第十二届【华罗庚金杯】初赛试题及解答

合集下载

第十二届全国华罗庚金杯少年数学邀请赛 (3)

第十二届全国华罗庚金杯少年数学邀请赛 (3)

1第十二届全国“华罗庚金杯”少年数学邀请赛第十二届全国“华罗庚金杯”少年数学邀请赛初赛试卷(初一组)(时间:2007年3月24日 10∶00~11∶00)一、选择题(每小题10分)以下每小题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内.1. 算式 321(1)21(1)2(1)1-⨯----+⨯-+等于( ).(A) 2- (B) 1- (C) 1 (D) 22. 新制作的渗水防滑地板是形状相同的长方形.如图1,三块这样的地板可以拼成一个大的长方形.如果大长方形的周长为150厘米,则一块渗水妨滑地板的面积是( )平方厘米. (A) 450 (B) 600 (C) 900 (D) 1 350 3. 如果一个多项式的各项的次数都相同,则称该多项式为齐次多项式.例如:32322x xy xyz y +++是3次齐次多项式.若22323m xy xy z ++是齐次多项式,则m 等于().(A) 1(B) 2(C) 3(D) 44. 若x y y x +=-,则有( ). (A) y >0,x <0(B) y <0,x >0(C) y <0,x <0(D) x =0,y ≥0或y =0,x ≤05. 设a b >0,cd>0.有如下四个结论: (1) 如果 ad >bc ,则必定有 a b >c d .(2) 如果 ad >bc ,则必定有 a b <cd. (3) 如果 ad <bc ,则必定有a b <c d .(4) 如果 ad <bc ,则必定有 a b >c d. 其中正确结论的个数是( ). (A) 0 (B) 1 (C) 2(D) 3图1第十二届全国“华罗庚金杯”少年数学邀请赛6. 已知a 是整数,则以下四个代数式中,不可能得整数值的是( ).(A)325a + (B)23a- (C)316a + (D)527a -二、填空题(每小题10分)7. 如图2,空心圆柱底面圆环的外径和内径之比为2∶1,若保持内径不变,外径扩大成内径的3倍,则扩大后的空心圆柱的体积是原来的体积的 倍.8. 图3是某车间的1至12月的产量图表,记月份为n ,1至5月份的产量为20an +,6至12月份的产量为2bn -,则ab 等于 .9. 相同的正方块码放在桌面上,从正面看,如图4;从侧面看,如图5.则正方块最多有 个,最少有 个.10.甲种签字笔每支3.5元,乙种签字笔每支2.65元.班上的同学每人出了相同的钱凑在一起买了两种签字笔若干支,将这些笔分给同学们,每人3支多2支,每人4支少13支.该班里有 名同学,每人至少要出 元钱.三、解答题(30分钟完成)11、(15分)若记号“*”表示球两个有理数的平均数的运算,即*2a ba b += (1)对于任意三个有理数a 、b 、c , 等式(*)(*)(*)()*(222)222a b ca ab bc c a b c ++=++++是否成立? (2)试写出一个两边都含有运算符号“*”和“+”且对于任意四个有理数a 、b 、c 、d 都成立的等式。

历届华杯赛初赛小高真题库

历届华杯赛初赛小高真题库

初赛试卷(小学高年级组)一、选择题(每小题10分, 共60分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内.)1.两个有限小数的整数部分分别是7和10,那么这两个有限小数的积的整数部分有()种可能的取值.(A)16 (B)17 (C)18 (D)192.小明家距学校,乘地铁需要30分钟,乘公交车需要50分钟.某天小明因故先乘地铁,再换乘公交车,用了40分钟到达学校,其中换乘过程用了6分钟,那么这天小明乘坐公交车用了()分钟.(A)6 (B)8 (C)10 (D)123.将长方形ABCD对角线平均分成12段,连接成右图,长方形ABCD内部空白部分面积总和是10平方厘米,那么阴影部分面积总和是()平方厘米.(A)14 (B)16 (C)18 (D)204.请在图中的每个方框中填入适当的数字,使得乘法竖式成立.那么乘积是().(A)2986 (B)2858 (C)2672 (D)2754CD BA5. 在序列20170……中,从第5个数字开始,每个数字都是前面4个数字和的个位数,这样的序列可以一直写下去.那么从第5个数字开始,该序列中一定不会出现的数组是( ). (A )8615(B )2016(C )4023(D )20176. 从0至9中选择四个不同的数字分别填入方框中的四个括号中,共有( )种填法使得方框中话是正确的.(A )1(B )2(C )3(D )4二、填空题 (每小题 10 分, 共40分)7. 若15322.254553923444741A ⎛⎫-⨯÷+=⎪ ⎪ ⎪+ ⎪⎝⎭,那么A 的值是________. 8. 右图中,“华罗庚金杯”五个汉字分别代表1—5这五个不同的数字.将各线段两端点的数字相加得到五个和,共有 ________种情况使得这五个和恰为五个连续自然数.9. 右图中,ABCD 是平行四边形,E 为CD 的中点,AE 和BD 的交点为F ,AC 和BE 的交点为H ,AC 和BD 的交点为G ,四边形EHGF 的面积是15平方厘米,则ABCD 的面积是__________平方厘米.10. 若2017,1029与725除以d 的余数均为r ,那么d r -的最大值是________.第二十届华罗庚金杯少年数学邀请赛这句话里有( )个数大于1,有( )个数大于2,有( )个数大于3,有( )个数大于4. 罗华庚金 杯决赛试题B (小学高年级组)一、填空题(每小题10份,共80分)1. 计算:8184157.628.814.48012552⨯+⨯-⨯+=________.2. 甲、乙、丙、丁四人共植树60棵.已知,甲植树的棵数是其余三人的二分之一,乙植树的棵数是其余三人的三分之一,丙植树的棵数是其余三人的四分之一,那么丁植树________棵.3. 当时间为5点8分时,钟表面上的时针与分针成________度的角.4. 某个三位数是2的倍数,加1是3的倍数,加2是4的倍数,加3是5的倍数,加4是6的倍数,那么这个数最小为________.5. 贝塔星球有七个国家,每个国家恰有四个友国和两个敌国,没有三个国家两两都是敌国.对于一种这样的星球局势,共可以组成________个两两都是友国的三国联盟.6. 由四个互不相同的非零数字组成的没有重复数字的所有四位数之和为106656,则这些四位数中最大的是________,最小的是________.7. 见右图,三角形ABC 的面积为1,3:1:=OB DO ,5:4:=OA EO ,则三角形DOE 的面积为________.8. 三个大于1000的正整数满足:其中任意两个数之和的个位数字都等于第三个数的个位数字,那么这3个数之积的末尾3位数字有________种可能数值.二、解答下列各题(每题10分,共40分,要求写出简要过程)9. 将1234567891011的某两位数字交换能否得到一个完全平方数?请说明理由.10. 如右图所示,从长、宽、高为15,5,4的长方体中切走一块长、宽、高为,5,y x 的长方体(,x y 为整数),余下部分的体积为120,求x 和y .yx515411. 圆形跑道上等距插着2015面旗子,甲与乙同时同向从某个旗子出发,当甲与乙再次同时回到出发点时,甲跑了23圈,乙跑了13圈.不算起始点旗子位置,则甲正好在旗子位置追上乙多少次?12. 两人进行乒乓球比赛,三局两胜制,每局比赛中,先得11分且对方少于10分者胜,10平后多得2分者胜.两人的得分总和都是31分,一人赢了第一局并且赢得了比赛,那么第二局的比分共有多少种可能?三、解答下列各题(每小题15分,共30分,要求写出详细过程)13. 如右图所示,点M 是平行四边形ABCD 的边CD 上的一点,且2:1: MC DM ,四边形EBFC 为平行四边形,FM 与BC 交于点G .若三角形FCG 的面积与三角形MED 的面积之差为13cm 2,求平行四边形ABCD 的面积.14. 设“一家之言”、“言扬行举”、“举世皆知”、“知行合一”四个成语中的每个汉字代表11个连续的非零自然数中的一个,相同的汉字代表相同的数,不同的汉字代表不同的数.如果每个成语中四个汉字所代表的数之和都是21,则“行”可以代表的数最大是多少?第十八届华罗庚金杯少年数学邀请赛 初赛试题C (小学高年级组) (时间: 2013 年3月23日)一、选择题 (每小题 10 分, 满分60分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内.)1. 如果mn=+⨯⨯20122014201420132013(其中m 与n 为互质的自然数), 那么m +n 的值是( ). (A )1243 (B )1343 (C )4025 (D )40292. 甲、乙、丙三位同学都把25克糖放入100克水中混合成糖水, 然后他们又分别做了以下事情:最终,( )得到的糖水最甜.(A )甲 (B )乙 (C )丙 (D )乙和丙3. 一只青蛙8点从深为12米的井底向上爬, 它每向上爬3米, 因为井壁打滑, 就会下滑1米,下滑1米的时间是向上爬3米所用时间的三分之一. 8点17分时, 青蛙第二次爬至离井口3米之处, 那么青蛙从井底爬到井口时所花的时间为( )分钟. (A )22 (B )20 (C )17 (D )164. 已知正整数A 分解质因数可以写成γβα532⨯⨯=A , 其中α、β、γ 是自然数. 如果A的二分之一是完全平方数, A 的三分之一是完全立方数, A 的五分之一是某个自然数的五次方, 那么 γβα++ 的最小值是( ).再加入50克含糖率20%的糖水.再加入20克糖和30克水.再加入100克糖与水的比是2:3的糖水.(A)10 (B)17 (C)23 (D)315.今有甲、乙两个大小相同的正三角形, 各画出了一条两边中点的连线. 如图, 甲、乙位置左右对称, 但甲、乙内部所画线段的位置不对称. 从图中所示的位置开始, 甲向右水平移动, 直至两个三角形重叠后再离开. 在移动过程中的每个位置, 甲与乙所组成的图形中都有若干个三角形. 那么在三角形个数最多的位置, 图形中有()个三角形.(A)9 (B)10 (C)11 (D)126.从1~11这11个整数中任意取出6个数, 则下列结论正确的有()个.①其中必有两个数互质;②其中必有一个数是其中另一个数的倍数;③其中必有一个数的2倍是其中另一个数的倍数.(A)3 (B)2 (C)1 (D)0二、填空题(每小题10 分, 满分40分)7.有四个人去书店买书, 每人买了4本不同的书, 且每两个人恰有2本书相同, 那么这4个人至少买了_______种书..8.每天, 小明上学都要经过一段平路AB、一段上坡路BC和一段下坡路CD (如右图). 已知AB:BC:CD =1:2:1, 并且小明在平路、上坡路、下坡路上的速度比为3:2:4. 那么小明上学与放学回家所用的时间比是.9.黑板上有11个1, 22个2, 33个3, 44个4. 做以下操作: 每次擦掉3个不同的数字,并且把没擦掉的第四种数字多写2个. 例如: 某次操作擦掉1个1, 1个2, 1个3, 那就再写上2个4. 经过若干次操作后, 黑板上只剩下3个数字, 而且无法继续进行操作, 那么最后剩下的三个数字的乘积是.10.如右图, 正方形ABCD被分成了面积相同的8个三角形, 如果DG = 5, 那么正方形ABCD面积是.第二十一届华罗庚金杯少年数学邀请赛初赛试卷(小学高年级组)(时间: 2015年12月12日10:00—11:00)一、选择题 (每小题10分, 共60分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内.)1. 算式43421Λ43421Λ个个2016201699999999⨯的结果中含有( )个数字0.(A )2017 (B )2016 (C )2015 (D )20142. 已知A , B 两地相距300米.甲、乙两人同时分别从A , B 两地出发, 相向而行, 在距A 地140米处相遇; 如果乙每秒多行1米, 则两人相遇处距B 地180米.那么乙原来的速度是每秒( )米.(A )532 (B )542(C )3 (D )513 3. 在一个七位整数中, 任何三个连续排列的数字都构成一个能被11或13整除的三位数, 则这个七位数最大是( ).(A )9981733 (B )9884737 (C )9978137 (D )98717734. 将1, 2, 3, 4, 5, 6, 7, 8这8个数排成一行, 使得8的两边各数之和相等, 那么共有( )种不同的排法.(A )1152 (B )864 (C )576 (D )2885. 在等腰梯形ABCD 中, AB 平行于CD , 6=AB , 14=CD , AEC ∠是直角, CE CB =, 则2AE 等于( ).(A )84 (B )80(C )75 (D )646. 从自然数1,2,32015,2016L ,,中, 任意取n 个不同的数, 要求总能在这n 个不同的数中找到5个数, 它们的数字和相等. 那么n 的最小值等于( ). (A )109 (B )110 (C )111 (D )112 二、填空题 (每小题 10 分, 共40分)7. 两个正方形的面积之差为2016平方厘米, 如果这样的一对正方形的边长都是整数厘米, 那么满足上述条件的所有正方形共有 对.8. 如下图, O , P , M 是线段AB 上的三个点, AB AO 54=, AB BP 32=, M 是AB 的中点, 且2=OM , 那么PM 长为 .9. 设q 是一个平方数. 如果2-q 和2+q 都是质数, 就称q 为P 型平方数. 例如, 9就是一个P 型平方数.那么小于1000的最大P 型平方数是 .10. 有一个等腰梯形的纸片, 上底长度为2015, 下底长度为2016. 用该纸片剪出一些等腰梯形, 要求剪出的梯形的两个底边分别在原来梯形的底边上, 剪出的梯形的两个锐角等于原来梯形的锐角, 则最多可以剪出 个同样的等腰梯形.第十七届华罗庚金杯少年数学邀请赛初赛试题A (小学高年级组)一、选择题1、计算:19+⨯+-=[(0.8)24]7.6(___)514(A)30 (B)40 (C)50 (D)602、以平面上4个点为端点连接线段,形成的图形中最多可以有()个三角形。

八年级数学华罗庚金杯少年初赛试卷

八年级数学华罗庚金杯少年初赛试卷

第十二届全国“华罗庚金杯”少年数学邀请赛初赛试卷(初二组)一、选择题(每小题10分)以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内。

1、方程xx 34=-的实根的个数为( )。

A 、1个实根 B 、2个不同的实根 C 、2个相等的实根D 、无实根2、若1->m ,则多项式123+--m m m 的值为( )。

A 、正数B 、负数C 、非负数D 、非正数3、若直线b kx y +=1过第一、二、四象限,那么直线k bx y +=2不经过( )。

A 、第一象限B 、第二象限C 、第三象限D 、第四象限4、如图,在菱形ABCD 中, 80=∠BAD ,AB 的垂直平分线交对角线AC 于点F ,E 为垂足,连结DF ,则CDF ∠等于( )。

A 、 80B 、 70C 、 65D 、 605、若1x ,2x ,…,n x 的方差是1, 则21x +1,22x +1,…,2n x +1的方差是( )。

A 、1B 、2C 、3D 、46、一个长方体的棱长都是正整数,体积是,,那么这样的不同形状的长方体有( )。

A 、1种 B 、3种C 、4种D 、多于4种二、填空题7、如果9)21(4+++=-+-+c b a c b a ,则abc 的值为 。

8、如图,分别延长△ABC 的三边AB ,BC ,CA 至A ',B ',C ',使得AA '=3AB ,BB '=3BC ,CC '=3AC .若1=∆ABC S ,则'''C B A S ∆ 等于 。

9、某校参加华杯赛的初二年级甲、乙两班的学生共a 人,其中甲班平均每人得71分,乙班平均每人得69分,两个班的总分是3480分,则甲、乙两班参赛学生共有 人。

10、一批旅客决定分乘几辆大汽车,并且要使每辆车有相同的人数。

起先,每辆车乘坐22人,发现有一人坐不上车。

若是开走一辆空车,那么所有的旅客刚好平均分乘余下的汽车。

奥数竞赛 第十二届全国华罗庚金杯少年数学邀请赛决赛试卷及答案

奥数竞赛 第十二届全国华罗庚金杯少年数学邀请赛决赛试卷及答案

第十二届全国华罗庚金杯少年数学邀请赛决赛试卷及答案一、填空(每题10分,共80分)1.“华”、“杯”、“赛”三个字的四角号码分别是“2440”、“4199”和“3088”,将“华杯赛”的编码取为244041993088,如果这个编码从左起的奇数位的数码不变,偶数位的数码改变为关于9的补码,例如:0变9,1变8等,那么“华杯赛”新的编码是 。

2.计算;=÷÷-+75.41]25239)21274.3(75.20[ 。

图13.如图书1所示,两个正方形ABCD 和DEFG 的边长都是整数厘米,点E 在线段CD 上,且CE<DE ,线段CF=5厘米,则五边形ABCFG 的面积等于 平方厘米。

4.将52.0523.0523.0....,,4021,250131 ,从小到大排列,第三个数是 。

5.图2a 是一个密封水瓶的切面图,上半部为圆锥状,下半部为圆柱关,底面直径都是10厘米,水瓶高度是26厘米,瓶中液面的高度为12厘米,将水瓶倒置后,如图2b ,瓶中液面的高度是16厘米,则水瓶的容积等于 立方厘米。

(取π=3.14,水瓶壁厚不计)6.一列数是按以下条件确定的:第一个是3,第二个是6,第三个是18,以后每个数是前面所有数的和的2倍,则第六个数等于 ,从这列数的第 个数开始,第个都大于2007。

7.一个自然数,它的最大的约数和次大的约数的和是111,这个自然数是 。

8.用一些棱长是1的小正方体码放成一个立体,从上向下看这个立体,如图3 ,从正面看这个立体,如图4,则这个立体的表面积最多是 。

二、简答下列各题(每题10分,共40分,要求写出简要过程) 9.如图5,在三角形ABC中,点D在BC上,且∠ABC=∠ACB,∠ADC=∠DAC,∠DAB=21°,求∠ABC的度数;并且回答:图中哪些三角形是锐角三角形。

图510.李云靠窗坐在一列时速60千米的火车里,看到一辆有30节车厢的货车迎面驶来,当货车车头经过窗口时,他开始记时,直到最后一节车厢驶过窗口时,所记的时间是18秒,已知货车车厢长15.8米,车厢间距1.2米,货车车头长10米,问货车行驶的速度是多少?11.图6是一个9×9的方格图,由粗线隔为9个横竖各有3个格子的“小九宫”格,其中,有一些小方格填有1至9的数字,小青在第4列的空格中各填入了一个1至9中的自然数,使每行、每列和每个“小九宫”格内的数字都要不重复,然后小青将第4列的数字从上向下写成一个9位数,请写出这个9位数,并且简单说明理由。

历年华杯赛初赛真题合集(12年至17年)(小高组)

历年华杯赛初赛真题合集(12年至17年)(小高组)
目录
第二十二届华罗庚金杯少年数学邀请赛............................................................................................................................ 1 第二十一届华罗庚金杯少年数学邀请赛........................................................................................................................... 3 第二十一届华罗庚金杯少年数学邀请赛........................................................................................................................... 5 第二十届华罗庚金杯少年数学邀请赛............................................................................................................................... 7 第二十届华罗庚金杯少年数学邀请赛............................................................................................................................... 9 第十九届华罗庚金杯少年数学邀请赛 ............................................................................................................................... 11 第十九届华罗庚金杯少年数学邀请赛 ..............................................................................................................................13 第十八届华罗庚金杯少年数学邀请赛 ..............................................................................................................................15 第十八届华罗庚金杯少年数学邀请赛 .............................................................................................................................. 17 第十七届华罗庚金杯少年数学邀请赛............................................................................................................................. 19 第十七届华罗庚金杯少年数学邀请赛 ..............................................................................................................................21 第二十二届华罗庚金杯少年数学邀请赛答案............................................................................................................... 23 第二十一届华罗庚金杯少年数学邀请赛答案............................................................................................................... 24 第二十一届华罗庚金杯少年数学邀请赛答案............................................................................................................... 25 第二十届华罗庚金杯少年数学邀请赛答案 ................................................................................................................... 26 第二十届华罗庚金杯少年数学邀请赛答案 ....................................................................................................................27 第十九届华罗庚金杯少年数学邀请赛答案 ................................................................................................................... 28 第十九届华罗庚金杯少年数学邀请赛答案 ................................................................................................................... 29

第12届“华罗庚金杯”少年数学邀请赛初赛试卷初组

第12届“华罗庚金杯”少年数学邀请赛初赛试卷初组

2007 年第 12 届“华罗庚金杯”少年数学邀请赛初赛试卷(初一组)一、选择题(共 6 小题,每题10 分,满分60 分)1.( 10 分)算式2等于()1﹣(﹣ 1) +A .﹣ 2B .﹣ 1 C. 1 D. 22.( 10 分)新制作的渗水防滑地板是形状、大小同样的长方形.如图,三块这样的地板可以拼成一个大的长方形.假如大长方形的周长为150 厘米,那么每块渗水防滑地板的面积是()A .450 平方厘米B. 600 平方厘米C. 900 平方厘米D. 1350 平方厘米3.( 10 分)假如一个多项式的各项的次数都同样,则称该多项式为齐次多项式.比如:3 2 3是3 次齐次多项式.若m+2 2 3 2是齐次多项式,则m 等于()x +2xy +2 xyz+y x y +3xy zA .1B .2 C. 3 D. 4 4.( 10 分)若 |x+y|= y﹣ x,则有()A .y> 0, x<0 B. y< 0, x> 0C. y< 0, x< 0 D. x= 0, y≥ 0 或 y= 0, x≤ 0 5.( 10 分)设>0,> 0.有以下四个结论:(1)假如 ad> bc,则必然有>;(2)假如 ad> bc,则必然有<;(3)假如 ad< bc,则必然有<;(4)假如 ad< bc,则必然有>.此中正确结论的个数是()A .0B .1 C. 2 D. 3 6.( 10 分)已知a 是整数,则以下四个代数式中,不行能得整数值的是()A .B .C.D.二、填空题(共 4 小题,每题10 分,满分40 分)7.( 10 分)如图,空心圆柱底面圆环的外径和内径之比为2: 1,若保持内径不变,外径扩大成内径的 3 倍,则扩大后的空心圆柱的体积是本来的体积的倍.8.( 10 分)如图是某车间的 1 至 12 月的产量图表,记月份为n, 1 至 5 月份每个月的产量为20+an,6 至 12 月份每个月的产量为bn﹣ 2,则 ab 等于.9.( 10 分)同样的正方块码放在桌面上,从正面看,如图1;从侧面看,如图2.则正方块最多有块,最罕有个.10.( 10 分)甲种署名笔每支 3.5 元,乙种署名笔每支 2.65 元.班上的同学每人出了同样的钱凑在一同买了两种署名笔若干支,将这些笔分给同学们,每人 3 支多 2 支,每人 4 支少 13 支.该班里有名同学,每人起码要出元钱.2007 年第 12 届“华罗庚金杯” 少年数学邀请赛初赛试卷(初一组)参照答案与试题分析一、选择题(共 6 小题,每题10 分,满分60 分)1.( 10 分)算式2等于()1﹣(﹣ 1) +A .﹣ 2B .﹣ 1 C. 1 D. 2【剖析】第一计算括号内面的,而后计算乘除,最后计算加减,由此即可求解.【解答】解:=1﹣ 1+=1.应选: C.【评论】本题主要考察了有理数的混淆运算,解题重点是熟习有理数混淆运算法例:第一计算括号内面的,而后计算乘除,最后计算加减.2.( 10 分)新制作的渗水防滑地板是形状、大小同样的长方形.如图,三块这样的地板可以拼成一个大的长方形.假如大长方形的周长为150 厘米,那么每块渗水防滑地板的面积是()A .450 平方厘米B. 600 平方厘米C. 900 平方厘米D. 1350 平方厘米【剖析】设小长方形的长为 a 厘米,宽为 b 厘米,由题意可知:2( a+b+2b)= 150 且 a = 2b,解得 a 和 b 的值,再计算ab 即可.【解答】解:设小长方形的长为 a 厘米,宽为 b 厘米,由题意可知:大长方形的周长为2( a+b+2b)= 150;①大长方形的宽为a= 2b;②由①②解得 a= 30 厘米, b= 15 厘米,则每块渗水防滑地板的面积=ab= 30× 15= 450 平方厘米.应选: A.【评论】本题主要考察代数式求值,解答本题的重点在于读懂题意找到相应的等量关系,是一道表现数学在生活中运用的好题.3.( 10 分)假如一个多项式的各项的次数都同样,则称该多项式为齐次多项式.比如:3 2 3是 3 次齐次多项式.若m+2 2 3 2是齐次多项式,则m 等于()x +2xy +2 xyz+y x y +3xy zA .1B .2 C. 3 D. 4【剖析】依据齐次多项式的定义一个多项式的各项的次数都同样,得出对于m 的方程m+2+2= 6,解方程即可求出m 的值.【解答】解:由题意,得m+2+2= 6,解得 m= 2.应选: B.【评论】本题考察了学生的阅读能力与知识的迁徙能力.正确理解齐次多项式与单项式的次数的定义是解题的重点.4.( 10 分)若 |x+y|= y﹣ x,则有()A .y> 0, x<0B. y< 0, x> 0C. y< 0, x< 0D. x= 0, y≥ 0 或 y= 0, x≤ 0【剖析】依据绝对值的定义,当x+y≥0时,|x+y|=x+y,当x+y≤ 0时,|x+y|=﹣x﹣y.从中得出正确答案.【解答】解:∵ |x+y|= y﹣ x,①当 x+y≥0 时, |x+y|= x+y,可得 x+y=y﹣ x,∴x= 0.把x= 0 代入 x+y≥0 中,得 y≥ 0,∴ x= 0, y≥ 0.②当 x+y≤0 时, |x+y|=﹣ x﹣ y,可得﹣ x﹣ y= y﹣x,∴y= 0.把y= 0 代入 x+y≤0 中,得 x≤ 0,∴ y= 0, x≤ 0.∴ x= 0, y≥ 0 或 y=0, x≤0.选 D.答本题的重点.5.( 10 分)设>0,>0.有以下四个结论:(1)假如 ad> bc,则必然有>;(2)假如 ad> bc,则必然有<;(3)假如 ad< bc,则必然有<;(4)假如 ad< bc,则必然有>.此中正确结论的个数是()A .0B .1C. 2D. 3【剖析】依占有理数的除法,不等式的基天性质2:不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式的基天性质 3:不等式两边乘(或除以)同一个负数,不等号的方向改变即可作出判断.【解答】解:∵>0,>0,∴ a、b同号,c、d同号.∴ bd>0或bd<0.( 1)假如 ad> bc,当 bd<0 时,则<,故错误;( 2)假如 ad> bc,当 bd>0 时,则>,故错误;( 3)假如 ad< bc,当 bd>0 时,则>,故错误;( 4)假如 ad< bc,当 bd<0 时,则<,故错误.正确结论的个数是 0.应选: A.【评论】本题考察了不等式的基天性质.要仔细弄清不等式的基天性质与等式的基天性质的异同,特别是在不等式两边同乘以(或除以)同一个数时,不单要考虑这个数不等于 0,并且一定先确立这个数是正数仍是负数,假如是负数,不等号的方向一定改变.6.( 10 分)已知 a 是整数,则以下四个代数式中,不行能得整数值的是()A .B .C.D.【剖析】取 a 的一些特别整数值,运用清除法,逐个查验.【解答】解: A、当 a=1 时,为整数;B、当 a=﹣ 1 时,为整数,C、不论 a 取何值,都不行能为整数;D 、当 a=﹣ 1 时,为整数.应选: C.【评论】本题考察了代数式的求值,清除法是做选择题常用的方法,重点是依据式子的特色,用一些切合条件的、较简单的数逐个清除.二、填空题(共 4 小题,每题10 分,满分40 分)7.( 10 分)如图,空心圆柱底面圆环的外径和内径之比为2: 1,若保持内径不变,外径扩大成内径的 3 倍,则扩大后的空心圆柱的体积是本来的体积的倍.【剖析】设空心圆柱的内径为 2a,则本来外径是 4a,变化后的外径是 6a,圆柱的高为 h,就能够分别表示出变化前后的体积,从而能够求出变化后的体积是本来体积的倍数.【解答】解:设空心圆柱的内径为2a,则本来外径是4a,变化后的外径是6a,圆柱的高为 h,∴变化前的空心圆柱的体积为:2 2 2π[(2a)﹣a ]h=3πa h,变化后的空心圆柱的体积为:2 2 2π[( 3a)﹣ a ]h= 8πa h,∴扩大后的空心圆柱的体积是本来的体积的倍数是:2 28πa h÷ 3πa h=.故答案为:.【评论】本题是一道图形形积变化的数学题,考察了圆柱体的体积的计算,难度不大,正确运用体积公式就能够了.8.( 10 分)如图是某车间的 1 至 12 月的产量图表,记月份为n, 1 至 5 月份每个月的产量为20+an,6 至 12 月份每个月的产量为bn﹣ 2,则 ab 等于﹣4.【剖析】依据图表求出 1 至 5 月份的产量及 6 至 12 月份的产量,而后确立 a 和 b 的值,从而可得出答案.【解答】解:由题意得:一月份的产量为18,∴可得: a= 18﹣ 20=﹣ 2;六月份的产量为10,∴b= 2.∴ab=﹣ 4.故答案为:﹣ 4.【评论】本题考察读频数散布直方图的能力和利用统计图获守信息的能力.利用统计图获守信息时,一定仔细察看、剖析、研究统计图,才能作出正确的判断和解决问题.9.( 10 分)同样的正方块码放在桌面上,从正面看,如图1;从侧面看,如图2.则正方块最多有20块,最罕有6个.【剖析】由从正面看获得的图形可得组合几何体基层有 4 列,2 层正方体,由从侧面看得到的图形可得组合几何体基层有 4 行正方体,因此基层最多有4×4= 16 个正方体,最少有4 个正方体,第二层最多有 4 个最罕有 2 个,相加可得最多正方体个数及最少正方体个数.【解答】解:从正面看获得的图形可得组合几何体基层有 4 列, 2 层正方体,从侧面看得到的图形可得组合几何体基层有 4 行正方体,因此最多有正方体的个数用俯视图表示得:;最罕有正方体的个数用俯视图表示得:;∴最多有16+4=20 个,最罕有4+2= 6 个正方体构成该几何体.故答案为: 20,6.【评论】考察由视图判断几何体;用到的知识点为:基层正方体最多的个数为行数×列数;最少个数保证每行或每列有一个正方体即可.10.( 10 分)甲种署名笔每支 3.5 元,乙种署名笔每支 2.65 元.班上的同学每人出了同样的钱凑在一同买了两种署名笔若干支,将这些笔分给同学们,每人 3 支多 2 支,每人 4 支少 13 支.该班里有15 名同学,每人起码要出8.36 元钱.【剖析】(1)能够设有 x 名同学,依据每人 3 支多 2 支,每人 4 支少 13 支及笔的总支数相等可列出方程3x+2= 4x﹣ 13,解方程即可得同学数x=15.( 2)依据第一问可求得笔的总支数为,再设甲种署名笔有 a 支,则乙种署名笔有 b 支,依据每人出的钱数=(甲种署名笔钱数+乙种署名笔钱数)÷15,依据代数式求最值,即可确立每人起码要出的钱数.【解答】解:( 1)设共有 x 名同学,依据题意得: 3x+2= 4x﹣ 13,解得 x= 15.( 2)由于有 15 名同学,则有笔的支数为3× 15+2= 47(支),设甲有 a 支,则乙有 47 ﹣ a 支,每人起码要出的钱数=[3.5a+2.65( 47﹣a) ]÷ 15=,此数要最少则 a 要取最小值=1,则当 a= 1 时,上式== 8.36.答:该班共有15 名同学,每人起码付8.36 元钱.【评论】本题考察了二元一次方程的应用及最值的求法.解题重点是要读懂题目的意思,依据题目给出的条件,找出适合的等量关系,列出方程,再求解.。

初中竞赛数学第十二届“华罗庚金杯”少年数学邀请赛决赛试题及答案(初一)

初中竞赛数学第十二届“华罗庚金杯”少年数学邀请赛决赛试题及答案(初一)

第十二届全国“华罗庚”少年数学邀请赛决赛试卷(初一组)(时间2018年4月21日10:00~11:30)一、填空(每题10分,共80分) 1、计算:=⎪⎭⎫⎝⎛-⨯⎪⎭⎫ ⎝⎛--⨯-3553134217685.17 。

2、“b 的相反数与a 的差的一半的平方”的代数表达式为 。

3、规定符号“⊕”为选择两数中较大者,规定符号“⊙”为选择两数中较小者,例如:3⊕5=5,3⊙5=3,则4、已知 5-=-n m ,1322=+n m ,那么 44n m += 。

5、用一些棱长是1的小正方体码放成一个立体,从上向下看这个立体,如图1,从正面看这个立体,如图2,则这个立体的表面积最多是 。

图1(从上向下看) 图2(从正面看) 6、满足不等式|13|22|1|3+>--n n n 的整数n 的个数是 。

7、某年级原有学生280人,被分为人数相同的若干个班。

新学年时,该年级人数增加到585人,仍被分为人数相同的若干个班,但是多了6个班,则这个年级原有 个班。

8、如果锐角三角形的三个内角的度数均为整数,并且最大角是最小角的5倍,那么这个三角形的最大角的度数是 。

∶∶∶∶∶∶∶∶∶装∶∶∶∶∶∶∶∶∶∶∶∶∶∶∶∶∶∶∶∶∶∶∶订∶∶∶∶∶∶∶∶∶∶∶∶∶∶∶∶∶∶∶∶∶∶线∶∶∶∶∶∶∶∶∶∶二、简答下列各题(每题10分,共40分,要求写出简要过程)9、已知a ,b ,c 都是整数,当代数式 c b a 327++ 的值能被13整除时,那么代数式 c b a 2275-+的值是否一定能被13整除,为什么? 10、如图3所示,在四边形ABCD 中,ND MN AM ==,FC EF BE ==,四边形ABEM ,MEFN ,NFCD 的面积分别记为1S ,2S 和3S ,求312S S S +=?(提示:连接AE 、EN 、NC 和AC )11、图4是一个9×9的方格图,由粗线隔为9个横竖各有3个格的“小九宫”格,其中,有一些方格填有1至9的数字,小鸣在第九行的空格中各填入了一个不大于9的正整数,使每行、每列和每个“小九宫”格内的数字都不重复,然后小鸣将第九行的数字从左向右写成一个9位数。

历届华杯赛初赛小高真题

历届华杯赛初赛小高真题

初赛试卷(小学高年级组)(时间: 2016年12月10日10:00—11:00)一、选择题(每小题10分, 共60分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内.)1.两个有限小数的整数部分分别是7和10,那么这两个有限小数的积的整数部分有()种可能的取值.(A)16 (B)17 (C)18 (D)192.小明家距学校,乘地铁需要30分钟,乘公交车需要50分钟.某天小明因故先乘地铁,再换乘公交车,用了40分钟到达学校,其中换乘过程用了6分钟,那么这天小明乘坐公交车用了()分钟.(A)6 (B)8 (C)10 (D)123.将长方形ABCD对角线平均分成12段,连接成右图,长方形ABCD内部空白部分面积总和是10平方厘米,那么阴影部分面积总和是()平方厘米.(A)14 (B)16 (C)18 (D)204.请在图中的每个方框中填入适当的数字,使得乘法竖式成立.那么乘积是().(A)2986 (B)2858 (C)2672 (D)2754CD BA5. 在序列20170……中,从第5个数字开始,每个数字都是前面4个数字和的个位数,这样的序列可以一直写下去.那么从第5个数字开始,该序列中一定不会出现的数组是( ). (A )8615(B )2016(C )4023(D )20176. 从0至9中选择四个不同的数字分别填入方框中的四个括号中,共有( )种填法使得方框中话是正确的.(A )1(B )2(C )3(D )4二、填空题 (每小题 10 分, 共40分)7. 若15322.254553923444741A ⎛⎫-⨯÷+=⎪ ⎪ ⎪+ ⎪⎝⎭,那么A 的值是________. 8. 右图中,“华罗庚金杯”五个汉字分别代表1—5这五个不同的数字.将各线段两端点的数字相加得到五个和,共有 ________种情况使得这五个和恰为五个连续自然数.9. 右图中,ABCD 是平行四边形,E 为CD 的中点,AE 和BD 的交点为F ,AC 和BE 的交点为H ,AC 和BD 的交点为G ,四边形EHGF 的面积是15平方厘米,则ABCD 的面积是__________平方厘米.10. 若2017,1029与725除以d 的余数均为r ,那么d r -的最大值是________.第二十届华罗庚金杯少年数学邀请赛这句话里有( )个数大于1,有( )个数大于2,有( )个数大于3,有( )个数大于4. 罗华庚金 杯决赛试题B (小学高年级组)一、填空题(每小题10份,共80分)1. 计算:8184157.628.814.48012552⨯+⨯-⨯+=________.2. 甲、乙、丙、丁四人共植树60棵.已知,甲植树的棵数是其余三人的二分之一,乙植树的棵数是其余三人的三分之一,丙植树的棵数是其余三人的四分之一,那么丁植树________棵.3. 当时间为5点8分时,钟表面上的时针与分针成________度的角.4. 某个三位数是2的倍数,加1是3的倍数,加2是4的倍数,加3是5的倍数,加4是6的倍数,那么这个数最小为________.5. 贝塔星球有七个国家,每个国家恰有四个友国和两个敌国,没有三个国家两两都是敌国.对于一种这样的星球局势,共可以组成________个两两都是友国的三国联盟.6. 由四个互不相同的非零数字组成的没有重复数字的所有四位数之和为106656,则这些四位数中最大的是________,最小的是________.7. 见右图,三角形ABC 的面积为1,3:1:=OB DO ,5:4:=OA EO ,则三角形DOE 的面积为________.8. 三个大于1000的正整数满足:其中任意两个数之和的个位数字都等于第三个数的个位数字,那么这3个数之积的末尾3位数字有________种可能数值.二、解答下列各题(每题10分,共40分,要求写出简要过程)9. 将1234567891011的某两位数字交换能否得到一个完全平方数?请说明理由.10. 如右图所示,从长、宽、高为15,5,4的长方体中切走一块长、宽、高为,5,y x 的长方体(,x y 为整数),余下部分的体积为120,求x 和y .yx515411. 圆形跑道上等距插着2015面旗子,甲与乙同时同向从某个旗子出发,当甲与乙再次同时回到出发点时,甲跑了23圈,乙跑了13圈.不算起始点旗子位置,则甲正好在旗子位置追上乙多少次?12. 两人进行乒乓球比赛,三局两胜制,每局比赛中,先得11分且对方少于10分者胜,10平后多得2分者胜.两人的得分总和都是31分,一人赢了第一局并且赢得了比赛,那么第二局的比分共有多少种可能?三、解答下列各题(每小题15分,共30分,要求写出详细过程)13. 如右图所示,点M 是平行四边形ABCD 的边CD 上的一点,且2:1: MC DM ,四边形EBFC 为平行四边形,FM 与BC 交于点G .若三角形FCG 的面积与三角形MED 的面积之差为13cm 2,求平行四边形ABCD 的面积.14. 设“一家之言”、“言扬行举”、“举世皆知”、“知行合一”四个成语中的每个汉字代表11个连续的非零自然数中的一个,相同的汉字代表相同的数,不同的汉字代表不同的数.如果每个成语中四个汉字所代表的数之和都是21,则“行”可以代表的数最大是多少?第十八届华罗庚金杯少年数学邀请赛 初赛试题C (小学高年级组) (时间: 2013 年3月23日)一、选择题 (每小题 10 分, 满分60分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内.)1. 如果mn=+⨯⨯20122014201420132013(其中m 与n 为互质的自然数), 那么m +n 的值是( ).(A )1243 (B )1343 (C )4025 (D )40292. 甲、乙、丙三位同学都把25克糖放入100克水中混合成糖水, 然后他们又分别做了以下事情:最终,( )得到的糖水最甜.(A )甲 (B )乙 (C )丙 (D )乙和丙3. 一只青蛙8点从深为12米的井底向上爬, 它每向上爬3米, 因为井壁打滑, 就会下滑1米,下滑1米的时间是向上爬3米所用时间的三分之一. 8点17分时, 青蛙第二次爬至离井口3米之处, 那么青蛙从井底爬到井口时所花的时间为( )分钟. (A )22 (B )20 (C )17 (D )164. 已知正整数A 分解质因数可以写成γβα532⨯⨯=A , 其中α、β、γ 是自然数. 如果A的二分之一是完全平方数, A 的三分之一是完全立方数, A 的五分之一是某个自然数的五再加入50克含糖率20%的糖水.再加入20克糖和30克水.再加入100克糖与水的比是2:3的糖水.次方, 那么γβα++ 的最小值是( ).(A )10 (B )17 (C )23 (D )315. 今有甲、乙两个大小相同的正三角形, 各画出了一条两边中点的连线. 如图, 甲、乙位置左右对称, 但甲、乙内部所画线段的位置不对称. 从图中所示的位置开始, 甲向右水平移动, 直至两个三角形重叠后再离开. 在移动过程中的每个位置, 甲与乙所组成的图形中都有若干个三角形. 那么在三角形个数最多的位置, 图形中有( )个三角形.(A )9 (B )10 (C )11 (D )126. 从1~11这11个整数中任意取出6个数, 则下列结论正确的有( )个.① 其中必有两个数互质;② 其中必有一个数是其中另一个数的倍数; ③ 其中必有一个数的2倍是其中另一个数的倍数. (A )3 (B )2 (C )1 (D )0 二、填空题 (每小题 10 分, 满分40分)7. 有四个人去书店买书, 每人买了4本不同的书, 且每两个人恰有2本书相同, 那么这4个人至少买了_______种书. .8. 每天, 小明上学都要经过一段平路AB 、一段上坡路BC和一段下坡路 CD (如右图). 已知AB :BC :CD = 1:2:1, 并且小明在平路、上坡路、下坡路上的速度比为3:2:4. 那么小明上学与放学回家所用的时间比是 .9.黑板上有11个1, 22个2, 33个3, 44个4. 做以下操作: 每次擦掉3个不同的数字,并且把没擦掉的第四种数字多写2个. 例如: 某次操作擦掉1个1, 1个2, 1个3, 那就再写上2个4. 经过若干次操作后, 黑板上只剩下3个数字, 而且无法继续进行操作, 那么最后剩下的三个数字的乘积是.10.如右图, 正方形ABCD被分成了面积相同的8个三角形, 如果DG = 5, 那么正方形ABCD面积是.第二十一届华罗庚金杯少年数学邀请赛初赛试卷(小学高年级组)(时间: 2015年12月12日10:00—11:00)一、选择题 (每小题10分, 共60分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内.)1. 算式个个2016201699999999⨯的结果中含有( )个数字0. (A )2017 (B )2016 (C )2015 (D )20142. 已知A , B 两地相距300米.甲、乙两人同时分别从A , B 两地出发, 相向而行, 在距A 地140米处相遇; 如果乙每秒多行1米, 则两人相遇处距B 地180米.那么乙原来的速度是每秒( )米.(A )532 (B )542(C )3 (D )513 3. 在一个七位整数中, 任何三个连续排列的数字都构成一个能被11或13整除的三位数, 则这个七位数最大是( ).(A )9981733 (B )9884737 (C )9978137 (D )98717734. 将1, 2, 3, 4, 5, 6, 7, 8这8个数排成一行, 使得8的两边各数之和相等, 那么共有( )种不同的排法.(A )1152 (B )864 (C )576 (D )2885. 在等腰梯形ABCD 中, AB 平行于CD , 6=AB , 14=CD , AEC ∠是直角, CE CB =, 则2AE 等于( ).(A )84 (B )80 (C )75 (D )646. 从自然数1,2,32015,2016,,中, 任意取n 个不同的数, 要求总能在这n 个不同的数中找到5个数, 它们的数字和相等. 那么n 的最小值等于( ). (A )109 (B )110 (C )111 (D )112 二、填空题 (每小题 10 分, 共40分)7. 两个正方形的面积之差为2016平方厘米, 如果这样的一对正方形的边长都是整数厘米, 那么满足上述条件的所有正方形共有 对.8. 如下图, O , P , M 是线段AB 上的三个点, AB AO 54=, AB BP 32=, M 是AB 的中点, 且2=OM , 那么PM 长为 .9. 设q 是一个平方数. 如果2-q 和2+q 都是质数, 就称q 为P 型平方数. 例如, 9就是一个P 型平方数.那么小于1000的最大P 型平方数是 .10. 有一个等腰梯形的纸片, 上底长度为2015, 下底长度为2016. 用该纸片剪出一些等腰梯形, 要求剪出的梯形的两个底边分别在原来梯形的底边上, 剪出的梯形的两个锐角等于原来梯形的锐角, 则最多可以剪出 个同样的等腰梯形.第十七届华罗庚金杯少年数学邀请赛初赛试题A(小学高年级组)一、选择题1、计算:19+⨯+-=[(0.8)24]7.6(___)514(A)30 (B)40 (C)50 (D)602、以平面上4个点为端点连接线段,形成的图形中最多可以有()个三角形。

华罗庚金杯赛数学试题与答案[第1至15届]

华罗庚金杯赛数学试题与答案[第1至15届]

华罗庚金杯赛数学试题与答案[第1至15届]目录第1届华罗庚金杯赛数学试题与答案 (1)第2届华罗庚金杯赛数学试题与答案 (6)第3届华罗庚金杯赛数学试题与答案 (14)第4届华罗庚金杯赛数学试题与答案 (21)第5届华罗庚金杯赛数学试题与答案 (26)第6届华罗庚金杯赛数学试题与答案 (31)第7届华杯赛初赛试题及解答 (38)第8届华杯赛初赛试题及解答 (41)第9届华杯赛初赛试题及解答 (45)第10届华杯赛初赛试题及解答 (49)第11届华杯赛初赛试题及解答 (53)第12届华杯赛初赛试题及解答 (60)第13届华杯赛少年邀请赛初赛摸拟试卷 (64)第14届华罗庚金杯少年数学邀请赛 (66)第15届华杯赛决赛真题及答案解析 (68)第1届华罗庚金杯赛数学试题与答案1、甲班和乙班共83人,乙班和丙班共86人,丙班和丁班共88人。

问甲班和丁班共多少人?2、一笔奖金分一等奖、二等奖、三等奖,每个一等奖的奖金是每个二等奖奖金的两倍,每个二等奖的奖金是每个三等奖奖金的两倍。

如果评一、二、三等奖各两人,那么每个一等奖的奖金是308元;如果一个一等奖,两个二等奖,三个三等奖,那么一等奖的奖金是多少元?3、一个长方形,被两条直线分成四个长方形,其中三个的面积是20亩、25亩和30亩。

问另一个长方形的面积是多少亩?4、在一条公路上,每隔一百公里有一个仓库,共有五个仓库。

一号仓库存有10吨货物,二号仓库存有20吨货物,五号仓库存有40吨货物,其余两个仓库是空的。

现在想把所有的货物集中存放在一个仓库里,如果每吨货物运输一公里需要0.5元的运费,那么最少要花多少运费才行?5、有一个数,除以3余数是2,除以4余数是1。

问这个数除以12余数是几?6、四个一样的长方形和一个小的正方形(如图)拼成了一个大正方形。

大正方形的面积是49平方米,小正方形的面积是4平方米。

问长方形的短边长度是几米?7、有两条纸带,一条长21厘米,一条长13厘米,把两条纸带剪下同样长的一段以后,发现短纸带剩下的长度是长纸带的长度的八分之十三。

“华杯赛”初赛试题(附详细答案),能做全对的直接上重点中学!

“华杯赛”初赛试题(附详细答案),能做全对的直接上重点中学!

“华杯赛”初赛试题(附详细答案),能做全对的直接上重点
中学!
一、什么是华杯赛?
华罗庚金杯少年数学邀请赛(简称“华杯赛”)是为了纪念我国杰出数学家华罗庚教授,于1986年始创的全国性大型少年数学竞赛活动。

华杯赛堪称国内小学阶段规模最大、最正式也是难度最高的比赛。

华杯赛”是以教育广大青少年从小学习和弘扬华罗庚教授的爱国主义思想、刻苦学习的品质、热爱科学的精神;激发广大中小学生学习数学的兴趣、开发智力、普及数学科学为宗旨的活动。

二、为什么报名参加各大数学杯赛的考试?
1、检验学习效果
通过奥数的学习,能培养良好的思维习惯,有利于智力的开发,且对以后数理化各科的学习也都非常有帮助。

杯赛考试是检测学习效果最好的方式。

2、锻炼思维能力
各大奥数杯赛不仅仅是一种考试,其举办宗旨更多的是致力于学生独立思考、科学探索、创造性地解决问题和创新思维能力的培养。

3、助升学一臂之力
通过杯赛证书增加升学砝码,突出简历亮点,进而拿到参加重点中学升学选拔的机会。

三、华杯赛作用
华杯赛作为目前全国最权威的初中数学比赛,备受北京市各重点中学的认可。

2007年华杯赛北京赛区一、二、三等奖的获奖同学受到了人大附中、北京四中、实验中学、清华附中、101中学等名校的青睐。

甚至单凭优异的华杯赛获奖成绩就可以顺利进入这些名校。

今天的分享就到这儿了。

您有什么问题或建议可以在评论栏留言或给小编发私信,小编一定会在看到留言后第一时间给您回复。

数学竞赛第十二届全国“华罗庚金杯”数学邀请赛决赛试卷(四年级组)

数学竞赛第十二届全国“华罗庚金杯”数学邀请赛决赛试卷(四年级组)

数学竞赛第十二届全国“华罗庚金杯”数学邀请赛决赛试卷(四年级组)班级姓名分数一、填空题(每秒题10分,共80分)1.7×9×11×13×……×2009×2011积的个位数是。

2.哈理波特有一本120页的魔法书,非常可惜被姨妈撕掉了一页,现在所剩的页码之和为7197。

哈理波特的魔法书被撕掉的这一页的页码为。

3.如图,不含▲的正方形有个。

4.标有一号、二号、三号的三个盒子里面各有若干个黑色的小球,如果第一次从一号盒子里面拿20个小球放到二号盒子里面,第二次又从二号盒子里拿15个小球放到三号盒子里,最后再从三号盒子里拿出20个小球放到一号盒子里,这时三个盒子里面的小球都是60个。

一号、二号、三号盒子里面原来各有小球个。

5.大、小两个杯子都未装满水,如果将小杯子的部分水倒入大杯子,并将大水杯倒满,则小杯子还剩水30克,如果将大杯子中的部分水倒入小水杯将其倒满,则大杯子还剩水90克,已知大杯子容积是小杯子的2倍,两杯子原来共装水克。

6.A、B两地之间的道路分上坡和下坡两种路段,共70千米,兰兰上坡速度为5千米/时,下坡速度为7千米/时,去时用了10.5小时,则返回时用小时。

7.三年级一班有学生42人,其中参加美术班的同学有39人,参加体操班的同学有34人,参加游泳班的同学有30人,参加奥数班的同学有37人。

那么,这个班至少有个学生这四种班都参加。

8.一个自然数n,各位数字之和是400,要使n最小,n应当是位数,它的首位数字应当是。

二、解答题(每题10分,共40分,要求写出解答过程)9.清明节,三年一班与三年二班同学各排成一路纵队去扫幕,如果两路纵队同时同方向齐头行进,行6分钟后,一班队伍超过二班队伍。

一班队伍每分钟行60米,二班队伍每分钟行50米。

如果这两路纵队、队尾相齐同时同方向行进则5分钟后,一班队伍超过二班队伍,如果一、二两班队伍的前后两人都相距1米,求一、二两班各有多少人?10.宽18厘米,长未知的同样大小的长方形小纸片拼成如右图所示的图形,求阴影部分的面积。

(完整版)第12届全国“华罗庚金杯”少年数学邀请赛初赛(三年级组)试题试卷

(完整版)第12届全国“华罗庚金杯”少年数学邀请赛初赛(三年级组)试题试卷

第十二届全国“华罗庚金杯”少年数学邀请赛初赛试卷(三年级组)(时间:2007年3月24日10:00---11:00)(每小题10分)以下每题的四个选项中,仅有一个是正确的,请将表示正1、在一条长270米的水渠边植树,每隔3米植一棵,两端都植,则共植树 )棵。

A 、90B 、80C 、91D 、892、在式子B A 10028 中,字母A 是( )时,余数最大。

A 、99B 、2827C 、2901D 、28993、在桌子上放着五个薄圆盘, 如右图所示,它们由下到上放置的次序( )。

A 、X, Y, Z, W, VB 、X, W, V , Z, YC 、Z, V, W, Y , XD 、Z, Y , W, V, X4、在一条长50米的圆形跑道两旁,从头到尾每隔5米插一面彩旗,一共插( )A 、18B 、20C 、21D 、22 5、图中共有( )条线段。

┖┴┴┴┴┴┴┴┴┴┚A 、55B 、45C 、35D 、106、一次乒乓球比赛,共有512名乒乓球运动员参加比赛。

比赛采用淘汰制赛法,失败者被淘汰,将不再参加比赛;获胜者进入下轮比赛,如此进行下去, )场。

A 、1024B 、511C 、256D 、174 二、填空题7、某数加上6,然后乘以6,再减去6,最后除以6,其结果等于6,则这个数是 。

8、△÷○=18……21,△最小是 ,○最小是 。

9、有一列数 1、2、4、7、11、16、22、29、…这列数左起第1994个数除以5的余数是 ____。

10、今年是2007年,父母的年龄和是78岁,兄弟的年龄和是17岁。

四年后,父4倍,母亲的年龄是兄长年龄的3倍。

那么当父亲年龄是兄长年3倍时,是公元 年。

第十二届全国“华罗庚金杯”少年数学邀请赛初赛三年级组试题答案题号 1 2 3 4 5 6答案 C B C B A B 一.填空题(每小题10分,满分40。

第8题每空5分)题号7 8 9 10答案 1 417,22 2 2012提示:9、解:观察这一列数,我们发现它排列的规律是:第2个数比第1个数多1;第3个数比第2个数多2;第4个数比第3个数多3;…依次类推.这样我们就可以先求出第1994个数是几,再算出这个数除以5的余数是多少了.解法一:左起第1994个数是1+1+2+3+…+1993=1+(1+1993)×1993÷2 = 1+1987021= 1987022再计算1987022除以5的余数,得到余数是2.解法二:也可以这样思考:根据这列数排列的规律,我们先列出前15个数,然后再算一下这15个数被5除的余数.列表如下:从上表可以看出:第1、2、3、4、5五个数被5除的余数,与第6、7、8、9、10五个数被5除的余数对应相同,也与第11、12、13、14、15五个数被5除的余数对应相同.由此得出,这一列数被5除的余数,每隔5个数循环出现.因为1994=5×398+4,所以第1994个数被5除得到的余数,与第四个数除以5得到的余数一样,也就是余数为2.。

第十二届全国“华罗庚金杯”少年数...

第十二届全国“华罗庚金杯”少年数...

第十二届全国“华罗庚金杯”少年数...试题预览一、填空(每题10分,共80分)题号 1 2 3 4 5 6 7 8答案 254948903981 0.5 711727 486;8 74 48注:第6题,每空5分.二、简答下列各题(每题10分,共40分,要求写出简要过程)9、解:①由已知条件,,由三角形内角和是180°,在三角形ADC中,.(给4分)②又因为,所以.在三角形BAD中,,即:,解得(给4分)③又因为,,,.因此图中的三角形ABC与三角形CAD都是锐角三角形.(给2分)答:,三角形ABC与三角形CAD都是锐角三角形.评分参考:见解答过程;仅给出正确的答案,无过程,只给4分.10、解法一:设货车车速为x千米/小时,由题意,,解上面方程得到(千米/小时).解法二:货车总长(千米),(2分)客车行进的距离(千米)(2分)货车行进的距离(千米)(2分)货车的速度:(千米/小时)(4分)答:货车车速为每小时44千米.评分参考:解法一,①能列出方程,给5分;②正确解出方程给5分;解法二,见解答.11、解答:填数的方法是排除法,用(m,n)表示位于第m行和第n列的方格.方格图(题目中涂6)第4列已有数字1、2、3、4、5,第6行已有数字6、7、9,所以,在方格(6,4)中只能填数字8;第3行和第5行中都有数字9,所以在方格(7,4)中只能填9;正中的“小九宫”格中已经有7,所以,7只能填在方格(3,4)中了;此时,在第4列中只余下方格(5,4),6只能填在(5,4)中,见图6a.这个9位数是327468951.图6a评分参考:①正确给出答案,给4分;②对图5第4列中4个空格的填法,能说明理由,给6分,每个空格正确给1.5分;③即使最后答案不正确,对于推理正确的空格填法,要适当给分.12、解法一:为使全班同学的平均成绩达到90分,需要将2名得优的同学和1名没有得优的同学匹配为一组,即得优的同学至少应当是没有得优同学的两倍,才能确保全班同学的平均成绩不少于90分.解法二:设全班有n位同学,其中得优的为x人,没得优的为人,则全班同学的总分为,平均分为:,要使全班的平均成绩不少于90分,即,即,.答:得优的同学占全班同学的比例至少是.评分参考:①能判断出得优的人数至少是未得优人数得2倍,给5分,给出正确答案,再给5分;②仅有正确(或猜出)答案,只给5分.三、详答下列各题(每题15分,共30分,要求写出详细过程)13、分析:(1)图7中的等边三角形按照面积大小分类有3种类型,共14个,图7a中,六边形的每1个顶点是某个小号等边三角形的顶点,而且,每个小号等边三角形,有且仅有一个顶点是六边形的一个顶点,既然六边形有6个顶点,图7中有6个小号等边三角形;图7b中,六边形的每一条边是某个中号等边三角形的一条边,而且,每个中号等边三角形有且仅有一条边是六边形的一条边,既然六边形有6条边,图中有6个中号等边三角形;图7c中,大号等边三角形有2个.(2)图7中的非等边等腰三角形,按照面积大小分类有3种类型,共有24个,见图7d.小号(黑色)等腰三角形有6个,因为这类三角形均以六边形的一条边为其长边.并且,六边形的每一条边只唯一对应一个小号等腰三角形,见图7d.正六边形共有6条边,所以有6个小号等腰三角形;中号(圆点)等腰三角形有12个,因为每个中号等腰三角形的长边都是六边形的一条非直径的弦,并且,以非直径的弦为长边的三角形有2个,如图7e,这样的弦共有6条,所以有12个中号三角形;大号(灰色)等腰三角形有6个,因为每个大号等腰三角形的长边都是六边形的一条直径,每条直径上有对应有2个大号三角形,如图7f.共有3条直径,所以有6个大号(灰色)等腰三角形;答:图中共有38个等腰三角形.评分参考:①能分类计算等腰三角形个数,例如:能依照等边三角形和非等边的等腰三角形分类计数,然后依大小再做分类计数,按照等边三角形计数,给6分,按照非等边的等腰三角形分类计数,则给9分;②仅仅给出正确答案,未讲理由,只给5分;③可以用其它分类方法计数.例如:假定正六边形面积是18,则可以依面积分别为1、3、4、9计算等腰三角形的个数,计数的关键是抓住特征做分类,不重复和不遗漏,培养严谨的思维.建议以这种原则判题给分,每类给3-4分.14、解答:按照题意,如果依顺时针方向不间断地给这7个盒子编号,则1号盒子可以有的编号是1,8,15,22,…,7k+1,2号盒子可以有的编号是2,9,16,23,…,7k+2,…,7号盒子可以有的编号是7,14,21,…,7k+7.按照规则,小明将第1枚棋子放在1号盒子,第2枚棋子放在3号盒子,第2枚棋子放在6号盒子,第4枚棋子放在10号盒子,即3号盒子,第5枚棋子放在15号盒子,即1号盒子,第6枚棋子放在21号盒子,即7号盒子;第7枚棋子放在28号盒子,即7号盒子,……按照放棋子的规则,自第8枚棋子开始一个新的周期,即第8枚棋子放在1号盒子,第9枚棋子放在3号盒子,……,第k枚棋子放在号盒子中,即棋号数为除7的余数,也就是每7枚棋子为一个周期.并且,这7枚棋子有2枚放在1号盒子,有2枚放在3号盒子,有2枚放在7号盒子,有1枚放在6号盒子,2、4和5号盒子没有棋子.所以,200=7×28+4,经过28次循环后,第197枚白色棋子放在1号盒子,第198枚和第200枚白色棋子放在3号盒子,第199枚白色棋子放在6号盒子.所以,1号盒子中有57枚白色棋子;3号盒子中有58枚白色棋子;6号盒子有29枚白色棋子;7号盒子有56枚白色棋子,其余盒子中没有白色棋子.小青依逆时针方向放置红色棋子,我们可以将1号盒子仍视为1号,7号则视为2号,6号视为3号,5号视为4号,4号视为5号,3号视为6号,2号视为7号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十二届华杯赛初赛试题及解答
一、选择题
1. 算式等于()
A. 3
B. 2
C. 1
D. 0
2. 折叠一批纸鹤,甲同学单独折叠需要半小时,乙同学单独折叠需要45分钟,则甲、乙两同学共同折叠需要()
A. 12分钟
B. 15分钟
C. 18分钟
D. 20分钟
3. 如图,将四条长为16cm,宽为2cm的矩形纸条垂直相交平放在桌面上,则桌面被盖住的面积是()
A. 72cm2
B. 128cm2
C. 124cm2
D. 112cm2
4. 地球表面的陆地面积和海洋面积之比是29∶71,其中陆地的四分之三在北半球,那么南、北半球海洋面积之比是()
A. 284∶29
B. 284∶87
C. 87∶29
D. 171∶113
5. 一个长方体的长、宽、高恰好是3个连续的自然数,并且它的体积的数值等于它的所有棱长之和的数值的2倍,那么这个长方体的表面积是()
A. 74
B. 148
C. 150
D. 154
6. 从和为55的10个不同的自然数中,取出3个数后,余下的数之和是55的,则取出的三个数的积最大等于()
A. 280
B. 270
C. 252
D. 216
二、填空题
7. 如图,某公园有两段路,AB=175米,BC=125米,在这两段路上安装路灯,要求A、B、C三点各设一个路灯,相邻两个路灯间的距离都相等,则在这两段路上至少要安装路灯___个.
8. 将×0.63的积写成小数形式是____.
9. 如图,有一个边长为1的正三角形,第一次去掉三边中点连线围成的那个正三角形;第二次对留下的三个正三角形,再分别去掉它们中点连线围成的三角形;…做到第四次后,一共去掉了________个三角形. 去掉的所有三角形的边长之和是________.
10. 同学们野营时建了9个营地,连接营地之间的道路如图所示,贝贝要给每个营地插上一面旗帜,要求相邻营地的旗帜色彩不同,则贝贝最少需要___种颜色的旗子,如果贝贝从某营地出发,不走重复路线就___(填“能”或“不能”)完成任务.
一、选择题
1.解:原式===2 答案:B
2.解:==18(分钟)答案:C
3.解:16×2×4-2×2×4=112(cm2)答案:D
4.解:设地球表面积为1,
则北半球海洋面积为:0.5-0.29×==
南半球海洋面积为:0.71-==
南北半球海洋面积之比为:∶=171∶113
答案:D
5.解:设长方体的三条棱长分别为a-1,a,a+1,则它的体积为
,
它的所有棱长之和为[(a-1)+a+(a+1)]×4=12a
于是有=12a×2,即=25a,=25,a=5,
即这个长方体的棱长分别为4,5,6
所以,它的表面积为(4×5+4×6+5×6)×2=148
答案:B
6.解:余下的数之和为:55×=35,取出的数之和为:55-35=20,
要使取出的三个数之积尽量大,则取出的三个数应尽量接近,我们知6+7+8=21,所以取5×7×8=280
答案:A
二、填空题
7.解:175与125的最大公约数为25,所以取25米为两灯间距,
175=25×7,125=25×5,AB段应按7+1=8盏灯,BC段应按5+1=6盏灯,
但在B点不需重复按灯,故共需安装8+6-1=13(盏)
8.解:×0.63=5×0.63===
9.解:第一次去掉1个三角形,得到3个小三角形,去掉的三角形的边长为3×;
第二次去掉3个三角形,得到9个小三角形,去掉的三角形的边长为3×3×;
第三次去掉9个三角形,得到27个小三角形,去掉的三角形的边长为9×3×;
第四次去掉27个三角形,去掉的三角形的边长为27×3×;
所以,四次共去掉1+3+9+27=40(个)小三角形,
去掉的所有三角形的边长之和是:3×+9×+27×+81×
=12
10.解:最少需要3种颜色的旗子。

因为中间的三点连成一个三角形,要使这三点所代表营地两粮相邻,要使相邻营地没有相同颜色的旗子,必须各插一种与其它两点不同颜色的旗子。

不走重复路线不能完成插旗的任务,因为本题共有6各奇点。

相关文档
最新文档