Lingo解目标规划1
Lingo解目标规划
B
0.3 0.3 3.2
棉花库存量
300 180
甲绵(kg) 乙绵(kg)
利润(元/km)
若利润指标为1755元,A种棉花要生产650km,问 A,B两种棉纱各应该生产多少?
目标规划模型:
设分别生产A、B两种棉纱x1, x 2km,则: min z p d p2 d
1 1 2
0.5 x1 0.3x 2 300 0.1x1 0.3x 2 180 2.5 x1 3.2 x 2 d1 d1 1755 x1 d 2 d 2 650 x1, x 2, d i 0
整数线性规划的几种类型
纯整数线性规划 混合整数线性规划
0-1型整数线性规划
例:
max z 20x1 10x 2 5 x1 4 x 2 24 2 x1 5 x 2 13 s.t. x1, x 2 0 x1, x 2取整数
不考虑整数约束时求解
Lingo代码:
min=d21; 0.5*x1+0.3*x2<=300; 0.1*x1+0.3*x2<=180; 2.5*x1+3.2*x2+d11-d12=1755; x1+d21-d22=650; d11=0;
例4:已知有三个产地给四个销地供应某种产品,产销 地之间的供需量和单 7 13
Lingo代码
sets: cd/1..3/:a; xd/1..4/:b; links(cd,xd):c,x; px/1..13/:d1,d2; endsets data: a=300 200 400; b=200 100 450 250; c=5 2 6 7 3546 4 5 2 3; enddata min=d2(13); @for(cd(i):@sum(xd(j):x(i,j))=a(i)); @for(xd(j):@sum(cd(i):x(i,j))<=b(j)); x(1,4)+x(2,4)+x(3,4)+d1(4)-d2(4)=250; x(3,1)+d1(5)-d2(5)=100; @for(xd(j):@sum(cd(i):x(i,j))+d1(j+5)-d2(j+5)=b(j)*0.8); @sum(links(i,j):c(i,j)*x(i,j))+d1(10)-d2(10)=2950*1.1; x(2,4)+d1(11)-d2(11)=0; (x(1,1)+x(2,1)+x(3,1))-(200/450)*(x(1,3)+x(2,3)+x(3,3))+d1(12)-d2(12)=0; @sum(links(i,j):c(i,j)*x(i,j))+d1(13)-d2(13)=2950; y=@sum(links(i,j):c(i,j)*x(i,j)); d1(4)=0; d1(5)=0; d1(6)+d1(7)+d1(8)+d1(9)=0; d2(10)=115; d2(11)=0; d1(12)+d2(12)=30; d1(1)+d1(2)+d1(3)+d2(1)+d2(2)+d2(3)=0;
用Lingo求解整数(0-1)规划模型
1、建立数学模型, 2、用lingo循环语句编写程序.
上机作业题 人员安排问题
某城市的巡逻大队要求每天的各个时间段都有一
定数量的警员值班, 以便随时处理突发事件, 每人连续 工作6h, 中间不休息. 如表所示是一天8个班次所需值 班警员的人数情况统计:
班次
时间段
人数 班次
时间段
人数
1
6:00~9:00
例 4 求函数 z x 22 y 22 的最小值.
例 4 求函数 z x 22 y 22 的最小值.
解: 编写Lingo 程序如下:
min=(x+2)^2+(y-2)^2; @free(x); 求得结果: x=-2, y=2
二、Lingo 循环编程语句
(1) 集合的定义 包括如下参数: 1) 集合的名称.
12,8 3,0; enddata
!数据赋值;
max=@sum(bliang(i):a(i)*x(i)); !目标函数;
@for(yshu(j):@sum(bliang(i):x(i)*c(j,i))<=b(j));
!约束条件;
例6:人员选拔问题
队员号码 身高 / m 位置 队员号码 身高 / m 位置
例 2 用Lingo软件求解整数规划问题
min z 2 x1 5 x2 3 x3
4 x1 x2 x3 0
2
x1
4 x2
2 x3
2
x1
x2
x3
2
xi 0 且取整数, i 1, 2, 3
Lingo 程序:
min=2*x1+5*x2+3*x3; -4*x1-x2+x3>=0; -2*x1+4*x2-2*x3>=2; x1-x2+x3>=2; @gin(x1);@gin(x2);@gin(x3);
附1:用LINGO求解线性规划的例子一奶制品加工厂用牛奶生产A1、A2
附1:用LINGO求解线性规划的例子一奶制品加工厂用牛奶生产A1、A2两种奶制品,1桶牛奶可以在设备甲上用12小时加工成3公斤A1,或者在设备乙上用8小时加工成4公斤A2。
根据市场需求,生产的A1、A2能全部售出,且每公斤A1获利24元,每公斤A2获利16元。
现在加工厂每天能得到50桶牛奶的供应,每天正式工人总的劳动时间为480小时,并且设备甲每天至多能加工100公斤A1,设备乙的加工能力没有限制。
试为该厂制定一个生产计划,使每天获利最大,并进一步讨论以下3个附加问题:1)若用35元可以购买到1桶牛奶,应否作这项投资?若投资,每天最多购买多少桶牛奶?2)若可以聘用临时工人以增加劳动时间,付给临时工人的工资最多是每小时几元?3)由于市场需求变化,每公斤A1的获利增加到30元,应否改变生产计划?数学模型:设每天用x1桶牛奶生产A1 ,用x2桶牛奶生产A2目标函数:设每天获利为z元。
x1桶牛奶可生产3x1公斤A1,获利24*3x,x2桶牛奶可生产4*x2公1斤A2,获利16*4x2,故z=72x1+64x2约束条件:原料供应:生产A1、A2的原料(牛奶)总量不超过每天的供应50桶,即x1+x2≤50劳动时间:生产A1、A2的总加工时间不超过每天正式工人总的劳动时间480小时,即12x1+8x2≤480设备能力:A1的产量不得超过设备甲每天的加工能力100小时,即3x1≤100≥0非负约束:x1、x2均不能为负值,即x1≥0,x2综上所述可得max z=72x1+64x2s.t.x1+x2≤5012x1+8x2≤4803x1≤100x1≥0,x2≥0显然,目标函数和约束条件都是线性的,这是一个线性规划(LP),求出的最优解将给出使净利润最大的生产计划,要讨论的问题需要考虑参数的变化对最优解和影响,一般称为敏感性(或灵敏度)分析。
LINGO求解线性规划用LINGO求解线性规划时,首先在LINGO软件的模型窗口输入一个LP模型,模型以MAX或MIN 开始,按线性规划问题的自然形式输入(见下面例子所示)。
线性规划问题的Lingo求解
Lingo中参数设置与调整
01
参数设置
02
调整策略
Lingo允许用户设置求解器的参数, 如求解方法、迭代次数、收敛精度等 。这些参数可以通过`@option`进行 设置。
如果求解过程中遇到问题,如无解、 解不唯一等,可以通过调整参数或修 改模型来尝试解决。常见的调整策略 包括放松约束条件、改变目标函数权 重等。
02
比较不同方案
03
验证求解结果
如果存在多个可行解,需要对不 同方案进行比较,选择最优方案。
可以通过将求解结果代入原问题 进行验证,确保求解结果的正确 性和合理性。
感谢您的观看
THANKS
问题,后面跟随线性表达式。
02 03
约束条件表示
约束条件使用`subject to`或简写为`s.t.`来引入,后面列出所有约束条 件,每个约束条件以线性表达式和关系运算符(如`<=`, `>=`, `=`, `<`, `>`)表示。
非负约束
默认情况下,Lingo中的变量是非负的,如果变量可以为负,需要使用 `@free`进行声明。
问题的解通常出现在约束条件的边界上 。
变量通常是连续的。
特点 目标函数和约束条件都是线性的。
线性规划问题应用场景
生产计划
确定各种产品的最优生产量, 以最大化利润或最小化成本。
资源分配
在有限资源下,如何最优地分 配给不同的项目或任务。
运输问题
如何最低成本地将物品从一个 地点运输到另一个地点。
金融投资
03
求解结果
通过Lingo求解,得到使得总加工时间最短的生产计划安 排。
运输问题优化案例
问题描述
某物流公司需要将一批货物从A地运往B地,可以选择不同的运输方式和路径,每种方式和路径的运输时间和成本不 同。公司需要在满足货物送达时间要求的前提下,选择最优的运输方式和路径,使得总成本最低。
用LINGO软件求解目标规划问题
10 x1 + 15 x2 + d1 d1+ = 40 + x1 + x2 + d 2 d 2 = 10 s.t. d1+ = 0 x1 , x2 , d , d + ≥ 0, j = 1,2 j j
用LINGO求解,得最优解 d = d 具体LINGO程序及输出信息如下:LINGO程序为(参见图 4.4.4):
+ 1
=0, 1
d2 = 6 ,最优值为6.
精品课程《运筹学》
图4.4.4
精品课程《运筹学》
LINGO运算后输出为(参见图4.4.5):
图4.4.5 精品课程《运筹学》
d 对应于第三优先等级,将d1+ =0, 2 = 6 作为约束条件, 建立线性规划问题:
min z = d 3 10 x1 + 15 x2 + d1 d1+ = 40 + x1 + x2 + d 2 d 2 = 10 x2 + d 3 d 3+ = 7 s.t. d1+ = 0, d 2 = 6 + x1 , x2 , d j , d j ≥ 0, j = 1,2,3
10 x1 + 15 x 2 + d 1 d 1+ = 40 + x1 + x 2 + d 2 d 2 = 10 s.t. x 2 + d 3 d 3+ = 7 x1 , x 2 , d , d + ≥ 0, j = 1,2,3 j j
精品课程《运筹学》
解:首先对应于第一优先等级,建立线性规 划问题:
x1 = 4, x2 = 0, d1+ = d1 = 0 , 用LINGO求解,得最优解是
运筹学实例分析及lingo求解讲解
运筹学实例分析及lingo 求解一、线性规划某公司有6个仓库,库存货物总数分别为60、55、51、43、41、52,现有8个客户各要一批货,数量分别为35,37,22,32,41,32,43,38。
各供货仓库到8个客户处的单位货物运输价见表试确定各仓库到各客户处的货物调运数量,使总的运输费用最小。
解:设ijx 表示从第i 个仓库到第j 个客户的货物运量。
ij c表示从第i 个仓库到第j 个客户的单位货物运价,i a 表示第i 个仓库的最大供货量,j d 表示第j 个客户的订货量。
目标函数是使总运输费用最少,约束条件有三个:1、各仓库运出的货物总量不超过其库存数2、各客户收到的货物总量等于其订货数量3、非负约束数学模型为:∑∑===6181)(min i j ijij x c x f⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥===≤∑∑==08,,2,1,6,2,1,,..6181ij j i ij i j ij x j d x i a x t s 编程如下:model : Sets :Wh/w1..w6/:ai; Vd/v1..v8/:dj;links(wh,vd):c,x;endsetsData:ai=60,55,51,43,41,52;dj=35,37,22,32,41,32,43,38;c=6,2,6,7,4,2,5,94,9,5,3,8,5,8,25,2,1,9,7,4,3,37,6,7,3,9,2,7,12,3,9,5,7,2,6,55,5,2,2,8,1,4,3;EnddataMin=@sum(links(i,j):c(i,j)*x(i,j));@for(wh(i):@sum(vd(j):x(i,j))<=ai(i));@for(vd(j):@sum(wh(i):x(i,j))=dj(j));endGlobal optimal solution found.Objective value: 664.0000Total solver iterations: 0Variable Value Reduced Cost AI( W1) 60.00000 0.000000 AI( W2) 55.00000 0.000000 AI( W3) 51.00000 0.000000 AI( W4) 43.00000 0.000000 AI( W5) 41.00000 0.000000 AI( W6) 52.00000 0.000000 DJ( V1) 35.00000 0.000000 DJ( V2) 37.00000 0.000000 DJ( V3) 22.00000 0.000000 DJ( V4) 32.00000 0.000000 DJ( V5) 41.00000 0.000000 DJ( V6) 32.00000 0.000000 DJ( V7) 43.00000 0.000000 DJ( V8) 38.00000 0.000000 C( W1, V1) 6.000000 0.000000 C( W1, V2) 2.000000 0.000000 C( W1, V3) 6.000000 0.000000 C( W1, V4) 7.000000 0.000000 C( W1, V5) 4.000000 0.000000 C( W1, V6) 2.000000 0.000000 C( W1, V7) 5.000000 0.000000C( W2, V1) 4.000000 0.000000 C( W2, V2) 9.000000 0.000000 C( W2, V3) 5.000000 0.000000 C( W2, V4) 3.000000 0.000000 C( W2, V5) 8.000000 0.000000 C( W2, V6) 5.000000 0.000000 C( W2, V7) 8.000000 0.000000 C( W2, V8) 2.000000 0.000000 C( W3, V1) 5.000000 0.000000 C( W3, V2) 2.000000 0.000000 C( W3, V3) 1.000000 0.000000 C( W3, V4) 9.000000 0.000000 C( W3, V5) 7.000000 0.000000 C( W3, V6) 4.000000 0.000000 C( W3, V7) 3.000000 0.000000 C( W3, V8) 3.000000 0.000000 C( W4, V1) 7.000000 0.000000 C( W4, V2) 6.000000 0.000000 C( W4, V3) 7.000000 0.000000 C( W4, V4) 3.000000 0.000000 C( W4, V5) 9.000000 0.000000 C( W4, V6) 2.000000 0.000000 C( W4, V7) 7.000000 0.000000 C( W4, V8) 1.000000 0.000000 C( W5, V1) 2.000000 0.000000 C( W5, V2) 3.000000 0.000000 C( W5, V3) 9.000000 0.000000 C( W5, V4) 5.000000 0.000000 C( W5, V5) 7.000000 0.000000 C( W5, V6) 2.000000 0.000000 C( W5, V7) 6.000000 0.000000 C( W5, V8) 5.000000 0.000000 C( W6, V1) 5.000000 0.000000 C( W6, V2) 5.000000 0.000000 C( W6, V3) 2.000000 0.000000 C( W6, V4) 2.000000 0.000000 C( W6, V5) 8.000000 0.000000 C( W6, V6) 1.000000 0.000000 C( W6, V7) 4.000000 0.000000 C( W6, V8) 3.000000 0.000000 X( W1, V1) 0.000000 5.000000 X( W1, V2) 19.00000 0.000000 X( W1, V3) 0.000000 5.000000X( W1, V5) 41.00000 0.000000 X( W1, V6) 0.000000 2.000000 X( W1, V7) 0.000000 2.000000 X( W1, V8) 0.000000 10.00000 X( W2, V1) 1.000000 0.000000 X( W2, V2) 0.000000 4.000000 X( W2, V3) 0.000000 1.000000 X( W2, V4) 32.00000 0.000000 X( W2, V5) 0.000000 1.000000 X( W2, V6) 0.000000 2.000000 X( W2, V7) 0.000000 2.000000 X( W2, V8) 0.000000 0.000000 X( W3, V1) 0.000000 4.000000 X( W3, V2) 11.00000 0.000000 X( W3, V3) 0.000000 0.000000 X( W3, V4) 0.000000 9.000000 X( W3, V5) 0.000000 3.000000 X( W3, V6) 0.000000 4.000000 X( W3, V7) 40.00000 0.000000 X( W3, V8) 0.000000 4.000000 X( W4, V1) 0.000000 4.000000 X( W4, V2) 0.000000 2.000000 X( W4, V3) 0.000000 4.000000 X( W4, V4) 0.000000 1.000000 X( W4, V5) 0.000000 3.000000 X( W4, V6) 5.000000 0.000000 X( W4, V7) 0.000000 2.000000 X( W4, V8) 38.00000 0.000000 X( W5, V1) 34.00000 0.000000 X( W5, V2) 7.000000 0.000000 X( W5, V3) 0.000000 7.000000 X( W5, V4) 0.000000 4.000000 X( W5, V5) 0.000000 2.000000 X( W5, V6) 0.000000 1.000000 X( W5, V7) 0.000000 2.000000 X( W5, V8) 0.000000 5.000000 X( W6, V1) 0.000000 3.000000 X( W6, V2) 0.000000 2.000000 X( W6, V3) 22.00000 0.000000 X( W6, V4) 0.000000 1.000000 X( W6, V5) 0.000000 3.000000 X( W6, V6) 27.00000 0.000000 X( W6, V7) 3.000000 0.000000Row Slack or Surplus Dual Price 1 664.0000 -1.000000 2 0.000000 3.000000 3 22.00000 0.000000 4 0.000000 3.000000 5 0.000000 1.000000 6 0.000000 2.000000 7 0.000000 2.000000 8 0.000000 -4.000000 9 0.000000 -5.000000 10 0.000000 -4.000000 11 0.000000 -3.000000 12 0.000000 -7.000000 13 0.000000 -3.000000 14 0.000000 -6.000000 15 0.000000 -2.000000由以上结果可以清楚的看到由各仓库到各客户处的货物调运数量,由此得出的符合条件的最佳运货方案,而使运费最低,最低为664。
用lingo求解线性规划问题
用lingo求解线性规划问题中国石油大学胜利学院程兵兵摘要食物营养搭配问题是现代社会中常见的问题,其最终的目的是节省总费用.本文通过对营养问题的具体剖析.构建了一般的线性规划模型。
并通过实例应用Lingo数学软件求解该问题.并给出了价值系数灵敏度分析,得出蔬菜价格的变动对模型的影响.关键词线性规划,lingo,灵敏度分析。
一、问题重述与分析营养师要为某些特殊病人拟订一周的菜单,可供选择的蔬菜及其费用和所含营养成分的数量以及这类病人每周所需各种营养成分的最低数量如下表1所示。
有以下规定:一周内所用卷心菜不多于2份,其他蔬菜不多于4份。
问题一:若病人每周需要14份蔬菜,问选用每种蔬菜各多少份,可使生活费用最小.问题二:当市场蔬菜价格发生怎样波动时,所建模型的适用性。
表 1 所需营养和费用营养搭配是一个线性规划问题,在给定蔬菜的情况下,要求菜单所需的营养成分必须达到要求,并在此条件下求出什么样的搭配所花费的费用最少.第一个要求是满足各类营养的充足,根据表中数据列出不等式。
第二要求为问题一中,蔬菜的份数必须为14,第三要求为在一周内,卷心菜不多于2份,其他不多于4份,根据以上条件列出各类蔬菜份数的限定条件,并可表示出费用的表达式.对于第二问,就是价值系数的变化对总费用的影响,模型的适用范围。
三、模型假设第一,假设各蔬菜营养成分保持稳定,满足题干要求。
第二,假设各蔬菜价格在一定时间内保持相对稳定。
第三,假设各类蔬菜供应全部到位,满足所需要求量. 第四,假设所求出最优解时不要求一定为整数。
四、符号约定(1)Z 代表目标函数,此题即为费用。
(2)i c 为价值系数,此题即为每份蔬菜的价格。
下标i 代表蔬菜的种类。
(3)i x 为决策变量,表示各种蔬菜的数量。
(4)i b 为最低限定条件,表示蔬菜最低营养需要。
五、模型建立根据以上各种假设和符号约定,建立模型如下。
所求的值就是min,也就是最优化结果.s 。
用Lingo求解整数(0-1)规划模型.
Lingo 程序: max=2*x1+5*x2+3*x3+4*x4;
-4*x1+x2+x3+x4>=0; -2*x1+4*x2+2*x3+4*x4>=1; x1+x2-x3+x4>=1; @bin(x1);@bin(x2);@bin(x3);@bin(x4);
温州大学城市学院
例 2 用Lingo软件求解整数规划问题 min z 2 x1 5 x2 3 x3
温州大学城市学院
注意:
Lingo 默认变量的取值从0到正无穷大,
变量定界函数可以改变默认状态.
@free(x): 取消对变量x的限制(即x可取任意实数值)
例 4 求函数 z x 2 y 2 的最小值.
2 2
温州大学城市学院 例 4 求函数 z x 2 y 2 的最小值.
,8
温州大学城市学院
温州大学城市学院
上机作业题
要求:
1、建立数学模型,
2、用lingo循环语句编写程序.
温州大学城市学院
上机作业题
人员安排问题
某城市的巡逻大队要求每天的各个时间段都有一 定数量的警员值班, 以便随时处理突发事件, 每人连续 工作6h, 中间不休息. 如表所示是一天8个班次所需值 班警员的人数情况统计:
成绩 甲 乙 丙 丁 自由泳 / s 56 63 57 55 蛙泳 / s 74 69 77 76 蝶泳 / s 61 65 63 62 仰泳 / s 63 71 67 62
甲, 乙, 丙, 丁 四名队员各自游什么姿势 , 才最有可能取得好成绩?
温州大学城市学院
lingo解决线性规划问题的程序(经典)
lingo解决线性规划问题的程序(经典)Lingo12软件培训教案Lingo 主要用于求解线性规划,整数规划,非线性规划,V10以上版本可编程。
例1 一个简单的线性规划问题0 , 600 2 100 350 st. 3 2max >=<=+=<<=++=y x y x x y x y x z!exam_1.lg4 源程序 max = 2*x+3*y; [st_1] x+y<350; [st_2] x<100;2*x+y<600; !决策变量黙认为非负; <相当于<=; 大小写不区分当规划问题的规模很大时,需要定义数组(或称为矩阵),以及下标集(set) 下面定义下标集和对应数组的三种方法,效果相同::r1 = r2 = r3, a = b = c. sets :r1/1..3/:a; r2 : b;r3 : c;link2(r1,r2): x; link3(r1,r2,r3): y; endsets data :ALPHA = 0.7; a=11 12 13 ; r2 = 1..3; b = 11 12 13; c = 11 12 13; enddatarows/1..6/: s; !发点的产量限制;cols/1..8/: d; !售点的需求限制;links(rows,cols): c, x; !运输单价,决策运输量;endsets!-------------------------------------;data:s = 60,55,51,43,41,52;d = 35 37 22 32 41 32 43 38;c = 6 2 6 7 4 2 9 54 95 3 8 5 8 25 2 1 9 7 4 3 37 6 7 3 9 2 7 12 3 9 5 7 2 6 55 5 2 2 8 1 4 3;enddata!------------------------------------;min = @sum(links: c*x); !目标函数=运输总成本;@for(rows(i):@sum(cols(j): x(i,j))<=s(i) ); ! 产量约束;@for(cols(j):@sum(rows(i): x(i,j))=d(j) ); !需求约束;end例3把上述程序进行改进,引进运行子模块和打印运算结果的语句:!exam_3.lg4 源程序model: !6发点8收点运输问题;sets:rows/1..6/: s; !发点的产量限制;cols/1..8/: d; !售点的需求限制;links(rows,cols): c, x; !运输单价,决策运输量;endsets!==================================;data:s = 60,55,51,43,41,52;d = 35 37 22 32 41 32 43 38;c = 6 2 6 7 4 2 9 54 95 3 8 5 8 25 2 1 9 7 4 3 37 6 7 3 9 2 7 12 3 9 5 7 2 6 55 5 2 2 8 1 4 3;enddata!==================================;submodel transfer:min = cost; ! 目标函数极小化;cost = @sum(links: c*x); !目标函数:运输总成本;@for(rows(i):@sum(cols(j): x(i,j)) < s(i) ); ! 产量约束;@for(cols(j):@sum(rows(i): x(i,j)) > d(j) ); !需求约束;endsubmodel!==================================;calc:@solve(transfer); !运行子模块(解线性规划);@divert('transfer_out.txt');!向.txt文件按自定格式输出数据;@write('最小运输成本=',cost,@newline(1),'最优运输方案x=');@for(rows(i):@write(@newline(1));@writefor(cols(j): ' ',@format(x(i,j),'3.0f') ) );@divert(); !关闭输出文件;endcalcend打开transfer_out.txt文件,内容为:最小运输成本=664最优运输方案x=0 19 0 0 41 0 0 01 0 0 32 0 0 0 00 11 0 0 0 0 40 00 0 0 0 0 5 0 3834 7 0 0 0 0 0 00 0 22 0 0 27 3 0例4 data段的编写技巧(1):从txt文件中读取原始数据!exam_3.lg4 源程序中的data也可以写为:data:s = @file('transfer_data.txt');d = @file('transfer_data.txt');c = @file('transfer_data.txt');enddata其中,transfer_data.txt的内容为:!transfer.lg4程序的数据;!产量约束s= ;60,55,51,43,41,52 ~!需求约束d= ;35 37 22 32 41 32 43 38 ~!运输单价c= ;6 2 67 4 2 9 54 95 3 8 5 8 25 2 1 9 7 4 3 37 6 7 3 9 2 7 12 3 9 5 7 2 6 55 5 2 2 8 1 4 3 ~!注:字符~是数据分割符,若无此符,视所有数据为一个数据块,只赋给一个变量;例5lingo程序的的3种输入和3种输出方法;!exam_5.lg4的源程序;sets:rows/1..3/: ;cols/1..4/: ;link(rows,cols): a, b, mat1, mat2;endsetsdata:b = 1,2,3,45,6,7,89,10,11,12; !程序内输入;a = @file('a.txt'); !外部txt文件输入;mat1 = @ole('d:\lingo12\data.xls',mat1); !EXcel文件输入; enddatacalc:@text('a_out.txt') = a; !列向量形式输出数据;@for(link: mat2 = 2*mat1);@ole('d:\lingo12\data.xls') = mat2 ;!把mat2输出到xls文件中的同名数据块;!向.txt文件按自定格式输出数据(参照前例);Endcalc例6 程序段中的循环和选择结构举例!exam_6.lg4的源程序;sets:rows/1..5/:;cols/1..3/:;links(rows,cols):d;endsetsdata:d=0 2 34 3 21 3 24 7 22 1 6;enddatacalc:i=1;@while(i#le#5:a = d(i,1);b = d(i,2);c = d(i,3);@ifc(a#eq#0:@write('infeasible!',@newline(1));@elsedelta = b^2-4*a*c;sqrt = @sqrt(@if(delta#ge#0, delta,-delta));@ifc(delta#ge#0:@write('x1=',(-b+sqrt)/2/a,'x2=',(-b-sqrt)/2/a,@newline(1));@else@write('x1=',-b/2/a,'+',sqrt/2/a,'i','x2=',-b/2/a,'-',sqrt/2/a,'i',@newline(1));););i=i+1;);endcalc本程序中的循环结构也可以用@for(rows(i): 程序体);进行计算。
lingo求解多目标规划__例题
实验二:目标规划一、实验目的目标规划是由线性规划发展演变而来的,线性规划考虑的是只有一个目标函数的问题,而实际问题中往往需要考虑多个目标函数,这些目标不仅有主次关系,而且有的还相互矛盾。
这些问题用线性规划求解就比较困难,因而提出了目标规划。
熟悉目标规划模型的建立,求解过程及结果分析。
二、目标规划的一般模型设)...2,1(n j x j =是目标规划的决策变量,共有m 个约束是国刚性约束,可能是等式约束,也可能是不等式约束。
设有l 个柔性目标约束,其目标规划约束的偏差是),...,2,1(,l i d d i i =-+。
设有q 个优先级别,分别为q p p p ,...,21。
在同一个优先级k p 中,有不同的权重,分别记为),...,2,1(,l j w w kj kj =-+。
因此目标规划模型的一般数学表达式为:min ∑∑=++--=+=l j j kj j kj q k k d w d w p z 11);(s.t. ,,...2,1,),(1m i b x an j i j ij =≥=≤∑= .,...2,1,0,,,...,2,1,,,...2,1,1l i d d n x o x l i g d d x c i i j i nj i i j ij =≥=≥==-++-=+-∑ 三、实验设备及分组实验在计算机中心机房进行,使用微型电子计算机,每人一机(一组)。
四、实验容及步骤1、打开LINGO ,并利用系统菜单和向导在E 盘创建一个项目。
目录和项目名推荐使用学生自己的学号。
2、以此题为例,建立数学模型,并用说明语句进行说明,增强程序的可读性。
例2.1:某工厂生产Ⅰ、Ⅱ两种产品,需要用到A ,B ,C 三种设备,已知有关数据见下表。
企业的经营目标不仅仅是利润,还需要考虑多个方面:(1) 力求使利润不低于1500元;(2) 考虑到市场需求,Ⅰ、Ⅱ两种产品的产量比应尽量保持1:2;(3) 设备A 为贵重设备,严格禁止超时使用;(4) 设备C 可以适当加班,但要控制;设备B 即要求充分利用,又尽可能不加班。
Lingo软件使用指南
Lingo软件使用指南摘要:本文介绍了Lingo软件的基本使用方法。
从最基本的使用到复杂问题的解决,本文给出了比较详细的介绍。
Lingo软件是美国Lindo公司的产品,主要用来求解优化问题。
它是一个非常强大的软件,可以求解大部分优化问题,包括线性规划、二次规划、整数规划、运输问题等,是目前全球应用最广泛的优化软件之一。
这里我们简单介绍它的使用方法。
一进入Lingo如果你的计算机已经安装了Lingo,只需要在桌面上双击Lingo的快捷方式,就可以进入Lingo。
为了使自己的程序易于阅读,经常需要有一些注释,因此在编写程序中,每一行前面有感叹号的表示这一行是注释行,在程序运行中不起作用,希望初学者养成注释的好习惯。
二建立数学模型和 Lingo模型语言例1 在Lingo的命令窗口中输入下面的线性规划模型!目标函数;MAX = 100 * x1 + 150 * x2;!第一个约束;X1<= 100;!第二个约束;X2 <= 120;!第三个约束;X1 + 2 * x2<= 160;!end可有可无;end求解可得全局最优解:Objective value: 14500.00Variable ValueX1 100.0000X2 30.00000从这个例子可以看出,用Lingo软件求解一个简单的优化问题是非常容易的。
我们只需要输入优化问题的两个主要部分:目标函数和约束,就可以直接求解。
对于比较简单的问题,我们可以采取这种直接的方式去求解,但是,对于比较复杂的问题,用这种方式就不现实。
比如下面的例2,这就必须要使用Lingo的模型语言。
例2 一个运输问题假设WWW公司有6个仓库,储存着8个分厂生产所需要的原材料。
要求每一个仓库的供应量不能超过储存量,而且每一个分厂的需求必须得到满足。
问:如何组织运输,使总运输费用最小?已知从6个仓库到8个分厂的运输费用表。
表1 供应表2 需求表3 运输费用Wh5 2 3 9 5 7 2 6 5Wh6 5 5 2 2 8 1 4 3 这个问题是一个典型的优化问题,通常称为运输问题。
数学建模必备LINGO在多目标规划和最大最小化模型中的应用
数学建模必备LINGO 在多目标规划和最大最小化模型中的应用一、多目标规划的常用解法多目标规划的解法通常是根据问题的实际背景和特征,设法将多目标规划转化为单目标规划,从而获得满意解,常用的解法有:1.主要目标法确定一个主要目标,把次要目标作为约束条件并设定适当的界限值。
2.线性加权求和法对每个目标按其重要程度赋适当权重0≥i ω,且1=∑ii ω,然后把)(x f i ii ∑ω作为新的目标函数(其中p i x f i ,,2,1),( =是原来的p 个目标)。
3.指数加权乘积法设p i x f i ,,2,1),( =是原来的p 个目标,令∏==pi a i ix f Z 1)]([其中i a 为指数权重,把Z 作为新的目标函数。
4.理想点法先分别求出p 个单目标规划的最优解*i f ,令∑-=2*))(()(iifx f x h然后把它作为新的目标函数。
5.分层序列法将所有p 个目标按其重要程度排序,先求出第一个最重要的目标的最优解,然后在保证前一个目标最优解的前提条件下依次求下一个目标的最优解,一直求到最后一个目标为止。
这些方法各有其优点和适用的场合,但并非总是有效,有些方法存在一些不足之处。
例如,线性加权求和法确定权重系数时有一定主观性,权重系数取值不同,结果也就不一样。
线性加权求和法、指数加权乘积法和理想点法通常只能用于两个目标的单位(量纲)相同的情况,如果两个目标是不同的物理量,它们的量纲不相同,数量级相差很大,则将它们相加或比较是不合适的。
二、最大最小化模型在一些实际问题中,决策者所期望的目标是使若干目标函数中最大的一个达到最小(或多个目标函数中最小的一个达到最大)。
例如,城市规划中需确定急救中心的位置,希望该中心到服务区域内所有居民点的距离中的最大值达到最小,称为最大最小化模型,这种确定目标函数的准则称为最大最小化原则,在控制论,逼近论和决策论中也有使用。
最大最小化模型的目标函数可写成)}(,),(),(max{min 21X f X f X f p X或)}(,),(),(min{max 21X f X f X f p X式中T n x x x X ),,,(21 是决策变量。
用LINGO求解整数规划
用LINGO求解整数规划在LINGO中,输入总是以model:开始,以end结束;中间的语句之间必须以“;”分开;LINGO不区分字母的大小写;目标函数用MAX=…;或MIN=…;给出(注意有等号“=”)。
在LINDO中所有的函数均以“@”符号开始,如约束中@gin(x1)表示x1为整数,用@bin(x1)表示x1为0-1整数。
在现在的LINDO中,默认设置假定所有变量非负。
函数中变量的界定:@GIN(X):限制X为整数@BIN(X):限定变量X为0 或1。
@FREE(X):取消对x的符号限制(即可取任意实数包括负数)@BND(L,X,U):限制L<= X <= ULINGO提供了大量的标准数学函数:@abs(x)???????????? 返回x的绝对值@sin(x)???????????? 返回x的正弦值,x采用弧度制@cos(x)???????????? 返回x的余弦值@tan(x)???????????? 返回x的正切值@exp(x)???????????? 返回常数e的x次方@log(x)???????????? 返回x的自然对数@lgm(x)???????????? 返回x的gamma函数的自然对数@sign(x)??????????? 如果x<0返回-1;否则,返回1@smax(x1,x2,…,xn)? 返回x1,x2,…,xn中的最大值@smin(x1,x2,…,xn)? 返回x1,x2,…,xn中的最小值例1:整数规划模型在LINGO中可以如下输入:model:Max=5*x1+8*x2;!*号不能省略x1+x2<=6;!约束条件和目标函数可以写在model:与end之间的任何位置5*x1<=45-9*x2;@gin(x1);@gin(x2); !和LINDO不同,不能写在end之后end运行后同样得到最优解为x1=0,x2=5,最优值为40。
例2:在线性规划中的应用max Z =5X1+3X2+6X3,s.t.X1 +2 X2 + X3 ≤182 X1 + X2 +3 X3 =16X1 + X2 + X3 =10X1 ,X2 ≥0 , X3 为自由变量应用LINGO 来求解该模型,只需要在 lingo窗口中输入以下信息即可:max=5*x1+3*x2+6*x3;x1+2*x2+x3<=18;2*x1+x2+3*x3=16;x1+x2+x3=10;@free(x3);然后按运行按钮,得到模型最优解,具体如下:Objective value: 46.00000Variable Value Reduced Costx1 14.00000 0.000000x2 0.000000 1.000000x3 -4 .000000 0.000000由此可知,当 x1 =14 , x2 =0 , x3 =-4 时,模型得到最优值,且最优值为 46。
LINGO的使用方法说明大全
LINGO的使用简介LINGO软件是美国的LINGO系统公司开发的一套专门用于求解最优化问题的软件包.LINGO除了能够用于求解线性规划和二次规划外,还可以用于非线性规划求解、以及一些线性和非线性方程(组)的求解等.LINGO软件的最大特色在于它允许优化模型中的决策变量为整数,即可以求解整数规划,而且执行速度快.LINGO是用来求解线性和非线性优化问题的简易工具.LINGO内置了一种建立最优化模型的语言,可以简便地表达大规模问题,利用LINGO高效的求解器可快速求解并分析结果.在这里仅简单介绍LINGO的使用方法.LINGO(Linear INteractive and General Optimizer )的基本含义是交互式的线性和通过优化求解器.它是美国芝加哥大学的 Linus Schrage 教授于1980年开发了一套用于求解最优化问题的工具包,后来经过完善成何扩充,并成立了LINDO系统公司.这套软件主要产品有:LINDO,LINGO,LINDO API和What’sBest.它们在求解最优化问题上,与同类软件相比有着绝对的优势.软件有演示版和正式版.正式版包括:求解包(solver suite)、高级版(super)、超级版(hyper)、工业版(industrial)、扩展版(extended).不同版本的LINGO对求解问题的规模有限制,如附表3-1所示.附表3-1 不同版本LINGO对求解规模的限制版本类型总变量数整数变量数非线性变量数约束数演示版 300 30 30 150求解包 500 50 50 250高级版 2000 200 200 1000超级版 8000 800 800 4000工业版 32000 3200 32000 16000扩展版无限无限无限无限3.1 LINGO程序框架LINGO可以求解线性规划、二次规划、非线性规划、整数规划、图论及网络最优化问题和最大最小求解问题,以及排队论模型中最优化等问题.一个LINGO程序一般会包括以下几个部分:(1) 集合段:集部分是LINGO模型的一个可选部分.在LINGO模型中使用集之前,必须在集部分事先定义.集部分以关键字“sets:”开始,以“endsets”结束.一个模型可以没有集部分,或有一个简单的集部分,或有多个集部分.一个集部分可以放置于模型的任何地方,但是一个集及其属性在模型约束中被引用之前必须先定义.(2) 数据段:在处理模型的数据时,需要为集部分定义的某些元素在LINGO求解模型之前为其指定值.数据部分以关键字“data:”开始,以关键字“enddata”结束.(3) 目标和约束段:这部分用来定义目标函数和约束条件等.该部分没有开始和结束的标记.主要是要用到LINGO的内部函数,尤其是与集合有关的求和与循环函数等.(4)初始段:这个部分要以关键字“INIT:”开始,以关键字“ENDINIT”结束,它的作用是对集合的属性定义一个初值.在一般的迭代算法中,如果可以给一个接近最优解的初始值,会大大减少程序运行的时间.(5) 数据预处理段:这一部分是以关键字“CALC:”开始,以关键字“ENDCALC”结束.它的作用是把原始数据处理成程序模型需要的数据,它的处理是在数据段输入完以后、开始正式求解模型之前进行的,程序语句是按顺序执行的.3.2 LINGO中集合的概念在对实际问题建模的时候,总会遇到一群或多群相联系的对象,比如工厂、消费者群体、交通工具和雇工等等.LINGO允许把这些相联系的对象聚合成集(sets).一旦把对象聚合成集,就可以利用集来最大限度地发挥LINGO建模语言的优势.现在将深入介绍如何创建集,并用数据初始化集的属性.3.2.1集的构成集是LINGO建模语言的基础,是程序设计最强有力的基本构件.借助于集能够用一个单一的、简明的复合公式表示一系列相似的约束,从而可以快速方便地表达规模较大的模型.集是一群相联系的对象,这些对象也称为集的元素.一个集可能是一系列产品、卡车或雇员.每个集的元素可能有一个或多个与之有关联的特征,把这些特征称为属性.属性值可以预先给定,也可以是未知的,有待于LINGO求解的.LINGO有两种类型的集:原始集(primitive set)和派生集(derived set).一个原始集是由一些最基本的对象组成的.一个派生集是用一个或多个其它集来定义的,也就是说,它的元素来自于其它已存在的集.3.2.2模型的集部分集部分在程序中又称为集合段,它是LINGO模型的一个可选部分.在LINGO模型中使用集之前,必须在集部分事先定义.集部分以关键字“sets:”开始,以“endsets”结束.一个模型可以没有集部分,或有一个简单的集部分,或有多个集部分.一个集部分可以放置于模型的任何地方,但是一个集及其属性在模型约束中被引用之前必须先定义.(1)原始集的定义为了定义一个原始集,必须详细说明集的名字,而集的元素和相应的属性是可选的.定义一个原始集,用下面的语法:setname[/member_list/][:attribute_list];注意:用“[]”表示该部分内容是可选的(下同).Setname是用来标记集的名字,最好具有较强的可读性.集名字必须严格符合标准命名规则:以拉丁字母或下划线为首字符,其后由拉丁字母、下划线、阿拉伯数字组成的总长度不超过32个字符的字符串,且不区分大小写.注意:该命名规则同样适用于集元素名和属性名等的命名.Member_list是集元素的列表.如果集元素放在集定义中,那么对它们可采取显式和隐式罗列两种方式.如果集元素不放在集定义中,那么可以在随后的数据部分定义.①当显式罗列元素时,必须为每个元素输入一个不同的名字,中间用空格或逗号隔开,允许混合使用.例3.1 定义一个名为friends的原始集,它具有元素John,Jill,Rose和Mike,其属性有sex和age:sets:friends/John Jill, Rose Mike/: sex, age;endsets②当隐式罗列元素时,不必罗列出每个集元素.可采用如下语法:setname/member1..member N/[: attribute_list];这里的member1是集的第一个元素名,member N是集的最后一个元素名.LINGO将自动产生中间的所有元素名.LINGO也接受一些特定的首元素名和末元素名,用于创建一些特殊的集.③集元素不放在集定义中,而在随后的数据部分来定义.例3.2!集部分;sets:friends:sex,age;endsets!数据部分;data:friends,sex,age=John,1,16 Jill,0,14 Rose,0,17 Mike,1,13;enddata注意:开头用感叹号(!),末尾用分号(;)表示注释,可跨多行.在集部分只定义了一个集friends,并未指定元素.在数据部分罗列了集元素John,Jill,Rose和Mike,并对属性sex和age分别给出了值.集元素无论用何种字符标记,它的索引都是从1开始连续计数.在attribute_ list可以指定一个或多个集元素的属性,属性之间必须用逗号隔开.LINGO内置的建模语言是一种描述性语言,用它可以描述现实世界中的一些问题,然后再借助于LINGO 求解器求解.因此,集属性的值一旦在模型中被确定,就不可能再更改.只有在初始部分中给出的集属性值在以后的求解中可更改.这与前面并不矛盾,初始部分是LINGO求解器的需要,并不是描述问题所必须的.(2) 定义派生集为了定义一个派生集,必须详细说明集的名字和父集的名字,而集元素和属性是可选的.可用下面的语法定义一个派生集:setname(parent_set_list)[/member_list/][:attribute_list];setname是集的名字.parent_set_list是已定义的集的列表,多个时要用逗号隔开.如果没有指定成员列表,那么LINGO会自动创建父集元素的所有组合作为派生集的元素.派生集的父集既可以是原始集,也可以是其它的派生集.例3.3sets:product/A,B/;machine/M,N/;week/1..2/;allowed(product,machine,week):x;endsetsLINGO生成了三个父集的所有组合共八组作为allowed集的元素,列表如下:编号元素1 (A,M,1)2 (A,M,2)3 (A,N,1)4 (A,N,2)5 (B,M,1)6 (B,M,2)7 (B,N,1)8 (B,N,2)元素列表被忽略时,派生集成员由父集成员所有的组合构成,这样的派生集成为稠密集.如果限制派生集的成员,使它成为父集成员所有组合构成的集合的一个子集,这样的派生集成为稀疏集.同原始集一样,派生集元素的说明也可以放在数据部分.一个派生集的元素列表有两种方式生成:①显式罗列;②设置元素选择的过滤器.当采用方式①时,必须显式罗列出所有要包含在派生集中的元素,并且罗列的每个元素要属于稠密集.使用前面的例子,显式罗列派生集的元素,如:allowed(product,machine,week)/A M 1,A N 2,B N 1/;如果需要生成一个大的、稀疏的集,那么显式罗列就十分麻烦.但是许多稀疏集的元素都满足一些条件,可以把这些逻辑条件看作过滤器,在LINGO生成派生集的元素时把使逻辑条件为假的元素从稠密集中过滤掉.例3.4sets:!学生集:性别属性sex,1表示男性,0表示女性;年龄属性age;students/John,Jill,Rose,Mike/:sex,age;!男学生和女学生的联系集:友好程度属性friend![0,1]之间的数;linkmf(students,students)|sex(&1)#eq#1#and#sex(&2)#eq#0: friend;!男学生和女学生的友好程度大于0.5的集;linkmf2(linkmf) | friend(&1,&2) #ge# 0.5 : x;data:sex,age =1 16,0 14,0 17,0 13;friend =0.3,0.5,0.6;enddata用竖线(|)来标记一个元素过滤器的开始.#eq#是逻辑运算符,用来判断是否“相等”. &1可看作派生集的第1个原始父集的索引,它取遍该原始父集的所有元素;&2可看作派生集的第2 个原始父集的索引,它取遍该原始父集的所有元素;&3,&4,…,依此类推.注意如果派生集B的父集是另外的派生集A,那么上面所说的原始父集是集A向前回溯到最终的原始集,其顺序保持不变,并且派生集A的过滤器对派生集B仍然有效.因此,派生集的索引个数是最终原始父集的个数,索引的取值是从原始父集到当前派生集所作限制的总和.3.3 LINGO数据部分和初始部分在处理模型的数据时,需要为集指定一些元素并且在LINGO求解模型之前为集的某些属性指定数值.为此,LINGO为用户提供了两个可选部分:输入集元素数值的数据部分(Data Section)和为决策变量设置初始值的初始部分(Init Section).3.3.1数据部分(1) 数据部分入门数据部分以关键字“data:”开始,“enddata”结束.在这里,可以指定集元素和集的属性.其语法如下:object_list = value_list;对象列(object_list)包含要指定值的属性名、要设置集元素的集名,用逗号或空格隔开.一个对象列中只能有一个集名,而属性名可以有任意多个.如果对象列中有多个属性名,那么它们的类型必须一致.数值列(value_list)包含要分配给对象列中对象的值,用逗号或空格隔开.注意属性值的个数必须等于集元素的个数.例3.5sets:SET0/A,B,C/: X,Y;endsetsdata:X=1,2,3;Y=4,5,6;enddata在集SET0中定义了两个属性X和Y.X的三个值是1,2,3,Y的三个值是4,5,6.也可采用如下例子中的复合数据说明(data statement)实现同样的功能.sets:SET0/A,B,C/: X,Y;endsetsdata:X,Y=1 4 2,5 3 6;enddata如果对象列中有n个对象,LINGO在为对象指定值时,首先在n个对象的第1个索引处依次分配数值列中的前n个对象,然后在n个对象的第2个索引处依次分配数值列中紧接着的n个对象,…,依此类推.(2) 参数输入在数据部分也可以指定一些标量变量(scalar variables).当一个标量变量在数据部分确定时,称之为参数.例如,假设模型中用利率9%作为一个参数,就可以输入一个利率作为参数.例3.7data:interest_rate = .09;enddata实际中也可以同时指定多个参数.如:data:interest_rate,inflation_rate = .09, .025;enddata(3) 实时数据处理在某些情况下,模型中的某些数据并不是定值.譬如模型中有一个参数在2%至6%范围内,对不同的值求解模型,观察模型的结果对参数依赖的程度,那么把这种情况称为实时数据处理.处理方法是在该语句的数值后面输入一个问号(?).例3.8data:interest_rate,inflation_rate = .09 ?;enddata在每一次求解模型时,LINGO都会提示为参数inflation_rate输入一个值.在WINDOWS操作系统下,将会看到一个如下面的对话框:直接输入一个值再点击OK按钮,LINGO就会把输入的值指定赋给inflation_rate,然后继续求解模型.除了参数之外,也可以实时输入集的属性值,但不允许实时输入集元素名.(4) 指定属性为一个值可以在数据定义的右边输入一个值来把所有的元素的该属性指定为一个值.如下面的例子.sets:days /MO,TU,WE,TH,FR,SA,SU/:needs;endsetsdata:needs = 40;enddataLINGO将用40指定days集的所有元素的needs属性.对于多个属性的情形如下:sets:days /MO,TU,WE,TH,FR,SA,SU/:needs,cost;endsetsdata:needs cost = 40 90;enddata(5) 数据部分的未知数值表示法有时候只需为一个集的部分元素的某个属性指定数值,而让其余元素的该属性是未知的,以便让LINGO 去求出它们的最优值.在数据定义中输入两个相连的逗号表示该位置对应元素的属性值未知,两个逗号间可以有空格.例3.10sets:years/1..6/: capacity;endsetsdata:capacity = ,24,40,,,;enddata属性capacity的第2个和第3个值分别为24和40,其余的未知.3.3.2初始部分初始部分是LINGO提供的另一个可选内容.在初始部分中,与数据部分中的数据定义相同,可以输入初始定义(initialization statement).在对实际问题的建模时,初始部分并不起到描述模型的作用,初始部分输入的值仅被LINGO求解器当作初始值来使用,并且仅仅对非线性模型有用.这与数据部分指定变量的值不同,LINGO求解器可以自由改变初始部分初始化变量的数值.一个初始部分以关键字“init:”开始,以关键字“endinit”结束.初始部分的初始定义规则和数据部分的数据定义规则相同.也就是说,可以在定义的左边同时初始化多个集属性,即可以把集属性初始化为一个数值,也可以用问号定义为实时数据,还可以用逗号指定为未知数值.例3.11X,Y = 1,0;endinitY=@log(X);X^2+Y^2<=1;3.4 LINGO函数3.4.1运算符及其优先级LINGO 中的运算符可以分为三类:算数运算符、逻辑运算符和关系运算符.(1) 算数运算符算数运算符分为5种: (加法), (减法), (乘法), (除法), (求幂).(2) 逻辑运算符逻辑运算符分为两类:#AND#(与),#OR#(或),#NOT#(非):这3个运算符是参与逻辑值之间的运算,其结果还是逻辑值.运算符#EQ#(等于),#NE#(不等于),#GT#(大于),#GE#(大于等于),#LT#(小于),#LE#(小于等于)是用于“数与数之间”的比较,其结果是实逻辑值.(3) 关系运算符LINGO中有3种关系运算符:<(小于等于),>(大于等于),=(等于).注意LINGO中优化模型的约束一般没有严格大于、严格小于,要和逻辑运算符区分开.运算符的优先等级如附表3-2所示.附表3-2 运算符的优先级优先级运算符高级#NOT# ,-(负号)^* ,/+,-#EQ#,#NE#,#GT#,#GE#,#LT#,#LE#, #AND#,#OR#最低< ,+ ,>3.4.2 LINGO数学函数(1) 基本数学函数LINGO中有相当丰富的数学函数,这些函数的用法简单.下面列表对各个函数的用法做简单的介绍,具体情况如附表3-3所示.(2) 集合循环函数集合循环是指对集合上的元素(下标)进行循环操作的函数,它的一般用法如下:@function(setname[(set_index_list)[|condition]]:expression_list);其中function是集合函数名,是FOR,MAX,MIN,PROD,SUM五种之一.setname是集合名;set_index_list 是集合索引列表(可以省略);condition是实用逻辑表达式描述的过滤条件(通常含有索引,可以省略);expression_list是一个表达式(对@FOR可以是一组表达式).下面对具体的集合函数作如下解释:@FOR(集合元素的循环函数):对集合setname的每个元素独立生成表达式,表达式由expression_list 描述.@MAX(集合属性的最大值):返回集合setname上的表达式的最大值.@MIN(集合属性的最小值) :返回集合setname上的表达式的最小值.@PROD(集合元素的乘积函数):返回集合setname上的表达式的积.@SUM(集合元素的求和函数) :返回集合setname上的表达式的和.表附3-3 基本数学函数函数调用格式含义@ABS(X) 返回X的绝对值@COS(X) 返回X的余弦值(X单位是弧度)@SIN(X) 返回X的正弦值(X单位是弧度)@FLOOR(X) 返回X的整数部分@LGM(X) 返回X的伽马(Gamma)函数的自然对数值@LOG(X) 返回X的自然对数值@MOD(X,Y) 返回X对Y取模的结果@POW(X,Y) 返回X Y的值@SIGN(X) 返回X的符号值@EXP(X) 返回e X的值@SMAX(LIST) 返回一列数的最大值@SMIN(LIST) 返回一列数的最小值@SQR(X) 返回X的平方@SQRT(X) 返回X的正的平方根值@TAN(X) 返回X的正切值(3) 集合操作函数集合操作函数是对集合进行操作的函数,主要有4种,下面分别介绍它们的一般用法.1)@INDEX([set_name,]primitive_set_element)这个函数给出元素primitive_set_element在集合set_name中的索引值(即按定义集合时元素出现顺序的位置编号).如果省略编号set_name,LINGO按模型中定义的集合顺序找到第一个含有元素primitive_set_element的集合,并返回索引值.通过下面例子解释函数的使用方法.例如,假设定义一个女孩的姓名集合和一个男孩的姓名集合:SETS:GIRLS/DEBBLE,SUE,ALICE/;BOYS/BOB,JOE,SUE,FRED/;ENDSETS注意到女孩集和男孩集中都有一个为SUE的元素,如果要调用此函数@INDEX(SUE),则得到返回索引值是2.因为集合GIRLS在集合BOYS之前,则索引函数只对集合GIRLS检索.如果想查找男孩集中的SUE,则应该使用@INDEX(BOYS,SUE),则此时得到的索引值是3.2)@IN(set_name,primitive_index_1[,primitive_index_2 …])这个函数用于判断一个集合中是否含有某个索引值.它的返回值是1(逻辑值“真”),或是0(逻辑值“假”).例3.12全集为I,B是I的一个子集,C是B的补集.sets:I/x1..x4/;B(I)/x2/;C(I)|#not#@in(B,&1):;endsets3)@wrap(index,limit)该函数返回j=index-k*limit,其中k是一个整数,取适当值保证j落在区间[1,limit]内.该函数相当于index模limit再加1.该函数在循环、多阶段计划编制中特别有用.4)@size(set_name)该函数返回集set_name的元素个数.在LINGO模型中,如果没有明确给出集的大小,则使用该函数能够使模型中的数据变化和集的大小改变更加方便.(4) 变量定界函数变量界定函数能够实现对变量取值范围的附加限制,共4种:1)@bin(x)表示限制就是x为0或1;2)@bnd(L,x,U)表示限制变量x满足;3)@free(x)表示取消对变量x的默认下界为0的限制,即x可以取任意实数;4)@gin(x)表示限制变量x为整数.在默认情况下,LINGO规定变量是非负的,即下界值为0,上界为+∞.@free取消了默认的下界为0的限制,使变量也可以取负值.@bnd用于设定一个变量的上下界,它也可以取消默认下界为0的约束.(5) 概率论中相关函数1)@pbn(p,n,x)二项分布的分布函数,当n和(或)x不是整数时,用线性插值法进行计算.2)@pcx(n,x)自由度为n的χ2分布的分布函数在x点的取值.3)@peb(load,x)当到达负荷(平均服务强度)为load,服务系统有x个服务台,且系统容量无限时的Erlang繁忙概率,多用于解决排队问题.4)@pel(load,x)当到达负荷(平均服务强度)为load,服务系统有x个服务台,系统容量为有限时的Erlang繁忙概率,多用于解决排队问题.5)@pfd(n,d,x)自由度为n和d的F分布的分布函数在x点的取值.6)@pfs(load,x,c)当负荷上限为load,顾客数为c,平行服务台数量为x时,顾客源有限的Poisson服务系统的等待或有返回顾客数的期望值.load是顾客数乘以平均服务时间,再除以平均返回时间.当c和(或)x不是整数时,采用线性插值进行计算.7)@phg(pop,g,n,x)超几何(Hypergeometric)分布的分布函数.pop表示产品总数,g是正品数.从所有产品中任意取出n(n≤pop)件.pop,g,n和x都可以是非整数,这时采用线性插值进行计算.8)@ppl(a,x)Poisson分布的线性损失函数,即返回max(0,z-x)的期望值,其中随机变量z服从均值为a的Poisson 分布.9)@pps(a,x)均值为a的Poisson分布的分布函数在x点的取值.当x不是整数时,采用线性插值进行计算.10)@psl(x)单位正态线性损失函数,即返回max(0,z-x)的期望值,其中随机变量z服从标准正态分布.11)@psn(x)标准正态分布的分布函数在x点的取值.12)@ptd(n,x)自由度为n的t分布的分布函数在x点的取值.13)@qrand(seed)产生(0,1)区间的拟随机数.@qrand只允许在模型的数据部分使用,它将用拟随机数填满集属性.通常定义一个m×n的二维表,m表示运行实验的次数,n表示每次实验所需的随机数的个数.在行内,随机数是独立分布的;在行间,随机数是非均匀的.这些随机数是用“分层取样”的方法产生的.目前LINGO提供了两个金融函数.1)@fpa(I,n)返回如下情形的净现值:单位时段利率为I,连续n个时段支付,每个时段支付单位费用.若每个时段支付x单位的费用,则净现值可用x乘以@fpa(I,n)得到.@fpa的计算公式为.净现值就是在一定时期内为了获得一定收益,在该时期初所支付的实际费用.2)@fpl(I,n)返回如下情形的净现值:单位时段利率为I,第n个时段支付单位费用.@fpl(I,n)的计算公式为.这两个函数间的关系:.(7)输入和输出函数输入和输出函数可以把模型与外部数据(如文本文件、数据库和电子表格等)连接起来.1)@file函数该函数用于从外部数据文件中输入数据,它可以放在模型中任何地方.该函数的语法格式为@file(’filename’).这里filename是文件名,可以采用相对路径和绝对路径两种表示方式.记录结束标记(~)之间的数据文件部分称为记录.如果数据文件中没有记录结束标记,那么整个文件被看作单个记录.除了记录结束标记外,从模型外部调用的文本和数据同在模型里是一样的.下面介绍一下在数据文件中的记录结束标记连同模型中@file函数调用是如何工作的.当在模型中第一次调用@file函数时,LINGO打开数据文件,然后读取第一个记录;第二次调用@file 函数时,LINGO读取第二个记录等等.文件的最后一条记录可以没有记录结束标记,当遇到文件结束标记时,LINGO会读取最后一条记录,然后关闭文件.如果最后一条记录也有记录结束标记,那么直到LINGO 求解完成模型后关闭该文件.注意,如果有多个文件同时保持打开状态,可能就会导致一些问题,LINGO允许同时打开文件的上限数是16.在LINGO中不允许嵌套调用@file函数.2)@text函数该函数被用在数据部分,用来把求解结果输出至文本文件中.它可以输出集元素和集属性值.其语法为@text([’filename’])这里filename是文件名,可以采用相对路径和绝对路径两种表示方式.如果忽略filename,那么数据就被输出到标准输出设备(大多数情形都是屏幕).@text函数仅能出现在模型数据部分的一条语句的左边,右边是集名(用来输出该集的所有元素名)或集属性名(用来输出该集属性的值).用接口函数产生输出的数据定义称为输出操作.输出操作仅当求解器求解完模型后才执行,执行次序取决于其在模型中出现的先后.@OLE是从EXCEL中引入或输出数据的接口函数,它是基于传输的OLE技术.OLE传输直接在内存中传输数据,并不借助于中间文件.当使用@OLE时,LINGO先装载EXCEL,再通知EXCEL装载指定的电子数据表,最后从电子数据表中获得Ranges.为了使用@OLE函数,必须有EXCEL5及其以上版本.@OLE函数可在数据部分和初始部分引入数据.@OLE可以同时读集元素和集属性,集元素最好使用文本格式,集属性最好使用数值格式.原始集每个集元素需要一个单元(cell),而对于n元的派生集每个集元素需要n个单元,这里第一行的n个单元对应派生集的第一个集元素,第二行的n个单元对应派生集的第二个集元素,依此类推.4)@ranged(variable_or_row_name)为了保持最优基不变,变量的费用系数或约束行的右端项允许减少的量.5)@rangeu(variable_or_row_name)为了保持最优基不变,变量的费用系数或约束行的右端项允许增加的量.6)@status()返回LINGO求解模型后的结束状态:0 --- Global Optimum(全局最优);1 --- Infeasible(不可行);2 --- Unbounded(无界);3 --- Undetermined(不确定);4 --- Feasible(可行);5 --- Infeasible or Unbounded(通常需要关闭“预处理”选项后重新求解模型,以确定模型究竟是不可行还是无界)6 --- Local Optimum(局部最优);7 --- Locally Infeasible(局部不可行,尽管可行解可能存在,但是LINGO并没有找到一个);8 --- Cutoff(目标函数的截断值被达到);9 --- Numeric Error(求解器因在某约束中遇到无定义的算术运算而停止).通常,如果返回值不是0,4或6时,那么解将不可信,几乎不能用.该函数仅被用在模型的数据部分来输出数据.7)@dual(variable_or_row_name)返回变量的判别数(检验数)或约束行的对偶(影子)价格(dual prices).(8) 辅助函数1)@if(logical_condition,true_result,false_result)@if函数将评价一个逻辑表达式logical_condition是否为真,如果为真,返回true_ result,否则返回false_result.2)@warn(’text’,logical_condition)如果逻辑条件logical_condition为真,则产生一个内容为’text’的信息框.。
附1:用LINGO求解线性规划的例子 一奶制品加工厂用牛奶生产A1、A2
附1:用LINGO求解线性规划的例子一奶制品加工厂用牛奶生产A1、A2附1:用LINGO求解线性规划的例子一奶制品加工厂用牛奶生产A、A两种奶制品,1桶牛奶可以在设备甲上用12小时加工成3公斤A,121或者在设备乙上用8小时加工成4公斤A。
根据市场需求,生产的A、A能全部售出,且每公斤A获利212124元,每公斤A获利16元。
现在加工厂每天能得到50桶牛奶的供应,每天正式工人总的劳动时间为4802 小时,并且设备甲每天至多能加工100公斤A,设备乙的加工能力没有限制。
试为该厂制定一个生产计划,1使每天获利最大,并进一步讨论以下3个附加问题:1)若用35元可以购买到1桶牛奶,应否作这项投资,若投资,每天最多购买多少桶牛奶,2)若可以聘用临时工人以增加劳动时间,付给临时工人的工资最多是每小时几元,3)由于市场需求变化,每公斤A的获利增加到30元,应否改变生产计划, 1数学模型:设每天用x桶牛奶生产A1 ,用x桶牛奶生产A2 12目标函数:设每天获利为z元。
x桶牛奶可生产3x公斤A1,获利24*3x,x桶牛奶可生产4*x公11122斤A2,获利16*4x,故z=72x+64x212约束条件:原料供应:生产A、A的原料(牛奶)总量不超过每天的供应50桶,即 12x+x?50 12劳动时间:生产A、A的总加工时间不超过每天正式工人总的劳动时间480小时,即 1212x+8x?480 12设备能力:A的产量不得超过设备甲每天的加工能力100小时,即 13x?100 1非负约束:x、x均不能为负值,即x?0,x?0 2121综上所述可得max z=72x+64x 12s.t.x+x?50 1212x+8x?480 123x?100 1x?0,x?0 21显然,目标函数和约束条件都是线性的,这是一个线性规划(LP),求出的最优解将给出使净利润最大的生产计划,要讨论的问题需要考虑参数的变化对最优解和影响,一般称为敏感性(或灵敏度)分析。
用Lingo软件编程求解规划问题解决方案
Lingo软件具有直观易用的界面,提供丰富的函数库和求解算法, 能够高效地求解大规模复杂规划问题。
Lingo软件应用
Lingo软件被广泛应用于各个领域的规划问题求解,如金融、物流、 制造等。
解决方案目标与意义
解决方案目标
通过Lingo软件编程求解规划问题, 旨在获得满足约束条件的最优解,使 得目标函数达到最优。
要点三
推动软件升级和普及
Lingo软件作为一款优秀的数学规划 求解工具,未来可以进一步推动其升 级和普及工作。例如,可以增加更多 实用的功能、提高软件的易用性和稳 定性等,以吸引更多的用户使用该软 件解决规划问题。
THANKS
感谢观看
Lingo编程环境介绍
Lingo是一款专门用于求解线性、非线性和整数规划问题的软件,它提供了一个直观易用的编程环境。
Lingo支持多种类型的数学模型,如线性规划、目标规划、整数规划等,并内置了大量的函数和算法, 方便用户快速构建和求解模型。
Lingo还提供了丰富的数据输入/输出功能,支持Excel、数据库等多种数据格式,方便用户进行数据处理 和分析。
结果分析
根据求解结果,分析每种产品的生产量是否符合预期,并评估总成本是否达到最小化。 同时,可以对不同方案进行比较,选择最优方案。
敏感性分析
通过改变某些参数或约束条件,观察求解结果的变化,以评估方案的稳定性和可行性。
06
总结与展望
研究成果总结
成功构建了规划问题的数学模型
通过深入研究规划问题的本质,我们成功构建了能够准确 描述问题的数学模型,为后续的求解工作奠定了坚实的基 础。
学习和使用。
02
Lingo语言基本语法
学习Lingo语言的基本语法和规则,如变量定义、函数定义、约束条件
lingo简介(1)
2
迭代次数 目标函数最优值
Reduced Cost 0.000000 影响值的变化率 0.000000
松弛变量值
Slack or Surplus Dual Price 800.0000 -1.000000 0.000000 -4.000000 150.0000 0.000000 对偶价格 0.000000 1.000000 250.0000 0.000000 100.0000 0.000000
LINGO程序(模型)的框架: 程序(模型)的框架: 程序
(1)集合段 集合段 (2)数据段 数据段 (3)优化目标与约束段 优化目标与约束段 (4)初始段 初始段 (5)数据预处理段 数据预处理段
LINGO软件的求解过程 软件的求解过程
1. 确定常数 2. 识别类型 LINGO预处理程序 预处理程序 LP QP NLP ILP IQP 线性优化求解程序 1. 单纯形算法 2. 内点算法 选) 内点算法(选 IP 分枝定界管理程序 INLP
setname(parent_set_list)[/member_list/][:attribute_list]; ②设置成员资格过滤器: 设置成员资格过滤器: 成员资格过滤器以“ 开头 之后为过滤条件。 开头, 成员资格过滤器以“|”开头,之后为过滤条件。 例2.5 sets: num_i/1..3 /; num_j/1..3/; link(num_i,num_j)|&1#gt#1#and#&2#lt#2:x; endsets &1:表示第一个原始父集的索引 :
模型代码如下: 模型代码如下: max=72*x1+64*x2; x1+x2<=50; 12*x1+8*x2<=480; 3*x1<=100;
LINGO使用说明(比较简单)
Lingo介绍Lingo是美国LINDO系统公司(Lindo Symtem Inc)开发的求解数学规划系列软件中的一个(其他软件为LINGDO,GINO,What’s Best等),它的主要功能是求解大型线性、非线性和整数规划问题,目前的版本是lingo11.0。
lingo分为Demo、solve suite、hyper、industrial、extended等六类不同版本,只有Demo版本是免费的,其他版本需要向LINDO系统公司(在中国的代理商)购买,Lingo的不同版本对模型的变量总数、非线性变量个数、整型变量个数和约束条件的数量做出不同的限制(其中extended版本无限制)。
Lingo的主要功能特色为:(1)既能求解线性规划,也有较强的求解非线性规划的能力;(2)输入模型简练直观;(3)运行速度快、计算能力强;(4)内置建模语言,提供几十种内部函数,从而能以较少语句,较直观的方式描述较大规模的优化模型;(5)将集合的概念引入编程语言,很容易将实际问题转换为Lingo语言;(6)能方便地与excel、数据库等其他软件交换数据。
学校图书馆40本《lingo和excel在数学建模中的应用》,袁新生、邵大宏、郁时炼主编,科学出版社Lingo 程序设计简要说明在数学建模中会遇到如规划类的题型,在这种模型中总存在着一个目标,并希望这个目标的取值尽可能的大或小,同时与这个目标有关的一系列变量之间存在一些约束。
在构造出目标函数和约束条件的表达式后,我们需要对求出这个最值和各变量的取值。
一般我们用LINGO 来对模型进行求解,本文将通过举一个简单的例子,围绕这个例子逐步学习LINGO 的使用。
LINGO 只是一个求解工具,我们主要的任务还是模型的建立! 当你在windows 下开始运行LINGO 系统时,会得到类似下面的一个窗口:外层是主框架窗口,包含了所有菜单命令和工具条,其它所有的窗口将被包含在主窗口之下。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A 0.5 0.1 2.5
B 0.3 0.3 3.2
棉花库存量 300 180
甲绵(kg) 甲绵 乙绵(kg) 乙绵
利润( 利润(元/km) )
若利润指标为1755元,A种棉花要生产650km,问 A,B两种棉纱各应该生产多少?
目标规划模型:
设分别生产A、B两种棉纱x1, x 2km,则: min z = p d + p2 d
+ 5 11
− 12
+ 12
+ 7 13
Lingo代码
sets: cd/1..3/:a; xd/1..4/:b; links(cd,xd):c,x; px/1..13/:d1,d2; endsets data: a=300 200 400; b=200 100 450 250; c=5 2 6 7 3546 4 5 2 3; enddata min=d2(13); @for(cd(i):@sum(xd(j):x(i,j))=a(i)); @for(xd(j):@sum(cd(i):x(i,j))<=b(j)); x(1,4)+x(2,4)+x(3,4)+d1(4)-d2(4)=250; x(3,1)+d1(5)-d2(5)=100; @for(xd(j):@sum(cd(i):x(i,j))+d1(j+5)-d2(j+5)=b(j)*0.8); @sum(links(i,j):c(i,j)*x(i,j))+d1(10)-d2(10)=2950*1.1; x(2,4)+d1(11)-d2(11)=0; (x(1,1)+x(2,1)+x(3,1))-(200/450)*(x(1,3)+x(2,3)+x(3,3))+d1(12)-d2(12)=0; @sum(links(i,j):c(i,j)*x(i,j))+d1(13)-d2(13)=2950; y=@sum(links(i,j):c(i,j)*x(i,j)); d1(4)=0; d1(5)=0; d1(6)+d1(7)+d1(8)+d1(9)=0; d2(10)=115; d2(11)=0; d1(12)+d2(12)=30; d1(1)+d1(2)+d1(3)+d2(1)+d2(2)+d2(3)=0;
考虑目标规划:
供应约束: x11 + x12 + x13 + x14 ≤ 300 x 21 + x 22 + x 23 + x 24 ≤ 200 x31 + x32 + x33 + x34 ≤ 400
需求约束: x11 + x 21 + x31 ≤ 200 x12 + x 22 + x32 ≤ 100 x13 + x 23 + x33 ≤ 450
调运方案的总运费不超过最小费用的10%
− + cij xij +d10 − d10 = 2950 * (1 + 10%) ∑∑ i =1 j =1 3 4
因路段原因,尽量避免将A2的产品往B 4 x 24 + d − d = 0
给B1和B 2的供应率要相同
− + x11 + x 21 + x31 − (200 / 450)( x13 + x 23 + x33) + d12 − d12 = 0
−ij xij + d13 + d13 = 2950 ∑∑ i =1 j =1 3 4
目标函数:
− + min z = P d 4 + P2 d 5− + P3 (d 5− + d 6− + d 7− + d 8− ) + P4 d10 1
+ P d + P6 (d + d ) + P d
B 4的需求量必须全部满足:
− + x14 + x 24 + x34 + d 4 − d 4 = 250
A3向B1提供的产品不少于100 x31 + d 5− − d 5+ = 100
每个销地的供应量不小于其需求量的80%: x11 + x 21 + x31 + d 6− − d 6+ = 200 * 0.8 x12 + x 22 + x32 + d 7− − d 7+ = 100 * 0.8 x13 + x 23 + x33 + d8− − d8+ = 450 * 0.8 x14 + x 24 + x34 + d 9− − d 9+ = 250 * 0.8
不考虑目标,运输问题的数学模型为:
设xij 表示从第i个产地向第j个销地的运量。则: min z = ∑∑ cij xij
i =1 j =1 3 4
∑x
j =1 3
4
ij
= ai , i = 1,2,3 ≤ b j , j = 1,2,3,4
∑x
i =1
ij
xij ≥ 0
Lingo代码:
sets: cd/1..3/:a; xd/1..4/:b; links(cd,xd):c,x; endsets data: a=300 200 400; b=200 100 450 250; c=5 2 6 7 3546 4 5 2 3; enddata min=@sum(links(i,j):c(i,j)*x(i,j)); @for(cd(i):@sum(xd(j):x(i,j))<=a(i)); @for(xd(j):@sum(cd(i):x(i,j))>=b(j));
整数线性规划的几种类型
纯整数线性规划 混合整数线性规划 0-1型整数线性规划
例:
max z = 20 x1 + 10 x 2 5 x1 + 4 x 2 ≤ 24 2 x1 + 5 x 2 ≤ 13 s.t. x1, x 2 ≥ 0 x1, x 2取整数
不考虑整数约束时求解
Lingo解目标规划
方法:按目标的优先级次序,依次用lingo 求解。每次求得的值再作为下一次的约束条 件。
例1:求解下列目标规划
− + min z = p1d1+ + p2 (d 2 + d 2 ) + p3 d 3−
2 x1 + x 2 ≤ 11 x1 − x 2 + d − − d + = 0 1 1 − + s.t. x1 + 2 x 2 + d 2 − d 2 = 10 8 x1 + 10 x 2 + d − − d + = 56 3 3 x1, x 2, d i+ − ≥ 0
max=20*x1+10*x2; 5*x1+4*x4<=24; 2*x1+5*x2<=13; 可以解得: X1=4.8 x2=0 最优解为z=96 X1的取值不是整数?!怎么办???
对x1 化整: 取x1=5,x2=0:无可行解。 取x1=4,x2=0:可行解,z=80; 是最优解吗? x1=4,x2=1:可行解,z=90; 因此简单对决策变量化整是不能解决整数问题 的,有必要讨论整数规划的解决方法。
整数线性规划一般形式: 整数线性规划一般形式:
max(min)
n
z =
∑
n
j =1
c jx
j
L L (a )
L L (b ) ∑ a ij x j ≤ ( = , ≥ ) b i j =1 L L (c ) xj ≥ 0 x , x , L , x 中部分或全部取整数L L ( d ) n 1 2
有关部门在研究调运方案时依次考虑以下七项目标, 并规定其相应的优先等级: P1-B4是重点保证单位,必须全部满足其需求; P2-A3向B1提供的产量不少于100; P3-每个销地供应量不小于其需要的80%; P4-所订调运方案的总运费不超过最小运费的10%; P5-因路段问题,尽量避免安排将A2产品往B4; P6-给B1,B2的供应率要相同; P7-力求总运费最省。 试求满意的调运方案?
注:
关于算法的复杂性问题:P112? 度量方法: 当问题的规模为n时,利用该算法求解此 问题需要做的加减乘除四则运算的次数。
整数规划
1.整数规划的数学模型及解的特点 2.分支定界法、割平面法 3.0-1整数规划 4.指派问题
1.整数规划问题的提出
整数规划数学模型的一般形式 一部分或全部决策变量取整数值的规划问题 ——整数规划 整数规划中不考虑整数条件是对应的规划问题 ——该整数规划的松弛问题 松弛问题为线性规划的整数规划问题 ——整数线性规划
− 1 − 2 + 1 + 2 − 1 1 + 2 − 3 − 4
Lingo代码
min=2*d31+d41; x1+x2+d11-d12=40; x1+x2+d21-d22=50; x1+d31-d32=24; x2+d41-d42=30; d11=0; d22=0;
例3:某棉纺车间用甲乙两种棉花混纺生产A、B两种 棉纱,其相关数据如下表:
Lingo代码
min=d31; 2*x1+x2<=11; x1-x2+d11-d12=0; x1+2*x2+d21-d22=10; 8*x1+10*x2+d31-d32=56; d12=0; d21+d22=0;