材料成型原理课后题答案

合集下载

材料成形原理课后习题解答

材料成形原理课后习题解答

材料成型原理第一章(第二章的内容)第一部分:液态金属凝固学答:(1)纯金属的液态结构是由原子集团、游离原子、空穴或裂纹组成。

原子集团的空穴或裂纹内分布着排列无规则的游离的原子,这样的结构处于瞬息万变的状态,液体内部存在着能量起伏。

(2)实际的液态合金是由各种成分的原子集团、游离原子、空穴、裂纹、杂质气泡组成的鱼目混珠的“混浊”液体,也就是说,实际的液态合金除了存在能量起伏外,还存在结构起伏。

答: 液态金属的表面张力是界面张力的一个特例。

表面张力对应于液-气的交界面,而界面张力对应于固-液、液-气、固-固、固-气、液-液、气-气的交界面。

表面张力σ和界面张力ρ的关系如(1)ρ=2σ/r,因表面张力而长生的曲面为球面时,r 为球面的半径;(2)ρ=σ(1/r 1+1/r 2),式中r 1、r 2分别为曲面的曲率半径。

附加压力是因为液面弯曲后由表面张力引起的。

答: 液态金属的流动性和冲型能力都是影响成形产品质量的因素;不同点:流动性是确定条件下的冲型能力,它是液态金属本身的流动能力,由液态合金的成分、温度、杂质含量决定,与外界因素无关。

而冲型能力首先取决于流动性,同时又与铸件结构、浇注条件及铸型等条件有关。

提高液态金属的冲型能力的措施:(1)金属性质方面:①改善合金成分;②结晶潜热L 要大;③比热、密度、导热系大;④粘度、表面张力大。

(2)铸型性质方面:①蓄热系数大;②适当提高铸型温度;③提高透气性。

(3)浇注条件方面:①提高浇注温度;②提高浇注压力。

(4)铸件结构方面:①在保证质量的前提下尽可能减小铸件厚度;②降低结构复杂程度。

解: 浇注模型如下:则产生机械粘砂的临界压力 ρ=2σ/r显然 r =21×= 则 ρ=410*5.05.1*2-=6000Pa 不产生机械粘砂所允许的压头为H =ρ/(ρ液*g )=10*75006000= 解: 由Stokes 公式 上浮速度 92(2v )12r r r -=r 为球形杂质半径,γ1为液态金属重度,γ2为杂质重度,η为液态金属粘度γ1=g*ρ液=10*7500=75000γ2=g 2*ρMnO =10*5400=54000所以上浮速度 v =0049.0*95400075000(*10*1.0*223)-)(-=s 解:(1)对于立方形晶核 △G 方=-a 3△Gv+6a 2σ①令d △G 方/da =0 即 -3a 2△Gv+12a σ=0,则临界晶核尺寸a *=4σ/△Gv ,得σ=4*a △Gv ,代入① △G 方*=-a *3△Gv +6 a *24*a △Gv =21 a *2△Gv 均质形核时a *和△G 方*关系式为:△G 方*=21 a *3△Gv (2)对于球形晶核△G 球*=-34πr *3△Gv+4πr *2σ 临界晶核半径r *=2σ/△Gv ,则△G 球*=32πr *3△Gv 所以△G 球*/△G 方*=32πr *3△Gv/(21 a *3△Gv) 将r*=2σ/△Gv ,a *=4σ/△Gv 代入上式,得△G 球*/△G 方*=π/6<1,即△G 球*<△G 方*所以球形晶核较立方形晶核更易形成3-7解: r 均*=(2σLC /L)*(Tm/△T)=319*6.618702731453*10*25.2*25)+(-cm =*10-9m △G 均*=316πσLC 3*Tm/(L 2*△T 2) =316π*262345319*)10*6.61870(2731453*10*10*25.2()+()-=*10-17J 答: 从理论上来说,如果界面与金属液是润湿得,则这样的界面就可以成为异质形核的基底,否则就不行。

材料成型基本原理课后答案

材料成型基本原理课后答案

第十三章思考与练习简述滑移和孪生两种塑性变形机理的主要区别。

答:滑移是指晶体在外力的作用下,晶体的一部分沿一定的晶面和晶向相对于另一部分发生相对移动或切变。

滑移总是沿着原子密度最大的晶面和晶向发生。

孪生变形时,需要达到一定的临界切应力值方可发生。

在多晶体内,孪生变形是极其次要的一种补充变形方式。

设有一简单立方结构的双晶体,如图13-34所示,如果该金属的滑移系是{100} <100>,试问在应力作用下,该双晶体中哪一个晶体首先发生滑移?为什么?答:晶体Ⅰ首先发生滑移,因为Ⅰ受力的方向接近软取向,而Ⅱ接近硬取向。

试分析多晶体塑性变形的特点。

答:①多晶体塑性变形体现了各晶粒变形的不同时性。

②多晶体金属的塑性变形还体现出晶粒间变形的相互协调性。

③多晶体变形的另一个特点还表现出变形的不均匀性。

④多晶体的晶粒越细,单位体积内晶界越多,塑性变形的抗力大,金属的强度高。

金属的塑性越好。

4. 晶粒大小对金属塑性和变形抗力有何影响?答:晶粒越细,单位体积内晶界越多,塑性变形的抗力大,金属的强度高。

金属的塑性越好。

5. 合金的塑性变形有何特点?答:合金组织有单相固溶体合金、两相或多相合金两大类,它们的塑性变形的特点不相同。

单相固溶体合金的塑性变形是滑移和孪生,变形时主要受固溶强化作用,多相合金的塑性变形的特点:多相合金除基体相外,还有其它相存在,呈两相或多相合金,合金的塑性变形在很大程度上取决于第二相的数量、形状、大小和分布的形态。

但从变形的机理来说,仍然是滑移和孪生。

根据第二相又分为聚合型和弥散型,第二相粒子的尺寸与基体相晶粒尺寸属于同一数量级时,称为聚合型两相合金,只有当第二相为较强相时,才能对合金起到强化作用,当发生塑性变形时,首先在较弱的相中发生。

当第二相以细小弥散的微粒均匀分布于基体相时,称为弥散型两相合金,这种弥散型粒子能阻碍位错的运动,对金属产生显着的强化作用,粒子越细,弥散分布越均匀,强化的效果越好。

材料成形基本原理(刘全坤)课后答案

材料成形基本原理(刘全坤)课后答案

第一章液态金属的结构与性质习题1 .液体与固体及气体比较各有哪些异同点?哪些现象说明金属的熔化并不是原子间结合力的全部破坏?答(2)金属的熔化不是并不是原子间结合力的全部破坏可从以下二个方面说明:①物质熔化时体积变化、熵变及焓变一般都不大。

金属熔化时典型的体积变化∆V m/V为3%~5%左右,表明液体的原子间距接近于固体,在熔点附近其系统混乱度只是稍大于固体而远小于气体的混乱度.②金属熔化潜热∆H m约为气化潜热∆H b的1/15~1/30,表明熔化时其内部原子结合键只有部分被破坏.由此可见,金属的熔化并不是原子间结合键的全部破坏,液体金属内原子的局域分布仍具有一定的规律性。

2 。

如何理解偶分布函数g(r)的物理意义?液体的配位数N1、平均原子间距r1各表示什么?答:分布函数g(r) 的物理意义:距某一参考粒子r处找到另一个粒子的几率,换言之,表示离开参考原子(处于坐标原子r=0)距离为r的位置的数密度ρ(r)对于平均数密度ρo(=N/V)的相对偏差。

N1 表示参考原子周围最近邻(即第一壳层)原子数。

r1 表示参考原子与其周围第一配位层各原子的平均原子间距,也表示某液体的平均原子间距。

3.如何认识液态金属结构的“长程无序”和“近程有序”?试举几个实验例证说明液态金属或合金结构的近程有序(包括拓扑短程序和化学短程序).答:(1)长程无序是指液体的原子分布相对于周期有序的晶态固体是不规则的,液体结构宏观上不具备平移、对称性。

近程有序是指相对于完全无序的气体,液体中存在着许多不停“游荡”着的局域有序的原子集团(2)说明液态金属或合金结构的近程有序的实验例证①偶分布函数的特征对于气体,由于其粒子(分子或原子)的统计分布的均匀性,其偶分布函数g(r)在任何位置均相等,呈一条直线g(r)=1。

晶态固体因原子以特定方式周期排列,其g(r)以相应的规律呈分立的若干尖锐峰。

而液体的g(r)出现若干渐衰的钝化峰直至几个原子间距后趋于直线g(r)=1,表明液体存在短程有序的局域范围,其半径只有几个原子间距大小。

材料成型基本原理课后答案解析

材料成型基本原理课后答案解析

第一章习题1 . 液体与固体及气体比较各有哪些异同点?哪些现象说明金属的熔化并不是原子间结合力的全部破坏?答:(1)液体与固体及气体比较的异同点可用下表说明相同点不同点液体具有自由表面;可压缩性很低具有流动性,不能承受切应力;远程无序,近程有序固体不具有流动性,可承受切应力;远程有序液体完全占据容器空间并取得容器内腔形状;具有流动性远程无序,近程有序;有自由表面;可压缩性很低气体完全无序;无自由表面;具有很高的压缩性(2)金属的熔化不是并不是原子间结合力的全部破坏可从以下二个方面说明:①物质熔化时体积变化、熵变及焓变一般都不大。

金属熔化时典型的体积变化∆V m/V为3%~5%左右,表明液体的原子间距接近于固体,在熔点附近其系统混乱度只是稍大于固体而远小于气体的混乱度。

②金属熔化潜热∆H m约为气化潜热∆H b的1/15~1/30,表明熔化时其内部原子结合键只有部分被破坏。

由此可见,金属的熔化并不是原子间结合键的全部破坏,液体金属内原子的局域分布仍具有一定的规律性。

2 . 如何理解偶分布函数g(r) 的物理意义?液体的配位数N1、平均原子间距r1各表示什么?答:分布函数g(r) 的物理意义:距某一参考粒子r处找到另一个粒子的几率,换言之,表示离开参考原子(处于坐标原子r=0)距离为r的位置的数密度ρ(r)对于平均数密度ρo(=N/V)的相对偏差。

N1 表示参考原子周围最近邻(即第一壳层)原子数。

r1 表示参考原子与其周围第一配位层各原子的平均原子间距,也表示某液体的平均原子间距。

3.如何认识液态金属结构的“长程无序”和“近程有序”?试举几个实验例证说明液态金属或合金结构的近程有序(包括拓扑短程序和化学短程序)。

答:(1)长程无序是指液体的原子分布相对于周期有序的晶态固体是不规则的,液体结构宏观上不具备平移、对称性。

近程有序是指相对于完全无序的气体,液体中存在着许多不停“游荡”着的局域有序的原子集团(2)说明液态金属或合金结构的近程有序的实验例证①偶分布函数的特征对于气体,由于其粒子(分子或原子)的统计分布的均匀性,其偶分布函数g(r)在任何位置均相等,呈一条直线g(r)=1。

材料成型原理课后题答案

材料成型原理课后题答案

第三章:8:实际金属液态合金结构与理想纯金属液态结构有何不同?答:纯金属的液态结构是由原子集团、游离原子、空穴或裂纹组成的,是近程有序的。

液态中存在着很大的能量起伏.而实际金属中存在大量的杂质原子,形成夹杂物,除了存在结构起伏和能量起伏外还存在浓度起伏。

12:简述液态金属的表面张力的实质及其影响因数。

答:①实质:表面张力是表面能的物理表现,是是由原子间的作用力及其在表面和内部间排列状态的差别引起的。

②影响因数:熔点、温度和溶质元素.13:简述界面现象对液态成形过程的影响。

答:表面张力会产生一个附加压力,当固液相互润湿时,附加压力有助于液体的充填.液态成形所用的铸型或涂料材料与液态合金应是不润湿的,使铸件的表面得以光洁.凝固后期,表面张力对铸件凝固过程的补索状况,及是否出现热裂缺陷有重大影响。

15:简述过冷度与液态金属凝固的关系。

答:过冷度就是凝固的驱动力,过冷度越大,凝固的驱动力也越大;过冷度为零时,驱动力不存在。

液态金属不会在没有过冷度的情况下凝固.16:用动力学理论阐述液态金属完成凝固的过程.答:高能态的液态原子变成低能态的固态原子,必须越过高能态的界面,界面具有界面能。

生核或晶粒的长大是液态原子不断地向固体晶粒堆积的过程,是固液界面不断向前推进的过程.只有液态金属中那些具有高能态的原子才能越过更高能态的界面成为固体中的原子,从而完成凝固过程.17:简述异质形核与均质形核的区别.答:①均质形核是依靠液态金属内部自身的结构自发形核,异质形核是依靠外来夹杂物所提供的异质界面非自发的形核.②异质形核与固体杂质接触,减少了表面自由能的增加.③异质形核形核功小,形核所需的结构起伏和能量起伏就小,形核容易,所需过冷度小。

18:什么条件下晶体以平面的方式生长?什么条件下晶体以树枝晶方式生长?答:①平面方式长大:固液界面前方的液体正温度梯度分布,固液界面前方的过冷区域及过冷度极小,晶体生长时凝固潜热析出的方向与晶体的生长方向相反。

材料成形基本原理课后习题答案

材料成形基本原理课后习题答案

第一章习题1 . 液体与固体及气体比较各有哪些异同点?哪些现象说明金属的熔化并不是原子间结合力的全部破坏?(2)金属的熔化不是并不是原子间结合力的全部破坏可从以下二个方面说明:①物质熔化时体积变化、熵变及焓变一般都不大。

金属熔化时典型的体积变化∆V m/V为3%~5%左右,表明液体的原子间距接近于固体,在熔点附近其系统混乱度只是稍大于固体而远小于气体的混乱度。

②金属熔化潜热∆H m约为气化潜热∆H b的1/15~1/30,表明熔化时其内部原子结合键只有部分被破坏。

由此可见,金属的熔化并不是原子间结合键的全部破坏,液体金属内原子的局域分布仍具有一定的规律性。

2 . 如何理解偶分布函数g(r) 的物理意义?液体的配位数N1、平均原子间距r1各表示什么?答:分布函数g(r) 的物理意义:距某一参考粒子r处找到另一个粒子的几率,换言之,表示离开参考原子(处于坐标原子r=0)距离为r的位置的数密度ρ(r)对于平均数密度ρo(=N/V)的相对偏差。

N1 表示参考原子周围最近邻(即第一壳层)原子数。

r1 表示参考原子与其周围第一配位层各原子的平均原子间距,也表示某液体的平均原子间距。

3.如何认识液态金属结构的“长程无序”和“近程有序”?试举几个实验例证说明液态金属或合金结构的近程有序(包括拓扑短程序和化学短程序)。

答:(1)长程无序是指液体的原子分布相对于周期有序的晶态固体是不规则的,液体结构宏观上不具备平移、对称性。

近程有序是指相对于完全无序的气体,液体中存在着许多不停“游荡”着的局域有序的原子集团(2)说明液态金属或合金结构的近程有序的实验例证①偶分布函数的特征对于气体,由于其粒子(分子或原子)的统计分布的均匀性,其偶分布函数g(r)在任何位置均相等,呈一条直线g(r)=1。

晶态固体因原子以特定方式周期排列,其g(r)以相应的规律呈分立的若干尖锐峰。

而液体的g(r)出现若干渐衰的钝化峰直至几个原子间距后趋于直线g(r)=1,表明液体存在短程有序的局域范围,其半径只有几个原子间距大小。

材料成型原理课后答案

材料成型原理课后答案

材料成型原理课后答案材料成型原理是指通过不同的成型工艺,将原料加工成所需形状和尺寸的零部件或制品的原理。

在工程制造领域中,材料成型是非常重要的一环,它直接影响着制品的质量和性能。

下面就材料成型原理的相关问题进行解答。

1. 什么是材料成型原理?材料成型原理是指将原料加工成所需形状和尺寸的零部件或制品的原理。

它是通过对原料进行加工,使其发生形状、尺寸和性能的改变,从而得到符合要求的制品。

材料成型原理是工程制造中的重要环节,它直接关系到制品的质量和性能。

2. 材料成型的基本过程是什么?材料成型的基本过程包括原料的预处理、成型工艺和制品的后处理。

首先,原料需要进行预处理,包括清洁、除杂、干燥等工序,以保证原料的质量和加工的顺利进行。

然后,根据制品的要求,选择合适的成型工艺,如锻造、压铸、注塑等,对原料进行加工成型。

最后,对成型后的制品进行后处理,包括去除余渣、表面处理、热处理等工序,以提高制品的质量和性能。

3. 材料成型原理的影响因素有哪些?材料成型原理的影响因素包括原料的性能、成型工艺、成型设备和操作技术等。

首先,原料的性能直接影响着成型的难易程度和制品的质量。

其次,成型工艺的选择和设计对成型效果起着决定性的作用。

成型设备的性能和精度也会影响成型的质量和效率。

操作技术则是保证成型过程顺利进行的重要因素。

4. 材料成型原理的发展趋势是什么?随着科学技术的不断发展,材料成型原理也在不断创新和完善。

未来,材料成型将更加注重节能环保、智能化和数字化。

新材料、新工艺、新设备的不断涌现,将推动材料成型原理朝着高效、精密、绿色的方向发展。

同时,数字化技术的应用将使成型过程更加智能化和可控化,提高生产效率和产品质量。

5. 如何提高材料成型的质量和效率?要提高材料成型的质量和效率,首先需要加强对原料的质量控制,保证原料的质量稳定。

其次,要优化成型工艺和设备,提高成型的精度和效率。

同时,加强操作技术的培训和管理,确保成型过程的稳定和可控。

材料成型原理课后答案

材料成型原理课后答案

材料成型原理课后答案材料成型原理是指通过一定的方法和工艺,将原料加工成所需形状的工程材料的过程。

在工程实践中,材料成型原理是非常重要的,因为它直接影响着材料的性能和质量。

下面是一些关于材料成型原理的课后答案,希望能够帮助大家更好地理解这一知识点。

1. 请简要说明材料成型原理的基本概念。

材料成型原理是指利用一定的方法和工艺,将原料加工成所需形状的工程材料的过程。

这个过程包括了原料的选择、加工工艺的设计、成型设备的选择等多个方面,是一个复杂的系统工程。

2. 什么是材料的塑性变形?请举例说明。

材料的塑性变形是指在一定条件下,材料可以经受外力作用而发生形状和尺寸的变化,而且在去除外力后,能够保持变形的一种性质。

例如金属材料在加工过程中经受压力而产生的变形,就是一种塑性变形。

3. 请简要说明材料的成型工艺对材料性能的影响。

材料的成型工艺对材料性能有着直接的影响。

不同的成型工艺会对材料的组织结构、晶粒大小、内部应力等产生影响,从而影响材料的硬度、强度、韧性等性能。

4. 请简要说明材料成型原理在工程实践中的应用。

材料成型原理在工程实践中有着广泛的应用。

例如在汽车制造中,各种金属材料需要经过成型工艺才能制成车身和零部件;在航空航天领域,各种复杂的零部件需要通过成型工艺才能完成加工。

5. 请简要说明材料成型原理的发展趋势。

随着科学技术的不断发展,材料成型原理也在不断地发展和完善。

未来,随着新材料、新工艺的不断涌现,材料成型原理将更加注重对材料性能的精细调控,以及对环境的友好性。

以上就是关于材料成型原理的一些课后答案,希望能够帮助大家更好地理解和掌握这一知识点。

材料成型原理是工程材料学中的重要内容,对于工程实践具有重要的指导意义。

希望大家能够在学习和工作中充分应用这一知识,不断提高自己的专业水平。

材料成型原理课后答案第三章答案

材料成型原理课后答案第三章答案

第三章 金属凝固热力学与动力学1. 试述等压时物质自由能G 随温度上升而下降以及液相自由能G L 随温度上升而下降的斜率大于固相G S的斜率的理由。

并结合图3-1及式(3-6)说明过冷度ΔT 是影响凝固相变驱动力ΔG 的决定因素。

答:(1)等压时物质自由能G 随温度上升而下降的理由如下:由麦克斯韦尔关系式:VdPSdT dG +-= (1)并根据数学上的全微分关系:dy yF dx x F y x dF xy ⎪⎪⎭⎫⎝⎛∂∂+⎪⎭⎫⎝⎛∂∂=),( 得:dPP G dT T G dG TP ⎪⎭⎫⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=(2)比较(1)式和(2)式得:V P G S T G TP=⎪⎭⎫⎝⎛∂∂-=⎪⎭⎫ ⎝⎛∂∂, 等压时dP =0 ,此时dT T G SdT dG P⎪⎭⎫⎝⎛∂∂=-= (3) 由于熵恒为正值,故物质自由能G 随温度上升而下降。

(2)液相自由能G L 随温度上升而下降的斜率大于固相G S 的斜率的理由如下: 因为液态熵大于固态熵,即: S L > S S所以:>即液相自由能G L随温度上升而下降的斜率大于固相G S 的斜率 。

(3)过冷度ΔT是影响凝固相变驱动力ΔG 的决定因素的理由如下:右图即为图3-1其中:V G ∆表示液-固体积自由能之差T m 表示液-固平衡凝固点从图中可以看出:T > T m 时,ΔG=Gs -G L ﹥0,此时 固相→液相 T = T m 时,ΔG=Gs -G L =0,此时 液固平衡 T < T m 时,ΔG=Gs -G L <0,此时 液相→固相 所以ΔG 即为相变驱动力。

再结合(3-6)式来看, mm V T TH G ∆⋅∆-=∆(其中:ΔH m —熔化潜热, ΔT)(T T m -=—过冷度)由于对某一特定金属或合金而言,T m 及ΔH m 均为定值, 所以过冷度ΔT 是影响凝固相变驱动力ΔG 的决定因素 。

2. 怎样理解溶质平衡分配系数K 0的物理意义及热力学意义? 答:(1)K 0的物理意义如下:溶质平衡分配系数K 0定义为:特定温度T *下固相合金成分浓度C *S 与液相合金成分浓度C *L 达到平衡时的比值:K 0 =**LSC C K 0<1时,固相线、液相线构成的张角朝下,K 0越小,固相线、液相线张开程度越大,开始结晶时与终了结晶时的固相成分差别越大,最终凝固组织的成分偏析越严重。

材料成形基本原理(刘全坤)课后答案

材料成形基本原理(刘全坤)课后答案

第一章液态金属的结构与性质习题1 。

液体与固体及气体比较各有哪些异同点?哪些现象说明金属的熔化并不是原子间结合力的全部破坏?(2)金属的熔化不是并不是原子间结合力的全部破坏可从以下二个方面说明:①物质熔化时体积变化、熵变及焓变一般都不大。

金属熔化时典型的体积变化∆V m/V为3%~5%左右,表明液体的原子间距接近于固体,在熔点附近其系统混乱度只是稍大于固体而远小于气体的混乱度。

②金属熔化潜热∆H m约为气化潜热∆H b的1/15~1/30,表明熔化时其内部原子结合键只有部分被破坏。

由此可见,金属的熔化并不是原子间结合键的全部破坏,液体金属内原子的局域分布仍具有一定的规律性。

2 .如何理解偶分布函数g(r)的物理意义?液体的配位数N1、平均原子间距r1各表示什么?答:分布函数g(r)的物理意义:距某一参考粒子r处找到另一个粒子的几率,换言之,表示离开参考原子(处于坐标原子r=0)距离为r的位置的数密度ρ(r)对于平均数密度ρo(=N/V)的相对偏差.N1 表示参考原子周围最近邻(即第一壳层)原子数。

r1 表示参考原子与其周围第一配位层各原子的平均原子间距,也表示某液体的平均原子间距。

3.如何认识液态金属结构的“长程无序”和“近程有序”?试举几个实验例证说明液态金属或合金结构的近程有序(包括拓扑短程序和化学短程序)。

答:(1)长程无序是指液体的原子分布相对于周期有序的晶态固体是不规则的,液体结构宏观上不具备平移、对称性。

近程有序是指相对于完全无序的气体,液体中存在着许多不停“游荡"着的局域有序的原子集团(2)说明液态金属或合金结构的近程有序的实验例证①偶分布函数的特征对于气体,由于其粒子(分子或原子)的统计分布的均匀性,其偶分布函数g(r)在任何位置均相等,呈一条直线g(r)=1。

晶态固体因原子以特定方式周期排列,其g(r)以相应的规律呈分立的若干尖锐峰。

而液体的g(r)出现若干渐衰的钝化峰直至几个原子间距后趋于直线g(r)=1,表明液体存在短程有序的局域范围,其半径只有几个原子间距大小。

材料成型基本原理课后答案

材料成型基本原理课后答案

1 表面张力—表面上平行于表面切线方向且各方向大小相等的张力。

表面张力是由于物体在表面上的质点受力不均匀所致。

2 粘度-表面上平行于表面切线方向且各方向大小相等的张力。

或作用于液体表面的应力τ大小与垂直于该平面方向上的速度梯度dvx/dvy的比例系数。

3 表面自由能(表面能)-为产生新的单位面积表面时系统自由能的增量。

4 液态金属的充型能力-液态金属充满铸型型腔,获得形状完整、轮廓清晰的铸件的能力,即液态金属充填铸型的能力。

5 液态金属的流动性-是液态金属的工艺性能之一,与金属的成分、温度、杂质含量及其物理性质有关。

6 铸型的蓄热系数-表示铸型从液态金属吸取并储存在本身中热量的能力。

7 不稳定温度场-温度场不仅在空间上变化,并且也随时间变化的温度场稳定温度场-不随时间而变的温度场(即温度只是坐标的函数):8 温度梯度—是指温度随距离的变化率。

或沿等温面或等温线某法线方向的温度变化率。

9 溶质平衡分配系数K0—特定温度T*下固相合金成分浓度CS*与液相合金成分CL*达到平衡时的比值。

10 均质形核和异质形核-均质形核(Homogeneous nucleation) :形核前液相金属或合金中无外来固相质点而从液相自身发生形核的过程,亦称“自发形核” 。

非均质形核(Hetergeneous nucleation) :依靠外来质点或型壁界面提供的衬底进行生核过程,亦称“异质形核”。

11、粗糙界面和光滑界面-从原子尺度上来看,固-液界面固相一侧的点阵位置只有50%左右被固相原子所占据,从而形成一个坑坑洼洼凹凸不平的界面层。

粗糙界面在有些文献中也称为“非小晶面”。

光滑界面—从原子尺度上来看,固-液界面固相一侧的点阵位置几乎全部为固相原子占满,只留下少数空位或台阶,从而形成整体上平整光滑的界面结构。

也称为“小晶面”或“小平面”。

12 “成分过冷”与“热过冷”-液态合金在凝固过程中溶质再分配引起固-液界面前沿的溶质富集,导致界面前沿熔体液相线的改变而可能产生所谓的“成分过冷”。

合工大版材料成型原理课后习题参考答案(重要习题加整理)

合工大版材料成型原理课后习题参考答案(重要习题加整理)

第二章 凝固温度场P498. 对于低碳钢薄板,采用钨极氩弧焊较容易实现单面焊双面成形(背面均匀焊透)。

采用同样焊接规范去焊同样厚度的不锈钢板或铝板会出现什么后果?为什么?解:采用同样焊接规范去焊同样厚度的不锈钢板可能会出现烧穿,这是因为不锈钢材料的导热性能比低碳钢差,电弧热无法及时散开的缘故;相反,采用同样焊接规范去焊同样厚度的铝板可能会出现焊不透,这是因为铝材的导热能力优于低碳钢的缘故。

9. 对于板状对接单面焊焊缝,当焊接规范一定时,经常在起弧部位附近存在一定长度的未焊透,分析其产生原因并提出相应工艺解决方案。

解:(1)产生原因:在焊接起始端,准稳态的温度场尚未形成,周围焊件的温度较低,电弧热不足以将焊件熔透,因此会出现一定长度的未焊透。

(2)解决办法:焊接起始段时焊接速度慢一些,对焊件进行充分预热,或焊接电流加大一些,待焊件熔透后再恢复到正常焊接规范。

生产中还常在焊件起始端固定一个引弧板,在引弧板上引燃电弧并进行过渡段焊接,之后再转移到焊件上正常焊接。

第四章 单相及多相合金的结晶 P909.何为成分过冷判据?成分过冷的大小受哪些因素的影响? 答: “成分过冷”判据为:R G L <NLD RLL L e K K D C m δ-+-0011当“液相只有有限扩散”时,δN =∞,0C C L =,代入上式后得R G L<000)1(K K D C m L L -( 其中: G L — 液相中温度梯度 R — 晶体生长速度 m L — 液相线斜率 C 0 — 原始成分浓度 D L — 液相中溶质扩散系数 K 0 — 平衡分配系数K )成分过冷的大小主要受下列因素的影响:1)液相中温度梯度G L , G L 越小,越有利于成分过冷 2)晶体生长速度R , R 越大,越有利于成分过冷 3)液相线斜率m L ,m L 越大,越有利于成分过冷 4)原始成分浓度C 0, C 0越高,越有利于成分过冷 5)液相中溶质扩散系数D L, D L 越底,越有利于成分过冷6)平衡分配系数K 0 ,K 0<1时,K 0 越 小,越有利于成分过冷;K 0>1时,K 0越大,越有利于成分过冷。

材料成型原理第五章答案

材料成型原理第五章答案

第五章1.铸件典型宏观凝固组织是由哪几部分构成的,它们的形成机理如何?答:铸件的宏观组织通常由激冷晶区、柱状晶区和内部等轴晶区所组成。

表面激冷区的形成:当液态金属浇入温度较低的铸型中时,型壁附近熔体由于受到强烈的激冷作用,产生很大的过冷度而大量非均质生核。

这些晶核在过冷熔体中也以枝晶方式生长,由于其结晶潜热既可从型壁导出,也可向过冷熔体中散失,从而形成了无方向性的表面细等轴晶组织。

柱状晶区的形成:在结晶过程中由于模壁温度的升高,在结晶前沿形成适当的过冷度,使表面细晶粒区继续长大(也可能直接从型壁处长出),又由于固-液界面处单向的散热条件(垂直于界面方向),处在凝固界面前沿的晶粒在垂直于型壁的单向热流的作用下,以表面细等轴晶凝固层某些晶粒为基底,呈枝晶状单向延伸生长,那些主干取向与热流方向相平行的枝晶优先向内伸展并抑制相邻枝晶的生长,在淘汰取向不利的晶体过程中,发展成柱状晶组织。

内部等轴晶的形成:内部等轴晶区的形成是由于熔体内部晶核自由生长的结果。

随着柱状晶的发展,熔体温度降到足够低,再加之金属中杂质等因素的作用,满足了形核时的过冷度要求,于是在整个液体中开始形核。

同时由于散热失去了方向性,晶体在各个方向上的长大速度是相等的,因此长成了等轴晶。

2.试分析溶质再分配对游离晶粒的形成及晶粒细化的影响。

答:对于纯金属在冷却结晶时候没有溶质再分配,所以在其沿型壁方向晶体迅速长大,晶体与晶体之间很快能够连接起来形成凝固壳。

当形成一个整体的凝固壳时,结晶体再从型壁处游离出来就很困难了。

但是如果向金属中添加溶质,则在晶体与型壁的交汇处将会形成溶质偏析,溶质的偏析容易使晶体在与型壁的交会处产生“脖颈”,具有“脖颈”的晶体不易于沿型壁方向与其相邻晶体连接形成凝固壳, 另一方面,在浇注过程和凝固初期存在的对流容易冲断“脖颈”,使晶体脱落并游离出去,形成游离晶。

一些游离晶被保留下来并发生晶体增殖,成为等轴晶的核心,形成等轴晶,从而起到细化晶粒的作用。

材料成形基本原理(刘全坤)课后答案

材料成形基本原理(刘全坤)课后答案

第一章液态金属的结构与性质习题1 .液体与固体及气体比较各有哪些异同点哪些现象说明金属的熔化并不是原子间结合力的全部破坏答:(1)液体与固体及气体比较的异同点可用下表说明(2)金属的熔化不是并不是原子间结合力的全部破坏可从以下二个方面说明:①物质熔化时体积变化、熵变及焓变一般都不大。

金属熔化时典型的体积变化∆V m/V为3%~5%左右,表明液体的原子间距接近于固体,在熔点附近其系统混乱度只是稍大于固体而远小于气体的混乱度。

②金属熔化潜热∆H m约为气化潜热∆H b的1/15~1/30,表明熔化时其内部原子结合键只有部分被破坏。

由此可见,金属的熔化并不是原子间结合键的全部破坏,液体金属内原子的局域分布仍具有一定的规律性。

2 .如何理解偶分布函数g(r) 的物理意义液体的配位数N1、平均原子间距r1各表示什么答:分布函数g(r) 的物理意义:距某一参考粒子r处找到另一个粒子的几率,换言之,表示离开参考原子(处于坐标原子r=0)距离为r的位置的数密度ρ(r)对于平均数密度ρo(=N/V)的相对偏差。

N1 表示参考原子周围最近邻(即第一壳层)原子数。

r1 表示参考原子与其周围第一配位层各原子的平均原子间距,也表示某液体的平均原子间距。

3.如何认识液态金属结构的“长程无序”和“近程有序”试举几个实验例证说明液态金属或合金结构的近程有序(包括拓扑短程序和化学短程序)。

答:(1)长程无序是指液体的原子分布相对于周期有序的晶态固体是不规则的,液体结构宏观上不具备平移、对称性。

近程有序是指相对于完全无序的气体,液体中存在着许多不停“游荡”着的局域有序的原子集团(2)说明液态金属或合金结构的近程有序的实验例证①偶分布函数的特征对于气体,由于其粒子(分子或原子)的统计分布的均匀性,其偶分布函数g(r)在任何位置均相等,呈一条直线g(r)=1。

晶态固体因原子以特定方式周期排列,其g(r)以相应的规律呈分立的若干尖锐峰。

材料成形基本原理(刘全坤)课后答案

材料成形基本原理(刘全坤)课后答案

第一章液态金属的结构与性质习题1 .液体与固体及气体比较各有哪些异同点?哪些现象说明金属的熔化并不是原子间结合力的全部破坏?答(2)金属的熔化不是并不是原子间结合力的全部破坏可从以下二个方面说明:①物质熔化时体积变化、熵变及焓变一般都不大。

金属熔化时典型的体积变化∆V m/V为3%~5%左右,表明液体的原子间距接近于固体,在熔点附近其系统混乱度只是稍大于固体而远小于气体的混乱度.②金属熔化潜热∆H m约为气化潜热∆H b的1/15~1/30,表明熔化时其内部原子结合键只有部分被破坏。

由此可见,金属的熔化并不是原子间结合键的全部破坏,液体金属内原子的局域分布仍具有一定的规律性.2 。

如何理解偶分布函数g(r)的物理意义?液体的配位数N1、平均原子间距r1各表示什么?答:分布函数g(r) 的物理意义:距某一参考粒子r处找到另一个粒子的几率,换言之,表示离开参考原子(处于坐标原子r=0)距离为r的位置的数密度ρ(r)对于平均数密度ρo(=N/V)的相对偏差。

N1 表示参考原子周围最近邻(即第一壳层)原子数.r1 表示参考原子与其周围第一配位层各原子的平均原子间距,也表示某液体的平均原子间距。

3.如何认识液态金属结构的“长程无序”和“近程有序”?试举几个实验例证说明液态金属或合金结构的近程有序(包括拓扑短程序和化学短程序)。

答:(1)长程无序是指液体的原子分布相对于周期有序的晶态固体是不规则的,液体结构宏观上不具备平移、对称性。

近程有序是指相对于完全无序的气体,液体中存在着许多不停“游荡"着的局域有序的原子集团(2)说明液态金属或合金结构的近程有序的实验例证①偶分布函数的特征对于气体,由于其粒子(分子或原子)的统计分布的均匀性,其偶分布函数g(r)在任何位置均相等,呈一条直线g(r)=1。

晶态固体因原子以特定方式周期排列,其g(r)以相应的规律呈分立的若干尖锐峰。

而液体的g(r)出现若干渐衰的钝化峰直至几个原子间距后趋于直线g(r)=1,表明液体存在短程有序的局域范围,其半径只有几个原子间距大小。

材料成形基本原理课后习题答案

材料成形基本原理课后习题答案

第一章习题1 . 液体与固体及气体比较各有哪些异同点?哪些现象说明金属的熔化并不是原子间结合力的全部破坏?(2)金属的熔化不是并不是原子间结合力的全部破坏可从以下二个方面说明:①物质熔化时体积变化、熵变及焓变一般都不大。

金属熔化时典型的体积变化∆V m/V为3%~5%左右,表明液体的原子间距接近于固体,在熔点附近其系统混乱度只是稍大于固体而远小于气体的混乱度。

②金属熔化潜热∆H m约为气化潜热∆H b的1/15~1/30,表明熔化时其内部原子结合键只有部分被破坏。

由此可见,金属的熔化并不是原子间结合键的全部破坏,液体金属内原子的局域分布仍具有一定的规律性。

2 . 如何理解偶分布函数g(r) 的物理意义?液体的配位数N1、平均原子间距r1各表示什么?答:分布函数g(r) 的物理意义:距某一参考粒子r处找到另一个粒子的几率,换言之,表示离开参考原子(处于坐标原子r=0)距离为r的位置的数密度ρ(r)对于平均数密度ρo(=N/V)的相对偏差。

N1 表示参考原子周围最近邻(即第一壳层)原子数。

r1 表示参考原子与其周围第一配位层各原子的平均原子间距,也表示某液体的平均原子间距。

3.如何认识液态金属结构的“长程无序”和“近程有序”?试举几个实验例证说明液态金属或合金结构的近程有序(包括拓扑短程序和化学短程序)。

答:(1)长程无序是指液体的原子分布相对于周期有序的晶态固体是不规则的,液体结构宏观上不具备平移、对称性。

近程有序是指相对于完全无序的气体,液体中存在着许多不停“游荡”着的局域有序的原子集团(2)说明液态金属或合金结构的近程有序的实验例证①偶分布函数的特征对于气体,由于其粒子(分子或原子)的统计分布的均匀性,其偶分布函数g(r)在任何位置均相等,呈一条直线g(r)=1。

晶态固体因原子以特定方式周期排列,其g(r)以相应的规律呈分立的若干尖锐峰。

而液体的g(r)出现若干渐衰的钝化峰直至几个原子间距后趋于直线g(r)=1,表明液体存在短程有序的局域范围,其半径只有几个原子间距大小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章:
8:实际金属液态合金结构与理想纯金属液态结构有何不同
答:纯金属的液态结构是由原子集团、游离原子、空穴或裂纹组成的,是近程有序的。

液态中存在着很大的能量起伏。

而实际金属中存在大量的杂质原子,形成夹杂物,除了存在结构起伏和能量起伏外还存在浓度起伏。

12:简述液态金属的表面张力的实质及其影响因数。

答:实质:表面张力是表面能的物理表现,是是由原子间的作用力及其在表面和内部间排列状态的差别引起的。

影响因数:熔点、温度和溶质元素。

13:简述界面现象对液态成形过程的影响。

答:表面张力会产生一个附加压力,当固液相互润湿时,附加压力有助于液体的充填。

液态成形所用的铸型或涂料材料与液态合金应是不润湿的,使铸件的表面得以光洁。

凝固后期,表面张力对铸件凝固过程的补索状况,及是否出现热裂缺陷有重大影响。

15:简述过冷度与液态金属凝固的关系。

答:过冷度就是凝固的驱动力,过冷度越大,凝固的驱动力也越大;过冷度为零时,驱动力不存在。

液态金属不会在没有过冷度的情况下凝固。

16:用动力学理论阐述液态金属完成凝固的过程。

答:高能态的液态原子变成低能态的固态原子,必须越过高能态的界面,界面具有界面能。

生核或晶粒的长大是液态原子不断地向固体晶粒堆积的过程,是固液界面不断向前推进的过程。

只有液态金属中那些具有高能态的原子才能越过更高能态的界面成为固体中的原子,从而完成凝固过程。

17:简述异质形核与均质形核的区别。

答:均质形核是依靠液态金属内部自身的结构自发形核,异质形核是依靠外来夹杂物所提供的异质界面非自发的形核。

异质形核与固体杂质接触,减少了表面自由能的增加。

异质形核形核功小,形核所需的结构起伏和能量起伏就小,形核容易,所需过冷度小。

18:什么条件下晶体以平面的方式生长什么条件下晶体以树枝晶方式生长
答:①平面方式长大:固液界面前方的液体正温度梯度分布,固液界面前方的过冷区域及过冷度极小,晶体生长时凝固潜热析出的方向与晶体的生长方向相反。

②树枝晶方式生长:固液界面前方的液体负温度梯度分布,固液界面前方的过冷区域较大,且距离固液界面越远过冷度越大,晶体生长时凝固潜热析出的方向与晶体生长的方向相同。

19:简述晶体的微观长大方式及长大速率。

答:①连续生长机理--粗糙界面的生长:动力学过冷度小,生长速率快。

②二维生长机理--光滑界面生长:过冷度影响大,生长速度慢。

③从缺陷处生长机理--非完整界面生长:所需过冷度较大,生长速度位于以上二者之间。

20:为生么要研究液态金属凝固过程中的溶质再分配它受那些因素的影响
答:液态金属在凝固过程中的各组元会按一定的规律分配,它决定着凝固组织的成分分布和组织结构,液态合金凝固过程中溶质的传输,使溶质在固液界面两侧的固相和液相中进行再分配。

掌握凝固过程中的溶质再分配的规律,是控制晶体生长行为的重要因素,也是在生产实践中控制各种凝固偏析的基础。

凝固过程中溶质的再分配是合金热力和动力学共同作用的结果,不同的凝固
条件溶质在固相和液相中的分配规律也不同。

23:什么是成分过冷形成成分过冷必须具备什么条件
答:由固液界面前沿溶质的再分配引起的过冷命名为成分过冷。

条件:界面前沿形成溶质富集,液相线温度随距离的增大而上升,当GL小于液相线斜率时出现成分过冷。

25:何为外生生长何为内生生长各在什么条件下进行
答:在合金的结晶中,晶体自形壁生核,然后由外向内单向延伸生长称为外生生长。

例如平面生长、胞状生长和柱状树枝晶生长。

而在液体内部自由生长的方式称为内生生长,例如等轴晶。

(成分过冷加强了晶体生长方式由外生生长向内生生长的转变)宽范围的成分过冷及具有强形核能力的生核剂都有利于内生生长。

26:为什么非共晶成分的合金往往能获得100%的共晶组织
答:在近平衡凝固条件下,当其较快地冷却两条液相线的延长线所包围的阴影区域时,两相具备了同时析出的条件,于是,某一相先析出,然后再在其表面上析出另一个相,从而开始两个竞相析出的共晶凝固过程,最后也能获得100%共晶组织(伪共晶组织)。

30:铸件典型宏观凝固组织由哪几部分组成它们的形成机理如何
答:表面细晶粒区:铸型壁附近熔体受到强烈的激冷作用而大量形核,形成无方向性的表面细等轴晶组织,也叫“激冷晶”。

柱状晶区:稳定的凝固壳层形成后,那些主干与热流方向相平行的枝晶,较之取向不利的相邻枝晶生长得更为迅速,它们优先向内伸展并抑制相邻枝晶的生长。

在逐渐淘汰掉取向不利的晶体过程中发展成柱状晶组织-择优生长。

内部等轴晶:等轴晶区的形成是熔体内部晶核自由生长的结果。

形核是发生柱状晶向等轴晶转变的必要条件。

31:试分析溶质再分配对游离晶的产生及晶粒细化的作用。

答:溶质再分配使固液前沿的液态金属凝固温度降低,使实际过冷度减小,溶质偏析程度增大,在晶粒的根部产生缩颈现象,形成游离晶。

一些游离晶被保留下来,发生晶体增殖,成为等轴晶的核心从而形成等轴晶,起到晶粒细化的作用。

32:晶粒细化的措施。

答:①控制浇注条件:低的浇注温度,合理的浇注工艺,理控制冷却条件,选用合适的铸型。

②加入生核剂——孕育处理③动态晶粒细化:振动电磁搅拌。

33:实际中为何异质形核更普遍
答:①实际金属中存在大量夹杂物为异质形核提供了基础。

②所需过冷度小,形核所需的结构起伏和能量起伏小,形核容易。

③异质形核的临界形核功小。

相关文档
最新文档