第九章 中心对称图形(简略)
2014下苏教版8年级数学第九章(中心对称图形)讲义及答案

8年级下学期数学讲义05 ( 第九章中心对称图形)知识点:9.1 图形的旋转1.一个图形和它经过旋转所得到的图形中,对应点到旋转中心距离相等,两组对应点分别与旋转中心连线所成的角相等。
9.2 中心对称和中心对称图形2.成中心对称的两个图形中,对应点的连线经过对称中心,且被对称中心平分。
9.3 平行四边形3.平行四边形的对边相等、对角相等、对角线互相平分。
4.一组对边平行且相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形。
9.4 矩形、菱形、正方形5.矩形的四个角都是直角,对角线相等。
三个角是直角的四边形是矩形;对角线相等的平行四边形是矩形。
6.菱形的四条边相等,对角线互相垂直。
四边相等的四边形是菱形;对角线互相垂直的平行四边形是菱形。
7.有一组领边相等的矩形是正方形;有一个角是直角的菱形是正方形。
9.5 三角形的中位线8.三角形的中位线平行于第三边,并且等于第三边的一半。
9.1 图形的旋转试题1.(2013•南昌)如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE.若∠CAE=65°,∠E=70°,且AD⊥BC,∠BAC的度数为()A.60°B.75°C.85°D.90°2.(2013•河池)如图(1),已知两个全等三角形的直角顶点及一条直角边重合.将△ACB绕点C按顺时针方向旋转到△A′CB′的位置,其中A′C交直线AD于点E,A′B′分别交直线AD、AC于点F、G,则在图(2)中,全等三角形共有()A.5对B.4对C.3对D.2对3.(2011•哈尔滨)如图,在Rt△ABC中,∠BAC=90°,∠B=60°,△AB′C′可以由△ABC绕点A顺时针旋转90°得到(点B′与点B是对应点,点C′与点C是对应点),连接CC′,则∠CC′B′的度数是()A.45°B.30°C.25°D.15°4.(2009•漳州)如图,△OAB绕点O逆时针旋转80°得到△OCD,若∠A=110°,∠D=40°,则∠α的度数是()A.30°B.40°C.50°D.60°5.(2008•庐阳区)如图,将△ABC绕着点C按顺时针方向旋转20°,B点落在B′位置,A点落在A′位置,若AC⊥A′B′,则∠BAC的度数是()A.50°B.60°C.70°D.80°6.(2013•铁岭)如图,在△ABC中,AB=2,BC=3.6,∠B=60°,将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为___________.7.(2013•吉林)如图,把Rt△ABC绕点A逆时针旋转40°,得到Rt△AB′C′,点C′恰好落在边AB上,连接BB′,则∠BB′C′=___________度.8.(2008•厦门)如图,点G是△ABC的重心,CG的延长线交AB于D,GA=5cm,GC=4cm,GB=3cm,将△ADG绕点D旋转180°得到△BDE,则DE=___________cm,△ABC的面积=___________cm2.9.(2011•珠海)如图,将一个钝角△ABC(其中∠ABC=120°)绕点B顺时针旋转得△A1BC1,使得C点落在AB的延长线上的点C1处,连接AA1.(1)写出旋转角的度数;(2)求证:∠A1AC=∠C1.10.(2006•三明)已知△ABC中,AB=AC,∠A=36°,点D在AC上,将△BDC绕点D按顺时针方向旋转α(0°<α<180°),使△BDC与△ADE重合(如图所示).(1)求角α;(2)说明四边形EBCD是等腰梯形.9.2 中心对称和中心对称图形试题1.(2013•黔西南州)在平行四边形、等腰梯形、等腰三角形、矩形、菱形五个图形中,既是中心对称图形又是轴对称图形的有()A.1个B.2个C.3个D.4个2.(2013•抚顺)下列图形中,不是中心对称图形的是()A.B.C.D.3.(2010•连云港)下列四个多边形:①等边三角形;②正方形;③正五边形;④正六边形、其中,既是轴对称图形又是中心对称图形的是()A.①②B.②③C.②④D.①④4.把26个英文字母依照轴对称性和中心对称性分成5组:①FRPJLG□②HIO□③NS□④BCKE□⑤VATYWU□,现在还有5个字母D、M、Q、X、Z请你按原规律补上,其顺序依次为()A.Q XZMD B.D MQZX C.Z XMDQ D.Q XZDM5.下列的正方体的平面展开图中,既不是轴对称图形,也不是中心对称图形的是()A.B.C.D.6.(2011•曲靖)小明、小辉两家所在位置关于学校中心对称.如果小明家距学校2公里,那么他们两家相距___________公里.7.(1997•安徽)如右图,线段AB关于点O(不在AB上)的对称线段是A′B′;线段A′B′关于点O′(不在A′B′上)的对称线段是A″B″.那么线段AB与线段A″B″的关系是___________.8.(2012•广陵区二模)如下图,是4×4的正方形网格,把其中一个标有数字的白色小正方形涂黑,就可以使图中的黑色部分构成一个中心对称图形,则这个白色小正方形内的数字是___________.9.(1)已知实数a,b满足a(a+1)-(a2+2b)=1,求a2-4ab+4b2-2a+4b的值.(2)如图是一个中心对称图形,A为对称中心,若∠C=90°,∠B=30°,BC=1,则BB′的长?10.已知:如图所示,E是等腰梯形一腰CD的中点,EF⊥AB,垂足为F,求证:S梯形ABCD=AB•EF.9.3 平行四边形试题1.(2013•泸州)四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.A B∥DC,AD∥BC B.A B=DC,AD=BC C.A O=CO,BO=DO D.A B∥DC,AD=BC 2.(2013•乐山)如图,点E是▱ABCD的边CD的中点,AD,BE的延长线相交于点F,DF=3,DE=2,则▱ABCD的周长为()A.5B.7C.10 D.143.(2013•湖北)若平行四边形的一边长为2,面积为4根号6,则此边上的高介于()A.3与4之间B.4与5之间C.5与6之间D.6与7之间4.(2012•包头)如图,过▱ABCD的对角线BD上一点M分别作平行四边形两边的平行线EF与GH,那么图中的▱AEMG的面积S1与▱HCFM的面积S2的大小关系是()A.S1>S2B.S1<S2C.S1=S2D.2S1=S25.(2009•桂林)如图,在平行四边形ABCD中,AC,BD为对角线,BC=6,BC边上的高为4,则图中阴影部分的面积为()A.3B.6C.12 D.246.(2012•眉山)如图,平行四边形ABCD中,AB=5,AD=3,AE平分∠DAB交BC的延长线于F点,则CF=___________.7.(2011•天津)如图,六边形ABCDEF的六个内角都相等,若AB=1,BC=CD=3,DE=2,则这个六边形的周长等于___________.8.(2010•海南)如图,在▱ABCD中,AB=6cm,∠BCD的平分线交AD于点E,则DE=___________cm.9.(2013•玉溪)如图,在▱ABCD中,点E,F分别是边AD,BC的中点,求证:AF=CE.10.2013•茂名)如图,在▱ABCD中,点E是AB边的中点,DE与CB的延长线交于点F.(1)求证:△ADE≌△BFE;(2)若DF平分∠ADC,连接CE.试判断CE和DF的位置关系,并说明理由.11.(2012•永州)如图,在等腰梯形ABCD中,AD∥BC,点E、F、G分别在边AB、BC、CD上,且AE=GF=GC.求证:四边形AEFG为平行四边形.9.4 矩形、菱形、正方形试题1.(2013•淄博)如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB中点)所在的直线上,得到经过点D的折痕DE.则∠DEC的大小为()A.78°B.75°C.60°D.45°2.(2013•枣庄)如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为()A.20 B.12 C.14 D.133.(2013•宜宾)矩形具有而菱形不具有的性质是()A.两组对边分别平行B.对角线相等C.对角线互相平分D.对角线互相平分4.(2013•南充)如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A.12 B.24 C.12√3 D.16√35.(2012•西宁)如图,E、F分别是正方形ABCD的边BC、CD上的点,BE=CF,连接AE、BF.将△ABE绕正方形的对角线交点O按顺时针方向旋转到△BCF,则旋转角是()A.45°B.120°C.60°D.90°6.(2013•钦州)如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,则PB+PE的最小值是___________.7.(2013•赤峰)如图,矩形ABCD中,E是BC的中点,矩形ABCD的周长是20cm,AE=5cm,则AB的长为___________cm.8.(2013•盐城)如图,在平行四边形ABCD中,E为BC边上的一点,连结AE、BD且AE=AB.(1)求证:∠ABE=∠EAD;(2)若∠AEB=2∠ADB,求证:四边形ABCD是菱形.9.(2013•聊城)如图,四边形ABCD中,∠A=∠BCD=90°,BC=CD,CE⊥AD,垂足为E,求证:AE=CE.10..(2013•晋江市)如图,BD是菱形ABCD的对角线,点E、F分别在边CD、DA上,且CE=AF.求证:BE=BF.9.5 三角形的中位线试题1.(2013•西宁)如果等边三角形的边长为4,那么等边三角形的中位线长为()A.2B.4C.6D.82.(2013•巴中)如图,在梯形ABCD中,AD∥BC,点E、F分别是AB、CD的中点且EF=6,则AD+BC的值是()A.9B.10.5 C.12 D.153.(2012•丹东)如图,菱形ABCD的周长为24cm,对角线AC、BD相交于O点,E是AD的中点,连接OE,则线段OE的长等于()A.3cm B.4cm C.2.5cm D.2cm4.(2011•安徽)如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是()A.7B.9C.10 D.115.(2013•安顺)如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.6.(2010•沈阳)如图,菱形ABCD的对角线AC与BD相交于点O,点E,F分别为边AB,AD的中点,连接EF,OE,OF,求证:四边形AEOF是菱形.7.(2008•贵港)如图所示,在梯形ABCD中,AD∥BC,点E、F分别为AB、CD的中点.连接AF并延长,交BC的延长线于点G.(1)求证:△ADF≌△GCF;(2)若EF=7.5,BC=10,求AD的长.答案9.11,解:根据旋转的性质知,∠EAC=∠BAD=65°,∠C=∠E=70°.如图,设AD⊥BC于点F.则∠AFB=90°,∴在Rt△ABF中,∠B=90°-∠BAD=25°,∴在△ABC中,∠BAC=180°-∠B-∠C=180°-25°-70°=85°,即∠BAC的度数为85°.故选C.2,解:旋转后的图中,全等的三角形有:△B′CG≌△DCE,△A′B′C≌△ADC,△AGF≌△A′EF,△ACE≌△A′CG,共4对.故选:B.3,解:由旋转的性质可知,AC=AC′,又∠CAC′=90°,可知△CAC′为等腰直角三角形,所以,∠CC′A=45°.∵∠CC′B′+∠ACC′=∠AB′C′=∠B=60°,∴∠CC′B′=15°.故选D.4,解:根据旋转的意义,图片按逆时针方向旋转80°,即∠AOC=80°,又∵∠A=110°,∠D=40°,∴∠DOC=30°,则∠α=∠AOC-∠DOC=50°.故选C.5,解:∵△ABC绕着点C按顺时针方向旋转20°,B点落在B′位置,A点落在A′位置∴∠BCB′=∠ACA′=20°∵AC⊥A′B′,∴∠BAC=∠A′=90°-20°=70°.故选C.6,解:由旋转的性质可得:AD=AB,∵∠B=60°,∴△ABD是等边三角形,∴BD=AB,∵AB=2,BC=3.6,∴CD=BC-BD=3.6-2=1.6.故答案为:1.6.7,解:∵Rt△ABC绕点A逆时针旋转40°得到Rt△AB′C′,∴AB=AB′,∠BAB′=40°,在△ABB′中,∠ABB′=1/2(180°-∠BAB′)=1/2(180°-40°)=70°,∵∠AC′B′=∠C=90°,∴B′C′⊥AB,∴∠BB′C′=90°-∠ABB′=90°-70°=20°.故答案为:20.8,解:∵点G是△ABC的重心,∴DE=GD=1/2GC=2,CD=3GD=6,∵GB=3,EG=GC=4,BE=GA=5,∴BG2+GE2=BE2,即BG⊥CE,∵CD为△ABC的中线,∴S△ACD=S△BCD,∴S△ABC=S△ACD+S△BCD=2S△BCD=2×1/2×BG×CD=18cm2.填:2,18.9,(1)解:∵∠ABC=120°,∴∠CBC1=180°-∠ABC=180°-120°=60°,∴旋转角为60°;(2)证明:由题意可知:△ABC≌△A1BC1,∴A1B=AB,∠C=∠C1,由(1)知,∠ABA1=60°,∴△A1AB是等边三角形,∴∠BAA1=60°,∴∠BAA1=∠CBC1,∴AA1∥BC,∴∠A1AC=∠C,∴∠A1AC=∠C1.10,解:(1)∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵△BDC与△ADE重合,∴∠DBC=∠A=36°,∠AED=∠C=72°,∴∠ADE=∠BDC=180°-(72°+36°)=72°,∴α=180°-∠BDC=180°-72°=108°.(2)由(1)∠ADE=∠C=72°,∴DE∥BC,又BE与CD不平行,∴四边形EBCD是梯形,∵∠ABC=∠C=72°,∴四边形EBCD是等腰梯形.9.21,解:矩形、菱形是轴对称图形,也是中心对称图形,符合题意;等腰三角形、等腰梯形是轴对称图形,不是中心对称图形,不符合题意;平行四边形不是轴对称图形,是中心对称图形,不符合题意.故既是轴对称图形又是中心对称图形的是:矩形、菱形.故选:B.2,解:A、不是中心对称图形,故本选项正确;B、是中心对称图形,故本选项错误;C、是中心对称图形,故本选项错误;D、是中心对称图形,故本选项错误;故选A.3,解:由正多边形的对称性知,偶数边的正多边形既是轴对称图形,又是中心对称图形;奇数边的正多边形只是轴对称图形,不是中心对称图形.故选C.4,解:①不是对称图形,5个子母中不是对称图形的只有:Q;(2)有两条对称轴,并且两对称轴互相垂直,则规律相同的是:X;(3)是中心对称图形,则规律相同的是:Z;(4)是轴对称图形,对称轴是一条水平的直线,满足规律的是:D;(5)是轴对称图形,对称轴是竖直的直线,满足规律的是:M.故各个空,顺序依次为:Q,X,Z,D,M.故选D.5,解:A、不是轴对称图形,也不是中心对称图形;B、是中心对称图形,不是轴对称图形;C、是中心对称图形,但不是轴对称图形;D、不是中心对称图形,是轴对称图形.故选A.6,解:∵小明、小辉两家所在位置关于学校中心对称,∴小明、小辉两家到学校距离相等,∵小明家距学校2公里,∴他们两家相距:4公里.故答案为:4.7,解:中心对称图形中的不在同一直线上的两条对应线段的关系是:平行且相等.故线段AB与线段A″B″的关系是:平行且相等.故答案为:平行且相等.8,解:如图,把标有数字3的白色小正方形涂黑,就可以使图中的黑色部分构成一个中心对称图形.故答案为3.9,解:(1)∵a(a+1)-(a2+2b)=1,∴等式变形得:a-2b=1;原式=(a-2b)2-2(a-2b)=12-2=-1;(2)设AC=x,AB=2x,BB′=4x,在Rt△ABC中AB2=AC2+BC2,∴(2x)2=x2+12,解得:x=±√3/3(负数舍去),∴AB=2×√3/3=2√3/3,∴BB′=4√3/3.10,证明:如图,连接AE交BC的延长线于G点,连接BE,∵AD∥CG,∴∠D=∠ECG,在△ADE和△GCE中∠D=∠ECG;DE=EC;∠DEA=∠CEG∴△ADE≌△GCE(ASA),∴AE=GE,∴可得:S△ABG=S梯形ABCD=2S△ABE=AB×FE.9.31,解:A、由“AB∥DC,AD∥BC”可知,四边形ABCD的两组对边互相平行,则该四边形是平行四边形.故本选项不符合题意;B、由“AB=DC,AD=BC”可知,四边形ABCD的两组对边相等,则该四边形是平行四边形.故本选项不符合题意;C、由“AO=CO,BO=DO”可知,四边形ABCD的两条对角线互相平分,则该四边形是平行四边形.故本选项不符合题意;D、由“AB∥DC,AD=BC”可知,四边形ABCD的一组对边平行,另一组对边相等,据此不能判定该四边形是平行四边形.故本选项符合题意;故选D.2,解:∵四边形ABCD为平行四边形,∴DC∥=AB,AD∥=BC,∵E为CD的中点,∴DE为△FAB的中位线,∴AD=DF,DE=1/2AB,∵DF=3,DE=2,∴AD=3,AB=4,∴四边形ABCD的周长为:2(AD+AB)=14.故选D.3,解:根据四边形的面积公式可得:此边上的高=4√6÷2=2√6,2√6介于4与5之间,则则此边上的高介于4与5之间;故选B.4,解:∵四边形ABCD是平行四边形,EF∥BC,HG∥AB,∴AD=BC,AB=CD,AB∥GH∥CD,AD∥EF∥BC,∴四边形HBEM、GMFD是平行四边形,在△ABD和△CDB中;AD=BC,AB=CD,BD=DB∴△ABD≌△CDB,即△ABD和△CDB的面积相等;同理△BEM和△MHB的面积相等,△GMD和△FDM的面积相等,故四边形AEMG和四边形HCFM的面积相等,即S1=S2.故选C.5,解:通过观察结合平行四边形性质得:S阴影=1/2×6×4=12.故选C.6,解:如图,∵AE平分∠DAB,∴∠1=∠2,平行四边形ABCD中,AB∥CD,AD∥BC,∴∠2=∠3,∠1=∠F,又∵∠3=∠4(对顶角相等),∴∠1=∠3,∠4=∠F,∴AD=DE,CE=CF,∵AB=5,AD=3,∴CE=DC-DE=AB-AD=5-3=2,∴CF=2.故答案为:2.7,解:如图,分别作直线AB、CD、EF的延长线和反向延长线使它们交于点G、H、P.∵六边形ABCDEF的六个角都是120°,∴六边形ABCDEF的每一个外角的度数都是60°.∴△AHF、△BGC、△DPE、△GHP都是等边三角形.∴GC=BC=3,DP=DE=2.∴GH=GP=GC+CD+DP=3+3+2=8,FA=HA=GH-AB-BG=8-1-3=4,EF=PH-HF-EP=8-4-2=2.∴六边形的周长为1+3+3+2+4+2=15.故答案为15.8,解:在平行四边形ABCD中,则AD∥BC,DC=AB,∴∠DEC=∠BCE,又CE平分∠BCD,∴∠BCE=∠DCE,∴∠DCE=∠DEC,即DE=DC=AB=6cm,故此题应填6.9,证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC.∵点E,F分别是边AD,BC的中点,∴AE=CF.∴四边形AECF是平行四边形.∴AF=CE.10,(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC.又∵点F在CB的延长线上,∴AD∥CF,∴∠1=∠2.∵点E是AB边的中点,∴AE=BE.∵在△ADE与△BFE中,∠1=∠2,∠DEA=∠FEB,AE=BE∴△ADE≌△BFE(AAS);(2)解:CE⊥DF.理由如下:如图,连接CE.由(1)知,△ADE≌△BFE,∴DE=FE,即点E是DF的中点,∠1=∠2.∵DF平分∠ADC,∴∠1=∠3,∴∠3=∠2,∴CD=CF,∴CE⊥DF.11,证明:∵梯形ABCD是等腰梯形,AD∥BC,∴∠B=∠C,∵GF=GC,∴∠GFC=∠C,∴∠GFC=∠B,∴AB∥GF,又∵AE=GF,∴四边形AEFG是平行四边形.9.41,解:连接BD,∵四边形ABCD为菱形,∠A=60°,∴△ABD为等边三角形,∠ADC=120°,∠C=60°,∵P为AB的中点,∴DP为∠ADB的平分线,即∠ADP=∠BDP=30°,∴∠PDC=90°,∴由折叠的性质得到∠CDE=∠PDE=45°,在△DEC中,∠DEC=180°-(∠CDE+∠C)=75°.故选B.2,解:∵AB=AC,AD平分∠BAC,BC=8,∴AD⊥BC,CD=BD=1/2BC=4,∵点E为AC的中点,∴DE=CE=1/2AC=5,∴△CDE的周长=CD+DE+CE=4+5+5=14.故选C.3,解:A、矩形与菱形的两组对边都分别平行,故本选项错误;B、矩形的对角线相等,菱形的对角线不相等,故本选项正确;C、矩形与菱形的对角线都互相平分,故本选项错误;D、矩形与菱形的两组对角都分别相等,故本选项错误.故选B.4,解:如图,连接BE,在矩形ABCD中,AD∥BC,∴∠AEF=180°-∠EFB=180°-60°=120°,∠DEF=∠EFB=60°,∵把矩形ABCD沿EF翻折点B恰好落在AD边的B′处,∴∠BEF=∠DEF=60°,∴∠AEB=∠AEF-∠BEF=120°-60°=60°,在Rt△ABE中,AB=AE•tan∠AEB=2tan60°=2√3,∵AE=2,DE=6,∴AD=AE+DE=2+6=8,∴矩形ABCD的面积=AB•AD=2√3×8=16√3.故选D.5,解:将△ABE绕正方形的对角线交点O按顺时针方向旋转到△BCF时,A和B重合,即∠AOB是旋转角,∵四边形ABCD是正方形,∴∠BAO=∠ABO=45°,∴∠AOB=180°-45°-45°=90°,即旋转角是90°,故选D.6,解:如图,连接DE,交AC于P,连接BP,则此时PB+PE的值最小.∵四边形ABCD是正方形,∴B、D关于AC对称,∴PB=PD,∴PB+PE=PD+PE=DE.∵BE=2,AE=3BE,∴AE=6,AB=8,∴DE=√62+82=10,故PB+PE的最小值是10.故答案为:10.7,解:设AB=x,则可得BC=10-x,∵E是BC的中点,∴BE=1/2BC=10−x/2,在Rt△ABE中,AB2+BE2=AE2,即x2+(10−x/2)2=52,解得:x=4.即AB的长为4cm.故答案为:4.8,证明:(1)在平行四边形ABCD中,AD∥BC,∴∠AEB=∠EAD,∵AE=AB,∴∠ABE=∠AEB,∴∠ABE=∠EAD;(2)∵AD∥BC,∴∠ADB=∠DBE,∵∠ABE=∠AEB,∠AEB=2∠ADB,∴∠ABE=2∠ADB,∴∠ABD=∠ABE-∠DBE=2∠ADB-∠ADB=∠ADB,∴AB=AD,又∵四边形ABCD是平行四边形,∴四边形ABCD是菱形.9,证明:如图,过点B作BF⊥CE于F,∵CE⊥AD,∴∠D+∠DCE=90°,∵∠BCD=90°,∴∠BCF+∠DCE=90°,∴∠BCF=∠D,在△BCF和△CDE中,∠BCF=∠D,∠CBE=∠BFC=90°,BC=CD,∴△BCF≌△CDE(AAS),∴BF=CE,又∵∠A=90°,CE⊥AD,BF⊥CE,∴四边形AEFB是矩形,∴AE=BF,∴AE=CE.10,证明:∵四边形ABCD是菱形,∴AB=BC,∠A=∠C,∵在△ABF和△CBE中,AF=CE,∠A=∠C,AB=CB,∴△ABF≌△CBE(SAS),∴BF=BE.9.51,选A.2,解:∵E和F分别是AB和CD的中点,∴EF是梯形ABCD的中位线,∴EF=1/2(AD+BC),∵EF=6,∴AD+BC=6×2=12.故选C.3,解:∵菱形ABCD的周长为24cm,∴边长AB=24÷4=6cm,∵对角线AC、BD相交于O点,∴BO=DO,又∵E是AD的中点,∴OE是△ABD的中位线,∴OE=1/2AB=1/2×6=3cm.故选A.4,解:∵BD⊥DC,BD=4,CD=3,由勾股定理得:BC=√BD2+CD2=5,∵E、F、G、H分别是AB、AC、CD、BD的中点,∴HG=1/2BC=EF,EH=FG=1/2AD,∵AD=6,∴EF=HG=2.5,EH=GF=3,∴四边形EFGH的周长是EF+FG+HG+EH=2×(2.5+3)=11.故选D.5,(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC,又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四边形BCFE是平行四边形,又∵BE=FE,∴四边形BCFE是菱形;(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等边三角形,∴菱形的边长为4,高为2√3,∴菱形的面积为4×2√3=8√3.6,证明:∵点E,F分别为AB,AD的中点∴AE=1/2AB,AF=1/2AD (2分),又∵四边形ABCD是菱形,∴AB=AD,∴AE=AF (4分),又∵菱形ABCD的对角线AC与BD相交于点O ∴O为BD的中点,∴OE,OF是△ABD的中位线.(6分)∴OE∥AD,OF∥AB,∴四边形AEOF是平行四边形(8分),∵AE=AF,∴四边形AEOF是菱形.7,(1)证明:∵AD∥BC,(AD∥BG)∴∠D=∠FCG,∠DAF=∠G.(2分)∵DF=CF,∴△ADF≌△GCF.(4分)(2)解法一:由(1)得△ADF≌△GCF,∴AF=FG,AD=CG.(5分)∵AE=BE,∴EF为△ABG的中位线.∴EF=1/2BG.(6分)∴BG=2×7.5=15.(7分)∴AD=CG=BG-BC=15-10=5.(8分)。
中心对称图形知识点考点全解读(汇总)

中心对称图形知识点考点全解读(汇总)一.图形旋转1.图形旋转的有关概念:图形的旋转、旋转中心、旋转角。
在平面内,将一个图形一个定点转动一定的角度,这样的图形运动称为图形的旋转。
这个定点称为旋转中心,旋转的角度称为旋转角。
注意点:旋转角通常与旋转方向有关,因此在写旋转角时通常要说明旋转方向。
2.旋转图形的性质:(1)旋转前、后的图形全等。
(2)对应点到旋转中心的距离相等。
(3)每一对对应点与旋转中心的边线所成的角彼此相等。
二.中心对称1.中心对称的有关概念:中心对称、对称中心、对称点。
把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么称这两个图形关于这点对称,也称这两个图形成中心对称,这个点叫做对称中心,两个图形中的对应点叫做对称点。
2.中心对称的基本性质:(1)成中心对称的两个图形具有图形旋转的一切性质。
(2)成中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
三.中心对称图形1.中心对称图形的有关概念:中心对称图形、对称中心。
把一个平面图形绕某一点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形。
这个点就是它的对称中心。
2.中心对称与中心对称图形的区别与联系。
如果将成中心对称的两个图形看成一个图形,那么这个整体就是中心对称图形;反过来,如果把一个中心对称图形沿着过对称中心的任一条直线分成两个图形,那么这两个图形成中心对称。
3.图形的平移、轴对称(折叠)、中心对称(旋转)的对比。
(如下图)四.平行四边形1.定义:两组对边分别平行的四边形叫做平行四边形。
2.性质:(边、角、对角线)(1)平行四边形的对边相等。
(2)平行四边形的对角相等。
(3)平行四边形的对角线互相平分。
3.判定:(1)两组对边分别平行的四边形是平行四边形。
(2)一组对边平行并且相等的四边形是平行四边形。
(3)两条对角线互相平分的四边形是平行四边形。
《中心对称》知识全解

《中心对称》知识全解课标要求(1)了解中心对称、对称中心、关于中心的对称点等概念及利用这些概念解决一些问题.(2)会画出与已知图形成中心对称的图形.知识结构内容解析本节课是中心对称的第一课时.它是初中数学的一项重要内容.它与轴对称、轴对称图形、旋转有着密不可分的联系,实际生活中也随处可见中心对称的应用.一、中心对称的定义把一个..图形绕着某一点旋转180°,如果它能够与另一个...图形重合,那么就说这两个图形关于这个点对称,这个点叫做对称中心,两个图形中的对应点叫做关于中心的对称点.二、中心对称与轴对称中心对称轴对称定义把一个图形绕某点旋转180°,如果能与另一个图形完全重合,那么就说这两个图形关于这个点成中心对称,这个点叫做对称中心.把一个图形沿着某条直线折叠,如果能够与另一个图形重合,那么就说着两个图形关于这条直线成轴对称,这条直线叫做对称轴.性质1.关于中心对称的两个图形是全等图形;2.关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分;3.关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等.1.关于轴对称的两个图形是全等图形;2.如果两个图形关于某条直线对称,那么对称轴是对称点连线的垂直平分线;3.两个图形关于某条直线对称,如果它们的对应线段(或延长线)相交,那么交点在对称轴上.举例线段、平行四边形、圆线段、等腰三角形、矩形、菱形、圆温馨提示:中心对称是两个图形之间的关系,它可以看作是特殊的旋转,在解决中心对称问题时,可用一些旋转的方法;全等的图形不一定是中心对称,而中心对称的图形一定是全等的.三、中心对称的性质1.中心对称是一种特殊的旋转,因此,它具有旋转的一切性质,除了具有旋转的一般性质以外,中心对称还具有以下特殊性质:(1)关于中心对称的两个图形是全等形;(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分;(3)关于中心对称的两个图形,对应角相等,对应线段平行(或在同一直线上)且相等.2.确定对称中心的方法(1)连接任意一对对称点,取这条线段的中点,则该点为对称中心;(2)任意连接两对对称点,这两条线段的交点即是对称中心.3.中心对称的识别如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点成中心对称.重点难点本节的重点是:中心对称的概念和性质.教学重点的解决方法:从日常生活现象入手,循序渐进,引导学生从旋转中归纳出中心对称的概念,借助线段、三角形、四边形的旋转过程来归纳出中心对称的性质,学生利用已有的旋转知识,设置一些由浅入深的练习题,加深对中心对称概念和性质的理解.本节的难点是:中心对称性质的应用.教学难点的解决方法:从生活中的旋转入手,让学生体会生活中的中心对称的应用,并通过这种应用对其中的两个量,对应线段和对应角来理解中心对称的性质,最后通过课堂练习得到巩固.教法导引教育家布鲁纳指出“探索是数学教学的生命线”.结合本节课的教学内容以及学生的心理特点和认知水平,主要采用启发探究和直观演示的教学方法,创设情境启导学生观察、探索、抽象、分析中心对称的概念,揭示刻画中心对称的性质.同时,利用多媒体直观演示,使得难于理解的知识形象生动,既锻炼学生的思维,又不超出学生的思维能力,这是用黑板、粉笔所不能达到的效果.学法建议学习本章内容时应注意以下三点:1.学习基本概念和性质时,注意观察现实生活中的各种变换现象,从而加深对基本概念和性质的理解;2.学习图形变换的性质时,要主动参与,积极探索,动手操作,这样才能加深对性质的理解;3.学习时要多观察图形,多与同学的合作交流,在交流和探讨中获得新知识.。
中心对称图形课件

工程设计中常常利用对称性来优化设 计,提高结构的稳定性和美观度。
物理学中的对称性
物理学中许多现象具有对称性,如晶 体结构、电磁场等。
感谢观看
THANKS
学习对称图形的性质和判定方法
对称轴的性质
中心对称图形关于某点对称,轴对称图 形关于某直线对称。
VS
对称性的判定
可以通过比较图形的边长、角度等几何量 来判断一个图形是否具有对称性。
了解对称图形在数学和科学领域的应用
数学中的对称性
工程设计中的对称性
对称性是数学中一个重要的概念,广 泛应用于几何、代数等领域。
在图案设计中的应用
纺织品图案
中心对称的图案在纺织品 设计中很常见,如床单、 窗帘等。
平面设计
在海报、标志、品牌形象 等平面设计中,中心对称 的构图可以使画面更加平 衡、美观。
装饰艺术
在装饰艺术中,中心对称 的构图可以使作品更加精 细、华丽,如地毯、壁画 等。
在自然界和艺术作品中的应用
自然界
许多自然界的景象呈现中心对称的形 态,如雪花、蜂巢等。
04
中心对称图形在现实生活中
的应用
在建筑设计中的对称的建筑立面设计 可以使建筑看起来更加稳 重、庄严,如钟楼、纪念 碑等。
室内空间布局
在室内设计中,中心对称 的空间布局可以营造出平 衡、和谐的感觉,如宴会 厅、会议室等。
景观设计
在景观设计中,中心对称 的布局可以使景观更加协 调、美观,如广场、公园 等。
详细描述
中心对称图形还具有缩放性质。在保持图形的形状不变的情况下,可以将中心对称图形等比例放大或缩小,其对 称中心也会相应地放大或缩小,但对称关系仍然保持不变。这一性质对于理解图形的大小变化和比例关系非常重 要。
第9章 9.2 中心对称与中心对称图形

9. 2中心对称与中心对称图形知识点1 中心对称及其性质1.下列说法正确的是( )A.重合的两个图形成中心对称B.成中心对称的两个图形旋转后必重合C.面积相等的两个图形一定能成中心对称D.旋转后能够重合的两个图形成中心对称2.下列四组图形中成中心对称的有( )A.1组B. 2组C. 3组D. 4组3.如图,ABC ∆与A B C '''∆关于点O 成中心对称,下列结论中不成立的是( )A. OC OC '=B. OA OA '=C. BC B C ''=D. ABC A C B '''∠=∠4.如图,已知ABC ∆与DEF ∆成中心对称,请找出它们的对称中心.5.如图,已知点M 是ABC ∆的边BC 的中点,点O 是ABC ∆外一点.(1)画A B C '''∆,使A B C '''∆与ABC ∆关于点M 成中心对称;(2)画A B C ''''''∆,使A B C ''''''∆与ABC ∆关于点O 成中心对称.知识点2 中心对称图形及其性质6.下列电视台的台标中,是中心对称图形的是( )7.下列图形既是轴对称图形又是中心对称图形的是( )8.如图是一个中心对称图形,A 为对称中心,若90,30,C B BC ∠=︒∠=︒=则BB '的 长为 .知识点3 利用中心对称及其性质设计图案9.如图是在北京举办的世界数学家大会的会标“弦图”,它既标志着中国古代的数学成就, 又像一只转动着的风车,欢迎世界各地的数学家们.请利用“弦图”中的四个直角三角形在方格纸中设计另外两个不同的图案.画图要求:(1)每 个直角三角形的顶点均在方格纸的格点(小正方形的交点)上,且四个三角形互不重叠;(2) 所设计的图案(不含方格纸)必须是中心对称图形或轴对称图形.。
苏科版八年级下册第九章 中心对称图形章节知识点§9.1~9.5

§9.1 图形的旋转【知识点总结】1、生活中的旋转例1:下列现象中:①地下水位逐年下降;②传送带的移动;③方向盘的转动;④水龙头开关的转动;⑤钟摆的运动;⑥荡秋千运动.属于旋转的有()A。
2个 B.3个C。
4个 D.5个2、旋转的概念将图形绕一个顶点转动一定的角度,这样的图形运动称为图形的旋转,这个定点称为旋转中心,旋转的角度称为旋转角。
图形的旋转不改变图形的形状、大小,只改变图形上点的位置. 例2:如图所示,ΔABC绕顶点C顺时针方向旋转某一角度后,得到ΔA′B′C′.请回答下列问题:(1)旋转中心是哪一点?(2)旋转角是哪个角?(3)经过旋转,点A、B分别移动到什么位置?(4)找出图形中所有相等的角和线段。
例2图3、旋转的性质一个图形和它经过旋转所得到的图形中,对应点到旋转中心距离相等,两组对应点分别与旋转中心连线所成的角相等.例3:四边形ABCD是正方形,E、F分别是DC和CB延长线上的点,且DE=BF,连接AE、AF、EF (1)求证:△ADE≌△ABF;(2)填空:△ABF可以由△ADE绕旋转中心点,按顺时针方向旋转度得到;(3)若BC=8,DE=6,求△AEF的面积.4、画旋转后的图形利用图形的旋转的性质,可以画出一个图形绕某点按照一定的方向旋转一定角度后的图形。
基本画法:将图形上的一些特殊点与旋转中心连接,以旋转中心为圆心,连线段长为半径画图,按照旋转的角度来找出对应点,再画出所有的对应线段。
例4:如图,O为ΔABC外的一点,求作:ΔABC绕点O按顺时针方向旋转60°后所得的ΔA′B′C′。
题型一确定图形的旋转角度例1:如图所示,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为()A。
30°B。
45°C。
90°D。
135°题型二确定图形的旋转中心.O例2:如图,O为正方形ABCD的边CD的中点,如果正方形CDEF旋转后能与正方形ABCD重合,那么图形所在的平面上可以作为旋转中心的点共个。
中心对称(课件)

9.2 中心对称与中心对称图形

常熟市实验中学——吴静
观察:下列每个图形都是由两个形状、大小
完全相同的图案组成的,他们成轴对称吗?
中心对称:
像这样,如果一个图形绕某一点旋转180°后,能与 另一个图形重合,那么称这两个图形关于这点对称, 也称这两个图形成中心对称。 这个点叫做对称中心。 两个图形中的对应点,叫做对称点。
A
D
B C
拓展提高
过长方形对称中心任意画一条直线将图形分成两部分,这 两部分面积有何关系?圆呢?
A B
·
O
D
C
把这个图形的面积分 结论:过任意一个中心对称图形 对称中心的直线 成相等的两部分.
动脑筋:
有一块长方形的田地,上面有一口圆形的井,现在要 用直线将这块田地分成两块面积相等的田,请帮忙画 出分割线。
·
想一想
有一个“L”型的钢板如图所示,现在要用一条直线把它 分成两块,并且要满足分割后两块的面积相等,你能画出 这条分割线吗?
小结思考:通过本节课的学习,你有什么收获?
1. 中心对称和中心对称图形概念,两者有什么区 别和联系?
名称
中心对称
中心对称图形 具有某种性质的一个图形
区别 两个图形的关系 联系
若把中心对称图形的 两部分 看作两个图形,则它们成中心对称, 若把成中心对称的 两个图形看作一个整体,则它是中心对称图形。
2.中心对称有何性质?
所以这两个图形是中心对称图形
深入理解:
例1:如图,已知线段AB和线段A'B'成中心对称,请找出它 们的对称中心O。
B A
O
A' B'
常用方法:对称点连线的交点即为所求对称中心。
《中心对称图形》

汇报人:日期:目录•中心对称图形的定义•中心对称图形的性质•中心对称图形的应用•中心对称图形的证明方法•中心对称图形的作图方法•中心对称图形的拓展思考中心对称图形的定义特性中心对称图形是轴对称图形的一种特例,其特点是图形以对称中心为旋转轴,旋转180度后能与自身重合。
定义如果一个图形绕某一点旋转180度后,能与自身重合,那么这个图形就叫做中心对称图形。
这个点叫做对称中心。
中心对称图形的定义及特性在中心对称图形中,过对称中心的任意一条直线,都将图形分成两个全等形。
在中心对称图形中,过对称中心的任意一条直线,若该直线与对称中心垂直,则这条直线将图形分成两个全等形。
中心对称图形的几何意义平行线性质垂直平分线性质01直线型以一条直线为对称轴的图形,如正弦函数图像等。
02圆型以圆为对称轴的图形,如圆形、椭圆形等。
03多边形型以多边形为对称轴的图形,如正多边形等。
中心对称图形的分类中心对称图形的性质旋转性质旋转中心01中心对称图形有一个明显的旋转中心,图形围绕这个中心旋转能够完全重合。
旋转角度02对于中心对称图形,旋转角度可以是任意角度,但旋转后图形不会改变形状和大小。
旋转对称性03中心对称图形在旋转后保持对称性,即旋转前后的图形是全等的。
在中心对称图形中,过图形旋转中心的平行线段长度相等且互相平行。
平行线段平行四边形平行性质的应用平行四边形是中心对称图形的一种,其两条对角线互相平分且相等。
利用中心对称图形的平行性质,可以方便地解决一些几何问题。
030201中心对称图形有一条经过图形旋转中心的对称轴,该轴将图形分为两个完全相同的部分。
对称轴对于中心对称图形,沿对称轴进行对称变换可以得到新的图形,这个新的图形与原图形是全等的。
对称变换利用中心对称图形的对称性质,可以找到解决几何问题的捷径。
对称性质的应用中心对称图形的应用中心对称图形在绘画和雕塑中有着广泛的应用,如旋转对称的图案、对称的花纹等,能够带来视觉上的舒适感和美感。
八年级数学下册期中复习 第九章 中心对称图形

A D CB (第2题) (第3题) BCDEF A 八年级数学下册期中复习 第九章 中心对称图形概念与定义相关练习 考点1.平行四边形的性质以及判定性质:1)平行四边形两组对边分别平行且相等.2)平行四边形对角相等,邻角互补.3)平行四边形对角线互相平分.4)平行四边形是中心对称图形.判定方法:1)定义:两组对边分别平行的四边形是平行四边形.2)一组对边平行且相等的四边形是平行四边形.3)两组对边分别相等的四边形是平行四边形.4)对角线互相平分的四边形是平行四边形.基础训练: 1、能够判断一个四边形是平行四边形的条件是( ) A 、一对角相等 B 、两条对角线互相平分阶段 C 、两条对角线互相垂直 D 、一组邻角互补 2、判断一个四边形是平行四边形的条件是( ) A 、AB ∥CD ,AD =BC B 、∠A =∠B ,∠C =∠D C 、AB =CD ,AD =BC D 、AB =AD ,CB =CD 注意:其他还有一些判定平行四边形的方法,但都不能作为定理使用。
如:“两组对角分别相等的四边形是平行四边形”,它显然是一个真命题,但不能作为定理使用.★1.如图,在□ABCD 中,AC 与BD 相交于点O ,点E 是边BC 的中点,AB =4,则OE 的长是( )A . 2B .2C .1D .21 ★2.如图,□ABCD 中,AC 、BD 为对角线,BC =6,BC 边上的高为4,则阴影部分的面积为( )A .3B .6C .12D .24★3.在△ABC 中,AB =BC ,AB =12cm ,F 是AB 边上的一点,过点F 作FE ∥BC 交CA 于点E ,过点E 作ED∥AB 交于BC 于点D (如图),则四边形BDEF 的周长是 .★4.(如图,□ABCD 中,对角线AC 和 BD 相交于点O ,如果AC=12,BD=10,AB=m ,那么m 的取值范围是_______★5、在平面直角坐标系中,点A 、B 、C 的坐标分别是A(-2,5),B(-3,-1),C(1,-1),在第一象限内找一点D ,使四边形ABCD 是平行四边形,那么点D 的坐标是 .★6.如图,在ABCD 中,已知AB=9㎝,AD=6㎝,BE平分∠ABC 交DC 边于点E ,求DE 的长.★7.如图,平行四边形ABCD 的对角线相交于点O ,直线EF 经过点O ,分别与AB 、CD 的延长线交于点E 、F 。
苏科版数学八年级下册9.2《中心对称与中心对称图形》教学设计

苏科版数学八年级下册9.2《中心对称与中心对称图形》教学设计一. 教材分析《中心对称与中心对称图形》是苏科版数学八年级下册第九章第二节的内容。
本节内容是在学生已经掌握了轴对称的概念和性质的基础上进行学习的,旨在让学生了解中心对称的概念和性质,以及中心对称图形的特点。
教材通过丰富的实例,引导学生探究中心对称图形的性质,从而培养学生的观察能力、操作能力和推理能力。
二. 学情分析学生在学习本节内容前,已经掌握了轴对称的相关知识,对对称性有一定的认识。
但由于中心对称与轴对称在概念和性质上有较大的区别,学生在理解和掌握上可能会有一定的难度。
因此,在教学过程中,教师需要关注学生的认知差异,针对不同学生的学习情况,采取合适的教学策略,引导学生逐步理解和掌握中心对称的概念和性质。
三. 教学目标1.了解中心对称的概念和性质,能识别中心对称图形。
2.能运用中心对称的性质解决一些简单的问题。
3.培养学生的观察能力、操作能力和推理能力。
四. 教学重难点1.中心对称的概念和性质。
2.中心对称图形的特点。
五. 教学方法1.情境教学法:通过丰富的实例,引导学生观察和操作,从而理解和掌握中心对称的概念和性质。
2.小组合作学习:学生在小组内进行讨论和探究,分享学习心得,培养团队合作精神。
3.启发式教学:教师提问引导学生思考,激发学生的学习兴趣,提高学生的解决问题的能力。
六. 教学准备1.教学课件:制作中心对称与中心对称图形的课件,包括图片、动画和例题等。
2.教学素材:准备一些中心对称图形的图片,用于课堂展示和练习。
3.学生活动用品:如剪刀、彩纸等,用于学生的操作活动。
七. 教学过程1.导入(5分钟)利用课件展示一些生活中的对称现象,如建筑、艺术作品等,引导学生关注对称性。
提问:你们认为这些现象是什么对称?引出中心对称的概念。
2.呈现(15分钟)展示一些中心对称图形的图片,如圆、平行四边形等,引导学生观察和思考:这些图形有什么特点?教师引导学生总结出中心对称图形的定义和性质。
《课件中心对称图形》课件

# 课件中心对称图形
对称图形是一种特殊的图形,具有镜像对称性。本课件将介绍对称图形的定 义、对称轴的确定、对称图形的性质以及对称图形的练习。
1. 介绍
什么是对称图形
对称图形是指能够通过某条线将图形分成两 个完全相同的部分。
为什么要学习对称图形
学习对称图形有助于培养观察力和空间想象 力,提高对图形的审美能力。
3 对称图形的性质
对称图形具有性质:对称性、重合性和重心对称性等。
4. 对称图形的练习
给定图形的对称轴 和对称中心
通过观察给定图形的特征, 确定其对称轴和对称中心。
给定图形的部分信 息,确定对称图形
根据图形的部分信息,寻找 满足条件的对称图形。
给定图形,确定所 有对称轴和对称中 心
观察给定图形的特征,找出 所有可能的对称轴和对称中 心。
5. 结束语
对称图形的重要性
对称图形在自然界和艺术中随处可见,了解对称 图形能够增强美感和创造力。
总结
通过学习对称图形,我们开拓了视野,提高了观 察力和空间想象力。
2. 对称轴
1
定义对称轴
对称轴是指将对称图形分成两个完全相同部分的一条线。
2如何确定对称轴源自对称轴可以通过观察图形的特征,如镜像对称性和重心。
3
实例演示
通过实例演示,学生将学会如何确定对称轴。
3. 对称图形的性质
1 对称图形的定义
对称图形是能够在某条线上进行镜像对称的图形。
2 对称图形的种类
常见的对称图形包括正方形、圆形和心形。
中心对称和中心对称图形

中心对称和中心对称图形中心对称是一种几何性质,用来描述一个图形相对于某个中心点的对称性。
中心对称图形是一种具有中心对称性质的图形。
在数学和几何学中,中心对称常常被用于解决各种问题,同时也有着广泛的应用。
1. 中心对称的定义和性质一个图形具有中心对称性,当且仅当它的每个点与一个中心点的连线,将该点与中心点的连线延长相等,而与原来图形上对应的点的连线重合。
这意味着沿着这条连线可以将图形折叠成自身。
具体来说,设图形为G,中心点为O。
如果对于图形G中的任意一点P,存在中心对称点P’,使得OP=OP’,则称图形G具有中心对称性。
中心对称具有以下性质: - 中心对称是自反性的,即一个点关于自身对称。
-中心对称是可逆的,即如果一个图形关于某个中心对称,那么该图形的中心对称点关于同一个中心也与原来的点重合。
2. 中心对称图形的特点中心对称图形是一种特殊的图形,具有一些独特的特点: - 所有的点都具有与中心对称点关于中心点对称的性质。
换句话说,如果一个点在图形中,那么它的对称点也在图形中。
- 中心对称图形的中心对称轴是图形上每个点与其对称点所在直线的中垂线。
- 中心对称图形可以通过沿着中心对称轴折叠成自身,即与图形上的任何一点P对称的点P’都在图形上。
中心对称图形广泛应用于各个领域,特别是在几何学和艺术设计中。
在几何学中,中心对称图形可以帮助我们研究图形的对称性质,解决各种关于对称性的问题。
在艺术设计中,中心对称图形常常被用于创作图案、平面设计和装饰品,给人以和谐、平衡的美感。
3. 中心对称图形的例子中心对称图形有许多种类,下面列举一些常见的例子:3.1 正方形正方形示意图正方形示意图正方形是一个具有四条边长度相等、四个内角均为直角的图形。
正方形具有中心对称性,其中心对称轴为对角线的中垂线,将正方形分为两个对称部分。
3.2 圆圆示意图圆示意图圆是一个由所有与中心点距离相等的点构成的图形。
圆具有中心对称性,其中心对称轴为任意直径的中垂线,将圆分为两个对称部分。
中心对称图形课件

中心对称图形的定
01
义和性质
中心对称图形的定义
中心对称图形是指一个图形绕着某个点旋转180度后,能够与原图形完全重合的图形。
这个点被称为中心对称图形的对称中心。
中心对称图形的对称中心可以是图形内部的任意一点,也可以是图形外部的任意一点。
中心对称图形的性质包括:图形的对称中心是唯一的,图形的对称中心到图形上任意一点 的距离相等。
平移对称图形:图形沿某一条直 线平移一定距离后与原图形重合, 如长方形、梯形等
中心对称图形的应
03
用
在几何图形中的应用
轴对称图形:如正方形、圆形、等边三角形等 旋转对称图形:如正六边形、正十二边形等 反射对称图形:如菱形、平行四边形等 平移对称图形:如矩形、梯形等
在建筑设计中的应用
室内设计:中心对称图形在 室内设计中的应用,如客厅、 餐厅等
定义:具有中心对称性质的图形 特点:图形关于中心对称点对称 例子:圆形、正方形、正三角形等 应用:建筑设计、艺术创作等领域
中心对称面图形
轴对称图形:图形沿某一条直线 对称,如正方形、圆形等
反射对称图形:图形沿某一条直 线反射后与原图形重合,如菱形、 平行四边形等
添加标题
添加标题
添加标题
添加标题
旋转对称图形:图形沿某一点旋 转一定角度后与原图形重合,如 正三角形、正六边形等
形”等形状
在“格式”选项卡中 选择“中心对称”选
项
调整形状的大小和位 置,使其成为中心对
称图形
在“格式”选项卡中 选择“填充”和“边 框”选项,设置图形
的颜色和样式
在“动画”选项卡中 选择“添加动画”, 为图形添加动画效果
保存PPT,完成中心 对称图形的制作
中心对称图形课件(共20张PPT)人教版数学九年级上册

小组讨论 1.我们已经知道,平行四边形是中心对称图形,你能根据中心 对称图形的性质验证平行四边形的哪些性质? (平行四边形的对边互相平行且相等; 平行四边形的对角相等; 平行四边形的对角线互相平分) 2.试着总结中心对称图形的性质
【题型二】中心对称与中心对称图形的区别和联系 例3: 下列说法中,正确的是( A) ①中心对称与中心对称图形是两个不同的概念;②中心对称与 中心对称图形都只有一个对称中心;③中心对称图形是指两个 图形之间的一种关系;④中心对称的两个图形 ,对称点所连线段 的中点刚好是对称中心. A.①②④ B.①②③ C.①③④ D.②③④
(点A,B,C,D的对应点分别是点C,D,A,B ; 重合)
③上述两个旋转的共同点是什么? (都是绕某一点旋转180°,旋转后的图形能与原图形重合)
自主探究
2.请同学们阅读课本67页,并勾画中心对称图形的概念. 3.你还能说出其他的中心对称图形吗?
(正方形 长方形 正六边形等) 4.说说中心对称图形具有哪些特点?它与中心对称有什么区 别和联系?
图形名称 线段 角 等腰三 等边三 直角三 平行四 矩形 菱形 正方 等腰 直角 圆
角形 角形 角形 边形
形 梯形 梯形
是否是轴对 是 是 是 是 否 否 是 是 是 是 否 是
称图形
是否是中心 是 否 否
对称图形
否 否是 是 是 是否 否 是
板书设计
联 ①把中心对称的两个图形看成一个“整体”,则为中心对称图形; 系 ②把中心对称图形的两部分看成两个图形,则它们中心对称
中心对称图形判定简单方法

中心对称图形判定简单方法
1、在平面内,把一个图形绕某一定点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点成中心对称,这个点叫做对称中心,旋转后两个图形上能够重合的点叫做关于对称中心的对称点。
2、常见的中心对称图形有:线段,矩形,菱形,正方形,平行四边形,圆,边数为偶数的正多边形等。
3、例如:正偶数边形是中心对称图形,正奇数边形不是中心对称图形;正六角形是中心对称图形,等腰梯形不是中心对称图形;等边三角形(正三角形)不是中心对称图形,反比例函数的图像双曲线是以原点为对称中心的中心对称图形。
1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九章中心对称图形——平行四边形9.1 图形的旋转班级姓名组别评价一、学习目标阅读教材P56~P58内容问题1.旋转的概念如图,在平面内,将△ABC绕点C逆时针旋转至△EFC的位置,这样的图形运动称为图形的_______,旋转中心为_______,旋转的角度可用∠ACE或_______表示.图形的旋转不改变图形的_______、_______。
问题2.旋转的性质如图,(1)旋转前的△ABC与旋转后的△EFC_______;(2)对应点A和_______到旋转中心点C的距离相等,即AC_______,对应点_______和F到_______的距离相等,即_______FC;(3)线段AC旋转至线段_______形成旋转角∠ACE,线段_______旋转至线段FC形成旋转角∠_______,则有∠ACE=_______.归纳:一个图形和它经过旋转所得到的图形中,对应点到旋转中心的距离_______,两组对应点分别与旋转中心连线所成的角_______.三、要点部分▲1、如图,在正方形ABCD中,E是CD上一点,F在CB的延长线上,且DE=BF.(1)求证:△ADE≌△ABF;(2)将△ADE顺时针旋转多少度后与△ABF重合,旋转中心是什么?9.1图形的旋转学习目标了解理解掌握应用1.通过具体实例认识平面图形关于旋转中心的旋转。
√2.经历对生活中旋转现象的观察、分析的过程,探索旋转的基本性质。
√3.能画出简单图形关于给定旋转中心经过旋转后的图形。
√▲2、如图,在△ABC和△AEF中,∠B=∠E,AB=AE,BC=EF,∠EAB=25°,∠F=57°.AB、EF相交于点P,BC交EF、AF于点N、M.(1)试说明∠EAB=∠FAC;(2)△ABC可以经过图形的变换得到△AEF,请你描述这个变换过程;(3)求∠AMB的度数.▲3、(1)画出将线段AB绕点O按顺时针方向旋转1000后的图形。
(2)画出将△ABC绕点C按逆时针方向旋转1200后的对应三角形。
★4、如图,画出△ABC绕点O按顺时针方向旋转90°后的△A'B'C'.9.2中心对称与中心对称图形班级姓名组别评价一、学习目标二、基础部分阅读教材P59~P61内容问题1.中心对称的概念如图1,将四边形ABCD绕点_______至少旋转_______°,可与四边形A'B'C'D'完全重合,那么我们称四边形ABCD和四边形A'B'C'D'_______,对称中心是_______。
问题2.中心对称的性质如图1,当四边形ABCD和四边形A'B'C'D'关于点O成中心对称时,(1)连接对应点C和点C'(点D和点D'),它们都经过_______;(2)试一试:连接点A和点A'、点B和点B',是否具备上述特征?答:_______;(3)由旋转性质可知:AO=_______,_______=B'O,_______=C'O,DO=_______.归纳:成中心对称的两个图形中,对应点的连线经过___________,且被_________平分。
问题3.中心对称图形的概念如图2,将四边形ABCD的点B绕点O旋转180°到点_______,将点A绕点O旋转180°到点_______,将点D绕点O旋转180°到点_______,将点C绕点O旋转180°到点_______,此时,整个图形绕点_______旋转了_______,我们发现旋转后的图形与原图形_______.我们就把具有这种变换特征的图形称为_______.绕着固定不动的那个点称为图形的_______.归纳:中心对称与中心对称图形的区别与联系三、要点部分9.2中心对称与中心对称图形学习目标了解理解掌握应用1.经历观察、操作、思考、讨论等数学活动,通过具体实例认识中心对称,探索中心对称的性质。
√2.认识中心对称图形,探索中心对称图形的性质。
√▲1、已知线段AB与点O的位置如图(1)(2)所示,试分别画出线段AB关于点O的对称线段A′B′.AB(1)OAB(2)O▲2、如图,已知等边三角形ABC和点O,画△A1B1C1,使△A1B1C1和△ABC关于点O对称.★3、如图,△ABC和△A'B'C '关于某一点对称,王林同学不小心把墨水洒在纸上,只能看到△ABC和线段BC的对应线段B'C',请你帮王林同学找到对称中心O,并补全△A'B'C'.9.3平行四边形(1)班级姓名 组别 评价一、学习目标二、基础部分阅读教材P64~P66内容 问题1.平行四边形的概念如图1,AB ∥DC ,AD ∥BC ,则四边形ABCD 是_______,记作 _______,读作_______.问题2.平行四边形是中心对称图形如图2,将△ABC 绕边AC 的中点O 旋转180°,可得到△_______,则 △_______和△_______关于点_______成_______对称,由旋转的性质可以 得到∠BAC =∠_______,∠BCA =∠_______,∴_______ ∥_______, _______∥_______.∴由概念可知四边形ABCD 是平行四边形,综上可知 平行四边形ABCD 是_______对称图形,对称中心是_______. 问题3.平行四边形的性质(如图2)(1) AB =_______,AD =_______(2) ∠ABC =∠_______,∠BAD =∠_______, (3) OA =_______,OB =_______。
归纳:平行四边形的对边_______,对角_______,对角线______________。
三、要点部分▲ 1、在平行四边形ABCD 中,已知∠A=40°,求其它各角的度数。
变题:(1)变∠A=40°为∠B=120°变题:(2)变∠A=40°为∠A+∠C=100°▲2、在平行四边形ABCD 中,已知AB=8,周长为24,求其余三边的长。
9.3平行四边形(1) 学习目标 了解 理解 掌握 应用1.经历探索平行四边形的有关概念和特征的过程,在有关活动中发展学生的探索意识和合作交流的习惯。
√ 2.探索平行四边形对边相等,对角相等以及对角线互相平分的特征。
√▲ 3、如图,在平行四边形ABCD 中,已知对角线AC 和BD 相交于点O ,△AOB 的周长为15,AB=6,那么对角线AC 与BD 的和是多少?▲4、如图,在□ABCD 中,过AC 的中点O 作直线,分别交AD 、BC 于点E 、F . 求证:△AOE ≌△COF .★5、 如图,平行四边形ABCD 的周长为36cm ,由钝角顶点D 向AB 、BC 引两条高DE 、DF ,且DE=4 cm ,DF=5 cm 。
求这个平行四边形的面积。
9.3平行四边形(2)A D EBFC 1班级 姓名 组别 评价一、学习目标二、基础部分阅读教材P66~P68内容从“边”的角度考虑,平行四边形的判定方法(如图) 问题1. 定义:_____________________叫做平行四边形。
注:这也可以作为判定平行四边形的一种方法。
问题2. 已知:如图,在四边形ABCD 中,AD ∥BC , AD =BC 。
求证:四边形ABCD 是平行四边形。
归纳:一组对边____________的四边形是平行四边形。
问题3. 已知:如图,在四边形ABCD 中,AB =CD , AD =BC 。
求证:四边形ABCD 是平行四边形。
归纳:两组对边_________的四边形是平行四边形。
三、要点部分▲ 1、 如图,E 、F 是四边形ABCD 的对角线AC 上的两点,AF =CE , DF =BE ,DF ∥BE .求证: (1)△AFD ≌△CEB ;(2)四边形ABCD 是平行四边形.▲2 如图,BE ∥DF ,∠ADF =∠CBE ,AF =CE . 求证:四边形DEBF 是平行四边形.9.3平行四边形(2)学习目标了解 理解 掌握 应用1.能理解平行四边形的判定与平行四边形的性质的内在联系。
√2.学会从“边”的角度正确运用平行四边形的判定方法,提高辨证思维的能力。
√▲3、 如图,在□ABCD 中,AE ⊥BD ,CF ⊥BD ,垂足分别是E 、F , 求证:四边形AECF 是平行四边形.★4、如图,在□ABCD 中,AE =CF ,M 、N 分别是DE 、BF 的中点. 求证:四边形MFNE 是平行四边形.9.3平行四边形(3)班级 姓名 组别 评价FADBE一、学习目标阅读教材P68~P70内容问题1.平行四边形的判定方法(1)从“边”的角度考虑:____________________________;______________________________;_________________________。
(2)从“对角线”的角度考虑:如图,∵AO=_______ ,BO=_______ ,即_______与_______互相_______,∴四边形ABCD为平行四边形( ).问题2.命题“一组对边平行,另一组对边相等的四边形是平行四边形”是_______命题(填“真”或“假”),我们可以列举一个符合条件的反例:_______.问题3.反证法是一种间接证明的方法,不是从已知条件出发直接证明命题的结论成立,而是先提出与结论_______的假设,然后由这个“假设”出发推导出_______的结果,说明假设是错误的,因而命题的结论成立.这种证明的方法称为反证法.如:证明“在△ABC中,AB=AC,则∠B必定为锐角”时,我们可以运用反证法证明.假设∠B不是锐角,则∠B为_______角或_______角.当∠B为直角时,∠C也为_______角,则∠A+∠B+∠C_______180°与“三角形的内角和等于180°”矛盾;当∠B为钝角时,∠C也为_______角,则∠A+∠B+∠C_______180°与“三角形的内角和等于180°”矛盾.因此,假设_______成立,所以∠B必定为锐角.三、要点部分▲1、在平行四边形ABCD中,点E、F、分别中AB、CD上,且AE=CF,四边形DEBF 是平行四边形吗?▲2、如图,□ABCD的对角线AC、BD交于点O,点E、F在AC上,点G、H在BD上,AF=CE,BH=DG.求证:GF∥HE.9.3平行四边形(3)学习目标了解理解掌握应用1.经历从“对角线”的角度探索判别四边形是平行四边形的条件的过程,进一步培养探究意识和有条理地进行表达的能力.√2.进一步加深对平行四边形的性质和平行四边形判定方法的理解.√3.了解反证法,并掌握用反证法证明的一般思路.√▲3、如图,点E、F分别在△ABC的边AB、AC上,求证:BF、CE不能互相平分.★4、如图,□AECF的对角线相交于点O,DB经过点O,分别与AE、CF交于点B、D.求证:四边形ABCD是平行四边形.9.4 矩形、菱形、正方形(1)班级姓名 组别 评价一、学习目标二、基础部分阅读教材P74~P75内容问题1.矩形的概念(如图1)有一个角是_______的平行四边形叫做矩形.矩形是特殊的_______四边形.问题2.矩形的性质(如图2)(1)矩形是平行四边形,具有平行四边形的一切性质.①AB ∥_______,AD ∥_______,AB =_______,AD =_______, 即矩形的________________________________________________; ②∠ABC =∠_______,∠BAD =∠_______,即矩形的________________________________________________; ③OA =_______,OB =_______,即矩形的___________________. (2)矩形是特殊的平行四边形,具有自身特殊的性质.①∠ABC =∠_______=∠_______=∠_______=_______°,即_______; ②AC =_______或OA =_______=_______=_______,即_______.(3)矩形既是_______图形、也是_______图形,_______是它的对称中心.归纳:矩形的性质:________________________________________________;三、要点部分▲ 1、如图,矩形ABCD 中,AC 、BD 相交于点O .如果AB=6cm ,BC=8cm ,那么AC=______cm ,点B 到AC 的距离等于_______cm ,点O 到AB 和BC 的距离分别等于_____cm 和______cm .▲ 2、 如图,在矩形ABCD 中,AE 平分∠DAB 交DC 于点E ,连接BE ,过点E 作EF ⊥BE 交AD 于点F .(1)求证:∠DEF =∠CBE ;9.4 矩形、菱形、正方形(1)学习目标 了解 理解 掌握 应用1.掌握矩形的概念与性质. √ 2.经历矩形的概念与性质的形成过程,发展探究意识与有条理地进行表达的能力.√3.在对矩形特殊性质的探索过程中,领会特殊事物的本质属性与其特殊性质的关系,√(2)请找出图中与BE相等的线段(不另添加辅助线和字母),并说明理由.▲3、已知:如图,矩形ABCD的对角线AC、BD相交于点O,CE∥DB,交AB的延长线于点E。