1)1-212=___________________; (2)22111123⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭= ; (3)222111111234⎛⎫⎛⎫⎛⎫--- ⎪⎪⎪⎝⎭⎝⎭⎝⎭= ; 你能根据所学知识找到计算上面的算式的简便方法吗?请你利用你找到的简便方法计算下式:222222*********...11...1234910n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫------ ⎪⎪⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭【答案】 (1);(2);(3),【解析】试题分析:见试题解析试题解析:(1)211311244-=-=; (2)22113821123493⎛⎫⎛⎫--=⨯= ⎪⎪⎝⎭⎝⎭; (3)2221113815511123449168⎛⎫⎛⎫⎛⎫---=⨯⨯= ⎪⎪⎪⎝⎭⎝⎭⎝⎭; 11111111(1)(1)(1)(1)(1)(1)(1)(1)223344n n-+-+-+⋅⋅⋅⋅⋅⋅-+ 13211223n n n n-+=⨯⨯⨯⋅⋅⋅⨯⨯ =12n n+ 考点:找规律题24.如图,在等边三角形ABC 中,点D ,E 分别在边BC ,AC 上,且DE ∥AB ,过点E 作EF ⊥DE ,交BC 的延长线于点F.(1)求∠F 的度数;(2)若CD=2,求DF 的长.【答案】(1)30°;(2)1.【解析】试题分析:(1)根据平行线的性质可得∠EDC=∠B=60°,根据三角形内角和定理即可求解;(2)易证△EDC是等边三角形,再根据直角三角形的性质即可求解.试题解析:(1)∵△ABC是等边三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°;(2)∵∠ACB=60°,∠EDC=60°,∴△EDC是等边三角形.∴ED=DC=2,∵∠DEF=90°,∠F=30°,∴DF=2DE=1.25.如图,在四边形ABCD中,AB∥CD,∠1=∠2,DB=DC.(1)求证:△ABD≌△EDC;(2)若∠A=135°,∠BDC=30°,求∠BCE的度数.【答案】(1)证明见解析;(2)60°.【解析】(1)全等三角形的判定方法:ASA,即可证明:△ABD≌△EDC;(2)根据三角形内角和定理可求出∠1的度数,进而可得到∠2的度数,再根据△BDC是等腰三角形,即可求出∠BCE的度数.【详解】(1)证明:∵AB∥CD,∴∠ABD=∠EDC,在△ABD和△EDC中,,∴△ABD≌△EDC(ASA),(2)解:∵∠ABD=∠EDC=30°,∠A=135°,∴∠1=∠2=15°,∵DB=DC,∴∠DCB=(180°-∠DBC)=75°,∴∠BCE=75°﹣15°=60°.考点:全等三角形的判定与性质七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,将边长为2个单位的等边△ABC 沿边BC 向右平移1个单位得到△DEF ,则四边形ABFD 的周长为( )A .6B .8C .10D .12【答案】B 【解析】分析:根据平移的性质,经过平移,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行且相等计算出四边形ABFD 各边的长度.详解:AC 与DF 是对应边,AC =2,则DF =2,向右平移一个单位,则AD =1,BF =3,故其周长为2+1+2+3=1.故选B .点睛:根据平移的性质,找出对应边,求出四边形各边的长度,相加即可.2.下列说法正确的是( )A .同位角相等B .两条直线被第三条直线所截,内错角相等C .对顶角相等D .两条平行直线被第三条直线所裁,同旁内角相等【答案】C【解析】分析:根据平行线的性质对A 、B 、D 进行判断;根据对顶角的性质对C 进行判断.详解:A .两直线平行,同位角相等,所以A 选项错误;B .两条平行直线被第三条直线所截,内错角相等,所以B 选项错误;C .对顶角相等,所以C 选项正确;D .两条平行直线被第三条直线所截,同旁内角互补,所以D 选项错误.故选C .点睛:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.3.规定以下两种变换::①f(m,n)=(m,−n),如f(2,1)=(2,−1);②(,)(,)g m n m n =-- ,如(2,1)(2,1)g =--.按照以上变换有:()()()3,43,43,4f g f =--=-⎡⎤⎣⎦,那么()2,3g f -⎡⎤⎣⎦等于( ) A .(2-,3-) B .(2,3-) C .(2-,3) D .(2,3)【答案】D【解析】根据f(m,n)=(m,-n),g(2,1)=(-2,-1),可得答案.【详解】g[f(−2,3)]=g[−2,−3]=(2,3),故D正确,故选:D.【点睛】此题考查点的坐标,解题关键在于掌握其变化规律.4.下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A.3,4,5B.1,2,3C.6,7,8 D.2,3,4【答案】B【解析】试题解析:A.(3)2+(4)2≠(5)2,故该选项错误;B.12+(2)2=(3)2,故该选项正确;C.62+72≠82,故该选项错误;D.22+32≠42,故该选项错误.故选B.考点:勾股定理.5.下列手机软件图标中,是轴对称图形的是()A.B.C.D.【答案】D【解析】根据轴对称图形的定义即可得出答案.【详解】A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.【点睛】本题考查的是轴对称的定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形完全重合,称这两个图形为轴对称,这条直线叫做对称轴.6.计算12+16+112+120+130+……+19900的值为()A.1100B.99100C.199D.10099【答案】B【解析】分析:直接利用分数的性质将原式变形进而得出答案.详解:原式=11111 1223344599100 ++++⋯+⨯⨯⨯⨯⨯=111111112233499100 -+-+-+⋯+-,=1-1 100=99 100.故选B.点睛:此题主要考查了有理数的加法,正确分解分数将原式变形是解题关键.7.某次考试中,某班级的数学成绩统计图如图.下列说法错误的是( )A.得分在70~80分之间的人数最多B.该班的总人数为40C.得分在90~100分之间的人数最少D.及格(≥60分)人数是26【答案】D【解析】为了判断得分在70~80分之间的人数是不是最多,通过观察频率分布直方图中最高的小矩形即可;为了得到该班的总人数只要求出各组人数的和即可;为了看得分在90~100分之间的人数是否最少,只有观察频率分布直方图中最低的小矩形即可;为了得到及格(≥60分)人数可通过用总数减去第一小组的人数即可.【详解】A、得分在70~80分之间的人数最多,故正确;B、2+4+8+12+14=40(人),该班的总人数为40人,故正确;C、得分在90~100分之间的人数最少,有2人,故正确;D、40-4=36(人),及格(≥60分)人数是36人,故D错误,故选D.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.8.下列各图形分别绕某个点旋转120︒后不能与自身重合的是().A .B .C .D .【答案】D【解析】选项A ,3603120︒÷=︒,即旋转120︒能与自身重合;选项B ,3601230︒÷=︒,而304120︒⨯=︒,即旋转120︒能与自身重合;选项C ,360660︒÷=︒,而602120︒⨯=︒,即旋转120︒能与自身重合;选项D ,360572︒÷=︒,所以绕某个点旋转120︒后不能与自身重合.故选D .9.下列不等式变形中,一定正确的是( )A .若ac >bc ,则a >bB .若a >b ,则am 2>bm 2C .若ac 2>bc 2,则a >bD .若m >n ,则﹣22m n >- 【答案】C【解析】利用不等式的性质和当c <0时对A 进行判断;利用不等式的性质和m =0对B 进行判断;利用不等式的性质对C 、D 进行判断.【详解】A 、若ac >bc ,c <0,则a <b ,所以A 选项错误;B 、若a >b ,m =0,则am 2>bm 2不成立,所以B 选项错误;C 、若ac 2>bc 2,c 2>0,则a >b ,所以C 选项正确;D 、若m >n ,则﹣12m <﹣12n ,所以D 选项错误. 故选C .【点睛】本题考查了不等式的基本性质:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.10.在实数227,0.1010010001…38,-π3 ) A .1个B .2个C .3个D .4个 【答案】C【解析】利用无理数定义,无理数是无线不循环小数,直接判断即可 38, 在实数227,0.1010010001…38-π30.1010010001…,-π33个. 故选:C .【点睛】本题考查无理数定义,基础知识扎实是解题关键。
[试卷合集3套]常州市某名校中学2021年七年级下学期数学期末经典试题
七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.不等式6﹣4x ≥3x ﹣8的非负整数解为( )A .2个B .3个C .4个D .5个【答案】B【解析】移项得,﹣4x ﹣3x≥﹣8﹣6,合并同类项得,﹣7x≥﹣14,系数化为1得,x≤1.故其非负整数解为:0,1,1,共3个.故选B .2.在平面直角坐标系中,点M (﹣2,1)在( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】B【解析】∵点P 的横坐标为负,纵坐标为正,∴该点在第二象限.故选B .3.8的立方根是( )A .2B .±2C .2D .±2 【答案】A【解析】根据立方根的定义进行选择即可.【详解】8的立方根是2.故选:A .【点睛】本题考查了立方根的定义,掌握立方根的定义是解题的关键.4.一件商品提价25%后发现销路不是很好,欲恢复原价,则应降价( )A .40%B .20%C .25%D .15% 【答案】B【解析】不妨把原价看做单位“1”,设应降价,则提价25%后为1+25%,再降价后价格为. 欲恢复原价,则可列方程为,解得,故选B . 5.如图,在五边形ABCDE 中,A B E α∠+∠+∠=,DP 、CP 分别平分EDC ∠、BCD ∠,则P ∠的度教是( )A.1902α-B.1902α︒+C.12αD.15402α︒-【答案】A【解析】根据五边形的内角和等于540°,由∠A+∠B+∠E=α,可求∠BCD+∠CDE的度数,再根据角平分线的定义可得∠PDC与∠PCD的角度和,进一步求得∠P的度数.【详解】∵五边形的内角和等于540°,∠A+∠B+∠E=α,∴∠BCD+∠CDE=540°-α,∵∠BCD、∠CDE的平分线在五边形内相交于点O,∴∠PDC+∠PCD=12(∠BCD+∠CDE)=270°-12α,∴∠P=180°-(270°-12α)=12α-90°.故选:A.【点睛】此题考查多边形的内角和公式,角平分线的定义,熟记公式是解题的关键.注意整体思想的运用.6.为了了解某市5万名初中毕业生的中考数学成绩,从中抽取500名学生的数学成绩进行统计分析,那么样本是()A.某市5万名初中毕业生的中考数学成绩B.被抽取500名学生C.被抽取500名学生的数学成绩D.5万名初中毕业生【答案】C【解析】解:样本是从总体中所抽取的一部分个体,故选C7.点M(m+3,m+1)在x轴上,则点M坐标为()A.(0,﹣4)B.(2,0)C.(﹣2,0)D.(0,﹣2)【答案】B【解析】直接利用x轴上点的坐标特点得出m的值,进而得出答案.【详解】∵点M(m+3,m+1)在x轴上,∴m+1=0,解得:m=-1,故m+3=2,则点M坐标为:(2,0).故选B.【点睛】此题主要考查了点的坐标,正确得出m的值是解题关键.8.如图,直线AB与直线CD相交于点O,OE⊥AB,垂足为O,若∠EOD=13∠AOC,则∠BOC=()A.112.5°B.135°C.140°D.157.5°【答案】A【解析】根据平角、直角及角的和差关系可求出∠AOC+∠EOD=90°,再与已知∠EOD=13∠AOC联立,求出∠AOC,利用互补关系求∠BOC.【详解】解:∵∠COD=180°,OE⊥AB,∴∠AOC+∠AOE+∠EOD=180°,∠AOE=90°,∴∠AOC+∠EOD=90°,①又∵∠EOD=13∠AOC,②由①、②得,∠AOC=67.5°,∵∠BOC与∠AOC是邻补角,∴∠BOC=180°-∠AOC=112.5°.故选:A.【点睛】此题主要考查了对顶角、余角、补角的关系.解题时注意运用邻补角的性质:邻补角互补,即和为180°.9.如图,在△ABC中,AB=10,AC=6,BC=8,将△ABC折叠,使点C落在AB边上的点E处,AD是折痕,则△BDE的周长为()A.6 B.8 C.12 D.14【答案】C【解析】利用勾股定理求出AB=10,利用翻折不变性可得AE=AC=6,推出BE=4即可解决问题.【详解】在Rt △ABC 中,∵AC=6,BC=8,∠C=90°,∴AB 2268=+=10,由翻折的性质可知:AE=AC=6,CD=DE ,∴BE=4,∴△BDE 的周长=DE+BD+BE=CD+BD+E=BC+BE=8+4=1.故选:C . 【点睛】本题考查翻折变换,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型. 10.已知方格纸中的每个小方格是边长为1的正方形,A B ,两点在小方格的格点上,位置如图所示,在小方格的格点上确定一点C ,连接AB AC BC ,,,使ABC △的面积为3个平方单位,则这样的点C 共有( )个A .2B .4C .5D .6【答案】D 【解析】首先在AB 的两侧各找一个点,使得三角形的面积是1.再根据两条平行线间的距离相等,过两侧的点作AB 的平行线,交了几个格点就有几个点.【详解】如图,符合条件的点有6个.【点睛】本题考查三角形的面积和坐标与图形的性质,解题的关键是掌握坐标与图形的性质.二、填空题题11.据测算,我国每年因沙漠造成的直接经济损失超过5 400 000万元,这个数用科学记数法表示为______万元.【答案】65.410⨯【解析】试题分析:在实际生活中,许多比较大的数,我们习惯上都用科学记数法表示,使书写、计算简便.将一个绝对值较大的数写成科学记数法a×10n的形式时,其中1≤|a|<10,n为比整数位数少1的数.解:5 400 000=5.4×1万元.故答案为5.4×1.考点:科学记数法—表示较大的数.12.如图,直线a∥b,Rt△ABC的直角顶点C在直线b上,∠1=20°,则∠2=_____°.【答案】2【解析】根据题中条件列式计算得到∠3,根据两直线平行,同位角相等可得∠3=∠1.【详解】解:∵∠1=10°,∴∠3=90°﹣∠1=2°,∵直线a∥b,∴∠1=∠3=2°,故答案是:2.【点睛】本题考查了平行线的性质,平角的定义,熟记性质并准确识图是解题的关键.13.若方程组24221x y kx y k+=⎧⎨+=+⎩的解满足0<y﹣x<1,则k的取值范围是_______.【答案】12<k<1.【解析】本题有两种方法:(1)解方程组求出x、y的值,代入0<y﹣x<1进行计算;(2)①﹣②可得y ﹣x=2k﹣1,将y﹣x看做一个整体来计算.【详解】①﹣②可得y﹣x=2k﹣1,于是:0<2k﹣1<1,解得12<k<1.故答案为:12<k<1【点睛】采用整体思想,虽然在认识上有一定难度,但计算量较小,建议同学们提高认识,以提高解题的效率.14.“微信”已成为人们日常交流的一种重要工具,前不久在“微信群”中看到如下一幅图片,被群友们所热议.请你运用初中所学数学知识求出桌子的高度应是__________.【答案】130 cm【解析】设桌子高xcm,坐猫为acm,卧猫为bcm。
2020-2021学年江苏省常州市七年级(下)期末数学试卷(含解析)
2020-2021学年江苏省常州市七年级(下)期末数学试卷题号一二三四总分得分一、选择题(本大题共8小题,共16.0分)1.把多项式x2+ax+b分解因式,得(x+1)(x−3),则a+b的值分别是()A. 5B. −5C. 1D. −12.如图,将长方形纸片ABCD沿对角线BD折叠,点C的对应点为E.若∠CBD=35°,则∠ADE的度数为()A. 15°B. 20°C. 25°D. 30°3.若关于x的不等式3x+m≥0有且仅有两个负整数解,则m的取值范围是()A. 6≤m≤9B. 6<m<9C. 6<m≤9D. 6≤m<94.下列尺规作图,能确定AD是△ABC的中线的是()A. B.C. D.5.如图,半径为5的⊙A中,已知DE=6,∠BAC+∠EAD=180°,则弦BC的长为()A. √41B. √61C. 11D. 86. 下列命题中:①三角形的外角大于它的内角;②两条边及一个角对应相等的两三角形全等;③同位角的平分线互相平行;④等腰三角形是轴对称图形,对称轴是底边的中线.真命题的个数为( )A. 0个B. 1个C. 2个D. 3个 7. 已知x ,y 满足方程组{y −6=m x+m=3,则无论m 取何值,x ,y 恒有关系式是( )A. x +y =1B. x +y =−1C. x +y =9D. x +y =−98. 如图,将△ABC 绕顶点C 旋转得到△A′B′C ,且点B刚好落在A′B′上,若∠A =25°,∠BCA′=45°,则∠ABC等于( )A. 40°B. 55°C. 65°D. 70°二、填空题(本大题共10小题,共20.0分)9. n 边形的内角和为______.10. 计算:2−1+(n −2)0+(−1)2013= .11. 已知方程2x +y =2,用含x 的代数式表示y ,那么y =_____.12. 中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则与2个球体相等质量的正方体的个数为 .13. 据不完全统计,我国2017年参加志愿者服务活动的志愿者超过73000000人,把73000000用科学记数法表示为______.14. 若一个多边形的边数为8,则这个多边形的内角和为______.15. 若(x +b)(x −3)的结果中不含x 的一次项,则b =______.16. 如图,在△ABC 中,∠ABC =90°,∠A =50°,BD//AC ,则∠CBD 的度数是______°.17. 如图为撕去了一个角后的三角形纸片,其中△ABC 中∠A =40°,∠B =60°,则撕去的角∠C 的度数是______ .18. 已知x =2是关于x 的方程x 2−2mx +3m =0的一个根,并且这个方程的两个根恰好是等腰三角形ABC 的两条边长,则三角形ABC 的周长为______.三、计算题(本大题共2小题,共22.0分)19. 化简求值(5分) ,其中20. (1)计算:|−5|+(−2)2+√−273−1(2)解方程组{x −y =13x =6y −7四、解答题(本大题共5小题,共34.0分)21. 因式分解:xy 2−4xy +4x .22.解不等式组:{x+2>0①x−12+1≥x②23.如图,反比例函数y=mx的图象与一次函数y=kx+b的图象交于A,B两点,点A 的坐标为(2,6),点B的坐标为(n,1).(1)求n的值;(2)结合图象,直接写出不等式mx<kx+b的解集;(3)点E为y轴上一个动点,若S△AEB=5,求点E的坐标.24.如图,点D、E分别在AB、BC上,AF//BC,∠1=∠2.试证明:DE//AC(请写出每一步的证明依据).25.如果x>y,试用不等号连接下列各对式子:(1)x+2与y−2;(2)−(x−y)2与0;(3)−5x与−5y;(4)x5与y5.答案和解析1.【答案】B【解析】解:(x+1)(x−3)=x2−3x+x−3=x2−2x−3,由x2+ax+b=(x+1)(x−3)=x2−2x−3知a=−2、b=−3,则a+b=−2−3=−5,故选:B.计算出(x+1)(x−3)=x2−2x−3,据此得出a=−2、b=−3,即可得出答案.此题考查了因式分解−十字相乘法,熟练掌握十字相乘的方法是解本题的关键.2.【答案】B【解析】解:由折叠的性质可得,∠CDB=∠EDB,∵AD//BC,∠CBD=35°,∴∠CBD=∠ADB=35°,∵∠C=90°,∴∠CDB=55°,∴∠EDB=55°,∴∠ADE=∠EDB−∠ADB=55°−35°=20°,故选:B.根据折叠的性质和平行线的性质,可以得到∠ADB和∠EDB的度数,然后即可得到∠ADE 的度数.本题考查平行线的性质,解答本题的关键是明确题意,利用数形结合的思想解答.3.【答案】D【解析】解:∵3x+m≥0,∴x≥−m,3∵不等式3x+m≥0有且仅有两个负整数解,≤−2.∴−3<−m3∴6≤m<9,故选:D.首先解不等式,然后根据条件即可确定m的值.此题主要考查了一元一次不等式的整数解,根据不等式的基本性质求出x的取值范围,再由x的负整数解列出关于m的不等式组,求出m的取值范围即可.4.【答案】A【解析】解:根据作图方法可得A选项中D为BC中点,则AD为△ABC的中线,故选:A.要确定BC中线,首先确定BC中点,再连接AD即可.此题主要考查了基本作图,关键是掌握线段垂直平分线的作法,掌握中线定义.5.【答案】D【解析】解:作AH⊥BC于H,作直径CF,连结BF,如图,∵∠BAC+∠EAD=180°,而∠BAC+∠BAF=180°,∴∠DAE=∠BAF,∴DE⏜=BF⏜,∴DE=BF=6,∵AH⊥BC,∴CH=BH,∵CA=AF,∴AH为△CBF的中位线,BF=3.∴AH=12∴BH=√AB2−AH2=√52−32=4,∴BC=2BH=8.故选D.作AH⊥BC于H,作直径CF,连结BF,先利用等角的补角相等得到∠DAE=∠BAF,然后再根据同圆中,相等的圆心角所对的弦相等得到DE=BF=6,由AH⊥BC,根据垂径定理得CH =BH ,易得AH 为△CBF 的中位线,然后根据三角形中位线性质得到AH =12BF =3,再利用勾股定理,可求得BH 的长,继而求得答案. 此题考查了圆周角定理、垂径定理、三角形中位线的性质以及勾股定理.注意掌握辅助线的作法.6.【答案】A【解析】解:①三角形的外角大于与它不相邻的任意一个的内角,本小题说法是假命题;②两条边及夹角对应相等的两三角形全等,本小题说法是假命题;③两直线平行,同位角的平分线互相平行,本小题说法是假命题;④等腰三角形是轴对称图形,对称轴是底边的中线所在的直线,本小题说法是假命题, 故选:A .根据三角形的外角性质、全等三角形的判定定理、平行线的性质、对称轴的定义判断即可.本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.7.【答案】C【解析】解:{y −6=m ②x+m=3 ①, 把②代入①得,x +y −6=3,整理得,x +y =9,故选:C .利用代入消元法解答即可.本题考查的是二元一次方程组的解法,掌握代入消元法解二元一次方程组的一般步骤是解题的关键. 8.【答案】D【解析】解:∵△ABC 绕顶点C 旋转得到△A′B′C ,∴△ABC≌△A′B′C ,∴∠A′=∠A =25°,CB =CB′,∠ABC =∠B′,∵∠BCA′=45°,∴∠CBB′=∠BCA′+∠A′=45°+25°=70°,∴∠ABC=∠B′=∠CBB′=70°,故选:D.由旋转的性质得△ABC≌△A′B′C得∠A′=∠A=25°、CB=CB′、∠ABC=∠B′,根据∠BCA′=45°得∠CBB′=∠BCA′+∠A′=45°+25°=70°,继而由∠ABC=∠B′=∠CBB′=70°可得答案.本题主要考查旋转的性质、三角形的外角性质及等边对等角的应用,熟练掌握旋转的性质得出对应角相等、对应边相等是解题的关键.9.【答案】(n−2)⋅180°【解析】解:n边形的内角和为(n−2)⋅180°,故答案为:(n−2)⋅180°.根据多边形的内角和公式填空即可.此题主要考查了多边形的内角和公式,是需要识记的内容.10.【答案】12【解析】试题分析:根据负整数指数次幂等于正整数指数次幂的倒数,任何非零数的零次幂等于1,−1的奇数次幂等于−1进行计算即可得解.2−1+(n−2)0+(−1)2013,+1−1,=12=1.2.故答案为:1211.【答案】2−2x【解析】解:方程2x+y=2,解得:y=2−2x,故答案为:2−2x把x看做已知数求出y即可.此题考查了解二元一次方程,熟练掌握运算法则是解本题的关键.12.【答案】5【解析】试题分析:在此题中,需要了解天平的工作原理,观察两天平可知,球体和正方体皆与圆柱体有不同比例的质量关系,即两个球体的质量与五个圆柱体相等,两个正方体的质量与两个圆柱体相等,便可根据此关系列式求值.从第一个天平可知:两个球体与五个圆柱体质量相等,即“2×球体=5×圆柱体”.从第二个天平可知,两个正方体与两个圆柱体的质量相等,即“2×正方体=2×圆柱体”.由以上两式可知,“2×球体=5×圆柱体=5×正方体”.可得:和两个球体质量相等的正方体个数为5.13.【答案】7.3×107【解析】解:73000000=7.3×107.故答案为:7.3×107.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.【答案】1080°【解析】解:(8−2)×180°=1080°.故这个多边形的内角和为1080°.故答案为:1080°多边形的内角和可以表示成(n−2)⋅180°.本题考查了多边形内角内角和公式,熟记公式是解题的关键.15.【答案】3【解析】解:(x+b)(x−3)=x2+(b−3)x−3b,由结果中不含x的一次项,得到b−3=0,解得:b=3,故答案为3.原式利用多项式乘以多项式法则计算,根据结果不含x的一次项,求出m的值即可.此题考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.16.【答案】40【解析】解:∵在△ABC中,∠ABC=90°,∠A=50°,∴∠C=90°−∠A=90°−50°=40°,∵AC//BD,∴∠CBD=∠C=40°.故答案为:40.由在△ABC中,∠ABC=90°,∠A=50°,根据直角三角形中两个锐角互余,即可求得∠C 的度数,又由AC//BD,根据两直线平行,内错角相等,即可求得∠CBD的度数.此题考查了直角三角形的性质与平行线的性质.注意掌握两直线平行,内错角相等是解此题的关键.17.【答案】80°【解析】解:∵∠C=180°−∠A−∠B,∠A=40°,∠B=60°,∴∠C=180°−40°−60°=80°,故答案为80°.根据三角形的内角和定理解决问题即可.本题考查三角形内角和定理,解题的关键是熟练掌握基本知识,属于中考基础题.18.【答案】14【解析】解:∵x=2是关于x的方程x2−2mx+3m=0的一个根,∴22−4m+3m=0,m=4,∴x2−8x+12=0,解得x1=2,x2=6.①当6是腰时,2是底边,此时周长=6+6+2=14;②当6是底边时,2是腰,2+2<6,不能构成三角形.所以它的周长是14.故答案为:14.先将x=2代入x2−2mx+3m=0,求出m=4,则方程即为x2−8x+12=0,利用因式分解法求出方程的根x1=2,x2=6,分两种情况:①当6是腰时,2是底边;②当6是底边时,2是腰进行讨论.注意两种情况都要用三角形三边关系定理进行检验.此题主要考查了一元二次方程的解,解一元二次方程−因式分解法,三角形三边关系定理以及等腰三角形的性质,注意求出三角形的三边后,要用三边关系定理检验. 19.【答案】【解析】先根据整式混合运算的法则把原式进行化简,再把x 、y 的值代入进行计算即可.20.【答案】解:(1)原式=5+4−3−1=5;(2){x −y =13 ①x =6y −7 ②, 把②代入①得:6y −7−y =13,解得:y =4,把y =4代入②得:x =17,则方程组的解为{x =17y =4.【解析】(1)原式利用绝对值的代数意义,立方根定义计算即可求出值;(2)方程组利用代入消元法求出解即可.此题考查了解二元一次方程组,以及实数的运算,熟练掌握运算法则是解本题的关键. 21.【答案】解:xy 2−4xy +4x =x(y 2−4y +4)=x(y −2)2.【解析】先提取公因式x ,再根据完全平方公式进行二次分解.本题考查了提公因式法,公式法分解因式.注意提取公因式后利用完全平方公式进行二次分解,分解要彻底.22.【答案】解:∵由(1)得:x >−2,由(2)得:x ≤1,∴原不等式组的解集是:−2<x ≤1.【解析】先求出各不等式的解集,再求出其公共解集即可.求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.23.【答案】解:(1)把点A(2,6)代入y =m x ,得m =12,则y =12x ,把点B(n,1)代入y =12x ,得n =12,则n =12; (2)2<x <12或x <0,(3)设过点A(2,6),点B(12,1)的直线为:y =kx +b ,根据题意,得:{6=2k +b 1=12k +b, ∴k =−12,b =7, 则直线AB 解析式为y =−12x +7,如图,设直线AB 与y 轴的交点为P ,设点E 的坐标为(0,a),连接AE ,BE ,则点P 的坐标为(0,7),∴PE =|a −7|,∵S △AEB =S △PEB −S △PEA =5,∴12×|a −7|×12−12×|a −7|×2=5,∴12×|a −7|×(12−2)=5,∴|a −7|=1,∴a1=6,a2=8,∴点E的坐标为(0,6)或(0,8).【解析】本题考查了反比例函数和一次函数的交点问题,用待定系数法求一次函数和反比例函数的解析式,三角形的面积,解二元一次方程组等知识点的理解和掌握,综合运用这些性质进行计算是解此题的关键.(1)把点A的坐标代入反比例函数解析式,求出反比例函数的解析式,把点B的坐标代入已求出的反比例函数解析式,得出n的值;(2)根据一次函数图象在反比例函数图象的上方时自变量的取值范围,可求不等式mx< kx+b的解集;(3)设点E的坐标为(0,a),连接AE,BE,先求出直线AB的解析式,再求出点P的坐标(0,7),得出PE=|a−7|,根据S△AEB=S△BEP−S△AEP=5,求出a的值,从而得出点E的坐标.24.【答案】证明:∵AF//BC(已知),∴∠2=∠C(两直线平行,内错角相等),∵∠1=∠2(已知),∴∠1=∠C(等量代换),∴DE//AC(同位角相等,两直线平行).【解析】根据平行线的性质得出∠2=∠C,求出∠1=∠C,根据平行线的判定得出即可本题考查了平行线的性质和判定,能灵活运用平行线的性质和判定定理进行推理是解此题的关键.25.【答案】解:(1)在不等式x>y的两边大的加上2,小的减去2,不等号的方向不变,所以x+2>y−2;(2)因为(x−y)2≥0,所以−(x−y)2≤0;(3)在不等式x>y的两边同时乘以−5,不等号的方向改变,所以−5x<−5y;(4)在不等式x>y的两边同时除以5,不等号的方向不变,所以x5>y5.【解析】根据不等式的性质分析.本题考查了不等式的性质.解题的关键是掌握不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.。
【精选3份合集】2020-2021年常州市某达标实验中学七年级下学期期末综合测试数学试题
七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.不等式组5511x xx m+<+⎧⎨->⎩的解集是x>1,则m的取值范围是()A.m≥1B.m≤1C.m≥0D.m≤0【答案】D【解析】表示出不等式组中两不等式的解集,根据已知不等式组的解集确定出m的范围即可.【详解】解:不等式整理得:11xx m>⎧⎨>+⎩,由不等式组的解集为x>1,得到m+1≤1,解得:m≤0.故选D.【点睛】本题考查了不等式组的解集的确定.2.小明和哥哥从家里出发去买书,从家出发走了20分钟到一个离家1000米的书店.小明买了书后随即按原路返回;哥哥看了20分钟书后,用15分钟返家.下面的图象中哪一个表示哥哥离家时间与距离之间的关系()A.B.C.D.【答案】D【解析】解:根据题意,从20分钟到40分钟哥哥在书店里看书,离家距离没有变化,是一条平行于x轴的线段.故选D.3.如图,直线l1∥l2,∠1=20°,则∠2+∠3等于()A.150°B.165°C.180°D.200°【答案】D【解析】过∠2的顶点作l2的平行线l,则l∥l1∥l2,由平行线的性质得出∠4=∠1=20°,∠BAC+∠3=180°,即可得出∠2+∠3=200°.【详解】过∠2的顶点作l2的平行线l,如图所示:则l∥l1∥l2,∴∠4=∠1=20°,∠BAC+∠3=180°,∴∠2+∠3=180°+20°=200°;故选:D.【点睛】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.4.平面上五条直线l1,l2,l3,l4和l5相交的情形如图所示,根据图中标出的角度,下列叙述正确的是()A.1l和3l不平行,2l和3l平行B.1l和3l不平行,2l和3l不平行C.1l和3l平行,2l和3l平行D.1l和3l平行,2l和3l不平行【答案】A【解析】直接利用平行线的判定方法分别判断得出答案.【详解】解:由题意可得:∠1=88°,利用同位角相等,两直线平行可得l2和l3平行,∵92°+92°≠180°,∴l1和l3不平行.故选:A.【点睛】此题主要考查了平行线的判定,正确掌握判定方法是解题关键.5.人体淋巴细胞的直径大约是0. 00006米,将0. 00006用科学记数法表示正确的是( )A .6610-⨯B .5610-⨯C .50.610-⨯D .7610-⨯【答案】B【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.00006=5610-⨯,故选:B.【点睛】本题考查科学记数法—表示较小的数,解题的关键是掌握科学记数法—表示较小的数.6.如图,把6张长为a 、宽为b (a >b )的小长方形纸片不重叠地放在长方形ABCD 内,未被覆盖的部分(两个长方形)用阴影表示,设这两个长方形的面积的差为S .当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,则a 、b 满足( )A .a =1.5bB .a =2.5bC .a =3bD .a =2b【答案】D 【解析】表示出左上角与右下角部分的面积,求出之差,根据差与BC 无关即可求出a 与b 的关系式.【详解】解:左上角阴影部分的长为AE ,宽为AF=a ,右下角阴影部分的长为PC ,宽为2b ,∵AD=BC ,即AE+ED=AE+4b ,BC=BP+PC=a+PC ,∴AE+4b=a+PC ,∴AE=a-4b+PC ,∴阴影部分面积之差S=AE •AF-PC •CG=aAE-2bPC=a (a-4b+PC )-2bPC=(a-2b )PC+a 2-4ab ,则a-2b=0,即a=2b.故选:D.【点睛】本题主要考查整式的混合运算,解题的关键是结合图形列出面积差的代数式,并熟练掌握整式的混合运算顺序和运算法则.7.如图所示,下列说法不正确的是()A.线段BD是点B到AD的垂线段B.线段AD是点D到BC的垂线段C.点C到AB的垂线段是线段AC D.点B到AC的垂线段是线段AB【答案】B【解析】根据点到直线的距离的意义对各个选项一一判断即可得出答案.【详解】解:A、线段BD是点B到AD的垂线段,故A正确;B、线段AD是点A到BC的垂线段,故B错误;C、点C到AB的垂线段是线段AC,故C正确;D、点B到AC的垂线段是线段AB,故D正确;故选B.【点睛】本题考查了点到直线的距离,利用点到直线的距离的意义是解题关键.8.若满足方程组33221x y mx y m+=+⎧⎨-=-⎩的x与y互为相反数,则m的值为()A.11B.-1C.1D.-11 【答案】A【解析】由x与y互为相反数,得到y=-x,代入方程组计算即可求出m的值.【详解】解:由题意得:y= -x,代入方程组得:33221x x mx x m-++⎧⎨-⎩=①=②,消去x得:32123m m+-=,即3m+9=4m-2,解得:m=1.故选A.【点睛】本题考查解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法. 9.下列说法正确的是( )A .经过一点有无数条直线与已知直线平行B .在同一平面内,有且只有一条直线与已知直线平行C .经过直线外一点,有且只有一条直线与已知直线平行D .以上说法都不正确【答案】C【解析】根据经过直线外一点有且只有一条直线与已知直线平行即可解题.【详解】解:A. 经过直线外一点有且只有一条直线与已知直线平行,所以错误,B. 在同一平面内,(经过直线外一点)有且只有一条直线与已知直线平行,所以错误,C. 经过直线外一点,有且只有一条直线与已知直线平行,正确.故选C.【点睛】本题考查了平面内平行线的性质,属于简单题,熟悉概念是解题关键.10.小兰:“小红,你上周买的笔和笔记本的价格是多少啊?”小红:“哦,…,我忘了!只记得先后买了两次,第一次买了 5 支笔和 10 本笔记本共花了 42 元钱,第二次买了 10 文笔和 5 本笔记本共花了 30 元钱.”请根据小红与小兰的对话,求得小红所买的笔和笔 记本的价格分别是( )A .0.8 元/支,2.6 元/本B .0.8 元/支,3.6 元/本C .1.2 元/支,2.6 元/本D .1.2 元/支,3.6 元/本【答案】D【解析】首先设小红所买的笔的价格是x 元/支,笔记本的价格是y 元/本,根据关键语句“第一次买了5支笔和10本笔记本共花了42元钱,”可得方程5x+10y=42,“第二次买了10支笔和5本笔记本共花了30元钱”可得方程10x+5y=30,联立两个方程,再解方程组即可.【详解】解:设小红所买的笔的价格是x 元/支,笔记本的价格是y 元/本,由题意得: 5104210530x y x y +=⎧⎨+=⎩ 解得: 1.23.6x y =⎧⎨=⎩故答案为D.【点睛】本题主要考查了二元一次方程组的应用,关键是弄懂题意,找出题目中的等量关系,再列出方程组即可.二、填空题题11.颐和园坐落在北京西郊,是第一批全国重点文物保护单位之一.小万去颐和园参加实践活动时发现有的窗户造型是正八边形,如下图所示,则∠1=__°.【答案】1【解析】利用正八边形的外角和等于360度即可求出答案.【详解】解:360°÷8=1°,故答案为:1.【点睛】本题主要考查了多边形的外角和定理,明确任何一个多边形的外角和都是360°是解题的关键. 12.如图,点D ,B ,C 在同一直线上,60A ∠=︒,25D ∠=︒,145∠=︒,则C ∠=______°.【答案】50.【解析】在△BDE 中利用三角形的内角和为180°求得∠DBE 的度数,然后利用三角形的外角性质求解即可.【详解】解:∵25D ∠=︒,145∠=︒,∴∠DBE=180°-∠D ﹣∠1=110°,∴∠C=∠DBE ﹣∠A=110°﹣60°=50°.故答案为:50.【点睛】本题主要考查三角形的内角和与外角性质,解此题的关键在于熟练掌握其知识点.13.已知b =2,且ab<0,a b +______ ・【答案】0【解析】根据绝对值的意义以及二次根式的定义即可求解. b =2,∴b=4,∵ab<0,所以a ,b 为异号,∵b>0,∴a<0,∵|a| =4,∴-a=4,a=-4, a+b=-4+4=0.本题主要考查了绝对值的意义以及二次根式的定义,注意a ,b 符号是解题关键.14.如图所示,已知在ABC 中,BE 平分ABC ∠交AC 于点E ,CD AC ⊥交AB 于点D ,BCD A ∠=∠,则BEA ∠的度数为________.【答案】135︒【解析】由已知条件只能得到∠ACD=90°,由三角形外角性质可知∠BEA=∠ACD+∠BCD+∠CBE ,因此求出∠BCD+∠CBE 的度数即可得到答案;由垂直的定义及三角形内角和定理易得∠A+∠ABC+∠BCD=90°,结合角平分线的概念及∠BCD=∠A 即可得到∠BCD+∠CBE 的度数,进而可对题目进行解答.【详解】∵CD ⊥AC ,∴∠ACD=90°,∴∠A+∠ABC+∠BCD=180°-∠ACD=90°.∵BE 平分∠ABC ,∴∠ABC=2∠CBE.∵∠BCD=∠A ,∴∠A+∠ABC+∠BCD=2∠BCD+2∠CBE=90°,∴∠BCD+∠CBE=45°,∴∠BEA=∠ACD+∠BCD+∠CBE=135°.故答案为:135︒.【点睛】本题考查了角平分线的性质定理、垂线的定义、三角形内角和、三角形外角性质,通过外角性质将角与角联系起来是解题的关键.15.若不等式组25122x a x x +>⎧⎨->-⎩有解,则a 的取值范围是_____. 【答案】a >1【解析】分别解出两个不等式,根据“大小小大取中间”,得到关于a 的不等式即可求解.【详解】解:解不等式x+1a≥5得:x≥5﹣1a ,解不等式1﹣1x >x ﹣1得:x <1,∵该不等式组有解,∴5﹣1a <1,解得:a >1,故答案为:a >1.本题考查根据不等式解集的情况求参数,熟记“同大取大,同小取小,大小小大取中间,大大小小无解”是解题的关键.16.若m =________,然后依据算术平方根的性质可求得m 的值,最后代入求得代数式的值即可.,且m∴,【点睛】本题考查了算术平方根,解题的关键是熟练的掌握算术平方根的定义以及运算.17.因式分解:269x x -+= .【答案】2(3)x -.【解析】解:269x x -+=2(3)x -.故答案为2(3)x -.考点:因式分解-运用公式法.三、解答题18.企业举行“爱心一日捐”活动,捐款金额分为五个档次,分别是50元,100元,150元,200元,300元.宣传小组随机抽取部分捐款职工并统计了他们的捐款金额,绘制成两个不完整的统计图,请结合图表中的信息解答下列问题:(1)宣传小组抽取的捐款人数为_____人,请补全条形统计图;(2)在扇形统计图中,求100元所对应扇形的圆心角的度数;(3)已知该企业共有500人参与本次捐款,请你估计捐款总额大约为多少元?【答案】50(2) 72°(3) 84000【解析】试题分析:(1)根据题意即可得到结论;求得捐款200元的人数即可补全条形统计图;(2)用周角乘以100元所占的百分比即可求得圆心角;(3)根据题意即可得到结论.试题解析:(1)12÷24%=50(人)补图如下:(2)1050×360°=72°.(3)150(50×4+100×10+150×12+200×18+300×6)×500=84000(元).19.完成下面的证明:如图,AB∥CD∥GH,EG平分∠BEF,FG平分∠EFD,求证:∠EGF=90°.证明:∵AB∥GH(已知),∴∠1=∠3(),又∵CD∥GH(已知),∴(两直线平行,内错角相等)∵AB∥CD(已知),∴∠BEF+=180°(两直线平行,同旁内角互补)∵EG平分∠BEF(已知),∴∠1=12(角平分线定义),又∵FG平分∠EFD(已知),∴∠2=12∠EFD(),∴∠1+∠2=12(+∠EFD)∴∠l+∠2=90°,∴∠3+∠4=90°(等量代换),即∠EGF=90°.【答案】两直线平行,内错角相等;∠2=∠4;∠EFD;∠BEF;角平分线定义;∠BEF【解析】依据平行线的性质和判定定理以及角平分线的定义,结合解答过程进行填空即可.【详解】∵AB∥GH(已知),∴∠1=∠3(两直线平行,内错角相等),又∵CD∥GH(已知),∴∠2=∠4(两直线平行,内错角相等)∵AB∥CD(已知),∴∠BEF+∠EFD=180°(两直线平行,同旁内角互补)∵EG平分∠BEF(已知)∴∠1=12∠BEF(角平分线定义),又∵FG平分∠EFD(已知),∴∠2=12∠EFD(角平分线定义),∴∠1+∠2=12(∠BEF+∠EFD)∴∠1+∠2=90°,∴∠3+∠4=90°(等量代换),即∠EGF=90°.故答案为两直线平行,内错角相等;∠2=∠4;∠EFD;∠BEF;角平分线定义;∠BEF.【点睛】考查的是平行线的性质和判定,熟练掌握平行线的性质和判定定理是解题的关键.20.观察下列等式:①21321⨯-=-②22431⨯-=-③23541⨯-=-(1)按以上等式的规律,写出第4个等式;(2)根据以上等式的规律,写出第n 个等式;(3)说明(2)中你所写的等式是否一定成立.【答案】(1)24651⨯-=-;(2) 2(2)(1)1n n n +-+=-;(3)等式一定成立,见解析【解析】(1)根据①②③的算式中,变与不变的部分,找出规律,出新的算式;(2)将(1)中,发现的规律,由特殊到一般,得出结论即可;(3)进一步利用整式的混合运算方法加以证明.【详解】解:(1)第4个等式:24651⨯-=-(2)第n 个等式:2(2)(1) 1n n n +-+=-(3)∵左边222(2)(1)2211n n n n n n n =+-+=+---=-=右边,∴等式一定成立【点睛】此题考查数字的变化规律,关键是由特殊到一般,得出一般规律,运用整式的运算进行检验.21.解不等式(组),并将它的解集在数轴上表示出来.(1)354173x x -+-<; (2) 3(2)4,211.52x x x x -->⎧⎪-+⎨≤⎪⎩ 【答案】(1)x <32;(2) -7≤x <1.【解析】(1)对不等式354173x x -+-<两边同乘以21,然后去括号,再移项、系数化为1,从而求出不等式的解集;(2)将不等式组中的不等式分别解出来,再根据不等式组解集的口诀:大小小大中间找,来求出不等式组的解.【详解】(1)去分母,得3(3x-5)-21<7(x+4)去括号,得9 x -15-21<7 x+28移项,得9 x -7 x <28+15+21合并同类项,得2 x <64系数化为1,得x <32这个不等式的解集在数轴上的表示如下:(2)3(2)4, 211.52x xx x-->⎧⎪⎨-+≤⎪⎩①②解不等式①,得x<1;解不等式②,得x≥-7,所以不等式组的解集为-7≤x<1.这个不等式组的解集在数轴上的表示如下:【点睛】主要考查了一元一次不等式组解集的求法,利用不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解),来求解.还考查把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.22.图书馆与学校相距600m,明明从学校出发步行去图书馆,亮亮从图书馆骑车去学校两人同时出发,匀速相向而行,他们与学校的距离S(m)与时间t(s)的图象如图所示:根据图象回答:(1)明明步行的速度为m/s;亮亮骑车的速度为m/s.(2)分別写出明明、亮亮与学校的距离S1、S2与时间t的关系式.(3)通过计算求出a的值.【答案】(1)2;3;(2)S1=2t,S2=﹣3t+600;(3)a的值为1.【解析】(1)根据图象可知亮亮用200秒骑车从图书馆到学校,而明明用300秒从学校到图书馆,于是可求出二人的速度;(2)用待定系数法分别求出函数关系式即可;(3)当S1=S2时,求出t的值就是a的值.【详解】解:(1)由图象可知:亮亮用200秒骑车从图书馆到学校,而明明用300秒从学校到图书馆, ∴亮亮的速度为:600÷200=3米/秒,明明的速度为600÷300=2米/秒,故答案为:2,3;(2)设S 1与t 的关系式为S 1=k 1t ,把(300,600)代入得:600=300k 1,解得:k 1=2,∴S 1=2t ,设S 2与t 的关系式为S 2=k 2t+b ,把(0,600)(200,0)代入得:26002000b k b =⎧⎨+=⎩, 解得:k 2=﹣3,b =600,∴S 2=﹣3t+600,答:明明、亮亮与学校的距离S 1、S 2与时间t 的关系式分别为S 1=2t ,S 2=﹣3t+600;(3)当S 1=S 2时,即2t =﹣3t+600,解得t =1,即a =1.答:a 的值为1.【点睛】本题考查待定系数法求一次函数的关系式以及一次函数图象上点的坐标特征,从图象中获取有用的数据是解决问题的关键.23.如图,在平面直角坐标系中,点A ,B 的坐标分别为A(0,a),B(b ,a),且a ,b 满足(a ﹣3)2+|b ﹣6|=0,现同时将点A ,B 分别向下平移3个单位,再向左平移2个单位,分别得到点A ,B 的对应点C ,D ,连接AC ,BD ,AB .(1)求点C ,D 的坐标及四边形ABDC 的面积S 四边形ABCD ;(2)在y 轴上是否存在一点M ,连接MC ,MD ,使S △MCD =13S 四边形ABCD ?若存在这样一点,求出点M 的坐标,若不存在,试说明理由;(3)点P 是直线BD 上的一个动点,连接PA ,PO ,当点P 在BD 上移动时(不与B ,D 重合),直接写出∠BAP ,∠DOP ,∠APO 之间满足的数量关系.【答案】(1)18;(2)M (0,2)或(0,﹣2);(3)①当点P 在线段BD 上移动时,∠APO =∠DOP+∠BAP ;②当点P 在DB 的延长线上时,∠DOP =∠BAP+∠APO ;③当点P 在BD 的延长线上时,∠BAP =∠DOP+∠APO .【解析】(1)根据非负数的性质分别求出a、b,根据平移规律得到点C,D的坐标,根据坐标与图形的性质求出S四边形ABCD;(2)设M坐标为(0,m),根据三角形的面积公式列出方程,解方程求出m,得到点M的坐标;(3)分点P在线段BD上、点P在DB的延长线上、点P在BD的延长线上三种情况,根据平行线的性质解答.【详解】解:(1)∵(a﹣3)2+|b﹣1|=0,∴a﹣3=0,b﹣1=0,,解得,a=3,b=1.∴A(0,3),B(1,3),∵将点A,B分别向下平移3个单位,再向左平移2个单位,分别得到点A,B的对应点C,D,∴C(﹣2,0),D(4,0),∴S四边形ABDC=AB×OA=1×3=18;(2)在y轴上存在一点M,使S△MCD=S四边形ABCD,设M坐标为(0,m).∵S△MCD=13S四边形ABDC,∴12×1|m|=13×18,解得m=±2,∴M(0,2)或(0,﹣2);(3)①当点P在线段BD上移动时,∠APO=∠DOP+∠BAP,理由如下:如图1,过点P作PE∥AB,∵CD由AB平移得到,则CD∥AB,∴PE∥CD,∴∠BAP=∠APE,∠DOP=∠OPE,∴∠BAP+∠DOP=∠APE+∠OPE=∠APO;②当点P在DB的延长线上时,同①的方法得,∠DOP=∠BAP+∠APO;③当点P在BD的延长线上时,同①的方法得,∠BAP=∠DOP+∠APO.【点睛】本题考查的是非负数的性质、平移的性质、平行线的性质,掌握平移的性质、灵活运用分情况讨论思想是解题的关键.24.如图,在小明的一张地图上,有A 、B 、C 三个城市,但是图上城市C 已被墨迹污染,只知道∠BAC =∠α,∠ABC =∠β,你能用尺规帮他在图中确定C 城市的具体位置吗?【答案】见解析【解析】连接AB ,以AB 为边,A 为顶点作∠BAC =α,以B 为顶点作∠ABC =∠β,两边交于点C ,如图所示.【详解】如图所示,点C 为求作的点.【点睛】此题考查作图-应用与设计作图,熟练掌握全等三角形的判定方法(ASA )是解题的关键.25.解下列方程(不等式)组(Ⅰ)34225x y x y +=⎧⎨-=⎩; (Ⅱ)513(1)131722x x x x ->+⎧⎪⎨-≤-⎪⎩. 【答案】(Ⅰ)21x y =⎧⎨=-⎩;(Ⅱ)24x <≤. 【解析】(1)用加减消元法解方程组即可;(2)分别解不等式求出解集即可.【详解】解:(1)34225x y x y +=⎧⎨-=⎩①② ②×4得:8420x y -=③,①+③得:1122x =,解得:2x =,。
2021-2022年常州市七年级数学下期末试题(及答案)
一、选择题1.下列说法中不正确的是( )A .抛一枚质地均匀的硬币,正面朝上的概率与抛硬币的次数无关B .随机选择一户二孩家庭,头胎、二胎都是男孩的概率为14C .任意画一个三角形内角和为360°是随机事件D .连续投两次骰子,前后点数之和为偶数的概率是122.在元旦游园晚会上有一个闯关活动:将5张分别画有等腰梯形、圆、平行四边形、等腰三角形、菱形的卡片任意摆放,将有图形的一面朝下,从中任意翻开一张,如果翻开的图形是轴对称图形,就可以过关,那么一次过关的概率是( ) A .B .C .D .3.以下事件为必然事件的是( )A .掷一枚质地均匀的骰子,向上一面的点数小于6B .多边形的内角和是360︒C .二次函数的图象不过原点D .半径为2的圆的周长是4π 4.下列命题正确的是( ) A .全等三角形的对应边相等 B .面积相等的两个三角形全等 C .两个全等三角形一定成轴对称D .所有等腰三角形都只有一条对称轴5.如图,把一个正方形三次对折后沿虚线剪下,得到的图形是( )A .B .C .D .6.如图,将长方形纸片进行折叠,ED ,EF 为折痕,A 与A '、B 与B '、C 与C '重合,若25AED ∠=︒,则CFE ∠的度数为( )A .130°B .115°C .65°D .50°7.如图,在等腰直角三角形ABC 中,,90AB BC ABC =∠=︒,点B 在直线l 上,过A作AD l ⊥于D ,过C 作CE l ⊥于E .下列给出四个结论:①BD CE =;②BAD ∠与BCE ∠互余;③AD CE DE +=.其中正确结论的序号是( )A .①②B .①③C .②③D .①②③8.如图,△ACB ≌△A′C B′,∠ACB =70°,∠ACB′=100°,则∠BCA′度数是( )A .40°B .35C .30°D .45°9.图中的小正方形边长都相等,若MNP MFQ ≌,则点Q 可能是图中的( )A .点DB .点C C .点BD .点A10.某市一周平均气温(℃)如图所示,下列说法不正确的是( )A .星期二的平均气温最高B .星期四到星期日天气逐渐转暖C .这一周最高气温与最低气温相差4 ℃D .星期四的平均气温最低11.如图,已知∠1=∠2,∠3=30°,则∠B 的度数是( )A .20B .30C .40D .6012.下列计算中,错误的是( )A .()()2131319x x x -+=-B .221124a a a ⎛⎫-=-+ ⎪⎝⎭ C .()()x y a b ax ay bx by --=--+D .()m x y m my -+=-+二、填空题13.一个不透明的袋子中装有4个红球,3个白球,2个黄球,这些小球除颜色不同外,其它都相同,从袋子中随机摸出1个小球,则摸出红球的概率是______.14.在一个箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里摸出1个球,则摸到红球的概率是______.15.如图,OP 平分∠AOB ,PM ⊥OA 于M ,点D 在OB 上,DH ⊥OP 于H .若OD =4,OP =7,PM =3,则DH 的长为_____.16.如图,在锐角△ABC 中,AB =4,∠ABC =45°,∠ABC 的平分线交AC 于点D ,点P 、Q 分别是BD 、AB 上的动点,则AP+PQ 的最小值为______.17.如图,点D 是∠AOB 的平分线OC 上的任意一点,DE ∥OB ,交OA 于点E ,若∠AED =50°,则∠1=_____°.18.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数解析式是y =95x +32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为__ __℃.19.如图,直线AB 与CD 相交于点O ,OMAB ⊥,若55DOM ∠=︒,则AOC ∠=______°.20.如果a 3m+n =27,a m =3,则a n =_____.三、解答题21.摆棋子游戏:现有4个棋子A ,B ,C ,D ,要求棋子A 必须摆放在第一位置,其余3个随机摆放在第二、三、四的位置. (1)请你列举出所有摆放的可能情况; (2)求出棋子C 摆放在偶数位置的概率.22.在棋盘中建立如图①所示的平面直角坐标系,二颗棋子A 、O 、B 的位置如图,它们的坐标分别为()1,1-、()0,0、()1,0.(1)如图②,添加棋子C ,使A 、O 、B 、C 为端点的四条首尾连接的线段围成的图形成为轴对称图形,请在图中画出该图形的对称轴;(2)在其它格点位置添加一颗棋子P ,使A 、O 、B 、P 为端点的首尾连接的四条线段构成一个轴对称图形,请直接写出点P 的坐标。
2021年初中数学七年级下期末经典测试题(答案解析)(3)
一、选择题 1.116的平方根是( ) A .±12 B .±14 C .14 D .122.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( )A .6折B .7折C .8折D .9折3.已知方程组276359632713x y x y +=⎧⎨+=-⎩的解满足1x y m -=-,则m 的值为( ) A .-1B .-2C .1D .2 4.已知平面内不同的两点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为( )A .﹣3B .﹣5C .1或﹣3D .1或﹣5 5.已知32x y =-⎧⎨=-⎩是方程组12ax cy cx by +=⎧⎨-=⎩的解,则a 、b 间的关系是( ) A .491b a -=B .321a b +=C .491b a -=-D .941a b += 6.下列四个说法:①两点之间,线段最短;②连接两点之间的线段叫做这两点间的距离;③经过直线外一点,有且只有一条直线与这条直线平行;④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.其中正确的个数有( )A .1个B .2个C .3个D .4个7.在平面直角坐标系内,线段CD 是由线段AB 平移得到的,点A (-2,3)的对应点为C (2,5),则点B (-4,-1)的对应点D 的坐标为()A .()8,3--B .()4,2C .()0,1D .()1,88.如图,已知两直线1l 与2l 被第三条直线3l 所截,下列等式一定成立的是( )A .12∠∠=B .23∠∠=C .24∠∠+=180°D .14∠∠+=180°9.下列图中∠1和∠2是同位角的是( )A .(1)、(2)、(3)B .(2)、(3)、(4)C .(3)、(4)、(5)D .(1)、(2)、(5)10.不等式组3(1)112123x x x x -->-⎧⎪--⎨≤⎪⎩的解集在数轴上表示正确的是( ) A .B .C .D .11.将点A (1,﹣1)向上平移2个单位后,再向左平移3个单位,得到点B ,则点B 的坐标为( )A .(2,1)B .(﹣2,﹣1)C .(﹣2,1)D .(2,﹣1)12.如图所示,点P 到直线l 的距离是( )A .线段PA 的长度B .线段PB 的长度C .线段PC 的长度D .线段PD 的长度 13.如图,AB ∥CD ,DE ⊥BE ,BF 、DF 分别为∠ABE 、∠CDE 的角平分线,则∠BFD =( )A .110°B .120°C .125°D .135°14.若x <y ,则下列不等式中不成立的是( )A .x 1y 1-<-B .3x 3y <C .x y 22<D .2x 2y -<-15.关于x ,y 的方程组2,226x y a x y a +=⎧⎨+=-⎩的解满足0x y +=,则a 的值为( ) A .8 B .6 C .4 D .2二、填空题16.27的立方根为 .17.如图,大矩形长是10厘米,宽是8厘米,阴影部分宽为2厘米,则空白部分面积__________.18.如果不等式组213(1)x x x m->-⎧⎨⎩<的解集是x <2,那么m 的取值范围是_____ 19.若3的整数部分是a ,小数部分是b ,则3a b -=______.20.如图,已知直线,AB CD 相交于点O ,如果40BOD ∠=︒,OA 平分COE ∠,那么DOE ∠=________度.21.用适当的符号表示a 是非负数:_______________.22.若二元一次方程组3354x y x y +=⎧⎨-=⎩的解为x a y b =⎧⎨=⎩,则a ﹣b=______. 23.步步高超市在2018年初从科沃斯商城购进一批智能扫地机器人,进价为800元,出售时标价为1200元,后来由于该商品积压,超市准备打折销售,但要保证利润率不低于5%,则至多可打_____折.24.不等式30x -+>的最大整数解是______25.如果点M (a-1,a+1)在x 轴上,则a 的值为___________.三、解答题26.国家规定,中小学生每天在校体育活动时间不低于1h .为此,某县就“你每天在校体育活动时间是多少”的问题,随机调查了辖区内300名初中学生.根据调查结果绘制成统计图如图所示,其中A 组为0.5t h <,B 组为0.51h t h ≤<,C 组为1 1.5h t h ≤<,D 组为1.5t h ≥.请根据上述信息解答下列问题:(1)本次调查数据的中位数落在______组内,众数落在______组内;(2)若该辖区约4000名初中生,请你估计其中达到国家规定体育活动时间的人数; (3)若A 组取0.25t h =,B 组取0.75t h =,C 组取 1.25t h =,D 组取2t h =,试计算这300名学生平均每天在校体育活动的时间.27.将一副三角板中的两个直角顶点C 叠放在一起(如图①),其中30A ∠=,60B ∠=,45D E ∠=∠=.(1)若150BCD =∠,求ACE ∠的度数;(2)试猜想BCD ∠与ACE ∠的数量关系,请说明理由;(3)若按住三角板ABC 不动,绕顶点C 转动三角板DCE ,试探究BCD ∠等于多少度时,CD AB ,并简要说明理由.28.问题情境:如图1,//AB CD ,128PAB ∠=︒,124PCD ∠=︒,求APC ∠的度数.小明的思路是过点P 作//PE AB ,通过平行线性质来求APC ∠.(1)按照小明的思路,写出推算过程,求APC ∠的度数.(2)问题迁移:如图2,//AB CD ,点P 在射线OM 上运动,记PAB α∠=,PCD β∠=,当点P 在B 、D 两点之间运动时,问APC ∠与α、β之间有何数量关系?请说明理由.(3)在(2)的条件下,当点P 在线段OB 上时,请直接写出APC ∠与α、β之间的数量关系.29.如图,在平面直角坐标系中,点A ,B 的坐标分别为(a ,0),(b ,0),且满足()()22130a b ++-=现同时将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,连接AC ,BD .(1)求点C ,D 的坐标及四边形ABDC 的面积;(2)在y 轴上是否存在一点M ,连接MA ,MB ,使S △MAB =S 四边形ABDC ?若存在这样一点,求出点M 的坐标;若不存在,试说明理由;(3)点P 是射线BD 上的一个动点(不与B ,D 重合),连接PC ,PA ,求∠CPA 与∠DCP 、∠BAP 之间的关系.30.补充完成下列解题过程:如图,已知直线a 、b 被直线l 所截,且//a b ,12100∠+∠=°,求3∠的度数.解:1∠与2∠是对顶角(已知),12∠∠∴=( )12100∠+∠=︒(已知),得21100∠=︒(等量代换).1∴∠=_________( ).//a b (已知),得13∠=∠( ).3∴∠=________(等量代换).【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题1.A2.B3.A4.A5.D6.C7.C8.D9.D10.B11.C12.B13.D14.D15.D二、填空题16.3【解析】找到立方等于27的数即可解:∵33=27∴27的立方根是3故答案为3考查了求一个数的立方根用到的知识点为:开方与乘方互为逆运算17.48cm2【解析】【分析】把两个矩形形状的阴影部分分别向上和向左平移这样空白部分就变成了了一个矩形然后利用矩形面积公式计算即可【详解】解:把阴影部分平移后如图:S空白部分=(10-2)×(8-2)=18.m≥2【解析】【分析】先解第一个不等式再根据不等式组的解集是x<2从而得出关于m的不等式解不等式即可【详解】解:解第一个不等式得x<2∵不等式组的解集是x<2∴m≥2故答案为m≥2【点睛】本题是已知19.【解析】【详解】若的整数部分为a小数部分为b∴a=1b=∴a-b==1故答案为120.100【解析】【分析】根据对顶角相等求出∠AOC再根据角平分线和邻补角的定义解答【详解】解:∵∠BOD=40°∴∠AOC=∠BOD=40°∵OA平分∠COE∴∠AOE=∠AOC=40°∴∠COE=821.a≥0【解析】【分析】非负数即大于等于0据此列不等式【详解】由题意得a≥0故答案为:a≥022.【解析】【分析】把xy的值代入方程组再将两式相加即可求出a﹣b的值【详解】将代入方程组得:①+②得:4a﹣4b=7则a﹣b=故答案为【点睛】本题考查二元一次方程组的解解题的关键是观察两方程的系数从而23.【解析】【分析】本题可设打x折根据保持利润率不低于5可列出不等式:解出x的值即可得出打的折数【详解】设可打x折则有解得即最多打7折故答案为7【点睛】考查一元一次不等式的应用读懂题目找出题目中的不等关24.2【解析】解不等式-x+3>0可得x<3然后确定其最大整数解为2故答案为2点睛:此题主要考查了不等式的解法和整数解得确定解题关键是利用不等式的基本性质3解不等式然后才能从解集中确定出最大整数解25.-1【解析】【分析】根据x轴上的点纵坐标等于0列出方程求解得到a的值【详解】∵点M(a-1a+1)在x轴上∴a+1=0解得a=-1故答案为:-1【点睛】本题考查了点的坐标熟记x轴上的点的纵坐标等于0三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.A解析:A【解析】【分析】根据平方根的性质:一个正数的平方根有两个,它们互为相反数计算即可.【详解】14,14的平方根是12±,12±,故选A.【点睛】本题考查平方根的性质,一个正数的平方根有两个,它们互为相反数,0的平方根还是0,熟练掌握相关知识是解题关键.2.B解析:B【解析】【详解】设可打x折,则有1200×10x-800≥800×5%,解得x≥7.即最多打7折.故选B.【点睛】本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以10.解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解.3.A解析:A【解析】【分析】观察方程结构和目标式,两个方程直接相减得到x-y=-2,,整体代入x-y=m-1,求出m的值即可.解:276359 632713x yx y+=⎧⎨+=-⎩①②②-①得36x-36y=-72则x-y=-2所以m-1=-2所以m=-1.故选:A.【点睛】考查了解二元一次方程组,解关于x,y二元一次方程组有关的问题,观察方程结构和目标式,巧妙变形,运用整体的思想求解,能简化计算,应熟练掌握.4.A解析:A【解析】分析:根据点A(a+2,4)和B(3,2a+2)到x轴的距离相等,得到4=|2a+2|,即可解答.详解:∵点A(a+2,4)和B(3,2a+2)到x轴的距离相等,∴4=|2a+2|,a+2≠3,解得:a=−3,故选A.点睛:考查点的坐标的相关知识;用到的知识点为:到x轴和y轴的距离相等的点的横纵坐标相等或互为相反数.5.D解析:D【解析】【分析】把3{2xy=-=-,代入1{2ax cycx by+=-=,即可得到关于,,a b c的方程组,从而得到结果.【详解】由题意得,321322a cc b--=⎧⎨-+=⎩①②,3,2⨯⨯①②得,963 644a cc b--=⎧⎨-+=⎩③④-④③得941a b+=,故选:D.6.C解析:C【分析】根据线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识一一判断即可.【详解】解:①两点之间,线段最短,正确.②连接两点之间的线段叫做这两点间的距离,错误,应该是连接两点之间的线段的距离叫做这两点间的距离.③经过直线外一点,有且只有一条直线与这条直线平行,正确.④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.正确.故选C .【点睛】本题考查线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.C解析:C【解析】【分析】根据点A (-2,3)的对应点为C (2,5),可知横坐标由-2变为2,向右移动了4个单位,3变为5,表示向上移动了2个单位,以此规律可得D 的对应点的坐标.【详解】点A (-2,3)的对应点为C (2,5),可知横坐标由-2变为2,向右移动了4个单位,3变为5,表示向上移动了2个单位,于是B (-4,-1)的对应点D 的横坐标为-4+4=0,点D 的纵坐标为-1+2=1,故D (0,1).故选C .【点睛】此题考查了坐标与图形的变化----平移,根据A (-2,3)变为C (2,5)的规律,将点的变化转化为坐标的变化是解题的关键.8.D解析:D【解析】【分析】由三线八角以及平行线的性质可知,A ,B ,C 成立的条件题目并没有提供,而D 选项中邻补角的和为180°一定正确.【详解】1∠与2∠是同为角,2∠与3∠是内错角,2∠与4∠是同旁内角,由平行线的性质可知,选项A ,B ,C 成立的条件为12l l //时,故A 、B 、C 选项不一定成立,∵1∠与4∠是邻补角,∴∠1+∠4=180°,故D 正确.故选D.【点睛】本题考查三线八角的识别及平行线的性质和邻补角的概念.本题属于基础题,难度不大.9.D解析:D【解析】【分析】根据同位角的定义,对每个图进行判断即可.【详解】(1)图中∠1和∠2是同位角;故本项符合题意;(2)图中∠1和∠2是同位角;故本项符合题意;(3)图中∠1和∠2不是同位角;故本项不符合题意;(4)图中∠1和∠2不是同位角;故本项不符合题意;(5)图中∠1和∠2是同位角;故本项符合题意.图中是同位角的是(1)、(2)、(5).故选D.【点睛】本题考查了同位角,两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.10.B解析:B【解析】【分析】首先解两个不等式求出不等式组解集,然后将解集在数轴上的表示出来即可.【详解】解:3(1)112123x xx x-->-⎧⎪⎨--≤⎪⎩①②,解不等式①得:x<2,解不等式②得:x≥-1,在数轴上表示解集为:,故选:B.【点睛】本题考查了解一元一次不等式组及在数轴上表示不等式组解集,解题关键是熟练掌握确定不等式组解集的方法:同大取大、同小取小、大小小大中间找、大大小小无解了. 11.C解析:C【解析】分析:让A点的横坐标减3,纵坐标加2即为点B的坐标.详解:由题中平移规律可知:点B的横坐标为1-3=-2;纵坐标为-1+2=1,∴点B的坐标是(-2,1).故选:C.点睛:本题考查了坐标与图形变化-平移,平移变换是中考的常考点,平移中点的变化规律是:左右移动改变点的横坐标,左减右加;上下移动改变点的纵坐标,下减上加.12.B解析:B【解析】由点到直线的距离定义,即垂线段的长度可得结果,点P到直线l的距离是线段PB 的长度,故选B.13.D解析:D【解析】【分析】【详解】如图所示,过E作EG∥AB.∵AB∥CD,∴EG∥CD,∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,∴∠ABE+∠BED+∠CDE=360°.又∵DE⊥BE,BF,DF分别为∠ABE,∠CDE的角平分线,∴∠FBE+∠FDE=12(∠ABE+∠CDE)=12(360°﹣90°)=135°,∴∠BFD=360°﹣∠FBE﹣∠FDE﹣∠BED=360°﹣135°﹣90°=135°.故选D.【点睛】本题主要考查了平行线的性质以及角平分线的定义的运用,解题时注意:两直线平行,同旁内角互补.解决问题的关键是作平行线.14.D解析:D【解析】【分析】利用不等式的基本性质判断即可.【详解】若x <y ,则x ﹣1<y ﹣1,选项A 成立;若x <y ,则3x <3y ,选项B 成立;若x <y ,则x 2<y 2,选项C 成立; 若x <y ,则﹣2x >﹣2y ,选项D 不成立,故选D .【点睛】此题考查了不等式的性质,熟练掌握不等式的基本性质是解本题的关键.15.D解析:D【解析】【分析】两式相加得,即可利用a 表示出x y +的值,从而得到一个关于a 的方程,解方程从而求得a 的值.【详解】两式相加得:3336x y a +=-;即3()36,x y a +=-得2x y a +=-即20,2a a -==故选:D.【点睛】此题考查二元一次方程组的解,解题关键在于掌握二元一次方程的解析.二、填空题16.3【解析】找到立方等于27的数即可解:∵33=27∴27的立方根是3故答案为3考查了求一个数的立方根用到的知识点为:开方与乘方互为逆运算解析:3【解析】找到立方等于27的数即可.解:∵33=27,∴27的立方根是3,故答案为3.考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算17.48cm2【解析】【分析】把两个矩形形状的阴影部分分别向上和向左平移这样空白部分就变成了了一个矩形然后利用矩形面积公式计算即可【详解】解:把阴影部分平移后如图:S 空白部分=(10-2)×(8-2)=解析:48cm 2【解析】【分析】把两个矩形形状的阴影部分分别向上和向左平移,这样空白部分就变成了了一个矩形,然后利用矩形面积公式计算即可.【详解】解:把阴影部分平移后如图:S空白部分=(10-2)×(8-2)=48(cm2)故答案为48 cm2.【点睛】本题考查了平移. 通过平移,把不规则的几何图形转化为规则的几何图形,然后根据面积公式进行计算.18.m≥2【解析】【分析】先解第一个不等式再根据不等式组的解集是x<2从而得出关于m的不等式解不等式即可【详解】解:解第一个不等式得x<2∵不等式组的解集是x<2∴m≥2故答案为m≥2【点睛】本题是已知解析:m≥2.【解析】【分析】先解第一个不等式,再根据不等式组()2131x xx m⎧->-⎨<⎩的解集是x<2,从而得出关于m的不等式,解不等式即可.【详解】解:解第一个不等式得,x<2,∵不等式组()2131x xx m⎧->-⎨<⎩的解集是x<2,∴m≥2,故答案为m≥2.【点睛】本题是已知不等式组的解集,求不等式中字母取值范围的问题.可以先将字母当作已知数处理,求出解集与已知解集比较,进而求得字母的范围.求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,大小小大中间找,大大小小解不了.19.【解析】【详解】若的整数部分为a小数部分为b∴a=1b=∴a-b==1故答案为1解析:【解析】【详解】3a,小数部分为b,∴a=1,b31,-b1)=1.故答案为1.20.100【解析】【分析】根据对顶角相等求出∠AOC再根据角平分线和邻补角的定义解答【详解】解:∵∠BOD=40°∴∠AOC=∠BOD=40°∵OA平分∠COE∴∠AOE=∠AOC=40°∴∠COE=8解析:100【解析】【分析】根据对顶角相等求出∠AOC,再根据角平分线和邻补角的定义解答.【详解】解:∵∠BOD=40°,∴∠AOC=∠BOD=40°,∵OA平分∠COE,∴∠AOE=∠AOC=40°,∴∠COE=80°.∴∠DOE=180°-80°=100°故答案为:100.【点睛】本题考查了对顶角相等的性质,角平分线、邻补角的定义,是基础题,熟记性质并准确识图是解题的关键.21.a≥0【解析】【分析】非负数即大于等于0据此列不等式【详解】由题意得a≥0故答案为:a≥0解析:a≥0【解析】【分析】非负数即大于等于0,据此列不等式.【详解】由题意得a≥0.故答案为:a≥0.22.【解析】【分析】把xy的值代入方程组再将两式相加即可求出a﹣b的值【详解】将代入方程组得:①+②得:4a﹣4b=7则a﹣b=故答案为【点睛】本题考查二元一次方程组的解解题的关键是观察两方程的系数从而解析:7 4【解析】【分析】把x、y的值代入方程组,再将两式相加即可求出a﹣b的值.【详解】将x a y b =⎧⎨=⎩代入方程组3354x y x y +=⎧⎨-=⎩,得:3354a b a b +=⎧⎨-=⎩①②, ①+②,得:4a ﹣4b=7, 则a ﹣b=74, 故答案为74. 【点睛】本题考查二元一次方程组的解,解题的关键是观察两方程的系数,从而求出a ﹣b 的值. 23.【解析】【分析】本题可设打x 折根据保持利润率不低于5可列出不等式:解出x 的值即可得出打的折数【详解】设可打x 折则有解得即最多打7折故答案为7【点睛】考查一元一次不等式的应用读懂题目找出题目中的不等关 解析:【解析】【分析】本题可设打x 折,根据保持利润率不低于5%,可列出不等式:12008008005%10x ,⨯-≥⨯ 解出x 的值即可得出打的折数. 【详解】 设可打x 折,则有12008008005%10x ,⨯-≥⨯ 解得7.x ≥即最多打7折.故答案为7.【点睛】考查一元一次不等式的应用,读懂题目,找出题目中的不等关系,列出不等式是解题的关键. 24.2【解析】解不等式-x+3>0可得x <3然后确定其最大整数解为2故答案为2点睛:此题主要考查了不等式的解法和整数解得确定解题关键是利用不等式的基本性质3解不等式然后才能从解集中确定出最大整数解解析:2【解析】解不等式-x+3>0,可得x <3,然后确定其最大整数解为2.故答案为2.点睛:此题主要考查了不等式的解法和整数解得确定,解题关键是利用不等式的基本性质3解不等式,然后才能从解集中确定出最大整数解.25.-1【解析】【分析】根据x 轴上的点纵坐标等于0列出方程求解得到a 的值【详解】∵点M(a-1a+1)在x轴上∴a+1=0解得a=-1故答案为:-1【点睛】本题考查了点的坐标熟记x轴上的点的纵坐标等于0 解析:-1【解析】【分析】根据x轴上的点纵坐标等于0列出方程求解得到a的值.【详解】∵点M(a-1,a+1)在x轴上,∴a+1=0,解得a=-1,故答案为:-1.【点睛】本题考查了点的坐标,熟记x轴上的点的纵坐标等于0是解题的关键.三、解答题26.(1)C,C;(2)2400;(3)7 6 h.【解析】【分析】(1)根据中位数的概念即中位数应是第150、151人时间的平均数和众数的定义即可得出答案;(2)首先计算样本中达国家规定体育活动时间的频率,再进一步估计总体达国家规定体育活动时间的人数;(3)根据t的取值和每组的人数求出总的时间,再除以总人数即可.【详解】解:(1)根据中位数的概念,中位数应是第150、151人时间的平均数,分析可得其均在C组,故调查数据的中位数落在C组;C组出现的人数最多,则众数再C组;故答案为:C,C;(2)达到国际规定体育活动时间的人数约12060100%60% 300+⨯=,则达国家规定体育活动时间的人约有4000×60%=2400(人);(3)根据题意得:(20×0.25+100×0.75+120×1.25+60×2)÷300=7 (h) 6,【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.27.(1)30°; (2)答案见解析;(3)答案见解析.【解析】【分析】(1)由∠BCD =150°,∠ACB =90°,可得出∠DCA 的度数,进而得出∠ACE 的度数;(2)根据(1)中的结论可提出猜想,再由∠BCD =∠ACB +∠ACD ,∠ACE =∠DCE−∠ACD 可得出结论;(3)根据平行线的判定定理,画出图形即可求解.【详解】解:(1)∵90BCA ECD ∠=∠=︒,150BCD ∠=︒,∴1509060DCA BCD BCA ∠=∠-∠=︒-︒=︒,∴906030ACE ECD DCA ∠=∠-∠=︒-︒=︒;(2)180BCD ACE ∠+∠=︒,理由如下:∵90BCD ACB ACD ACD ∠=∠+∠=︒+∠,90ACE DCE ACD ACD ∠=∠-∠=︒-∠,∴180BCD ACE ∠+∠=︒;(3)当120BCD ∠=︒或60︒时,CD AB .如图②,根据同旁内角互补,两直线平行,当180B BCD ∠+∠=︒时,CD AB ,此时180********BCD B ∠=︒-∠=︒-︒=︒; 如图③,根据内错角相等,两直线平行,当60B BCD ∠=∠=︒时,CD AB .【点睛】本题考查了平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.熟练掌握定理并且能够准确识图是解题的关键.28.(1)108°;(2)∠APC=α+β,理由见解析;(3)∠APC=β-α.【解析】【分析】(1)过P 作PE ∥AB ,先推出PE ∥AB ∥CD ,再通过平行线性质可求出∠APC ; (2)过P 作PE ∥AB 交AC 于E ,先推出AB ∥PE ∥DC ,然后根据平行线的性质得出α=∠APE ,β=∠CPE ,即可得出答案;(3)过点P作PE∥AB交OA于点E,同(2)中方法根据平行线的性质得出α=∠APE,β=∠CPE,即可得出答案.【详解】解:(1)过点P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠A+∠APE=180°,∠C+∠CPE=180°,∵∠PAB=128°,∠PCD=124°,∴∠APE=52°,∠CPE=56°,∴∠APC=∠APE+∠CPE=108°;(2)∠APC=α+β.理由如下:如图2,过P作PE∥AB交AC于E,∵AB∥CD,∴AB∥PE∥CD,∴α=∠APE,β=∠CPE,∴∠APC=∠APE+∠CPE=α+β;(3)∠APC=β-α.理由如下:过点P作PE∥AB交OA于点E,同(2)可得,α=∠APE,β=∠CPE,∴∠APC=∠CPE-∠APE=β-α.【点睛】本题主要考查了平行线的性质与平行公理,解题的关键是过拐点作平行线,利用平行线的性质解决问题.29.(1)C(0,2),D(4,2),S四边形ABDC=8;(2)M(0,4)或(0,-4);(3)∠CPA=∠BAP+∠DCP或∠CPA= ∠BAP-∠DCP.【解析】【分析】(1)由题意根据非负数的性质求出A 、B 坐标,进而分析得出C 、D 坐标,继而即可求出四边形ABDC 的面积;(2)由题意可知以AB 为底边,设点M 到AB 的距离为h 即三角形MAB 的高,求得h 的值即可得出点M 的坐标;(3)根据题意分当点P 在线段BD 上时以及当点P 在BD 延长线上时,利用平行线的性质进行分析即可.【详解】解: (1)由()()22130a b ++-=得a=-1,b=3,则A(-1,0),B(3,0),∵点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,如图,∴C(0,2),D(4,2),∴S 四边形ABDC =AB×OC=4×2=8. (2)存在.设点M 到AB 的距离为h ,S △MAB =12×AB×h=2h , 由S △MAB =S 四边形ABDC ,得2h=8,解得h=4,可知这样的M 点在y 轴上有两个,∴M(0,4)或(0,-4).(3) ①当点P 在线段BD 上时:∠CPA=∠DCP+∠BAP ,理由如下:过P 点作PE ∥AB 交OC 与E 点,∵AB ∥CD , PE ∥AB ,∴AB ∥PE ∥CD ,∴∠DCP=∠CPE,∠BAP=∠APE,∵∠CPA=∠CPE+∠APE,∴∠CPA=∠DCP+∠BAP;②当点P在BD延长线上时:∠CPA= ∠BAP-∠DCP,理由如下:过P点作PE∥AB,∵AB∥CD,PE∥AB,∴AB∥PE∥CD,∴∠DCP=∠CPE,∠BAP=∠APE,∵∠CPA= ∠APE-∠CPE。
{3套试卷汇总}2021年常州市某名校中学七年级下学期数学期末达标检测试题
【点睛】
本题主要考查了二次根式的性质和运算,分别将各项化简是解题的关键.
二、填空题题
11.已知OA⊥OC于O,∠AOB:∠AOC=3:2,则∠BOC的度数为_____度.
【答案】45度或1
【解析】根据垂直关系知∠AOC=90°,由∠AOB:∠AOC=3:2,可求∠AOB,根据∠AOB与∠AOC的位置关系,分类求解.
【答案】C
【解析】根据平移中,点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减.即可得出平移后点的坐标.
【详解】设点A的坐标为(x,y),由题意,
得:x−3=−1,y−2=3,
求得x=2,y=5,
所以点A的坐标为(2,5).
故选:C.
【点睛】
本题考查坐标与图形变化−平移,用到的知识点为:左右平移只改变点的横坐标,左减右加;上下平移只改变点的纵坐标,上加下减.
7.怀远县政府在创建文明城市的进程中,着力美化城市环境,改造绿化涡河北岸,建设绿地公园,计划种植树木30万棵,由于青年志愿者的加入,实际每天植树比原计划多20%,结果提前5天完成任务,设原计划每天植树x万棵,可列方程为( )
A. B.
C. D.
【答案】D
【解析】根据题意列出分式方程即可.
【详解】解:设原计划每天植树x万棵,可得: ,
故选:D.
【点睛】
本题考查的是分式方程的实际应用,熟练掌握分式方程是解题的关键.
8.将0.0000025用科学记数法表示为
A.2.5×10-5B.2.5×10-6C.0.25×10-5D.0.25×10-6
【答案】B
【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
(汇总3份试卷)2021年常州市某达标实验中学七年级下学期期末达标测试数学试题
七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.若方程组31331x y ax y a +=+⎧+=-⎨⎩的解满足0x y +>,则a 的取值范围是( ) A .1a <-B .1a <C .1a >-D .1a > 【答案】C 【解析】根据原方程组的特点,由方程组中两个方程相加可得1122x y a +=+,这样结合0x y +>即可列出关于a 的不等式,解此不等式即可求得a 的取值范围.【详解】把原方程组中两个方程相加可得: 4422x y a +=+, ∴1122x y a +=+, 又∵0x y +>, ∴11022a +>,解得:1a >-. 故选C.【点睛】本题考查了解二元一次方程组和一元一次不等式的应用,能得出关于a 的不等式11022a +>是解答本题的关键.2.在平面直角坐标系中,点(﹣5,2)所在的象限为( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】B【解析】根据各象限内点的坐标特征解答即可.【详解】解:点(﹣5,2)在第二象限.故选:B .【点睛】此题考查象限及点的坐标的有关性质,解题关键在于掌握其性质.3.下列说法中,不正确的是( )A 2±B .8的立方根是2C .64的立方根是4±D 【答案】C【解析】根据平方根和立方根的定义进行计算,再逐一判断即可【详解】解:A. 4=的平方根是2±,原选项不合题意B. 8的立方根是2,原选项不合题意C. 64的立方根是4,原选项符合题意D.93=的平方根是3±,原选项不合题意 故选:C【点睛】本题考查了平方根和立方根的概念,熟练掌握相关知识是解题的关键4.不等式组5234x x -≤-⎧⎨-+<⎩的解集表示在数轴上为( ) A . B .C .D .【答案】B 【解析】根据题意先解不等式组中的每一个不等式,再把不等式的解集表示在数轴上即可.【详解】解:解不等式52x -≤-,得x ≤3,解不等式34x -+<,得x >-1,∴原不等式组的解集是-1<x ≤3.故选B . 【点睛】本题考查不等式组的解法和解集在数轴上的表示法,注意掌握如果是表>或<号的点要用空心,如果是表示>等于或<等于号的点用实心.5.如图,函数4y x =-和y kx b =+的图象相交于点()8A m-,,则关于x 的不等式()40k x b ++>的解集为( )A .2x >B .02x <<C .8x >-D .2x <【答案】A【解析】直接利用函数图象上点的坐标特征得出m 的值,再利用函数图象得出答案即可.【详解】解:∵函数y =−4x 和y =kx +b 的图象相交于点A (m ,−8),∴−8=−4m ,解得:m =1,故A 点坐标为(1,−8),∵kx +b >−4x 时,(k +4)x +b >0,则关于x 的不等式(k +4)x +b >0的解集为:x >1.故选:A .【点睛】此题主要考查了一次函数与一元一次不等式,正确利用函数图象分析是解题关键.6.如果21x y =-⎧⎨=⎩是方程2x y m -=的解,那么m 的值是( ) A .1B .12C .32-D .-1【答案】C【解析】把x 、y 的值代入方程,得出关于m 的方程,求出即可. 【详解】解:∵21x y =-⎧⎨=⎩是方程2x y m -=的解, ∴代入得:-2-1=2m ,解得:m=32-. 故选C .【点睛】本题考查二元一次方程的解的应用,关键是得出关于m 的方程.7.若x>y ,则下列式子中错误的是( )A .33x y ->-B .55x y >C .33x y +>+D .33x y ->- 【答案】D【解析】利用不等式的性质即可求解.【详解】A 和C 正确,方程两边同时加上或减去一个正数,不等式符号不改变.B 正确,不等式两边同时乘以一个正数,不等式符号不变.D 错误不等式两边同时除以一个负数,不等式符号改变.故本题选D.【点睛】本题考察不等式的性质来求解,学生们需要掌握以上性质即可求解.8.下列说法中:①三角形中至少有2个角是锐角;②各边都相等的多边形是正多边形;③钝角三角形的三条高交于一点;④两个等边三角形全等;⑤三角形两个内角的平分线的交点到三角形三边的距离相等,正确的个数是()A.1B.2C.3D.4【答案】B.【解析】试题分析:三角形中至少有2个角是锐角,所以①正确;各边都相等,各内角也相等的多边形是正多边形,所以②错误;钝角三角形的三条高交于一点,所以③正确;边长相等的两个等边三角形全等,所以④错误;三角形两个内角的平分线的交点到三角形三边的距离相等,所以⑤正确.故选B.考点:命题与定理.9.下列方程的解为x=1的是()A.-12x=10 B.2﹣x=2x﹣1 C.2x+1=0 D.x2=2【答案】B【解析】将x=1分别代入各选项的方程中得:A:左=0,右=10,不是方程的解;B:左=1,右=1,是方程的解;C:左=3,右=0,不是方程的解;D:左=1,右=2,不是方程的解;故选B.10.若关于x的不等式mx-n>0的解集是x<15,则关于x的不等式(-5m+n)x>n+5m的解集是()A.x<-2 B.x>-2 C.x<2 D.x>2【答案】C【解析】根据不等式的性质,利用不等式mx-n>0的解集是x<15得到m<0,nm=15,则n=15m,然后把n=15m代入不等式(-5m+n)x>n+5m后解不等式即可.【详解】解:∵不等式mx-n>0的解集是x<15,∴x<nm(m<0),即nm=15,∴n=15m,不等式(-5m+n)x>n+5m变形为(-5m+15m)x>15m+5m,即10mx>10m,∵m<0,∴x<1.故选:C.【点睛】本题考查了解一元一次不等式,根据不等式的性质解一元一次不等式.二、填空题题11.如图,AB∥CD,如果∠1=∠2,那么EF与AB平行吗?说说你的理由.解:因为∠l=∠2,根据,所以∥.又因为AB∥CD,根据:,所以EF∥AB.【答案】内错角相等,两直线平行、CD、EF、平行于同一直线的两条直线平行.【解析】根据平行线的性质,即可解答【详解】解:因为∠l=∠2,根据内错角相等,两直线平行,所以CD∥EF.又因为AB∥CD,根据:平行于同一直线的两条直线平行,所以EF∥AB.故答案为内错角相等,两直线平行、CD、EF、平行于同一直线的两条直线平行.【点睛】此题考查平行线的性质,难度不大12.如图,在△ABC中,AB=AC=8,AB的垂直平分线DE分别交AB、AC于点E、 D,BD=BC,△BCD 的周长为13,则BC和ED的长分别为____________.【答案】5,3【解析】首先根据线段垂直平分线的性质可得AD=BD,由AC=8可得BD+CD=8,再根据△BCD的周长为13可得BC=13-8=5,进而可得BD=5,再根据勾股定理可得ED的长.【详解】∵DE是AB的垂直平分线,∴AD=BD,∵AC=8,∴BD+CD=8,∵△BCD的周长为13,∴BC=13−8=5,∵BD=BC,∴BD=5,∵DE是AB的垂直平分线,∴BE=4,∠DEB=90°,∴DE=2254-=3.【点睛】本题考查线段垂直平分线的性质和等腰三角形的性质,解题的关键是熟练掌握线段垂直平分线的性质和等腰三角形的性质.13.如图,在平面直角坐标系xOy中,点A(0,2),B(4,0),点N为线段AB的中点,则点N的坐标为_____________.【答案】 (2,1)【解析】直接运用线段中点坐标的求法,易求N的坐标.【详解】点N的坐标是:(0420,22++),即(2,1).故答案为:(2,1)【点睛】本题考核知识点:平面直角坐标系中求线段的中点. 解题关键点:理解线段中点的坐标求法. 14.如图,AB∥CD,∠CDE=112°,GF交∠DEB的平分线EF于点F,∠AGF=130°,则∠F=___.【答案】6.︒【解析】根据平行线的性质,先找出角的关系,再用等量代换的思想求角.【详解】解:已知AB∥CD,∠CDE=112°CDE DEB;CDE DEA 180∠∠∠∠∴=+=︒DEA 68∠∴=︒EF 是DEB ∠的角平分线DEF FEB 56∠∠∴==︒AEF AED DEF 6856124∠∠∠∴=+=︒+︒=︒EGF 180AGF 18013050∠∠=︒-=︒-︒=︒F 180AEF EGF 180124506.∠∠∠∴=︒--=︒-︒-︒=︒故答案为6.︒【点睛】此题重点考查学生对两直线平行的性质的理解,熟练掌握两直线平行的性质是解题的关键.15.将点P 向下平移3个单位,向左平移2个单位后得到点Q (3,-1),则点P 坐标为______.【答案】(5,2)【解析】设点P 的坐标为(x ,y ),然后根据向左平移,横坐标减,向下平移,纵坐标减,列式进行计算即可得解.【详解】设点P 的坐标为(x ,y ),根据题意,x-2=3,y-3=-1,解得x=5,y=2,则点P 的坐标为(5,2).故答案是:(5,2).【点睛】考查了平移与坐标与图形的变化,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.16.已知关于x ,y 的二元一次方程组 的解互为相反数,则k 的值是_________.【答案】-1【解析】∵关于x ,y 的二元一次方程组 的解互为相反数,∴x=-y ③,把③代入②得:-y+2y=-1,解得y=-1,所以x=1,把x=1,y=-1代入①得2-3=k ,即k=-1.故答案为-117.直线1l :11y a x b =-直线2l :22y a x b 相交于点P (-2,7),则方程组1122a x b y a x b y -=⎧⎨-=⎩的解为_____. 【答案】27x y =-⎧⎨=⎩【解析】因为“直线l 1:y=a 1x-b 1与直线l 2:y=a 2x-b 2相交于点P (-2,7)”,所以x=-2、y=7就是方程组1122a x b y a x b y -=⎧⎨-=⎩的解.【详解】解答:∵直线l 1:y=a 1x-b 1与直线l 2:y=a 2x-b 2相交于点P (-2,7),∴x=-2,y=7就是方程组1122a x b y a x b y -=⎧⎨-=⎩的解. 故答案为27x y =-⎧⎨=⎩. 【点睛】本题考查了一次函数与二元一次方程(组)的联系.三、解答题18.如图,在ABC 中:(1)作ABC ∠的平分线交AC 于D ,作线段BD 的垂直平分线EF 分别交AB 于E ,BC 于F ,垂足为点O .(尺规作图,保留作图痕迹,不写作法)(2)在(1)的条件下,连接DF ,判断DF 与边AB 的位置关系为_________(直接写出结果,不用说明理由)【答案】(1)详见解析;(2)//DF AB【解析】(1)以点B 为圆心任意长度为半径画弧,交AB 、BC 于两个点,分别以这两点为圆心,大于这两点距离的一半为半径画弧相交于∠ABC 内一点,连接点B 与这点的射线BD 即为角平分线,再以点B 、D 分别为圆心,大于12BD 长为半径画弧线,与AB 交于点E ,与BC 交于点F ,连接EF ; (2)根据线段垂直平分线的性质及角平分线的性质证明△EBO ≌△FBO ,得到OE=OF ,再证明△BOE ≌△DOF ,得到∠EBO=∠FDO ,即可得到DF ∥AB.【详解】解:(1)如图所示(2)∵EF垂直平分BD,∴∠BOE=∠BOF=90°,OB=OD,∵BD平分∠ABC,∴∠EBO=∠FBO,又OB=OB,∴△EBO≌△FBO,∴OE=OF,∵∠DOF=∠BOE=90°,∴△BOE≌△DOF,∴∠EBO=∠FDO,∴//DF AB,故答案为://DF AB.【点睛】此题考查了作图能力:作角平分线和线段的垂直平分线,还考查了角平分线的性质,线段垂直平分线的性质,全等三角形的判定及性质.19.已知,点B、D分别在∠MAN的两边AM、AN上,点C是射线AP上的一点,连接BC、DC,∠MAN=α,∠BCD=β,(0°<α<180°,0°<β<180°);BE平分∠MBC,DF平分∠NDC.(1)如图1,若α=β=80°,①求∠MBC+∠NDC的度数;②判断BE、DF的位置关系,并说明理由.(2)如图2,当点C在射线AP上运动时,若直线BE、DF相交于点G,请用含有α、β的代数式表示∠BGD.(直接写结果)【答案】(1) ① 160°,② 平行;(2)①12α-12β,②12β-12α,③180°-12α-12β.【解析】分析: (1) ①利用三角形外角即可求出; ②在①的基础上,再利用角平分线的性质即可求出;(2)分情况,四边形BCDG 是凸四边形,凹四边形来讨论.详解: (1) ①α=β=80°,∵∠MBC 是△ABC 的外角,∴∠MBC=∠BAC+∠BCA,同理, ∠NDC=∠DAC+∠ACD,∴∠MBC+∠NDC=∠BAC+∠BCA+∠DAC+∠ACD=∠MAN+∠BCD=α+β=160°②BE∥DF∵BE 平分∠MBC, DF 平分∠NDC,∴∠EBC=12∠MBC, ∠CDF=12∠NDC, ∴∠EBC+∠CDF=12(∠MBC+∠NDC)= 12×160°=80°, 在△BCD 中,∵∠BCD=80°∴∠CBD+∠CDB=100°∴∠EBC+∠CBD+∠CDB=180°,即∠EBD+∠FDB=180°,∴BE ∥DF(同旁内角互补,两直线平行)(2)①12α- 12β,②12β-12α,③180°-12α- 12β. 点睛: 此题考查了平行线的性质与判定,角平分线的定义, 本题利用角平分线性质,并利用已知条件来求得, 全面思考问题,意识到有三种情形是正确解答的关键.20.在平面直角坐标系xOy 中,如图正方形ABCD 的顶点A ,B 坐标分别为()1,0A -,()3,0B ,点E ,F 坐标分别为(),0E m ,()3,0F m ,且12m -<≤,以EF 为边作正方形EFGH .设正方形EFGH 与正方形ABCD 重叠部分面积为S .(1)①当点F与点B重合时,m的值为______;②当点F与点A重合时,m的值为______. (2)请用含m的式子表示S,并直接写出m的取值范围.【答案】(1)①1;②13 -;(2)()()22222612140340112213m m mm mSm mm m m⎧⎪-+≤≤⎪⎪⎛⎫-≤<⎪ ⎪=⎝⎭⎨⎪<<⎪⎪⎛⎫---<<-⎪ ⎪⎝⎭⎩.【解析】(1)①②根据点F的坐标构建方程即可解决问题.(2)分四种情形:①如图1中,当1≤m≤2时,重叠部分是四边形BEGN.②如图2中,当0<m<1时,重叠部分是正方形EFGH.③如图3中,-1<m<13-时,重叠部分是矩形AEHN.④如图4中,当13--≤m <0时,重叠部分是正方形EFGH.分别求解即可解决问题.【详解】解:(1)①当点F与点B重合时,由题意3m=3,∴m=1.②当点F与点A重合时,由题意3m=-1,∴m=13-,故答案为1,13-.(2)①当12m≤≤时,如图1.3BE m=-,32HE EF m m m==-=.()22326S BE HE m m m m=⋅=-=-+.②当01m≤<时,如图2.32EF m m m=-=.()22224S EF m m===.③当113m-<<-时,如图3.()11AE m m=--=+,32HE EF m m m==-=-.()22122S AE HE m m m m=⋅=-+=--④当13m-≤<时,如图4.32EF m m m=-=.()22224S EF m m ==-=.综上,()()22222612140340112213m m m m m S m m m m m ⎧⎪-+≤≤⎪⎪⎛⎫-≤<⎪ ⎪=⎝⎭⎨⎪<<⎪⎪⎛⎫---<<-⎪ ⎪⎝⎭⎩. 【点睛】本题属于四边形综合题,考查了正方形的性质,平移变换,四边形的面积等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.21.(1+ 7 的整数部分是 a , 7的整数部分是 b ,求 a + b 的值(2+ 7 的小数部分是 a , 7的小数部分是 b ,求 a + b 的值.【答案】(1)13;(2)1【解析】(1的大致范围,然后可求得a 、b 的值,最后代入计算即可.(2的大致范围,然后可求得a 、b 的值,最后代入计算即可.【详解】(1)479<<∴23<<∴a=9,b=4∴a + b=9+4=13(2) + 7 的小数部分是 a∴+ 7-2∴a +-2)+()=1【点睛】本题主要考查估算无理数的大小,熟练掌握估算无理数大小的方法是解题的关键.22.已知∠ABC =∠DBE ,射线BD 在∠ABC 的内部.(1)如图1,已知∠ABC ═90°,当BD 是∠ABC 的平分线时,求∠ABE 的度数.(2)如图2,已知∠ABE 与∠CBE 互补,∠DBC :∠CBE =1:3,求∠ABE 的度数;(3)如图3,若∠ABC =45°时,直接写出∠ABE 与∠DBC 之间的数量关系.【答案】(1)∠ABE=135°;(2)∠ABE=126°;(3)∠ABE+∠DBC=90°.理由见解析.【解析】(1)利用角平分线的性质,先求出∠DBC、∠CBE的度数,再计算∠ABE的度数;(2)由已知条件得到∠ABD=∠CBE,设∠DBC=α,∠CBE=3α,得到∠ABD=3α,∠ABE=3α+α+3α=7α,根据题意列方程即可得到结论;(3)把∠ABE+∠DBC转化为∠ABC+∠DBE,代入计算得出结论.【详解】解:(1)∵∠ABC=90°,BD平分∠ABC,∴∠DBC=45°,∵∠DBE=∠ABC=90°,∠DBC+∠CBE=∠DBE,∴∠CBE=45°.∴∠ABE=∠ABC+∠CBE=90°+45°=135°.故答案为135°.(2)∵∠ABC=∠DBE,∴∠ABD=∠CBE,∵∠DBC:∠CBE=1:3,∴设∠DBC=α,∠CBE=3α,∴∠ABD=3α,∠ABE=3α+α+3α=7α,∵∠ABE与∠CBE互补,∴7α+3α=180°,∴α=18°,∴∠ABE=126°;(3)∠ABE+∠DBC=90°.理由:∵∠DBE=∠ABC=45°,∴∠ABE+∠DBC=∠ABC+∠CBE+∠DBC=∠ABC+∠DBE=90°.【点睛】本题考查角的和差关系及角的相关计算.通过观察图形,把∠ABE+∠DBC转化为∠ABC+∠DBE是解决本题的关键.23.已知,△ABC(如图).(1)利用尺规按下列要求作图(保留作图痕迹,不写作法):①作∠BAC的平分线AD,交BC于点D;②作AB边的垂直平分线EF,分别交AD,AB于点E,F.(2)连接BE,若∠ABC=60°,∠C=40°,求∠AEB的度数.【答案】(1)详见解析;(2)100°【解析】(1)①利用基本作图法作∠BAC的平分线AD;②利用基本作图法作出AB边的垂直平分线EF;(2)根据题意求出∠BAE=40°,因为EF为AB的垂直平分线,所以AE=BE,可得∠BAE=40°=∠ABE,即可求解.【详解】(1)①AD为所求直线;②EF为所求直线;(2)∵∠ABC=60°,∠C=40°∴∠BAC==80°∵AD平分∠BAC∴∠BAE=40°∵EF为AB的垂直平分线∴AE=BE∴∠BAE=40°=∠ABE∴∠AEB=100°【点睛】本题考查的是角平分线和垂直平分线,熟练掌握两者的画图是解题的关键.24.某车站在春运期间为改进服务,抽查了100名旅客从开始在窗口排队到购到车票所用时间t(以下简称购票用时,单位:分),得到如下表所示的频数分布表.(1)在表中填写缺失的数据;(2)画出频数分布直方图;(3)旅客购票用时的平均数可能落在哪一小组内?(4)若每增加一个购票窗口可以使平均购票用时降低5分,要使平均购票用时不超过10分,那么请你决策一下至少要增加几个窗口?【答案】(1)50;(2)详见解析;(3)15≤t<20;(4)至少要增加两个窗口【解析】(1)用总人数减去各组人数即可求解;(2)根据相关数据作图即可;(3)根据题意求出平均数即可判断;(4)设需要增加x个窗口,根据题意列出不等式即可求解.【详解】解:(1)第四组的频数为100-10-10-30=50.(2)频数分布直方图如图5所示.图5(3)平均数为107.5+1012.5+5017.5+3022.5100⨯⨯⨯⨯=17.5 ∴在15≤t<20小组.(4)设需要增加x 个窗口,则可得20-5x≤10,即x≥2,所以至少要增加两个窗口.【点睛】此题主要考查统计调查的应用,解题的关键是频数直方图的应用.25.已知,如图,在△ABC 中,过点A 作AD 平分∠BAC ,交BC 于点F ,过点C 作CD ⊥AD ,垂足为D ,在AC 上取一点E ,使DE=CE ,求证:DE ∥AB .【答案】证明见解析.【解析】根据直角三角形的性质和等腰三角形的性质定理证明即可.【详解】证明:CD AD ⊥,∴90DAC ACD ADE EDC ∠+∠=∠+∠=︒,∵DE CE =,∴EDC ACD ∠=∠,∴,DAC ADE ∠=∠,∵AD 平分BAC ∠,∴BAD DAC ∠=∠,∴BAD ADE ∠=∠,∴DE AB ∥.【点睛】此题考查等腰三角形的性质定理,关键是根据直角三角形的性质和等腰三角形的性质解答.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列各数中不是无理数的是()A.3B.2πC.227D.0.151l511l5…(相邻两个5之间依次多一个1)【答案】C【解析】根据无理数的定义即可判断.【详解】解:A、3是无理数,故A选项不符合题意;B、2π是无理数,故B选项不符合题意;C、227是分数,是有理数,故C选项符合题意;D、0.151151115…(相邻两个5之间依次多一个1)是无理数,故D选项不符合题意;故选:C.【点睛】此题主要考查无理数的识别,解题的关键是熟知无理数的定义.2.下列运算中正确的是()A.(﹣ab)2=2a2b2B.(a+1)2=a2+1C.a6÷a2=a3D.(﹣x2)3=﹣x6【答案】D【解析】根据积的乘方、完全平方公式、同底数幂的除法和幂的乘方即可得出答案.【详解】根据积的乘方,(﹣ab)2=a2b2,故A项错误;根据完全平方公式,(a+1)2=a2+2a+1,故B项错误;根据同底数幂的除法,a6÷a2=a4,故C项错误;根据幂的乘方,(﹣x2)3=﹣x6,故D项正确.【点睛】本题考查积的乘方、完全平方公式、同底数幂的除法和幂的乘方,解题的关键是熟练掌握积的乘方、完全平方公式、同底数幂的除法和幂的乘方.3.如图,在一个单位面积为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,……是斜边在x轴上,且斜边长分别为2,4,6,……的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,-1),A3(0,0),则依图中所示规律,点A2019的横坐标为()A .1010B .1010-C .1008D .1008-【答案】D 【解析】先观察图像找到规律,再求解.【详解】观察图形可以看出A 1--A 4;A 5---A 8;…每4个为一组,∵2019÷4=504 (3)∴A 2019在x 轴负半轴上,纵坐标为0,∵A 3、A 7、A 11的横坐标分别为0,-2,-4,∴A 2019的横坐标为-(2019-3)×=-1.∴A 2019的横坐标为-1.故选:D .【点睛】本题考查的是点的坐标,正确找到规律是解题的关键.4.若一个多边形的每一个外角都是40°,则这个多边形是( )A .七边形B .八边形C .九边形D .十边形 【答案】C【解析】根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【详解】360÷40=9,即这个多边形的边数是9,故选C .【点睛】本题考查多边形的内角和与外角和之间的关系,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.5.小龙和小刚两人玩“打弹珠”游戏,小龙对小刚说:“把你珠子的一半给我,我就有10颗珠子”,小刚却说:“只要把你的13给我,我就有10颗”,如果设小刚的弹珠数为x 颗,小龙的弹珠数为y 颗,则列出方程组正确的是( )A .210330x y x y +=⎧⎨+=⎩B .210310x y x y +=⎧⎨+=⎩C .220310x y x y +=⎧⎨+=⎩D .220330x y x y +=⎧⎨+=⎩【答案】D 【解析】试题解析:根据把小刚的珠子的一半给小龙,小龙就有10颗珠子,可表示为102x y +=, 化简得220x y +=; 根据把小龙的13给小刚,小刚就有10颗,可表示为103y x +=, 化简得3x+y=30. 列方程组为220330.x y x y +=⎧⎨+=⎩ 故选D. 6.下列分式中,与2x y x y---的值相等的是() A .2x y y x +- B .2x y x y +- C .2x y x y -- D .2x y y x-+ 【答案】A【解析】根据分式的基本性质即可求出答案.【详解】解:原式=22x y x y x y y x++-=--, 故选:A .【点睛】本题考查分式的基本性质,解题的关键熟练运用分式的基本性质,本题属于基础题型.7.如图,已知∠1=70°,如果CD ∥BE ,那么∠B 的度数为( )A .B .C .D .【答案】C【解析】根据对顶角相等可知∠2=∠1=70°,再根据两直线平行,同旁内角互补求解即可.【详解】解:如图,∵∠1=70°,∴∠2=∠1=70°,∵CD ∥BE ,∴∠B=180°-∠1=180°-70°=110°.故选:C .【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解答本题的关键. 平行线的性质:①两直线平行同位角相等,②两直线平行内错角相等,③两直线平行同旁内角互补.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.8.多项式a 2-9与a 2-3a 的公因式是( )A .a +3B .a -3C .a +1D .a -1【答案】B【解析】a 2-9=(3)(3)a a +- ,a 2-3a=(3)a a - ,故选B.9.下列等式中,不成立的是( )A .22y x y x x y xy --= B .222x xy y x y x y -+=-- C .2xy y x xy x y =-- D .22x y x y x y-=-- 【答案】D【解析】根据不等式的性质,对选项进行求解即可.【详解】解:A 、2222y x y x y x x y xy xy xy--=-=,故A 成立,不合题意; B 、2222()x xy y x y x y x y x y-+-==---,故B 成立,不合题意; C 、2()xy xy y x xy x x y x y==---,故C 成立,不合题意; D 、22()()x y x y x y x y x y x y-+-==+--,故D 不成立,符合题意. 故选:D .【点睛】本题考查不等式,熟练掌不等式的性质及运算法则是解题关键.10.下列正多边形的组合中,不能够铺满地面的是( )A .正三角形和正方形B .正三角形和正六边形C .正方形和正六边形D .正方形和正八边形【答案】C 【解析】正多边形的组合能否构成平面镶嵌,关键是看位于同一顶点处的几个角之和能否为360°,若能,则说明能镶嵌;反之,则说明不能.【详解】A.正三角形,正方形的一个内角分别是60°,90°,由于60°×3+90°×2=360°,所以能镶嵌;B.正三角形和正六边形的一个内角分别是60°,120°,由于60°×2+120°×2=360°,所以能镶嵌;C. 正方形和正六边形的一个内角分别是90°,120°,由于90°+120°×2=210°,所以不能镶嵌D.正方形和正八边形的一个内角分别是90°,135°,由于90°+135°×2=360°,所以能镶嵌; 故选C【点睛】本题考查平面镶嵌,熟练掌握多边形的内角值是解题关键.二、填空题题11.当x 分别取10,1111,9,,8,,,2,10982,1,0时,计算分式2211x x -+的值,再将所得结果相加,其和等于_____【答案】﹣1【解析】先把x=n 和1x n=代入代数式,并对代数式化简,得到它们的和为0,然后把x=1、0代入代数式求出代数式的值,再把所得的结果相加求出所有结果的和.【详解】解:因为2222222211n 11n n 1n 0n 1n 1n 111n ⎛⎫- ⎪---⎝⎭+=+=+++⎛⎫+ ⎪⎝⎭, 所以当x 分别取值1n ,n (n 为正整数)时,计算所得的代数式的值之和为0, 则将所得结果相加,其和等于11010111101--+=-=-++, 故答案为:﹣1.【点睛】本题考查的是代数式的求值,本题的x 的取值较多,并且除x=0外,其它的数都是成对的且互为倒数,把互为倒数的两个数代入代数式得到它们的和为0,这样计算起来就很方便.12.=_____________.【答案】0【解析】先化简得到,再进行有理数的加减运算即可得到答案.【详解】==0.【点睛】本题考查绝对值和二次根式的加减,解题的关键是掌握绝对值的化简和二次根式的加减运算法则.13.若关于x 的不等式组21122x a x b -⎧⎪⎨-+⎪⎩><的解集为0<x<1,则2019()a b +=____. 【答案】1【解析】首先求出含有a 和b 的解集,再根据解集为0<x<1,求出a 和b 的值,即可得解. 【详解】解:由题意,解得不等式组的解集为1522a x b +-<< 又∵0<x<1, ∴102a +=,521b -= ∴a=-1,b=2∴()20191a b +=故答案为1.【点睛】此题主要考查不等式组的解集,关键是求出a 和b 的值,即可得解.14.某种计算机完成一次基本运算的时间为0.000000125秒,将数据0.000000125用科学记数法表示为_____.【答案】1.25×10﹣1【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10n - ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】0.000000125=1.25×10﹣1.故答案为1.25×10﹣1.【点睛】此题考查科学记数法一表示较小的数,难度不大15.已知方程2x ﹣y =1,用含x 的代数式表示y ,得_____.【答案】y =2x ﹣1【解析】根据题意要把方程2x ﹣y =1,用含x 的代数式表示y ,就要把方程中含有y 的项移到方程的左边,其它的项移到方程的右边,再进一步合并同类项、系数化为1即可.【详解】解:2x ﹣y =1移项得﹣y =1﹣2x ,系数化1得y =2x ﹣1.故答案为:y =2x ﹣1.【点睛】本题考查方程的灵活变形,熟练掌握移项、合并同类项、系数化为1的步骤是解题的关键.16.若关于,x y的方程组24232x yx y m+=⎧⎨+=-+⎩的解满足32xy->-,则m的最小整数解为__________.【答案】-1【解析】方程组中的两个方程相减得出x−y=3m+2,根据已知得出不等式,求出不等式的解集即可.【详解】解:24232x yx y m+=⎧⎨+=-+⎩①②①-②得x-y=3m+2关于,x y的方程组24232x yx y m+=⎧⎨+=-+⎩的解满足32x y->-∴3m+232>-解得:76m>-∴m的最小整数解为-1故答案为:-1.【点睛】本题考查了解一元一次不等式和解二元一次方程组、二元一次方程组的解、一元一次不等式的整数解等知识点,能得出关于m的不等式是解此题的关键.17.如图所示,宽为50cm的矩形图案由10个全等的长方形拼成,其中一个小长方形的面积为______________.【答案】400cm1【解析】根据矩形的两组对边分别相等,可知题中有两个等量关系:小长方形的长+小长方形的宽=50,小长方形的长=小长方形的宽×4,根据这两个等量关系,可列出方程组,再求解.【详解】设一个小长方形的长为xcm,宽为ycm,由图形可知,504x yx y+=⎧⎨=⎩,解得:4010xy=⎧⎨=⎩,所以一个小长方形的面积为40×10=400cm1.故答案为400cm1.【点睛】此题考查了二元一次方程的应用,解答本题关键是弄清题意,看懂图示,找出合适的等量关系,列出方程组.并弄清小正方形的长与宽的关系.三、解答题18.如图,将绕着点B顺时针旋转至,使得C点落在AB的延长线上的D点处,的边BC 恰好是的角平分线.(1)试求旋转角的度数;(2)设BE与AC的交点为点P,求证:.【答案】(1);(2)证明见解析.【解析】(1)根据旋转的性质,得到∠ABC=EBD,由BC平分∠EBD,得到∠ABE=∠EBC=∠CBD,根据平角定义,即可得到答案;(2)由(1)知,∠EBC=∠CBD=60°,由三角形外角定理可得,则即可得到结论成立.【详解】(1)解:由旋转的性质,得:∠ABC=∠EBD,即,∴∠ABE=∠CBD,∵BC平分∠EBD,∴∠EBC=∠CBD,∴∠ABE=∠EBC=∠CBD,∵∠ABE+∠EBC+∠CBD=180°,∴∠CBD=60°.(2)证明:如图,BE与AC相交与点P,DE与AC相交与点F,由(1)知,∠EBC=∠CBD=60°,由三角形外角定理,得:∠APB=∠EBC+∠C=60°+∠C,∠CBD=∠A+∠C=60°,∴∠APB=∠A+2∠C∴∠APB>∠A,结论成立.【点睛】本题考查了旋转的性质,角平分线定理,三角形外角定理,解题的关键是正确找出角之间的关系. 19.“五一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.[来根据以上信息,解答下列问题:(1)设租车时间为小时,租用甲公司的车所需费用为元,租用乙公司的车所需费用为元,分别求出,关于的函数表达式;(2)请你帮助小明计算并选择哪个出游方案合算.【答案】(1)y1=15x+80(x≥0);y2=30x(x≥0);(2)当租车时间为小时,选择甲乙公司一样合算;当租车时间小于小时,选择乙公司合算;当租车时间大于小时,选择甲公司合算.【解析】试题分析:(1)根据函数图象中的信息,分别运用待定系数法求得y1,y2关于x的函数表达式即可;(2)当y1=y2时,15x+80=30x,当y>y2时,15x+80>30x,当y1<y2时,15x+80<30x,分别求解即可.试题解析:(1)设y1=k1x+80,把点(1,95)代入,可得95=k1+80,解得k1=15,∴y1=15x+80(x≥0);设y2=k2x,把(1,30)代入,可得30=k2,即k2=30,∴y2=30x(x≥0);(2)当y1=y2时,15x+80=30x,解得x=;当y1>y2时,15x+80>30x,解得x<;当y1<y2时,15x+80>30x,解得x>;∴当租车时间为小时,选择甲乙公司一样合算;当租车时间小于小时,选择乙公司合算;当租车时间大于小时,选择甲公司合算.考点:1.用待定系数法求一次函数关系式;2.一次函数的应用.20.如图:已知AB∥DE∥CF,若∠ABC=70°,∠CDE=130°,则∠BCD的度数是_____.【答案】20°【解析】由AB∥CF,∠ABC=70°,求出∠BCF,再根据DE∥CF,∠CDE=130°,求出∠DCF,于是∠BCD=∠BCF-∠DCF可求.【详解】解:∵AB∥CF,∠ABC=70°,∴∠BCF=∠ABC=70°,又∵DE∥CF,∠CDE=130°,∴∠DCF+∠CDE=180°,∴∠DCF=50°,∴∠BCD=∠BCF-∠DCF=70°-50°=20°.故答案为20°.【点睛】本题主要考查了平行线的性质:两直线平行,内错角相等;两直线平行,同旁内角互补.21.有一块不规则的四边形木板ABCD,在BC边上有一点E,现在要在木板上找一点P,使点P到点A、点B的距离相等,并且PE∥AB.(要求:尺规作图,不写作法,保留作图痕迹)【答案】详见解析【解析】过E 点做AB 平行线,作AB 垂直平分线,两线交点即为P【详解】解:如图所示:点P 即为所求.【点睛】本题考查尺规作图画垂直平分线与平行线,基础知识扎实是解题关键22.如图,在正方形网格中有一个格点ABC △,(即ABC △的各顶点都在格点上),按要求进行下列作图:()1画出ABC △中AB 边上的高CD ;(提醒;别忘了标注字母!) ()2画出将ABC △向上平移3格后的'''A B C :()3连接','AA CC ,四边形AA C C ''的面积是【答案】(1)见解析;(2)见解析;(3)15.【解析】(1)直接利用钝角三角形高线的作法作图即可;(2)先利用平移的性质得出A 、B 、C 对应点的位置,再顺次连接即可;(3)根据平行四边形的面积公式求解即可.【详解】解:(1)如图所示,线段CD 即为所求;(2)如图所示,A B C '''∆即为所求;。
2020-2021学年江苏省常州市七年级(下)期末数学试卷(附答案详解)
2020-2021学年江苏省常州市七年级(下)期末数学试卷一、选择题(本大题共8小题,共16.0分)1. 下列计算正确的是( )A. a +2a 2=3a 3B. a 8÷a 2=a 4C. a 3⋅a 2=a 6D. (a 3)2=a 62. 已知三角形的两边长分别为4cm 和10cm ,则该三角形的第三边的长度可能是( )A. 5cmB. 6cmC. 8cmD. 15cm3. 若a >b ,则下列结论正确的是( )A. 3a >3bB. a −5<b −5C. −2a >−2bD. a 3<b3 4. 如图,将直尺与30°角的三角尺叠放在一起,若∠2=70°,则∠1的大小是( )A. 45°B. 50°C. 55°D. 40°5. 对假命题“若a >b ,则a 2>b 2”举一个反例,符合要求的反例是( )A. a =−1,b =−2B. a =2,b =一1C. a =2,b =1D. a =−1,b =06. 《九章算术》中有这样的问题:今有5只雀、6只燕,分别聚集而用衡器称之,聚在一起的雀重,燕轻.将1只雀、1只燕交换位置而放,重量相等.5只雀、6只燕重量为1斤.问雀、燕每只各重多少?(注:该问题中的一斤=16两)设每只雀重x 两,每只燕重y 两,下列方程组中正确的是( )A. {4x +y =5y +x 5x +6y =16B. {4y +x =5x +y 5x +6y =10C. {4x +y =5y +x 5x +6y =10D. {4y +x =5x +y5x +6y =16 7. 如图,BE 是△ABC 的中线,点D 是BC 边上一点,BD =3CD ,BE 、AD 交于点F ,若△ABC 的面积为20,则△BDF 与△AEF的面积之差S △BDF −S △AEF 等于( )A. 103B. 5C. 4D. 38. 若方程组{ax +by =m cx +dy =n 的解为{x =1y =2,则方程组{4ax +3by −2b =2m 4cx +3dy −2d =2n的解为( ) A. {x =1y =2 B. {x =2y =4 C. {x =12y =3 D. {x =12y =2 二、填空题(本大题共8小题,共16.0分)9. 1cm 3空气的质量约为0.00000129千克,数据0.00000129用科学记数法表示为______ .10. 命题“同位角相等,两直线平行”的逆命题是:______.11. 因式分解:12xyz −9x 2y = ______ .12. 如图,将△ABC 向右平移得到△DEF ,如果BF =10,CE =6,则平移的距离是______.13. 若不等式3x +a >2的解集是x >1,则a =______.14. 已知a +3b −2=0,则4a ×82b =______.15. 如图,长方形ABCD 的面积为6,且AD 比AB 多3,以该长方形中相邻的两边为边长向外作两个正方形,则这两个正方形(阴影部分)的面积之和为______.16. 我们知道,同底数幂的除法法则为:a m ÷a n =a m−n (其中a ≠0,m 、n 为整数),类似地,现规定关于任意正整数m ,n 的一种新运算:ℎ(m −n)=ℎ(m)÷ℎ(n).若ℎ(1)=2,则ℎ(2021)÷ℎ(2013)=______.三、解答题(本大题共9小题,共68.0分)17. 计算:(1)(−2)2+(2−π)0−(13)−1;(2)(a −3)(a +2)−(a −1)2.18. 分解因式:(1)2x 2−8;(2)2x 3y −4x 2y 2+2xy 3.19. 解方程组和不等式组:(1){4x −y =30x −2y =−10; (2){3x >x −4x−32+3≥x .20. 先化简,再求值:(x +3)(x −3)−2(x −2)(2x −1),其中x =1.21.如图,点A,B,C,D在一条直线上,CE与BF交于点G,∠A+∠ABF=180°,CE//DF,试说明:∠E=∠F.(要求写出每一步的推理依据)22.某校购买了50个足球和25个篮球共花费7500元,已知购买一个足球比购买一个篮球少花30元.(1)购买一个足球和一个篮球各需多少元?(2)通过全校师生的共同努力,今年该校被评为“球类特色学校”,学校计划用不超过4800元的经费再次购买足球和篮球共50个,若单价不变,则本次至少可以购买多少个足球?23.已知x、y满足3x+2y=6.(1)若y满足y>3,求x的取值范围;(2)若x、y满足−3x+2y=k,且x<1,y≥1,求k的取值范围.224.定义:如果一个直角三角形的两条直角边的比为2:1,那么这个三角形叫做“倍直角三角形”.(1)如图1,下列三角形中是“倍直角三角形”的是______;(2)已知“倍直角三角形”的一条直角边的长度为2,则另一条直角边的长度为______;(3)如图2,正方形网格中,已知格点A、B、C、D,找出格点E,使△ABE、△CDE都是“倍直角三角形”,这样的点E共有______个;(4)如图3,正方形网格中,已知格点A、B,找出格点C,使△ABC是“倍直角三角形”,请画出所有满足条件的点C.25.【探究】(1)如图1,∠ADC=120°,∠BCD=130°,∠DAB和∠CBE的平分线交于点F,则∠AFB=______°;(2)如图2,∠ADC=α,∠BCD=β,且α+β>180°,∠DAB和∠CBE的平分线交于点F,则∠AFB=______;(用α、β表示)(3)如图3,∠ADC=α,∠BCD=β,当∠DAB和∠CBE的平分线AG、BH平行时,α、β应该满足怎样的数量关系?请证明你的结论.【挑战】如果将(2)中的条件α+β>180°改为α+β<180°,再分别作∠DAB和∠CBE的平分线,你又可以找到怎样的数量关系?画出图形并直接写出结论.答案和解析1.【答案】D【解析】解:A、因为a与2a2不是同类项,所以不能合并,故本选项错误;B、a8÷a2=a6,故本选项错误;C、a3⋅a2=a5,故本选项错误;D、(a3)2=a6,故本选项正确.故选:D.A、经过分析发现,a与2a2不是同类项,不能合并,本选项错误;B、利用同底数幂的除法法则,底数不变,指数相减,即可计算出结果;C、根据同底数幂的乘法法则,底数不变,指数相加,即可计算出结果;D、根据积的乘方法则,底数不变,指数相乘,即可计算出结果.此题考查了同底数幂的乘法、除法法则,以及积的乘方法则的运用,是一道基础题.2.【答案】C【解析】解:设第三边的长为x cm,根据三角形的三边关系,得10−4<x<10+4,即6<x<14.故选:C.已知两边,则第三边的长度应是大于两边的差而小于两边的和,这样就可求出第三边长的范围.本题主要考查了求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式组,然后解不等式组即可,难度适中.3.【答案】A【解析】解:A选项,不等式的两边都乘3,不等号的方向不变,变形正确,符合题意;B选项,不等式的两边都减5,不等号的方向不变,变形错误,不符合题意;C选项,不等式的两边都乘−2,不等号的方向改变,变形错误,不符合题意;D选项,不等式的两边都除以3,不等号的方向不变,变形错误,不符合题意;故选:A.根据不等式的基本性质判断即可.本题考查了不等式的基本性质,注意不等式的两边都乘或除以一个负数,不等号的方向改变.4.【答案】B【解析】解:由题意得,∠4=60°,∵∠2=70°,AB//CD ,∴∠3=∠2=70°,∴∠1=180°−60°−70°=50°,故选:B .根据平角的定义和平行线的性质即可得到结论.本题考查了平行线的性质,平角的定义,熟练掌握平行线的性质是解题的关键.5.【答案】A【解析】解:当a =−1,b =−2时,a >b ,而a 2<b 2,∴“若a >b ,则a 2>b 2”是假命题,故选:A .根据有理数的大小比较法则、有理数的乘方法则计算,判断即可.本题考查的命题和定理,任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.6.【答案】A【解析】解:设每只雀有x 两,每只燕有y 两,由题意得,{4x +y =5y +x 5x +6y =16. 故选:A .设每只雀重x 两,每只燕重y 两,根据五只雀、六只燕,共重1斤(等于16两),雀重燕轻,互换其中一只,恰好一样重,列方程组即可.本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.7.【答案】B【解析】解:∵S △ABC =12BC ⋅ℎBC =12AC ⋅ℎAC =20,∴S △ABC =12(BD +CD)⋅ℎBC =12(AE +CE)⋅ℎAC =20, ∵AE =CE =12AC ,S △AEB =12AE ⋅ℎAC ,S △BCE =12EC ⋅ℎAC , ∴S △AEB =S △CEB =12S △ABC =12×20=10,即S △AEF +S △ABF =10①,同理:∵BD =3CD ,BD +CD =BC ,∴BD =34BC ,S △ABD =12BD ⋅ℎBC , ∴S △ABD =34S △ABC =34×20=15, 即S △BDF +S △ABF =15②,②−①得:S △BDF −S AEF =(S △BDF +S △ABF )−(S △AEF +S △ABF )=15−10=5, 故选:B .由△ABC 的面积为20,得S △ABC =12BC ⋅ℎBC =12AC ⋅ℎAC =20,根据AE =CE =12AC ,得S △AEB =12AE ⋅ℎAC ,S △BCE =12EC ⋅ℎAC ,即S △AEF +S △ABF =10①,同理可得S △BDF +S △ABF =15②,②−①即可求得.本题主要考查三角形的面积及等积变换,解答此题的关键是等积代换.8.【答案】D【解析】解:第二个方程组变形为:{a ⋅4x +b ⋅(3y −2)=2m c ⋅4x +d ⋅(3y −2)=2n, ∴{a ⋅2x +b ⋅3y−22=m c ⋅2x +d ⋅3y−22=n ,∴{2x =13y−22=2,∴{x =12y =2, 故选:D .将第二个方程组中含b ,d 的两项提公因式,两个方程两边都除以2,变形成和第一个方程组形式相同,根据整体换元,即可得出方程组的解.本题考查了二元一次方程组的解,考核学生的整体思想,将第二个方程组变形成和第一个方程组形式相同,这是解题的关键.9.【答案】1.29×10−6【解析】解:0.00000129=1.29×10−6,故答案为:1.29×10−6.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.10.【答案】两直线平行,同位角相等【解析】解:命题:“同位角相等,两直线平行.”的题设是“同位角相等”,结论是“两直线平行”.所以它的逆命题是“两直线平行,同位角相等.”故答案为:“两直线平行,同位角相等”.把一个命题的题设和结论互换就得到它的逆命题.本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.11.【答案】3xy(4z−3x)【解析】解:12xyz−9x2y=3xy(4z−3x).故答案为:3xy(4z−3x).直接提取公因式3xy,进而分解因式得出即可.此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.【解析】解:∵△ABC沿BC方向向右平移得到△DEF,∴BE=CF,∵BF=10,EC=6,∴BE=1×(10−6)=2,2即平移的距离为2.故答案为:2.根据平移的性质可得BE=CF为平移距离,然后求解即可.本题考查了平移的性质,主要利用了对应顶点的连线的长度等于平移距离.13.【答案】−1.【解析】解:∵3x+a>2,∴3x>2−a,∵不等式3x+a>2的解集是x>1,∴2−a=3,解得:a=−1.故答案为−1.不等式移项得到3x>2−a,根据解集是x>1,得到2−a=3,从而求解.考查了不等式的解集,解不等式依据不等式的性质.14.【答案】16【解析】解:∵a+3b−2=0,∴a+3b=2,∴4a×82b=22a×26b=22a+6b=22(a+3b)=24=16.故答案为:16.由a+3b−2=0可得a+3b=2,再根据同底数幂的乘法法则以及幂的乘方运算法则把所求式子变形求解即可.本题考查了同底数幂的乘法以及幂的乘方,掌握幂的运算法则是解答本题的关键.【解析】解:∵长方形ABCD的面积为6,∴AD⋅AB=6,∵AD比AB多3,∴AD−AB=3,∴这两个正方形(阴影部分)的面积之和为:AD²+AB²=(AD−AB)²+2AD⋅AB=3²+2×6=21.答:这两个正方形(阴影部分)的面积之和为21.将完全平方公式a²−2ab+b²=(a−b)²变形为a²+b²=(a−b)²−2ab并应用.即这两个正方形(阴影部分)的面积之和为:AD²+AB²=(AD−AB)²+2AD⋅AB.本题考查是否掌握将完全平方公式a²−2ab+b²=(a−b)²变形为a²+b²=(a−b)²−2ab并应用.16.【答案】256【解析】解:∵ℎ(1)=2,∴ℎ(2021)÷ℎ(2013)=ℎ(2021−2013)=ℎ(8)=ℎ(1+1+1+1+1+1+1+1)= 28=256.故答案为:256.将ℎ(2021)÷ℎ(2013)变形为ℎ(2021−2013),再把ℎ(1)=2代入计算即可.考查了同底数幂的除法,有理数的混合运算,定义新运算,熟练掌握运算性质和法则是解题的关键.17.【答案】解:(1)原式=4+1−3=2;(2)原式=a2+2a−3a−6−(a2−2a+1)=a2−a−6−a2+2a−1=a −7.【解析】(1)根据幂的意义,零指数幂和负整数指数幂计算即可;(2)根据多项式乘多项式,完全平方公式化简即可.本题考查了幂的意义,零指数幂和负整数指数幂,多项式乘多项式,完全平方公式,掌握完全平方公式(a ±b)2=a 2±2ab +b 2是解题的关键.18.【答案】解:(1)2x 2−8=2(x 2−4)=2(x +2)(x −2);(2)2x 3y −4x 2y 2+2xy 3=2xy(x 2−2xy +y 2)=2xy(x −y)2.【解析】(1)直接提取公因式2,再利用平方差公式分解因式即可;(2)直接提取公因式2xy ,再利用完全平方公式分解因式得出答案.此题主要考查了提取公因式法以及公式法分解因式,正确运用乘法公式分解因式是解题关键.19.【答案】解:(1){4x −y =30①x −2y =−10②, ①×2−②,得:7x =70,解得x =10,将x =10代入①,得:40−y =30,解得y =10,∴方程组的解为{x =10y =10; (2)解不等式3x >x −4,得:x >−2,解不等式x−32+3≥x ,得:x ≤3,∴不等式组的解集为−2<x ≤3.【解析】(1)利用加减消元法求解即可;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.本题考查的是解二元一次方程组和一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.【答案】解:原式=x2−9−2(2x2−x−4x+2)=x2−9−4x2+2x+8x−4=−3x2+10x−13,当x=1时,原式=−3×12+10×1−13=−6.【解析】根据平方差公式,多项式乘多项式的运算法则把原式化简,把x的值代入计算即可.本题考查的是整式的化简求值,掌握平方差公式,多项式乘多项式的运算法则是解题的关键.21.【答案】解:∵CE//DF,∴∠ECA=∠FDB(两直线平行,同位角相等),又∵∠A+∠ABF=180°,∴AE//BF(同旁内角互补,两直线平行),∴∠EAC=∠FBD(两直线平行,同位角相等),又∵∠E=180°−∠ECA−∠EAC,∠F=180°−∠FDB−∠FBD,∴∠E=∠F(等量代换).【解析】本题根据CE//DF,可知∠ECA=∠FDB,再由已知条件推出AE//BF,知道∠EAC=∠FBD,再根据三角形内角和表示出∠E,∠F利用等量代换即可求证.本题考查平行线的性质,熟练平行线形成角的特点,步步推理,环环相扣是解题关键.22.【答案】解:(1)设购买一个足球需要x元,则购买一个篮球需要(x+30)元,依题意得:50x+25(x+30)=7500,解得:x =90,∴x +30=120.答:购买一个足球需要90元,则购买一个篮球需要120元.(2)设购买m 个足球,则购买(50−m)个篮球,依题意得:90m +120(50−m)≤4800,解得:m ≥40.答:本次至少可以购买40个足球.【解析】(1)设购买一个足球需要x 元,则购买一个篮球需要(x +30)元,根据购买50个足球和25个篮球共花费7500元,即可得出关于x 的一元一次方程组,解之即可得出结论;(2)设购买m 个足球,则购买(50−m)个篮球,根据总价=单价×数量结合总价不超过4800元,即可得出关于m 的一元一次不等式,解之取其中的最小值即可得出结论. 本题考查了一元一次方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据各数量之间的关系,正确列出一元一次不等式.23.【答案】解:(1)∵3x +2y =6,∴y =6−3x 2,∵y >3,∴6−3x 2>3,∴x <0;(2)解方程组{3x +2y =6−3x +2y =k 得{x =6−k 6y =6+k 4, ∵x <12,y ≥1,∴{6−k 6<126+k 4≥1, 解得:k >3.【解析】(1)根据方程得到y 的表达式,再根据y >3列出不等式,求解即可;(2)联立得到方程组,求出方程组的解,再根据x <12,y ≥1,列出不等式组,解不等式组即可.本题考查了不等式的基本性质,解不等式和解不等式组,考核学生的计算能力,根据题中条件列出不等式或不等式组是解题的关键.24.【答案】△DEF1或4 4【解析】解:(1)如图1中,∵AB=√17,BC=√5,AC=3√2,∴AB2+BC2≠AC2,∴△ABC不是倍直角三角形,∵DF=2√2,DE=4√2,EF=2√10,∴DF2+DE2=EF2,∴∠FDE=90°,∵DE=2DF,∴△DEF是倍直角三角形,∵∠GHI=90°,GH=5,HL=3,∴GH≠2HI,∴△GHI不是倍直角三角形,故答案为:△DEF.(2)∵“倍直角三角形”的一条直角边的长度为2,∴另一条直角边的长度为1或4,故答案为:1或4.(3)如图2中,满足条件的点E共有4个,故答案为:4.(4)如图3中,满足条件的点C共有5个.(1)利用勾股定理的逆定理判断三角形是不是直角三角形,再判断直角边是不是两倍关系,可得结论.(2)根据“倍直角三角形”的定义解答即可.(3)根据“倍直角三角形”的定义,画出满足条件的三角形即可.(4)根据“倍直角三角形”的定义,画出满足条件的三角形即可.本题考查“倍直角三角形”的定义,勾股定理以及勾股定理的逆定理等知识,解题的关键是理解如果一个直角三角形的两条直角边的比为2:1,那么这个三角形叫做“倍直角三角形”的定义,学会用分类讨论的思想思考问题.25.【答案】35 12α+12β−90°【解析】解:(1)如图1.∵BF平分∠CBE,CF平分∠DAB,∴∠FBE=12∠CBE,∠FAB=12∠DAB.∵∠D+∠DCB+∠DAB+∠ABC=360°,∴∠DAB+∠ABC=360°−∠D−∠DCB =360°−120°−130°=110°.又∵∠F+∠EAB=∠FBE,∴∠F=∠FBE−∠FAB=12∠CBE−12∠DAB=12(∠CBE−∠DAB)=12(180°−∠ABC−∠DAB)=12×(180°−110°)=35°.(2)如图2.由(1)得:∠AFB=12(180°−∠ABC−∠DAB),∠DAB+∠ABC=360°−∠D−∠DCB.∴∠AFB=12(180°−360°+∠D+∠DCB)=12∠D+12∠DCB−90°=12α+12β−90°.(3)若AG//BH,则α+β=180°.证明:如图3.若AG//BH,则∠GAB=∠HBE.∵AG平分∠DAB,BH平分∠CBE,∴∠DAB=2∠GAB,∠CBE=2∠HBE.∴∠DAB=∠CBE.∴AD//BC.∴∠DAB+∠DCB=α+β=180°.挑战:如图4.∵AM平分∠DAB,BN平分∠CBE,∴∠BAM=12∠DAB,∠NBE=12∠CBE.∵∠D+∠DAB+∠ABC+∠BCD=360°,∴∠DAB+∠ABC=360°−∠D−BCD=360°−α−β.∴∠DAB+180°−∠CBE=360°−α−β.∴∠DAB−∠CBE=180°−α−β.∵∠ABF与∠NBE是对顶角,∴∠ABF=∠NBE.又∵∠F+∠ABF=∠MAB,∴∠F=∠MAB−∠ABF.∴∠F=12∠DAB−∠NBE=12∠DAB−12∠CBE=12(∠DAB−∠CBE)=12(180°−α−β)=90°−12α−12β.利用三角形外角的性质,列出∠F=∠FBE−∠FAB.再通过角平分线的定义以及四边形内角和的性质,将∠F=∠FBE−∠FAB转化为含有α与β的关系式,进而求出∠AFB.本题主要考查三角形外角的性质、四边形内角和的性质、平行线的性质、角平分线的定义.借助转化的数学思想,将未知条件转化为已知条件解题.。
┃精选3套试卷┃2021届常州市某达标实验中学七年级下学期数学期末检测试题
七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列长度的三条线段,能组成三角形的是()A.4cm,5cm,9cm B.8cm,8cm,15cm C.5cm,5cm,10cm D.6cm,7cm,14cm【答案】B【解析】分析:结合“三角形中较短的两边之和大于第三边”,分别套入四个选项中得三边长,即可得出结论.详解:A、∵5+4=9,9=9,∴该三边不能组成三角形,故此选项错误;B、8+8=16,16>15,∴该三边能组成三角形,故此选项正确;C、5+5=10,10=10,∴该三边不能组成三角形,故此选项错误;D、6+7=13,13<14,∴该三边不能组成三角形,故此选项错误;故选B.点睛:本题考查了三角形的三边关系,解题的关键是:用较短的两边长相交与第三边作比较.本题属于基础题,难度不大,解决该题型题目时,结合三角形三边关系,代入数据来验证即可.2.下列语句不正确的是()A.能够完全重合的两个图形全等B.两边和一角对应相等的两个三角形全等C.三角形的外角等于不相邻两个内角的和D.全等三角形对应边相等【答案】B【解析】解:两边和一夹角对应相等的两个三角形全等,必须强调是夹角,故选B。
3.一个三角形的两边分别是3和8,而第三边的长为奇数,则第三边的长是()A.3或5 ;B.5或7;C.7或9;D.9或11【答案】C【解析】根据三角形的三边关系求得第三边的取值范围,再根据第三边是奇数得到答案.【详解】根据三角形的三边关系,得第三边大于8-3=5,而小于两边之和8+3=1.又第三边应是奇数,则第三边等于7或2.故选:C.【点睛】考查了三角形的三边关系,求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.4.若a b >,则下列式子一定成立的是( )A .0a b +>B .0a b ->C .0ab >D .0a b> 【答案】B【解析】根据不等式的基本性质进行解答即可.【详解】A 、若1>a >b 时,a+b <1.故A 选项错误;B 、在a >b 的两边同时减去b ,不等式仍成立,即a-b >1.故B 选项正确;C 、若a >1>b 时,ab <1.故C 选项错误;D 、若b=1时,该不等式不成立.故D 选项错误.故选B .【点睛】本题考查了不等式的基本性质: (1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变. 5.已知图中的两个三角形全等,则α∠的度数是( )A .72︒B .60︒C .58︒D .50︒【答案】D 【解析】根据全等三角形对应角相等解答即可.【详解】∵两个三角形全等,∴∠α=50°.故选:D .【点睛】此题考查全等三角形的性质,熟记性质并准确识图,确定出对应角是解题的关键.6.计算(﹣a ﹣b)2等于( )A .a 2+b 2B .a 2﹣b 2C .a 2+2ab+b 2D .a 2﹣2ab+b 2【答案】C【解析】根据两数的符号相同,所以利用完全平方和公式计算即可.【详解】(-a-b ) 2 =a 2 +2ab+b 2 .故选C .【点睛】本题考查了完全平方公式,如何确定用哪一个公式,主要看两数的符号是相同还是相反.7.“鸡兔同笼”是我国民间流传的诗歌形式的数学题:“鸡兔同笼不知数,三十六头笼中露,看来脚有100只,几多鸡儿几多兔”解决此问题,设鸡为x只,兔为y只,则所列方程组正确的是()A.362100x yx y+=⎧+=⎨⎩B.3642100x yx y+=⎧+=⎨⎩C.3624100x yx y+=⎧+=⎨⎩D.3622100x yx y+=⎧+=⎨⎩【答案】C【解析】分析:首先明确生活常识:一只鸡有一个头,两只脚;一只兔有一个头,四只脚.此题中的等量关系为:①鸡的只数+兔的只数=36只;②2×鸡的只数+4×兔的只数=1只.详解:如果设鸡为x只,兔为y只.根据“三十六头笼中露”,得方程x+y=36;根据“看来脚有1只”,得方程2x+4y=1.即可列出方程组36 24100x yx y+=⎧+=⎨⎩.故选:C.点睛:根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.本题要用常识判断出隐藏的条件.8.如图,△ABC中,AB=AC,AD平分∠BAC,DE⊥AB,DF⊥AC,E、F为垂足,则下列四个结论:(1)AD上任意一点到点C、D的距离相等;(2)AD上任意一点到AB、AC的距离相等;(3)AD⊥BC且BD=CD;(4)∠BDE=∠CDF,其中正确的个数是()A.1个B.2个C.3个D.4个【答案】D【解析】试题分析:先根据等腰三角形三线合一的性质得出AD是BC的中垂线,再由中垂线的性质可判断①正确;根据角平分线的性质可判断②正确;根据等腰三角形三线合一的性质得出AD是BC的中垂线,从而可判断③正确;根据△BDE和△DCF均是直角三角形,而根据等腰三角形的性质可得出∠B=∠C,由等角的余角相等即可判断④正确.∵AB=AC,AD是∠BAC的平分线,∴AD⊥BC,BD=CD,∴线段AD上任一点到点C、点B的距离相等,∴①正确;∵AD是∠BAC的平分线,∴AD上任意一点到AB、AC的距离相等,②正确;∵AB=AC,AD是∠BAC的平分线,∴AD⊥BC,BD=CD,∴③正确;∵AB=AC,∴∠B=∠C;∵∠BED=∠DFC=90°,∴∠BDE=∠CDF,④正确.故选D.考点:本题考查的是等腰三角形的性质、直角三角形的性质及角平分线的性质点评:解答本题的关键是掌握好等腰三角形的三线合一:底边上的高、中线,顶角平分线重合.9.只给定三角形的两个元素,画出的三角形的形状和大小是不确定的,在下列给定的两个条件上增加一个“AB=5cm”的条件后,所画出的三角形的形状和大小仍不能完全确定的是()A.∠A=30°,BC=3cm B.∠A=30°,AC=3cmC.∠A=30°,∠C=50°D.BC=3cm, AC=6cm【答案】A【解析】根据三角形全等的判定方法即可解答.【详解】A. ∠A=30°,BC=3cm,增加“AB=5cm”后,类似SSA,不能判定两三角形全等,所以所画出的三角形的形状和大小仍不能完全确定,故选项A符合题意.B. ∠A=30°,AC=3cm,增加“AB=5cm”后,属于用SAS 来判定三角形全等,所以所画出的三角形的形状和大小确定,故选项B不符合题意.C. ∠A=30°,∠C=50°,增加“AB=5cm”后,属于用AAS 来判定三角形全等,所以所画出的三角形的形状和大小确定,故选项C不符合题意.D. BC=3cm, AC=6cm,增加“AB=5cm”后,属于用SSS 来判定三角形全等,所以所画出的三角形的形状和大小确定,故选项D不符合题意.故选A【点睛】本题考查三角形全等的判定方法,解题关键是SSA不能用来判定三角形全等.10.如图,ΔABC中,∠B=550,∠C=300,分别以点A和C为圆心,大于½ AC的长为半径画弧,两弧交于点M、N,作直线MN交BC于点D,连接AD,则∠BAD的度数为( )A.650B.600C.550D.500【答案】A【解析】根据线段垂直平分线的性质得到AD=DC,根据等腰三角形的性质得到∠C=∠DAC,求得∠DAC=30°,根据三角形的内角和得到∠BAC=95°,即可得到结论.【详解】由题意可得:MN是AC的垂直平分线,则AD=DC,故∠C=∠DAC,∵∠C=30°,∴∠DAC=30°,∵∠B=55°,∴∠BAC=95°,∴∠BAD=∠BAC−∠CAD=65°,故选A.【点睛】此题考查线段垂直平分线的性质,解题关键在于根据三角形的内角和得到∠BAC=95°二、填空题题11.一件衬衫成本为100元,商家要以利润率不低于20%的价格销售,这件衬衫的销售价格至少为元______.【答案】1【解析】设这件衬衫的销售价格为x元,根据利润=销售价格−成本结合利润率不低于20%,即可得出关于x的一元一次不等式,解之取其中的最小值即可得出结论.【详解】解:设这件衬衫的销售价格为x元,依题意,得:x−100≥100×20%,解得:x≥1.故答案为:1.【点睛】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.12.如图所示,计划把河水引到水池A中,先作AB⊥CD,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是________________________________。
江苏省常州市2021版七年级下学期数学期末考试试卷(II)卷
江苏省常州市2021版七年级下学期数学期末考试试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分) (2020七下·昌吉期中) 下列说法正确的是()A . ﹣81的平方根是±9B . 7的算术平方根是C . 的立方根是±D . (﹣1)2的立方根是﹣12. (2分) (2020七下·许昌期中) 如图,,平分,若,则的度数为()A .B .C .D .3. (2分) (2020八下·顺义期中) 点在第四象限,则m的取值范围是()A .B .C .D .4. (2分)(2020·雅安) 不等式组的解集在数轴上表示正确的是()A .B .C .D .5. (2分)为了解某初中学生的视力情况,需要抽取部分学生进行调查,下列抽取学生的方法最合适的是()A . 随机抽取该校一个班级的学生B . 随机抽取该校一个年级的学生C . 随机抽取该校一部分男生D . 分别从该校初一、初二、初三年级中各班随机抽取10%的学生6. (2分) (2020八上·西安期末) 方格纸上有、两点,若以点为原点建立直角坐标系,则点坐标为,若以点为原点建立直角坐标系,则点坐标是()A .B .C .D .7. (2分) (2011七下·广东竞赛) 点P位于x轴下方,距离x轴5个单位,位于y轴右方,距离y轴3个单位,那么P点的坐标是()A . (5,-3)B . (3,-5)C . (-5,3)D . (-3,5)8. (2分) (2018七下·潮安期末) 如图,点O在直线AB上,OC为射线,∠1比∠2的3倍少10°,设∠1,∠2的度数分别为x,y,那么下列求出这两个角的度数的方程是()A .B .C .D .二、填空题 (共8题;共9分)9. (1分) (2019八上·西林期中) 若关于x、y的二元一次方程组:无解,则a的值为________.10. (1分) (2020七下·天台月考) 已知点M(a,b),且ab>0,a+b<0,则点M在第________象限.11. (1分)(2017·杭州模拟) 设n为整数,且n<<n+1,则n=________.12. (2分) (2017七下·射阳期末) 二元一次方程组的解为________13. (1分) (2018八上·阳新月考) 已知点A在x轴的下方,且到x轴的距离为5,到y轴的距离为3,则点A的坐标为________.14. (1分)甲、乙两人到某特价商场购买商品,已知两人购买商品的件数相同,且每件商品的单价只有10元和12元两种.若两人购买商品一共花费了134元,则两人购买的商品单价为12元的商品有________ 件.15. (1分) (2017八上·雅安期末) 在平面直角坐标系中,点M(2+x,9﹣x2)在x轴的负半轴上,则点M 的坐标是________.16. (1分)如图,在△ABC中,∠ACB=60°,∠BAC=75°,AD⊥BC于D,B E⊥AC于E,AD与BE交于H,则∠CHD=________三、解答题 (共8题;共70分)17. (10分) (2020七下·三台期中) 解方程或方程组:(1) 9x2﹣16=0(2)18. (5分) (2019九下·黄石月考) 解不等式组,并写出它的所有整数解.19. (5分) (2019七下·廉江期末) 如图,已知EF//AD,∠1=∠2,∠BAC=70o.将求∠AGD的过程填写完整.解:,()又,()()()又,20. (11分)(2017·长春) 某校八年级学生会为了解本年级600名学生的睡眠情况,将同学们某天的睡眠时长t(小时)分为A,B,C,D,E(A:9≤t≤24;B:8≤t<9;C:7≤t<8;D:6≤t<7;E:0≤t<6)五个选项,进行了一次问卷调查,随机抽取n名同学的调查问卷并进行了整理,绘制成如下条形统计图,根据统计图提供的信息解答下列问题:(1)求n的值;(2)根据统计结果,估计该年级600名学生中睡眠时长不足7小时的人数.21. (11分) (2020七下·孝感期中) 在平面直角坐标系中,△ABC的三个顶点的位置如图所示,现将△ABC 沿AA′的方向平移,使得点A移至图中的点A′的位置.(1)在直角坐标系中,画出平移后所得△A′B′C′(其中B′、C′分别是B、C的对应点);(2)求△ABC的面积;(3)以A、B、C、D为顶点构造平行四边形,则D点坐标为________.22. (2分)(2019·海州模拟) 深圳某学校为构建书香校园,拟购进甲、乙两种规格的书柜放置新购置的图书.已知每个甲种书柜的进价比每个乙种书柜的进价高20%,用3600元购进的甲种书柜的数量比用4200元购进的乙种书柜的数量少4台.(1)求甲、乙两种书柜的进价;(2)若该校拟购进这两种规格的书柜共60个,其中乙种书柜的数量不大于甲种书柜数量的2倍.请您帮该校设计一种购买方案,使得花费最少.23. (11分) (2019七下·柳州期末) 某中学计划为学校科技活动小组购买A型、B型两种型号的放大镜.若购买8个A型放大镜和5个B型放大镜需用235元,购买4个A型放大镜和6个B型放大镜需用170元.(1)求每个A型放大镜和每个B型故大镜各多少元?(2)该中学决定购买A型放大镜和B型放大镜共75个,总费用不超过1300元,那么最多可以购买多少个A 型放大镜?24. (15分) (2017八上·南海期末) 图(1)是我们常见的“箭头图”,其中隐藏着哪些数学知识呢?下面请你解决以下问题:(1)观察如图(1)“箭头图”,试探究∠BDC与∠A、∠B、∠C之间大小的关系,并说明理由;(2)请你直接利用以上结论,回答下列两个问题:①如图(2),把一块三角板XYZ放置在△ABC上,使其两条直角边XY、XZ恰好经过点B、C.若∠A=50°,求∠ABX+∠ACX②如图(3),∠ABD,∠ACD的五等分线分别相交于点G1、G2、G3、G4 ,若∠BDC=135°,∠BG1C=67°,求∠A的度数.参考答案一、选择题 (共8题;共16分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:二、填空题 (共8题;共9分)答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、解答题 (共8题;共70分)答案:17-1、答案:17-2、考点:解析:答案:18-1、考点:解析:答案:19-1、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、答案:21-2、答案:21-3、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、答案:23-2、考点:解析:答案:24-1、答案:24-2、考点:解析:。
[试卷合集3套]常州市某达标实验中学2021年七年级下学期期末学业质量监测数学试题
七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列四个数中,是无理数的是( )A .4B .3.1415926C .227D .2 【答案】D【解析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】A. 4=2是有理数,不符合题意;B. 3.1415926是有理数,不符合题意;C.227是有理数,不符合题意; D. 2是无理数,符合题意;故选D.【点睛】本题考查了无理数的识别,无限不循环小数叫无理数,初中范围内常见的无理数有三类:①π类,如2π,3 等;②开方开不尽的数,如2,35等;③虽有规律但却是无限不循环的小数,如0.1010010001…(两个1之间依次增加1个0),0.2121121112…(两个2之间依次增加1个1)等.2.下面是一名学生所做的4道练习题:①(-3)0=1;② a 3+a 3=a 6; ③ ;④ (xy 2) 3 = x 3y 6,他做对的个数是 ( ) A .0B .1C .2D .3【答案】C 【解析】①根据零指数幂的性质,得(-3)0=1,故正确;②根据同底数的幂运算法则,得a 3+a 3=2a 3,故错误;③根据负指数幂的运算法则,得4m -4=,故错误;④根据幂的乘方法则,得(xy 2)3=x 3y 6,故正确.故选C .3.用如图①中的长方形和正方形纸板作侧面和底面,做成如图②的竖式和横式的两种无盖纸盒.仓库里现有2018张正方形纸板和n 张长方形纸板,如果做两种纸盒若干个,恰好使库存的纸板用完,则n 的值可能是( )A.4036 B.4038 C.4040 D.4042【答案】D【解析】设可做成x个竖式无盖纸盒,y个横式无盖纸盒,列出方程组,结合x,y,n是正整数求解即可. 【详解】设可做成x个竖式无盖纸盒,y个横式无盖纸盒,依题意,得:2201843x yx y n+=⎧⎨+=⎩①②,4×①﹣②,得:5y=8012﹣n.∵y为正整数,∴n的个位数字为2或1.故选:D.【点睛】本题考查了二元一次方程组的应用,仔细审题,找出题目的已知量和未知量,设两个未知数,并找出两个能代表题目数量关系的等量关系,然后列出方程组求解即可.4.如图所示,下列说法中错误的是()A.∠A和∠3是同位角B.∠2和∠3是同旁内角C.∠A和∠B是同旁内角D.∠C和∠1是内错角【答案】B【解析】根据同位角、内错角以及同旁内角的定义进行解答.【详解】解:A、∠A和∠3是同位角,正确;B、∠2和∠3是邻补角,错误;C、∠A和∠B是同旁内角,正确;D、∠C和∠1是内错角,正确;故选B.【点睛】本题考查了同位角、内错角以及同旁内角的定义.解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.5.如图,某住宅小区内有一长方形地块,想在长方形地块内修筑同样宽的两条小路(图中阴影部分),余下部分绿化,小路的宽为2m ,则两条小路的总面积是( )m 2A .108B .104C .100D .98【答案】C 【解析】利用平移把不规则的图形变为规则图形,如此一来,所有绿化面积之和就变为了(30-2)(22-2)米2,进而即可求出答案.【详解】利用平移可得,两条小路的总面积是:30×22﹣(30﹣2)(22﹣2)=100(m 2).故选:C .【点睛】此题主要考查了生活中的平移现象,这类题目体现了数形结合的思想,需利用平移把不规则的图形变为规则图形,进而即可列出方程,求出答案.6.如图,小手盖住的点的坐标可能为( )A .()4,5--B .()4,5-C .()4,5D .()4,5-【答案】A 【解析】先判断出小手盖住的点在第三象限,再根据第三象限内点的横坐标与纵坐标都是负数解答即可.【详解】由图可知,小手盖住的点的坐标位于第三象限,(﹣4,﹣5)(﹣4,5)(4,5)(4,﹣5)中,只有(﹣4,﹣5)在第三象限,所以,小手盖住的点的坐标可能为(﹣4,﹣5).故选A .【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣). 7.任何一个正整数n 都可以进行这样的分解:n=s×t (s ,t 是正整数,且s≤t ),如果p×q 在n 的所有这种分解中两因数之差的绝对值最小,我们就称p×q是n的最佳分解,并规定:F(n)=pq.例如18可分解成1×18,2×9,3×6这三种,这时就有F(18)=36=12.给出下列关于F(n)的说法:(1)F(2)=12;(2)F(12)=34;(3)F(27)=3;(4)若n是一个完全平方数,则F(n)=1.其中正确说法的个数是()A.1个B.2个C.3个D.4个【答案】C【解析】试题分析:∵2=1×2,∴F(2)=12,故(1)是正确的;∵12=1×12=2×6=3×4,这几种分解中3和4的差的绝对值最小,∴F(12)=34,故(2)是正确的;∵27=1×27=3×9,其中3和9的绝对值较小,又3<9,∴F(27)=13,故(3)是错误的;∵n是一个完全平方数,∴n能分解成两个相等的数,则F(n)=1,故(4)是正确的.∴正确的有(1),(2),(4).故选C.考点:1.因式分解的应用;2.新定义.8.如图,将三角板的直角顶点放在直尺的一边上.若∠1=65°,则∠2 的度数为()A.15°B.35°C.25°D.40°【答案】C【解析】如下图,根据平行线的性质,平角的定义结合已知条件进行分析解答即可.【详解】如下图,由题意可知:AB∥CD,∠4=90°,∴∠3=∠1=65°,又∵∠2+∠4+∠3=180°,∴∠2=180°-65°-90°=25°.故选C.【点睛】熟悉“平行线的性质、平角的定义”是解答本题的关键.9.下列命题:①若a b >,则a b >;②直角三角形的两个锐角互余:③如果0a =,那么0ab =④4个角都是直角的四边形是正方形.其中,原命题和逆命题均为真命题的有( )A .0个B .1个C .2个D .3个【答案】B【解析】写出原命题的逆命题后进行判断即可确定正确的选项【详解】解:①错误,为假命题;其逆命题为若a >b ,则|a|>|b|,错误,为假命题;②直角三角形的两个锐角互余,正确,为真命题;逆命题为两个角互余的三角形为直角三角形,正确,为真命题;③如果a=0,那么ab=0,正确,为真命题;其逆命题为若ab=0,那么a=0,错误,为假命题;④4个角都是直角的四边形是正方形,错误,是假命题,其逆命题为正方形的四个角都是直角,为真命题.原命题和逆命题均是真命题的有1个,故选:B .【点睛】本题考查了命题与定理的知识,解题的关键是能够写出一个命题的逆命题,难度不大.10.将2x 2a-6xab+2x 分解因式,下面是四位同学分解的结果:①2x (xa-3ab ), ②2xa (x-3b+1), ③2x (xa-3ab+1), ④2x (-xa+3ab-1).其中,正确的是( )A .①B .②C .③D .④ 【答案】C【解析】直接找出公因式进而提取得出答案.【详解】2x 2a-6xab+2x=2x (xa-3ab+1).故选:C .【点睛】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.二、填空题题 11.若关于x 的一元一次不等式组011x a x x ->⎧⎨->-⎩无解,则a 的取值范围是________. 【答案】a≥1【解析】不等式组011x a x x ->⎧⎨->-⎩,变形为,1,x a x >⎧⎨<⎩由不等式组无解,则a≥1.故答案为a≥1.点睛:不等式组,x a x b>⎧⎨<⎩无解,即x>a 与x<b 无交集,在数轴上即画出的两弧无交集,可知数轴上a 点在b 点右边或重合.则a≥b.12.如图所示,将ABE △向右平移2cm 得到DCF ,AE 、DC 交于点G .如果ABE △的周长是16cm ,那么ADG 与CEG 的周长之和是______cm .【答案】16【解析】根据平移的性质可得DF=AE ,然后判断出△ADG 与△CEG 的周长之和=AD+CE+CD+AE=BE+AB+AE ,然后代入数据计算即可得解.【详解】∵△ABE 向右平移2cm 得到△DCF ,∴DF=AE ,∴△ADG 与△CEG 的周长之和=AD+CE+CD+AE=BE+AB+AE=16,故答案为:16;【点睛】此题考查平移的性质,解题关键在于掌握①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.13.若151n n <+,且n 是正整数,则n =______.【答案】3【解析】∵9<15<16,∴31531<<+,∴n=3.故答案为3.14.已知x+y=4,xy=2,则2()_________x y -=.【答案】1【解析】分析:利用完全平方公式将原式变形得出原式=(x +y ) 2﹣4xy ,进而将x +y =4,xy =2代入即可.详解:(x ﹣y )2=(x +y ) 2﹣4xy =42﹣4×2=1.故答案为:1.点睛:本题主要考查了完全平方公式的应用,正确将原式整理为(x +y )与xy 的关系式是解题的关键.15.小明将同学们周末生活的调查结果绘制成了扇形统计图.其中,看书这一项对应的圆心角度数为72°,则周末看书的同学人数占了总数的______.( 填百分比)【答案】20%【解析】根据圆心角度数除以360度乘百分之百,即可求解. 【详解】则周末看书的同学人数占了总数的0072100360⨯ =20% 故答案为:20%.【点睛】此题考查扇形统计图,解题关键在于看懂图中数据.16.若不等式组5512x x x m ++⎧⎨-⎩<>的解集是x >1,则m 的取值范围是___________ 【答案】m≤-1【解析】先解每个不等式,然后根据不等式组的解集是x >1,即可得到一个关于m 的不等式,从而求解. 【详解】解:5512x x x m ++⎧⎨-⎩<①>② 解①得x >1,解②得x >m+2,∵不等式组的解集是x >1,∴m+2≤1,解得m≤-1.故答案是:m≤-1.【点睛】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到. 17.定义运算a ⊕b =a 2﹣2ab ,下面给出了关于这种运算的几个结论:①2⊕5=﹣16; 321⊕③方程x ⊕y =0不是二元一次方程:④不等式组(3)10250x x -⊕+>⎧⎨⊕->⎩的解集是﹣53<x <﹣14.其中正确的是______(填写所有正确结论的序号)【答案】①③④【解析】先认真审题.理解新运算,根据新运算展开,求出后再判断即可.利用题中的新定义计算即可得到结果.【详解】①2⊗5=22-2×2×5=-16,故①正确;②2⊗1=22-2×2×1=0,所以210x⊗=是有理数,故②错误;③x⊗y=x2-2xy=0,是二元二次方程,不是二元一次方程,故③正确;④不等式组()310250xx⎧-⊗+>⎨⊗->⎩变形为96104450xx++>⎧⎨-->⎩,解得53-<x<14-,故④正确.故的答案为:①③④【点睛】本题考查了整式的混合运算的应用,涉及了开方运算,方程的判断,不等式组的解集等,解此题的关键是能理解新运算的意义,题目比较好,难度适中.三、解答题18.为了丰富学生课余生活,某区教育部门准备在七年级开设兴趣课堂.为了了解学生对音乐、书法、球类、绘画这四个兴趣小组的喜爱情况,在全区进行随机抽样调查,并根据收集的数据绘制了下面两幅统计图(信息不完整),请根据图中提供的信息,解答下面的问题:(1)此次共调查了多少名同学?(2)将条形图补充完整,并计算扇形统计图中音乐部分的圆心角的度数(3)如果该区七年级共有2000名学生参加这4个课外兴趣小组,而每名教师最多只能辅导本组的20名学生,则绘画兴趣小组至少需要准备多少名教师?【答案】 (1)300名;(2)补图见解析;96°;(3)需准备1名教师辅导.【解析】(1)根据球类人数及其所占百分比可得总人数;(2)根据各组人数之和等于总人数求得音乐人数,据此可补全条形图;再用360°乘以音乐人数所占比例可得圆心角度数;(3)总人数乘以样本中绘画人数所占比例,再除以1即可得.【详解】解:(1)此次调查的学生人数为11÷40%=300(名);(2)音乐的人数为300﹣(60+11+40)=80(名),补全条形图如下:扇形统计图中音乐部分的圆心角的度数为360°×80300=96°; (3)60÷300×100÷1=1.∴需准备1名教师辅导.【点睛】 本题考查条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小. 19.求证:三角形三个内角的和是180°【答案】见解析【解析】分析:根据题目写出已知,求证,证明即可.详解:已知:ABC △的三个内角分别为A B C ∠∠∠,,;求证:180A B C ∠+∠+∠=︒.证明:过点A 作直线MN ,使MN ∥BC .∵MN ∥BC ,∴∠B=∠MAB ,∠C=∠NAC (两直线平行,内错角相等)∵∠MAB+∠NAC+∠BAC=180°(平角定义)∴∠B+∠C+∠BAC=180°(等量代换)即∠A+∠B+∠C=180°.点睛:考查平行线的性质,过点A 作直线MN ,使MN ∥BC .是解题的关键.20.在平面直角坐标系中,△ABC 三个顶点的位置如图(每个小正方形的边长均为1):(1)请画出△ABC 沿x 轴向右平移3个单位长度,再沿y 轴向上平移2个单位长度后的A B C '''(其中A B C '''、、分别是A 、B 、C 的对应点,不写画法);(2)直接写出A B C '''、、三点的坐标;(3)求△ABC 的面积.【答案】(1)见解析;(2)(0,5),(-1,3),(4,0);(3)三角形的面积为6.5;【解析】(1)根据图形的平移原则平移图形即可.(2)根据平移后图形,写出点的坐标即可.(3)根据直角坐标系中,长方形的面积减去三个直角三角形的面积计算即可.【详解】解:(1)根据沿x 轴向右平移3个单位长度,再沿y 轴向上平移2个单位长度,可得图形如下图所示:(2)根据上图可得A B C '''、、三点的坐标分别为:(0,5),(-1,3),(4,0)(3)根据三角形ABC 的面积等于正方形的面积减去三个三角形的面积可得:11155214535 6.5222ABC S ∆=⨯-⨯⨯-⨯⨯-⨯⨯= 【点睛】本题主要考查图形的平移,关键在于根据点的平移确定图形的平移.21.设中学生体质健康综合评定成绩为x 分,满分为100分,规定:85≤x ≤100为A 级,75≤x <85为B 级,60≤x <75为C 级,x <60为D 级.现随机抽取某中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图,请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了______名学生,α=______b= ;(2)补全条形统计图;(3)扇形统计图中D级对应的圆心角为______度;(4)若该校共有2000名学生,请你估计该校D级学生有多少名?【答案】(1)50,24%,20%;(2)图见解析;(3)28.8;(4)160.【解析】(1)根据B级的人数和所占的百分比求出抽取的总人数,再用A级的人数除以总数即可求出α,用C级的人数除以总数即可求出b;(2)用抽取的总人数减去A、B、D的人数,求出C级的人数,从而补全统计图;(3)用360度乘以D级所占的百分比即可求出扇形统计图中D级对应的圆心角的度数;(4)用D级所占的百分比乘以该校的总人数,即可得出该校D级的学生数.【详解】解:(1)在这次调查中,一共抽取的学生数是:24÷48%=50(人),α=1250×100%=24%,b=50-12-24-450×100%=20%;(2)等级为C的人数是:50-12-24-4=10(人),补图如下:(3)扇形统计图中D级对应的圆心角为450×360°=28.8°;(4)根据题意得:2000×450=160(人),答:该校D级学生有160人.故答案为(1)50,24%,20%;(2)图见解析;(3)28.8;(4)160.此题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.在直角坐标系中,已知点A、B的坐标分别为A(a,0),B(b,0),a,b满足方程组236a ba b+=-⎧⎨-=⎩,C为y轴正半轴上一点,且△ABC的面积S△ABC=1.(1)求A、B、C三点的坐标;(2)坐标系中是否存在点P(m,m),使S△PAB=12S△ABC,若存在,请求出点P的坐标;若不存在,请说明理由.【答案】(2)A(2,0),B(﹣5,0),C(0,2);(2)P点坐标为(2,2)或(﹣2,﹣2).【解析】(2)解方程得到A、B点的坐标,即可得到AB=2,根据三角形面积公式解得OC=2,即可得出C 点的坐标;(2)先计算出S△PAB=3,根据三角形面积公式解得|m|=2,从而确定P点坐标.【详解】(2)解方程组236a ba b+=-⎧⎨-=⎩得15ab=⎧⎨=-⎩,∴A(2,0),B(﹣5,0),∴AB=2,∵S△ABC=12 AB•OC,∴2=162OC ⨯⨯,解得OC=2,∴C(0,2);(2)存在,∵S△ABC=2,S△PAB=12S△ABC,∴S△PAB=12AB•|m|=3,∴|m|=2.∴P点坐标为(2,2)或(﹣2,﹣2).【点睛】本题考查了坐标与图形性质,利用点的坐标计算相应线段的长;掌握三角形面积公式.23.如图,AB∥CD,EF分别交AB、CD与M、N,∠EMB=50°,MG平分∠BMF,MG交CD于G,求∠MGC 的度数.【答案】∠MGC=65°.【解析】先根据补角的定义得出∠BMF的度数,再由MG平分∠BMF得出∠BMG的度数,根据平行线的性质即可得出结论.【详解】解:∵∠EMB=50°,∴∠BMF=180°-50°=130°.∵MG平分∠BMF,∠BMF=65°.∴∠BMG=12∵AB∥CD,∴∠MGC=∠BMG=65°.【点睛】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.24.某数学实验小组在探究“关于x的二次三项式ax2+bx+3的性质(a、b为常数)”时,进行了如下活动.(实验操作)取不同的x的值,计算代数式ax2+bx+3的值.x …﹣1 0 1 2 3 …ax2+bx+3 …0 3 4 …(1)根据上表,计算出a、b的值,并补充完整表格.(观察猜想)实验小组组员,观察表格,提出以下猜想.同学甲说:“代数式ax2+bx+3的值随着x的增大而增大”.同学乙说:“不论x取何值,代数式ax2+bx+3的值一定不大于4”.…(2)请你也提出一个合理的猜想:(验证猜想)我们知道,猜想有可能是正确的,也可能是错误的.(3)请你分别判断甲、乙两位同学的猜想是否正确,若不正确,请举出反例;若正确,请加以说理.【答案】(1)3,2;(2)当x=﹣2和x=1时,代数式(ax2+bx+3)的值是相等的;(3)甲的说法不正确,反例见解析,乙的说法正确,见解析【解析】(1)通过解方程组求得a 、b 的值.(2)可以根据二次函数y =ax 2+bx+3的图象性质进行猜想;(3)举出反例即可判断.【详解】解:(1)当x =﹣1时,a ﹣b+3=2;当x =1时,a+b+3=1.可得方程组31a b a b -=-⎧⎨+=⎩. 解得:12a b =-⎧⎨=⎩. 当x =2时,ax 2+bx+3=3;当x =3时,ax 2+bx+3=2.故答案是:3;2;(2)言之有理即可,比如当x <1时,(ax 2+bx+3)随x 的增大而增大;当x =﹣2和x =1时,代数式(ax 2+bx+3)的值是相等的;故答案是:当x =﹣2和x =1时,代数式(ax 2+bx+3)的值是相等的(答案不唯一);(3)甲的说法不正确.举反例:当x =1时,y =1;但当x =2时,y =3,所以y 随x 的增大而增大,这个说法不正确. 乙的说法正确.证明:﹣x 2+2x+3=﹣(x ﹣1)2+1.∵(x ﹣1)2≥2.∴﹣(x ﹣1)2+1≤1.∴不论x 取何值,代数式ax 2+bx+3的值一定不大于1.【点睛】考查了配方法的应用和非负数的性质,解题时,需要掌握待定系数法确定函数关系式和二次函数图象的性质.25.解方程或方程组: (1) 234134x x +=-; (2) 52311x y x y +=⎧⎨+=⎩【答案】 (1) 60x =;(2)41x y =⎧⎨=⎩【解析】(1)按照移项、合并同类项、去分母、化系数为1的步骤解方程即可;(2)用加减消元法解方程组即可;【详解】(1) 231434x x -=-- 1512x -=- 60x =(2)52311x y x y +=⎧⎨+=⎩ ①×3,得3315x y +=,③③减去②,得4x =,将4x =代入①,得y 1=.所以方程组的解为41x y =⎧⎨=⎩【点睛】此题考查解一元一次方程,解二元一次方程组,解题关键在于掌握运算法则.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.如果点P(a-4,a)在y轴上,则点P的坐标是( )A.(4,0) B.(0,4) C.(-4,0) D.(0,-4)【答案】B【解析】由点P(a−4,a)在y轴上,得a−4=0,解得a=4,P的坐标为(0,4),故选B.2.如图,点在同一直线上,, ,再添加一个条件仍不能证明≅的是( )A.B. C.D.【答案】D【解析】根据全等三角形的判定定理进行解答.【详解】解:由BE=CF得到:BC=FE.A、由条件BC=FE,∠B=∠F添加AB=DF,根据全等三角形的判定定理SAS能证明△ABC≌△DFE,故本选项错误;B、由条件BC=FE,∠B=∠F添加∠A=∠D,根据全等三角形的判定定理AAS能证明△ABC≌△DFE,故本选项错误;C、因为AC∥DE,所以∠ACB=∠DEF,再由条件BC=FE,∠B=∠F,根据全等三角形的判定定理ASA能证明△ABC≌△DFE,故本选项错误;D、由条件BC=FE,∠B=∠F添加AC=DE,由SSA不能证明△ABC≌△DFE,故本选项正确.故选:D.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.3.下列计算错误的是( )A .235m n mn +=B .624a a a ÷=C .236()a a =D .23a a a ⋅=【答案】A【解析】分别利用合并同类项法则、同底数幂的乘除运算法则以及幂的乘方运算法则分别化简求出答案.【详解】A 、2m +3n ,无法计算,故此选项符合题意;B 、a 6÷a 2=a 4,正确,故此选项不符合题意;C 、(a 2)3=a 6,正确,故此选项不符合题意;D 、a•a 2=a 3,正确,故此选项不符合题意;故选:A .【点睛】此题主要考查了同底数幂的乘除运算法则以及幂的乘方运算等知识,正确掌握运算法则是解题关键. 4.若实数2是不等式340x a --<的一个解,则a 可取的最小正整数是( )A .1B .2C .3D .4 【答案】C【解析】把x=2代入不等式,求出a 的范围,再求出答案即可.【详解】∵实数2是不等式3x-a-4<0的一个解,∴代入得:6-a-4<0,a >2,∴a 可取的最小整数是3,故选C .【点睛】本题考查了解一元一次不等式和一元一次不等式的整数解,能得出关于a 的不等式是解此题的关键. 5.已知三角形三边长分别为3,,10x ,若x 为正整数,则这样的三角形个数为( )A .2B .3C .5D .7 【答案】C【解析】根据三角形三边的关系确定出x 的取值范围,继而根据x 为正整数即可求得答案.【详解】由题意得:10-3<x<10+3,即7<x<13,又∵x 为正整数,∴x 的值可以为8、9、10、11、12,即这样的三角形个数为5个,故选C.【点睛】本题考查了三角形三边关系的应用,熟练掌握三角形三边关系是解题的关键.6.方程(m -2 016)x |m|-2 015+(n +4)y |n|-3=2 018是关于x 、y 的二元一次方程,则( )A .m =±2 016;n =±4B .m =2 016,n =4C .m =-2 016,n =-4D .m =-2 016,n =4 【答案】D【解析】根据二元一次方程的定义可得m-2016≠0,n+4≠0,|m|-2015=1,|n|-3=1,解不等式及方程即可得.【详解】∵()()20153201642018m n m x n y ---++=是关于x 、y 的二元一次方程,∴m-2016≠0,n+4≠0,|m|-2015=1,|n|-3=1,解得:m=-2016,n=4,故选D .【点睛】本题考查了二元一次方程定义的应用,明确含有未知数的项的系数不能为0,次数为1是解题的关键.7.已知关于x 的不等式组x a b x b a +>⎧⎨-<⎩的解集是24x -<< ,则a b , 的值为 A .31a b ==,B .13a b ==,C .31a b ==-,D .13a b =-=,【答案】A【解析】先解出不等式组的解集,再转化为关于a,b 的方程组进行解答即可. 【详解】x a b x b a +>⎧⎨-<⎩①② 由①得:x >b-a由②得:x a b +<x a b x b a +>⎧⎨-<⎩的解集为: 24x -<< 42a b b a +=⎧∴⎨-=-⎩解得:31a b ==,故选A.【点睛】本题考查解一元一次不等式组,熟练掌握计算法则是解题关键.-8.课间操时,小华、小军、小刚的位置如图,小华对小刚说,如果我的位置用00(,)表示,小军的位置用21(,)表示,那么你小刚的位置可以表示成( )A .22(,)B .23(,)C .4,3()D .34(,)【答案】C 【解析】根据已知两点的坐标确定平面直角坐标系,然后确定其它各点的坐标.【详解】解:如图,如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,如图所示就是以小华为原点的平面直角坐标系的第一象限,所以小刚的位置为(4,3).故选:C .【点睛】本题利用平面直角坐标系表示点的位置,是学数学在生活中用的例子.9.地球半径约为6400000米,用科学记数法表示为( )A .0.64×107B .6.4×106C .64×105D .640×104 【答案】B【解析】根据科学记数法的定义,科学记数法的表示形式为a×10n ,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.在确定n 的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n 为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0).6400000一共7位,从而6400000=6.4×2.故选B .10.若不等式(a+1)x >2的解集为x <21a ,则a 的取值范围是( ) A .a <1B .a >1C .a <﹣1D .a >﹣1 【答案】C【解析】根据“不等式的基本性质”结合“已知条件”分析解答即可.【详解】∵不等式()12a x +>的解集为21x a <+, ∴当原不等式两边同时除以(a+1)时,不等号改变了方向,∴a+1<0,解得:a<-1.故选C.【点睛】熟记“不等式的性质:在不等式的两边同时乘以(或除以)同一个负数时,不等号的方向改变.”是解答本题的关键.二、填空题题11.如图,直线AB 、CD 交于点O ,OT ⊥AB 于点O ,CE ∥AB 交CD 于点C ,若∠ECO =30°,则∠DOT =_____.【答案】60°【解析】根据两直线平行,同位角相等,由CE ∥AB 可得∠BOD =∠ECO =30°,再根据垂直的定义得到∠BOT =90°,利用互余即可得到∠DOT 的度数.【详解】解:如图,∵CE ∥AB ,∴∠BOD =∠ECO =30°,∵OT ⊥AB 于点O ,∴∠BOT =90°,∴∠DOT =90°﹣∠BOD =90°﹣30°=60°.故答案为60°.【点睛】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.也考查了垂直的定义.12.写出命题“若2a=4b ,则a=2b ”的逆命题:______.【答案】若a=2b ,则2a=4b【解析】解:命题“若2a=4b ,则a=2b”的逆命题是:“若a=2b ,则2a=4b ”.故答案为:若a=2b ,则2a=4b .【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.2、有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查了逆命题.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.13.小明家新建了一栋楼房,装修时准备在一段楼梯上铺设地毯,已知这种地毯每平方米售价为50元,楼梯宽2m,其侧面如图所示,则铺设地毯至少需要_____元.【答案】1【解析】根据题意,结合图形,先把楼梯的横竖向上向左平移,构成一个矩形,再求得其面积,则购买地毯的钱数可求.【详解】如图,利用平移线段,把楼梯的横竖向上向左平移,构成一个矩形,长宽分别为3米,2.5米,则地毯的长度为3+2.5=5.5(米),面积为5.5×2=11(m2),故买地毯至少需要11×50=1(元).故答案为:1.【点睛】此题主要考查了生活中的平移现象,解决此题的关键是要利用平移的知识,把要求的所有线段平移到一条直线上进行计算.14.定义新运算:对于任意实数a,b都有:a⊕b=a(a+b)+1,其中等式右边是通常的加法、减法及乘法运算.如:2⊕5=2×(2+5)+1=2×7+1=15,那么不等式﹣3⊕x<13的解集为____.【答案】x>﹣1.【解析】根据a⊕b=a(a+b)+1,可得:﹣3⊕x=﹣3(﹣3+x)+1,再根据﹣3⊕x<13,求出不等式的解集即可.【详解】解:∵a⊕b=a(a+b)+1,∴﹣3⊕x=﹣3(﹣3+x)+1,∵﹣3⊕x<13,∴﹣3(﹣3+x)+1<13,∴10﹣3x<13,解得x>﹣1.故答案为:x >﹣1.【点睛】此题主要考查了实数的运算以及一元一次不等式的解法,根据题意把新定义的运算转换成实数运算是解题的关键.15.已知5+11的整数部分为a ,5-11的小数部分为b ,则a +b 的值为__________【答案】12-11【解析】先估算11的取值范围,再求出5+11与5-11的取值范围,从而求出a ,b 的值.【详解】解:∵3<11<4,∴8<5+11<9,1<5-11<2,∴5+11的整数部分为a =8,5-11的小数部分为b =5-11-1=4-11,∴a +b =8+4-11=12-11,故答案为12-11.【点睛】本题主要考查了无理数的估算,解题关键是确定无理数11的范围.16.一副三角板,如图所示叠放在一起,则图中∠α的度数是 .【答案】75°【解析】如图,∵∠1=60°,∠2=45°,∴∠α=180°-45°-60°=75°.17.在平面直角坐标系xOy 中,对于点P x y (,) ,我们把点11P y x '-(,) 叫做点P 的伴随点.已知点1A 的伴随点为2A ,点2A 的伴随点为3A ,点3A 的伴随点为4A ,…,这样依次得到点123,,,,,n A A A A .若点1A 的坐标为32(,),则2019A 的坐标为________.【答案】30-(,)【解析】根据伴随点的定义可找出:A 1(3,2),A 2(1,-2),A 3(-3,0),A 4(-1,4),A 5(3,2),…,根据点的坐标的变化可找出点A n 的坐标4个一循环,再结合2019=504×4+3可得出点A 2019的坐标与点A 3的坐标相同,此题得解.【详解】解:∵A 1(3,2),A 2(1,-2),A 3(-3,0),A 4(-1,4),A 5(3,2),…,∴点A n 的坐标4个一循环.∵2019=504×4+3,∴点A 2019的坐标与点A 3的坐标相同.∴A 2019的坐标为(-3,0),故答案为(-3,0).【点睛】本题考查了规律型中点的坐标,根据点的坐标的变化找出点A n 的坐标4个一循环是解题的关键.三、解答题18.如图,已知∠1=∠2,DE ∥FH ,则CD ∥FG 吗?说明理由【答案】见解析【解析】根据平行线的性质与判定是互逆关系进行证明即可.【详解】CD ∥FG1=2ED FG∴∴∴∴∥∠EDF=∠HFD∠∠∠EDF-∠1=∠HFD-∠2∠CDF=∠GFDCD ∥FG【点睛】本题考查平行线的性质,解题关键在于熟练掌握平行线的性质与判定是互逆关系.19.如图,ABC ∆的顶点都在方格纸的格点上.将ABC ∆向左平移2格,再向上平移4格.。
{3套试卷汇总}2021年常州市某达标实验中学七年级下学期数学期末质量跟踪监视试题
七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.解为12xy=⎧⎨=⎩的方程组是()A.135x yx y-=⎧⎨+=⎩B.135x yx y-=-⎧⎨+=-⎩C.331x yx y-=⎧⎨-=⎩D.2335x yx y-=-⎧⎨+=⎩【答案】D【解析】根据方程组的解的定义,只要检验12xy=⎧⎨=⎩是否是选项中方程的解即可.【详解】A、把12xy=⎧⎨=⎩代入方程x-y=-1,左边=1≠右边,把12xy=⎧⎨=⎩代入方程y+3x=5,左边=5=右边,故不是方程组的解,故选项错误;B、把12xy=⎧⎨=⎩代入方程3x+y=-5,左边=5≠右边,故不是方程组的解,故选项错误;C、把12xy=⎧⎨=⎩代入方程x-y=3,左边=-1≠右边,故不是方程组的解,故选项错误;D、把12xy=⎧⎨=⎩代入方程x-2y=-3,左边=-3=右边=-3,把12xy=⎧⎨=⎩代入方程3x+y=5,左边=5=右边,故是方程组的解,故选项正确.故选D.【点睛】本题主要考查了二元一次方程组的解的定义,正确理解定义是关键.2.如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A4n+1(n为自然数)的坐标为()(用n表示).A.(4n+1,0)B.(4n,1)C.(2n,0)D.(2n,1)【答案】D【解析】根据图形分别求出n=1、2、3时对应的点A4n+1的坐标,然后根据变化规律写出即可.【详解】由图可知,n=1时,4×1+1=5,点A5(2,1),n=2时,4×2+1=9,点A 9(4,1),n=3时,4×3+1=13,点A 13(6,1),所以,点A 4n+1 (2n,1).故选:D.【点睛】此题考查规律型:点的坐标,解题关键在于寻到点的运动规律.3.一个多边形的内角和是900°,则这个多边形的边数为 ( )A .6B .7C .8D .9 【答案】B【解析】本题根据多边形的内角和定理和多边形的内角和等于900°,列出方程,解出即可.【详解】解:设这个多边形的边数为n ,则有(n-2)180°=900°,解得:n=1,∴这个多边形的边数为1.故选B .【点睛】本题考查了多边形内角和,熟练掌握内角和公式是解题的关键.4.如图,四个有理数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若n+q=0,则m ,n ,p ,q 四个有理数中,绝对值最小的一个是( )A .pB .qC .mD .n 【答案】C【解析】试题分析:根据n+q=0可以得到n 、q 的关系,从而可以判定原点的位置,从而可以得到哪个数的绝对值最大,本题得以解决.∵n+q=0,∴n 和q 互为相反数,0在线段NQ 的中点处,∴绝对值最大的点P 表示的数p ,考点:(1)实数与数轴;(2)数形结合思想5.下列是二元一次方程的是( )A .3x ﹣6=xB .3x =2yC .x ﹣1y =0D .2x ﹣3y =xy【答案】B【解析】A 、3x-6=x 是一元一次方程;B 、32x y 是二元一次方程;C 、2x+是分式方程;D 、23x y xy -=是二元二次方程.故选B .6.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD 是一个筝形,其中AD CD =,AB CB =,詹姆斯在探究筝形的性质时,得到如下结论:AC BD ⊥①;12AO CO AC ==②;ABD ③≌CBD ; ④四边形ABCD 的面积12AC BD =⨯其中正确的结论有( )A .1个B .2个C .3个D .4个【答案】D 【解析】分析:先证明△ABD 与△CBD 全等,再证明△AOD 与△COD 全等即可判断.详解:在△ABD 与△CBD 中,AD CD AB BC DB DB ⎧⎪⎨⎪⎩===,∴△ABD ≌△CBD (SSS ),故③正确;∴∠ADB=∠CDB ,在△AOD 与△COD 中,AD CD ADB CDB OD OD ⎧⎪∠∠⎨⎪⎩===,∴△AOD ≌△COD (SAS ),∴∠AOD=∠COD=90°,AO=OC ,∴AC ⊥DB ,故①②正确;四边形ABCD 的面积=S △ADB+S △BDC=12DB×OA+12DB×OC=12AC•BD , 故④正确;故选D .点睛:此题考查全等三角形的判定和性质,关键是根据SSS证明△ABD与△CBD全等和利用SAS证明△AOD 与△COD全等.7.线段AB经过平移得到线段CD,其中点A、B的对应点分别为点C、D,这四个点都在如图所示的格点上,那么线段AB上的一点P(a,b)经过平移后,在线段CD上的对应点Q的坐标是()A.(a﹣1,b+3)B.(a﹣1,b﹣3)C.(a+1,b+3)D.(a+1,b﹣3)【答案】D【解析】根据图形的变化首先确定如何将AB平移到CD,再将P点平移到Q点,便可写出Q点的坐标. 【详解】根据题意可得将AB平移到CD,是首先将AB向右平移一个单位,再向下平移3个单位,已知P 点的坐标为(a,b),所以可得Q(a+1,b﹣3),故选D.【点睛】本题主要考查图形的平移,根据图形的平移确定点的平移,关键在于向右平移是加,向左平移是减,向下平移是减,向上平移是加.8.下列各图中,是轴对称图形的是()A.B.C.D.【答案】B【解析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:B.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.9.为了调查某校学生的视力情况,在全校的800名学生中随机抽取了80名学生,下列说法正确的是()A.此次调查属于全面调查B.样本容量是80C .800名学生是总体D .被抽取的每一名学生称为个体【答案】B 【解析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.【详解】本题的样本是1名学生的视力情况,故样本容量是1.故选B .【点睛】此题考查总体、个体、样本、样本容量,解题关键在于掌握其定义.10.如图,,A B 的坐标为(2,0),(0,1),若将线段AB 平移至11A B ,则 a b 的值为( )A .5B .4C .3D .2【答案】D 【解析】平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.直接利用平移中点的变化规律求解即可.【详解】解:由B 点平移前后的纵坐标分别为1、1,可得B 点向上平移了1个单位,由A 点平移前后的横坐标分别是为1、3,可得A 点向右平移了1个单位,由此得线段AB 的平移的过程是:向上平移1个单位,再向右平移1个单位,所以点A 、B 均按此规律平移,由此可得a=0+1=1,b=0+1=1,故a+b=1.故选D .【点睛】本题考查了坐标系中点、线段的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.二、填空题题11.平面直角坐标系中的点P (-4,6)在第_________象限.【答案】二【解析】根据点的坐标特征是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-),可得答案.【详解】在平面直角坐标系中,点P (-4,6)在第 二象限,故答案为二.【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).12.对于整数a,b,c,d,定义adbc=ac﹣bd,已知1<1d4b<3,则b+d的值为_______.【答案】±1【解析】根据题意,得1<4–bd<1,化简,得1<bd<1,a,b,c,d均为整数,∴db=2,∴当d=1时b=2或当d=–1时b=–2,∴b+d=1或b+d=–1.13.已知4x-y =5,用x 表示y,得y=_______.【答案】y=45x-.【解析】分析: 把x看作已知量,把y看作未知量,根据解一元一次方程的方法求解即可.详解:∵4x-y=1,∴-y=-4x+1,解得y=4x-1.故答案为:4x-1.点睛: 此题主要考查了解一元一次方程的方法,要熟练掌握.14.实数m满足(m-2018)(2019-m)=-7,则(m-2018)2+(2019-m)2的值是________【答案】15【解析】根据完全平方公式化简即可得到答案。
江苏省常州市2021版七年级下学期数学期末考试试卷B卷
江苏省常州市2021版七年级下学期数学期末考试试卷B卷姓名:________ 班级:________ 成绩:________一、选择题:(本大题共12小题,每小题3分,共36分.) (共12题;共36分)1. (3分)方程2x-3y=5,xy=3,x+=3,3x-y+2z=0,x2+y=6中是二元一次方程的有()个。
A . 1B . 2C . 3D . 42. (3分)在等边三角形、平行四边形、矩形、菱形、正方形、等腰梯形中,既是中心对称图形又是轴对称图形,并且只有两条对称轴的有()个A . 1B . 2C . 3D . 4.3. (3分)如图所示的图片是一个旋转对称图案,电风扇的叶片至少旋转()度能与自身重合.A . 90B . 120C . 180D . 3604. (3分)满足m2+n2+2m-6n+10=0的是()A . m=1,n=3B . m=1,n=-3C . m=-1,n=-3D . m=-1,n=35. (3分) (2017七下·桥东期中) 如图,分别是一些汽车的车标,其中,可以看作由“基本图案”经过平移得到的是()A .B .C .D .6. (3分)下列计算结果正确的是()A . 2x﹣3x=xB . ﹣2(x﹣1)=﹣2x+1C . (﹣2x2y)3=8x6y3D . (a+2)2=a2+4a+47. (3分) (2018九上·桐梓月考) 我市连续7天的最高气温为:28°,27°,30°,33°,30°,30°,32°,这组数据的平均数和众数分别是()A . 28°,30°B . 30°,28°C . 31°,30°D . 30°,30°8. (3分)若a,b互为相反数,m,n互为倒数,k的算术平方根为,则100a+99b+mnb+k2的值为()A . -4B . 4C . -96D . 1049. (3分)如图,下列各组条件中,能一定得到a//b的是()A . ∠1+∠2=180ºB . ∠1=∠3C . ∠2+∠4=180ºD . ∠1=∠410. (3分)下列说法不正确的是()A . 平面内,过一点有且只有一条直线与已知直线垂直B . 两条线段不平行必相交C . 对顶角相等D . 任何一个实数都可以用数轴上的一个点来表示11. (3分) (2017九下·莒县开学考) 如图,将矩形ABCD纸片沿EF折叠,若∠BGE=130°,则∠GEF等于()A . 60°B . 65°C . 70°D . 75°12. (3分)(2015·宁波模拟) 如图,四边形ABCD是平行四边形,顶点A、B的坐标分别是A(1,0),B(0,﹣2),顶点C、D在双曲线上,边AD与y轴相交于点E,=10,则k的值是()A . -16B . -9C . -8D . -12二、填空题(本大题共6小题,每小题3分,共18分) (共6题;共18分)13. (3分) (2018八上·慈利期中) 化简: =________.14. (3分)+(y﹣2012)2=0,则xy=________ .15. (3分)(2012·阜新) 如图,一块直角三角板的两个顶点分别在直尺的对边上.若∠1=30°,那么∠2=________度.16. (3分)某车间加工1200个零件后,采用了新工艺,工效提高50%,这样加工同样多的零件就少用10小时,设新工艺前每小时分别加工x个零件,可列出方程________.17. (3分)若a2+b2=7,ab=2,则(a-b)2的结果是________18. (3分) (2018七上·无锡期中) 一动点P从数轴上的原点出发,按下列规则运动:( 1 )沿数轴的正方向先前进5个单位,然后后退3个单位,如此反复进行;( 2 )已知点P每秒只能前进或后退1个单位.设Xn表示第n秒点P在数轴上的位置所对应的数,则X2018为________.三、解答题:(本大题共8小题,满分66分) (共8题;共68分)19. (10分) (2019七下·广州期中) 解方程组:(1);(2)20. (5分) (2018九上·武昌期中) 如图,和关于点成中心对称.(1)作出它们的对称中心,并简要说明作法;(2)若,,,求的周长;(3)连接,,试判断四边形的形状,并说明理由.21. (7分)(2017·房山模拟) 已知3a2+2a+1=0,求代数式2a(1-3a)+(3a+1)(3a-1)的值.22. (8.0分)已知一组数据x1 , x2 ,…x6的平均数为1,方差为.(1)求:x12+x22+ (x62)(2)若在这组数据中加入另一个数据x7,重新计算,平均数无变化,求这7个数据的方差(结果用分数表示)23. (8分) (2017七下·南充期中) 用2辆A型车和1辆B型车装满货物一次可装10吨;用1辆A型车和2辆B型车装满货物一次可装11吨。
江苏省常州市2021年七年级下学期数学期末考试试卷A卷
江苏省常州市2021年七年级下学期数学期末考试试卷A卷姓名:________ 班级:________ 成绩:________一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项 (共10题;共30分)1. (3分)(2017·东海模拟) 下列实数中,最大的是()A . ﹣2B . 2C .D .2. (3分)不等式2x>4的解有()A . 1个B . 2个C . 3个D . 无限多个3. (3分) (2017八下·徐州期中) 下列调查中,适宜采用普查方式的是()A . 调查市场上某品牌老酸奶的质量情况B . 调查某品牌圆珠笔芯的使用寿命C . 调查乘坐飞机的旅客是否携带了危禁物品D . 调查我市市民对《徐州夜新闻》的认可情况4. (3分)(2018·三明模拟) 将一把直尺与一块三角板如图所示放置,若∠1=40°,则∠2的度数为()A . 50°B . 110°C . 130°D . 140°5. (3分) (2018八上·绍兴期末) 能说明命题“对于任何实数a,|a|>﹣a”是假命题的一个反例可以是()A . a=﹣2B . a=C . a=1D . a=6. (3分) (2019七下·长兴月考) 如图,已知∠1=∠2,则能得到正确的结论是()A . AC⊥ABB . AB=CDC . AD∥BCD . AB∥CD7. (3分) (2020七下·荆州月考) 若是的解,则之间的关系是()A .B .C .D .8. (3分) (2018七下·福清期中) 在下列所给出坐标的点中,在第二象限的是()A .B .C .D .9. (3分)某工厂有工人35人,生产某种由一个螺栓套两个螺母的配套产品,每人每天生产螺栓16个或螺母24个,应分配多少人生产螺栓,多少人生产螺母,才能使生产出的螺栓和螺母刚好配套?设生产螺栓的有x人,生产螺母的有y人,则可以列方程组()A .B .C .D .10. (3分)在方格纸中,每个小格的顶点称为格点,以格点连线为边的三角形叫做格点三角形,在如图所示5×5 的方格纸中,作格点△ABC和△OAB相似(相似比不能为1),已知A(1,0),则C点坐标是()A . (4,4)B . (2,5)或(5,2)C . (5,2)D . (4,4)或(5,2)二、填空题(共4小题,每小题3分,计12分) (共4题;共11分)11. (3分) (2020八上·晋江期末) 化简:=________.12. (3分) (2019七下·马山月考) 如图,用直尺和三角尺作直线AB,CD,从图中可知,直线AB与直线CD的位置关系为________,理由是________.13. (2分)想知道你班里的同学如何处理压岁钱,你必须调查,然后再加以总结,那么:(1)你调查的问题是:________(2)你调查的对象是:________(3)你感兴趣的是调查对象的________ ;(4)你打算采用的方法是:________ .14. (3分) (2019七下·芜湖期末) 若不等式组的解集是﹣1<x<1,则(a+b)2009=________.三、解答题(共11小题,计78分.解答应写出过程) (共11题;共78分)15. (5分) (2019七下·大冶期末) 计算:16. (5分)用代入法解方程组:(1)(2).17. (5分) (2020七下·石泉期末) 如图是某市区几个旅游景点的示意图(图中每个小正方形的边长为1个单位长度),若光岳楼的坐标为(-3,1),请建立平面直角坐标系,并用坐标表示动物园的位置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.在下列所给出坐标的点中,在第二象限的是A .(2,3)B .(﹣2,3)C .(﹣2,﹣3)D .(2,﹣3)【答案】B【解析】根据第二象限内点的坐标符号(-,+)进行判断即可.2.下列每对x ,y 的值,是二元一次方程35x y +=的解的是( )A .12x y =⎧⎨=⎩B .21x y =⎧⎨=⎩C .21x y =-⎧⎨=⎩D .21x y =-⎧⎨=-⎩【答案】A 【解析】二元一次方程3x+y=5的解有无数个,所以此题应该用排除法确定答案,分别代入方程组,使方程左右相等的解才是方程组的解.【详解】解:A 、把x=1,y=2代入方程,左边=3+2=5=右边,所以是方程的解;B 、把x=2,y=1代入方程,左边=6+1=7≠右边,所以不是方程的解;C 、把x=-2,y=1代入方程,左边=-6+1=-5≠右边,所以不是方程的解;D 、把x=-2,y=-1代入方程,左边=-6-1=-7≠右边,所以不是方程的解.故选:A .【点睛】本题考查二元一次方程的解的定义,要求理解什么是二元一次方程的解,并会把x ,y 的值代入原方程验证二元一次方程的解.3.在方程()()233x y y x +--=中,用含x 的式子表示y ,则( )A .53y x =-B .3y x =--C .322x y -=D .53y x =--【答案】A【解析】要把方程2(x+y )-3(y-x )=3用含x 的式子表示y ,首先要去括号,移项,然后化y 的系数为1,即可得到答案【详解】原方程去括号得2x+2y-3y+3x=3,移项得2y-3y=3-2x-3x ,化y 的系数为1得y=5x-3故正确答案为A【点睛】此题主要考查的是二元一次方程,熟练掌握解方程步骤是解题的关键.4.下列调查中,适宜采用全面调查的是( ).①了解全国中学生的用眼卫生情况;②了解某校合唱团 30 名成员订做比赛服装的尺寸大小;③了解某种电池的使用寿命;④调查长江流域的水污染情况A.1 个B.2 个C.3 个D.4 个【答案】A【解析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【详解】①了解全国中学生的用眼卫生情况,调查范围广,适合抽样调查,故错误;②了解某校合唱团30 名成员订做比赛服装的尺寸大小适合普查,故正确;③了解某种电池的使用寿命,调查具有破坏性,适合抽样调查,故错误;④调查长江流域的水污染情况,调查范围广,适合抽样调查,故错误;故选:A.【点睛】此题考查全面调查与抽样调查,解题关键在于掌握调查方法.5.下列调查中,适合用普查方法的是()A.了解某品牌某一批次汽车刹车系统的使用寿命B.了解北京电视台《北京新闻》栏目的收视率C.了解七年级一班学生对“北京精神”的知晓率D.了解某品牌某一批奶制品中的蛋白质的含量是否达到国家标准【答案】C【解析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】A. 了解某品牌某一批次汽车刹车系统的使用寿命,由于具有破坏性,适合抽样调查的方式,故不符合题意;B. 了解北京电视台《北京新闻》栏目的收视率,范围较大,适合抽样调查的方式,故不符合题意;C. 了解七年级一班学生对“北京精神”的知晓率,适合普查的方式,故符合题意;D. 了解某品牌某一批奶制品中的蛋白质的含量是否达到国家标准,适合抽样调查,故不符合题意,故选C.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6.点A(﹣3,﹣2)向上平移2个单位,再向左平移2个单位到点B,则点B的坐标为()A.(1,0)B.(﹣1,﹣4)C.(﹣1,0)D.(﹣5,0)【答案】D【解析】分析:直接利用平移中点的坐标的变化规律求解即可.详解:点A(﹣3,﹣2)向上平移2个单位,再向左平移2个单位到点B,则点B的坐标为(﹣3﹣2,﹣2+2),即(﹣5,0).故选D.点睛:本题考查了点的平移变换.关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变.7.在国际跳水比赛中,根据规则,需要有7位裁判对选手的表现进行打分.在裁判完成打分后,总裁判会在7位裁判的打分中,去掉一个最高分,再去掉一个最低分,将剩下5位裁判的平均分作为该选手的最终得分.在总裁判去掉最高分与最低分后,一定保持不变的统计量是()A.平均分B.众数C.中位数D.最高分【答案】C【解析】根据平均分、众数、中位数等的意义进行分析判断即可.【详解】去掉一个最高分,再去掉一个最低分,平均分、众数、最高分都有可能发生变化,只有中位数不变,故选C.【点睛】本题考查了平均分、众数、中位数,正确把握各自的含义是解题的关键.8.在一次“交通安全法规”如识竞赛中,竞赛题共25道题,每道题都给出4个答案,其中只有一个答案正确,选对得3分,不选或错选倒扣1分,得分不低于45分得奖,那么得奖者至少应选对的题数为()A.17 B.18 C.19 D.20【答案】B【解析】首先设得奖者选对的题数为x,则未选或选错的题数为25-x,由题意可得出不等式,解得即可. 【详解】解:设得奖者选对的题数为x,则未选或选错的题数为25-x,由题意可得,3x-(25-x)≥45解得x≥35 2又题数为整数,则至少应为18.故答案为B.【点睛】此题主要考查不等式的实际应用,关键是找出关系式,需要注意的是取整数. 9.已知x=-2是方程2x+m-4=0的一个根,则m的值是()A.8 B.-8 C.0 D.2 【答案】A【解析】虽然是关于x 的方程,但是含有两个未知数,其实质是知道一个未知数的值求另一个未知数的值.【详解】解:把x=-2代入2x+m-4=0得:2×(-2)+m-4=0解得:m=1.故选A .【点睛】本题含有一个未知的系数.根据已知条件求未知系数的方法叫待定系数法,在以后的学习中,常用此法求函数解析式.10.下列因式分解正确的是( )A .()32222x y xy xy x y -=-B .()222xy xy y y xy x -+-=--C .()2515x x xb x x b --=--D .()2228822x x x -+=- 【答案】D【解析】根据因式分解的基本方法,提取公因式、平方差公式进行求解即可得到答案.【详解】A. ()32222x y xy xy x y -=-,所以错误;B. ()2221xy xy y y xy x -+-=--+,所以错误;C. ()2515x x xb x x b --=--,所以错误; D. ()2228822x x x -+=-,所以正确;故选择D.【点睛】本题考查因式分解,解题的关键是掌握因式分解,注意不要漏项.二、填空题题 11.方程组202132x y z x y z x y z ++=⎧⎪--=⎨⎪--=⎩的解是_____. 【答案】123x y z =⎧⎪=-⎨⎪=⎩【解析】①+②得出3x+y=1④,③﹣②求x ,把x=1代入④求出y ,把x=1,y=﹣2代入①求出z 即可.【详解】202132x y z x y z x y z ++=⎧⎪--=⎨⎪--=⎩①②③ ①+②得:3x+y=1④,③﹣②得:x=1,把x=1代入④得:3+y=1,解得:y=﹣2,把x=1,y=﹣2代入①得:1﹣4+z=0,解得:z=3,所以原方程组的解为123xyz=⎧⎪=-⎨⎪=⎩,故答案为:123xyz=⎧⎪=-⎨⎪=⎩.【点睛】本题考查了解三元一次方程组,能把三元一次方程转化成二元一次方程组或一元一次方程是解此题的关键.12.已知在一个样本中,50个数据分别在5个组内,第一、二、三、五组数据的个数分别为2,8,15,5,则第四组的频数为__________.【答案】20【解析】每组的数据个数就是每组的频数,50减去第1,2,3,5,小组数据的个数就是第4组的频数.【详解】50−(2+8+15+5)=20.则第4小组的频数是20.【点睛】本题考查频数与频率,解题的关键是掌握频数与频率的计算.13.如图,直线a∥b,直线l与直线a相交于点P,与直线b相交于点Q,PM⊥l于点P,若∠1=41°,则∠2等于__.【答案】49°.【解析】根据平行线的性质求得∠1=∠QPA=41°,由于∠2+∠QPA=90°,即可求得∠2的度数.【详解】如图,∵AB ∥CD ,∠1=41°,∴∠1=∠QPA=41°.∵PM ⊥l ,∴∠2+∠QPA=90°.∴∠2+41°=90°,∴∠2=49°.故答案为:49°.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解本题的关键.14.观察图形,并阅读相关的文字,回答:如有9条直线相交,最多有交点_____.【答案】1.【解析】根据题意,结合图形可猜想,n 条直线相交,最多有1+2+3+…+(n-1)=12n (n-1)个交点. 【详解】∵3条直线相交最多有3个交点,4条直线相交最多有6个交点,5条直线相交最多有10个交点,而3=12×2×3,6=12×3×4,10=1+2+3+4=12×4×5, ∴n 条直线相交,最多有1+2+3+…+(n ﹣1)=12n (n ﹣1)个交点, ∴当n =9时,12n (n ﹣1)=12×8×9=1. 故答案为:1.【点睛】此题主要考查了相交线,着重培养学生的观察、实验和猜想、归纳能力,掌握从特殊向一般猜想的方法.15.已知250x x +-=,则代数式2(1)(23)(1)x x x +---的值是___________.【答案】1【解析】先利用乘法公式展开,再合并得到原式=x 2+x-4,然后利用整体代入的方法计算.【详解】()()()21231x x x +---=22232321x x x x x -+--+-=24x x +-∵250x x +-=,即25x x +=,∴原式=5-4=1.故答案是:1.【点睛】考查了整式的混合运算-化简求值:先按运算顺序把整式化简,再把对应字母的值代入求整式的值.有乘方、乘除的混合运算中,要按照先乘方后乘除的顺序运算,其运算顺序和有理数的混合运算顺序类似. 16.如图所示,计划把河水引到水池A 中,先作AB ⊥CD ,垂足为B ,然后沿AB 开渠,能使所开的渠道最短,这样设计的依据是________________________________。