高中数学导数的计算

合集下载

人教A版高中数学选修2-2课件1.2导数的计算(3).pptx

人教A版高中数学选修2-2课件1.2导数的计算(3).pptx

例4 求下列函数的导数
(1) y (2x 3)2
解:(1)函数y (2x 3)2可以看作 函数y u2和u 2x 3的复合函数。 根据复合函数求导法则有
yx ' yu '• ux ' (u 2 ) '• (2x 3) '
2ug2 4u 8x 12.
(2) y e0.05x1
x, 则f
'( x)
1 (a x ln a
0, 且a
1);
公式8.若f (x) ln x,则f '(x) 1 ; x
导数运算法则
1. f ( x) g ( x) f ( x) g ( x)
2 . f ( x ) • g ( x ) f ( x ) g ( x ) f ( x ) g ( x )
例设 y ln x x2 a2 a 0 求 y

y ln x
x2 a2
1
1
2x
1
x x2 a2 2 x2 a2 x2 a2
例设 y求 ln tan 2 x
y
解 y ln tan 2x 1 tan 2x
tan 2x
1 tan 2x
1 cos2
2x
2 x
解 (1) y 2u ,u x 1. (2) y sin u,u v 1, v ln x.
3.复合函数的求导法则 (1) y f [g(x)] y f (u),u g(x). 那么
yx yu ux .
(2) y f (u),u g(v), v h(x). 那么
yx yu uv vx' .
2. c f (x) c f (x)
3.
f g
(x) (x)

高中数学 导数的运算

高中数学  导数的运算

y =
lim
x0
f
(x x) x
f
(x)
=
lim
x0
4(
x
x) x
4
x
= lim 4 = 4. x0
(2x)=2. (3x)=3. (4x)=4.
y y=4x y=3x
4 y=2x 3 2
o1 x
练习: (课本13, 14页 “探究”)
1. 在同一平面直角坐标系中, 画出函数 y=2x,
y=3x, y=4x 的图象, 并根据导数定义, 求它们的导数.
导数的运算法则(第二课时)
几个常用函数的导数
返回目录
1. 常数函数, 正比例函数, 反比例函数, 幂函数等的导数各是多少?
2. 以上函数的导数与图象、函数性质各 有什么关系?
问题1. 上一课时我们学习了导函数, 你能求出以
下函数的导函数吗? 其几何意义和物理意义如何?
(1) y=c (c为常数);
y=x2y o
(3) y=x2;
(4)
y
=
1 x
;
(5) y = x.
(3) y=x2,
y
x
= = =
lim
x0
lim
x0
lim
x0
y x
= lim x0
f
(x x) x
f
(
(x x)2 x2
x x2 2x(x) (x)2 x2
x
x)
几何意义: 当 x<0 时, 切线的斜率为 负, 且逐渐增大;
4. 若 f(x)=cos x, 则 f (x)= sin x;
5. 若 f(x)=ax, 则 f (x)=ax lna;

导数的几种解法

导数的几种解法

导数的几种解法摘要:导数是微积分中的重要概念,它描述了函数在某一点处的变化率。

通过熟练掌握这些方法,我们可以计算各种函数的导数,并应用导数来分析函数的性质和解决实际问题。

求导在数学和科学的各个领域都有广泛应用,为我们理解变化规律、优化问题和建模提供了强大的工具。

持续学习和探索微积分的知识,将帮助我们更好地理解和应用求导技术。

为了求解导数,我们可以采用多种不同的方法和技巧,本文将介绍导数的几种常见解法。

关键词:高中数学;导数;常见解法引言:高中数学中,导数是一个重要的概念和计算方法。

对于函数的导数,有多种解法可以应用。

每种解法都有其独特的适用场景和计算方式,能够帮助我们更好地理解和运用导数的概念。

通过熟练掌握和灵活运用这些解法,我们可以更精确地求解函数的导数,进而应用到各种实际问题中,提高数学问题的解决能力。

一、基本求导方法导数是微积分中的重要概念,用于描述函数在某一点处的变化率。

在数学上,导数可以通过极限的概念来定义,表示函数在某一点附近的斜率。

几何上,导数可以解释为函数图像在某一点处的切线斜率。

物理上,导数可以表示物体在某一时刻的速度或加速度。

导数的计算可以采用多种方法,以下是几种基本的求导方法。

一种常见的方法是使用定义法求导。

根据导数的定义,导数可以通过极限的方式来计算。

具体来说,对于一个函数f(x),它在某个点x=a处的导数可以通过计算极限lim(h→0) [f(a+h) - f(a)] / h 来求得。

这种方法需要对极限的概念和计算方法有一定的了解,并且在具体计算时需要进行一系列的代数运算。

例如,对于函数f(x) = x^2,在x=2处的导数可以通过计算lim(h→0) [(2+h)^2 -2^2] / h来得到。

另一种常用的方法是利用常见的导数规则来求导。

导数规则是一些已知的函数导数的性质和规律,可以帮助我们快速计算复杂函数的导数。

常见的导数规则包括幂函数的导数、指数函数的导数、对数函数的导数等。

高中求导公式运算法则

高中求导公式运算法则

高中求导公式运算法则
在高中求导过程中,常用的公式和运算法则包括:
1. 基本导数公式:
-常数导数:常数的导数为零。

-幂函数导数:对于函数y = x^n,其中n是实数常数,其导数为dy/dx = nx^(n-1)。

-指数函数导数:对于函数y = e^x,其导数为dy/dx = e^x。

-对数函数导数:对于函数y = ln(x),其中x > 0,其导数为dy/dx = 1/x。

2. 基本运算法则:
-和差法则:对于函数y = u(x) ± v(x),其导数为dy/dx = u'(x) ± v'(x),其中u'(x)和v'(x)分别表示u(x)和v(x)的导数。

-常数倍法则:对于函数y = ku(x),其中k为常数,其导数为dy/dx = k * u'(x)。

-乘积法则:对于函数y = u(x) * v(x),其导数为dy/dx = u'(x) * v(x) + u(x) * v'(x)。

-商法则:对于函数y = u(x) / v(x),其导数为dy/dx = (u'(x) * v(x) - u(x) * v'(x)) / v(x)^2,其中v(x) ≠ 0。

3. 链式法则:对于复合函数y = f(g(x)),其导数为dy/dx = f'(g(x)) * g'(x)。

这些是高中求导过程中常用的公式和运算法则。

当然,导数的计算还涉及到其他公式和技巧,具体问题具体分析。

对于更高级的求导
技巧和运算法则,可能需要在大学或高等数学课程中学习。

高中数学《导数的计算》学案1 新人教A版选修

高中数学《导数的计算》学案1 新人教A版选修

高中数学《导数的计算》学案1 新人教A版选修3、2 导数的计算【成功细节】张玥谈导数的计算的方法(xx年,北京文9)已知是的导函数,则的值是____、本节内容公式和法则比较多,以公式的推导、记忆以及应用为主,重点是基本初等函数导数公式以及导数的四则运算法则的灵活运用,公式的形式多样,容易引起混淆,并且公式中往往会有一些条件容易忽略,导致遗漏错误、所以在学习时,我认为应注意以下几个方面:(1)要牢记常数函数和幂函数的求导公式,能用定义法求这些函数的导数的方法,注意四种常见函数实际上就是四种特殊的幂函数;(2)要熟记基本初等函数的导数公式,特别是对数函数和指数函数的导函数的形式,;(3)熟练掌握导数的四则运算法则,注意公式的形式以及前提条件,两个函数的和与差的导数与两个函数积的导数的形式是不同的;(4)和(或差)、积的函数的导数运算法则可以推广到两个以上函数的和(差)、积的求导;(5)在求函数的导数时,一定要先化简函数的表达式,尽量不使用积的函数的导数的法则;(6)若两个函数不可导,则它们的和、差、积、商不一定不可导。

如,这个题主要考查基本初等函数的导数公式以及函数和的导数的计算法则,是一个简单的小题,但计算时要细心,可先求出导函数,然后再求导数值,显然有公式可得,,所以、【高效预习】(核心栏目)“要养成学生阅读书籍的习惯就非教他们预习不可”。

叶圣陶【关注、思考】1、阅读课本第8182页,总结四个常用函数的导数公式,认真阅读导数公式的推导过程,这四个常用函数有什么共同的特征,其导数有什么意义?细节提示:利用导数的定义求解四种函数的导数,对照函数图象,把握住导数的物理意义和几何意义;四种常用函数实际上都是幂函数,探讨规律时,应把导函数的系数与幂指数与原函数进行对比、【领会、感悟】1、这四种函数实质上都是特殊的幂函数,它们的导函数的系数为幂函数的指数,指数为幂函数的指数减去1所的数值;函数的导数的几何意义是函数图象在该点处的切线的斜率【领会感悟】2、基本初等函数的导数公式是我们求解函数导数的基础,要记准确,记牢,才可能在运算过程中不出现错误。

高中数学导数的计算

高中数学导数的计算

高中数学导数的计算导数是微积分中的一项重要概念,用于描述函数在其中一点的变化率。

在高中数学中,我们主要学习了常见函数的导数计算方法,包括多项式函数、指数函数、对数函数、三角函数等。

下面我们将通过一些例子详细介绍这些函数的导数计算方法。

一、多项式函数的导数计算多项式函数的一般形式为f(x)=aₙxⁿ+aₙ₋₁xⁿ⁻¹+...+a₁x+a₀,其中aₙ、aₙ₋₁、..、a₁、a₀为常数,n为正整数。

多项式函数的导数计算可通过幂次降低的方法来进行。

具体来说,对于f(x)=aₙxⁿ+aₙ₋₁xⁿ⁻¹+...+a₁x+a₀,如果n≥1,则有f’(x)=naₙxⁿ⁻¹+(n-1)aₙ₋₁xⁿ⁻²+...+a₁。

如果n=0,则f’(x)=0。

例题1:求函数f(x)=4x⁴+2x³-3x²+5的导数。

解:f’(x)=4*4x³+3*2x²-2*3x¹+0=16x³+6x²-6x二、指数函数的导数计算指数函数的一般形式为f(x)=aᵏx,其中a为常数,k为指数。

指数函数的导数计算可以通过应用导数的基本性质和指数函数的特点来求解。

具体来说,对于函数f(x)=aᵏx,根据导数的基本性质,有f’(x)=k*aᵏ⁻¹x。

同样地,对于指数函数f(x)=a,它的导数为f’(x)=0。

例题2:求函数f(x)=3e²ˣ的导数。

解:f’(x)=3*2e²ˣ=6e²ˣ三、对数函数的导数计算对数函数的一般形式为f(x)=logₐx,其中a为底数。

对数函数的导数计算同样可以通过应用导数的基本性质和对数函数的特点来求解。

具体来说,对于函数f(x)=logₐx,根据导数的基本性质,有f’(x)=1/(xlna)。

例题3:求函数f(x)=ln(4x)的导数。

解:f’(x)=1/(4x)四、三角函数的导数计算三角函数是高中数学中常见的函数,包括正弦函数、余弦函数和正切函数等。

高中数学导数公式及运算法则

高中数学导数公式及运算法则

高中数学导数公式及运算法则1.y=cc为常数 y'=02.y=x^n y'=nx^n-13.y=a^x y'=a^xlnay=e^x y'=e^x4.y=logax y'=logae/xy=lnx y'=1/x5.y=sinx y'=cosx6.y=cosx y'=-sinx7.y=tanx y'=1/cos^2x8.y=cotx y'=-1/sin^2x加(减)法则:[fx+gx]'=fx'+gx'乘法法则:[fx*gx]'=fx'*gx+gx'*fx除法法则:[fx/gx]'=[fx'*gx-gx'*fx]/gx^2由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。

基本的求导法则如下:1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。

2、两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。

3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方(即③式)。

4、如果有复合函数,则用链式法则求导。

函数y=f(x)在x0点的导数f'(x0)的几何意义:表示函数曲线在点P0(x0,f(x0))处的切线的斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。

计算已知函数的导函数可以按照导数的定义运用变化比值的极限来计算。

在实际计算中,大部分常见的解析函数都可以看作是一些简单的函数的和、差、积、商或相互复合的结果。

只要知道了这些简单函数的导函数,那么根据导数的求导法则,就可以推算出较为复杂的函数的导函数。

感谢您的阅读,祝您生活愉快。

高中数学导数运算公式

高中数学导数运算公式

高中数学导数运算公式高中数学的导数运算公式,嘿,听起来好像有点吓人,其实没那么复杂。

咱们就像在爬山一样,开始可能觉得陡峭,后来慢慢就能找到窍门。

导数,其实就是看函数在某个点的变化率,像是观察一辆车在某一时刻的速度。

你想啊,开车的时候,突然加速,哇,那速度一下子就上来了,对吧?这就是导数的感觉,瞬间的变化,刺激又有趣。

咱们来聊聊最基本的那些公式。

你可能听过,常数的导数是零,嘿,简单吧。

就像你在沙发上看电视,根本没动,变化率当然是零啦。

然后再看一次方程,比如说 (f(x) = x^n),它的导数是 (f'(x) = nx^{n1)。

这就是个简单的规律,越往上乘的那个数越大,减一就是了,轻松搞定!咱们说说和其他函数结合的情况。

比如乘法法则,别紧张,听着就好。

假设你有两个函数 (u(x)) 和 (v(x)),那么它们的乘积的导数就是 (u'v + uv')。

就像你和朋友一起合作搞事情,你干一点,他干一点,合力就出来了。

这一套,真的是让人觉得妙不可言,简直就是数学界的黄金搭档。

然后,别忘了链式法则,太重要了。

想象一下你在玩打怪游戏,里面有个 Boss,要打败它需要先打小怪。

链式法则就像是这个过程,(f(g(x)))的导数是 (f'(g(x)) cdot g'(x))。

简单来说,就是先看外面,再看里面,越深入越有趣,最终你就能搞定整个函数,真的是一步一个脚印,稳扎稳打。

再来聊聊一些奇妙的公式,比如指数函数和对数函数。

你可能知道,(e^x)的导数是它自己,哇,这个听起来就很酷,跟个永动机一样,无限循环。

而自然对数的导数是(1/x),就像一个倒立的钟,越往后走,分数越来越小。

数学里的这些规律,真的是让人眼前一亮,忍不住想深入了解。

别忘了,咱们还有三角函数,真是充满了变化和乐趣。

比如说,(sin(x))的导数是(cos(x)),而(cos(x))的导数是(sin(x))。

这就是个完美的循环,让人感觉到数学的和谐美。

高中数学《导数的四则运算法则》知识点讲解及重点练习

高中数学《导数的四则运算法则》知识点讲解及重点练习

5.2.2 导数的四则运算法则 学习目标 1.理解函数的和、差、积、商的求导法则.2.理解求导法则的证明过程,能够综合运用导数公式和导数运算法则求函数的导数.知识点 导数的运算法则已知f (x ),g (x )为可导函数,且g (x )≠0.(1)[f (x )±g (x )]′=f ′(x )±g ′(x ).(2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ),特别地,[cf (x )]′=cf ′(x ).(3)⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2.1.⎝⎛⎭⎫e x +cos π4′=e x .( √ ) 2.函数f (x )=x e x 的导数是f ′(x )=e x (x +1).( √ )3.当g (x )≠0时,⎣⎡⎦⎤1g (x )′=-g ′(x )g 2(x ).( √ )一、利用运算法则求函数的导数例1 求下列函数的导数:(1)y =15x 5+43x 3; (2)y =3x 2+x cos x ;(3)y =x 1+x; (4)y =lg x -e x ;(5)y =(x +1)⎝⎛⎭⎫1x -1. 解 (1)y ′=⎝⎛⎭⎫15x 5+43x 3′=⎝⎛⎭⎫15x 5′+⎝⎛⎭⎫43x 3′=x 4+4x 2. (2)y ′=(3x 2+x cos x )′=(3x 2)′+(x cos x )′=6x +x ′cos x +x (cos x )′=6x +cos x -x sin x .(3)y ′=⎝ ⎛⎭⎪⎫x 1+x ′=x ′(1+x )-x (1+x )′(1+x )2=1+x -x (1+x )2=1(1+x )2. (4)y ′=(lg x -e x )′=(lg x )′-(e x )′=1x ln 10-e x . (5)y ′=⎣⎡⎦⎤(x +1)⎝⎛⎭⎫1x -1′ =⎝⎛⎭⎫1x -x ′1122=x x '-⎛⎫- ⎪⎝⎭1131222211=22x 'x 'x x ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭---=--- =-12x ⎝⎛⎭⎫1+1x . 反思感悟 利用导数运算法则的策略(1)分析待求导式子符合哪种求导法则,每一部分式子是由哪种基本初等函数组合成的,确定所需的求导法则和基本公式.(2)如果求导式比较复杂,则需要对式子先变形再求导,常用的变形有乘积式展开变为和式求导,商式变乘积式求导,三角函数恒等变换后求导等.(3)利用导数运算法则求导的原则是尽可能化为和、差,能利用和差的求导法则求导的,尽量少用积、商的求导法则求导.跟踪训练1 求下列函数的导数:(1)y =x 2+x ln x ;(2)y =ln x x 2; (3)y =e xx; (4)y =(2x 2-1)(3x +1).解 (1)y ′=(x 2+x ln x )′=(x 2)′+(x ln x )′=2x +(x )′ln x +x (ln x )′=2x +ln x +x ·1x=2x +ln x +1.(2)y ′=⎝⎛⎭⎫ln x x 2′=(ln x )′·x 2-ln x (x 2)′x 4 =1x ·x 2-2x ln x x 4=1-2ln x x 3. (3)y ′=⎝⎛⎭⎫e x x ′=(e x )′x -e x (x )′x 2=e x ·x -e xx 2. (4)方法一 y ′=[(2x 2-1)(3x +1)]′=(2x 2-1)′(3x +1)+(2x 2-1)(3x +1)′=4x (3x +1)+(2x 2-1)×3=12x 2+4x +6x 2-3=18x 2+4x -3.方法二 ∵y =(2x 2-1)(3x +1)=6x 3+2x 2-3x -1,∴y ′=(6x 3+2x 2-3x -1)′=(6x 3)′+(2x 2)′-(3x )′-(1)′=18x 2+4x -3.二、利用运算法则求曲线的切线例2 (1)曲线y =sin x sin x +cos x -12在点M ⎝⎛⎭⎫π4,0处的切线的斜率为( ) A .-12 B.12 C .-22 D.22答案 B解析 y ′=cos x (sin x +cos x )-sin x (cos x -sin x )(sin x +cos x )2=1(sin x +cos x )2,故π=4|x y'=12, ∴曲线在点M ⎝⎛⎭⎫π4,0处的切线的斜率为12. (2)已知曲线f (x )=x 3+ax +b 在点P (2,-6)处的切线方程是13x -y -32=0.①求a ,b 的值;②如果曲线y =f (x )的切线与直线y =-14x +3垂直,求切线的方程. 解 ①f (x )=x 3+ax +b 的导数f ′(x )=3x 2+a ,由题意可得f ′(2)=12+a =13,f (2)=8+2a +b =-6,解得a =1,b =-16.②∵切线与直线y =-x 4+3垂直,∴切线的斜率k =4. 设切点的坐标为(x 0,y 0),则f ′(x 0)=3x 20+1=4,∴x 0=±1.由f (x )=x 3+x -16,可得y 0=1+1-16=-14或y 0=-1-1-16=-18,则切线方程为y =4(x -1)-14或y =4(x +1)-18,即y =4x -18或y =4x -14.反思感悟 (1)此类问题往往涉及切点、切点处的导数、切线方程三个主要元素,其他的条件可以进行转化,从而转化为这三个要素间的关系.(2)准确利用求导法则求出导函数是解决此类问题的第一步,也是解题的关键,务必做到准确.(3)分清已知点是否在曲线上,若不在曲线上,则要设出切点,这是解题时的易错点. 跟踪训练2 (1)曲线y =x 3-4x 2+4在点(1,1)处的切线方程为( )A .y =-x +2B .y =5x -4C .y =-5x +6D .y =x -1答案 C解析 由y =x 3-4x 2+4,得y ′=3x 2-8x ,y ′|x =1=3-8=-5,所以曲线y =x 3-4x 2+4在点(1,1)处的切线方程为y -1=-5(x -1),即y =-5x +6.(2)已知函数f (x )=a ln x x +1+b x,曲线y =f (x )在点A (1,f (1))处的切线方程为x +2y -3=0,则a ,b 的值分别为________.答案 1,1 解析 f ′(x )=a ⎝ ⎛⎭⎪⎫x +1x -ln x (x +1)2-b x 2. 由于直线x +2y -3=0的斜率为-12,且过点(1,1), 故⎩⎪⎨⎪⎧ f (1)=1,f ′(1)=-12,即⎩⎪⎨⎪⎧ b =1,a 2-b =-12,解得⎩⎪⎨⎪⎧a =1,b =1.三、与切线有关的综合问题例3 (1)曲线y =x ln x 上的点到直线x -y -2=0的最短距离是( ) A. 2 B.22C .1D .2 答案 B解析 设曲线y =x ln x 在点(x 0,y 0)处的切线与直线x -y -2=0平行.∵y ′=ln x +1,∴0=|x x y'=ln x 0+1=1,解得x 0=1,∴y 0=0,即切点坐标为(1,0).∴切点(1,0)到直线x -y -2=0的距离为d =|1-0-2|1+1=22, 即曲线y =x ln x 上的点到直线x -y -2=0的最短距离是22. (2)设曲线 y =a (x -1)e x 在点(1,0)处的切线与直线 x +2y +1=0垂直,则实数a =________.答案 2e解析 令y =f (x ),则曲线y =a (x -1)e x 在点(1,0)处的切线的斜率为f ′(1),又切线与直线x +2y +1=0垂直,所以f ′(1)=2.因为f (x )=a (x -1)e x ,所以f ′(x )=a e x +a (x -1)e x =ax e x ,所以f ′(1)=a e ,故a =2e. 反思感悟 本题正确的求出函数的导数是前提,审题时注意所给点是否是切点,挖掘题目隐含条件,求出参数,解决已知经过一定点的切线问题,寻求切点是解决问题的关键.跟踪训练3 求曲线y =2e(x -1)e x 在点(1,0)处的切线与坐标轴围成的面积. 解 由题意可知,y ′=2ex ·e x ,y ′|x =1=2, ∴切线方程为y =2(x -1),即2x -y -2=0.令x =0得y =-2;令y =0得x =1.∴曲线y =2e (x -1)e x 在点(1,0)处的切线与坐标轴围成的面积为S =12×2×1=1.1.已知f (x )=ax 3+3x 2+2,若f ′(-1)=4,则a 的值是( )A.193B.163C.133D.103答案 D解析 ∵f ′(x )=3ax 2+6x ,∴f ′(-1)=3a -6=4,∴a =103. 2.设函数y =-2e x sin x ,则y ′等于( )A .-2e x cos xB .-2e x sin xC .2e x sin xD .-2e x (sin x +cos x )答案 D解析 y ′=-2(e x sin x +e x cos x )=-2e x (sin x +cos x ).3.若函数f (x )=12f ′(-1)x 2-2x +3,则f ′(-1)的值为( ) A .-1 B .0 C .1 D .2答案 A解析 因为f (x )=12f ′(-1)x 2-2x +3, 所以f ′(x )=f ′(-1)x -2.所以f ′(-1)=f ′(-1)×(-1)-2,所以f ′(-1)=-1.4.已知f (x )=ln x x,则f ′(1)=________. 答案 1解析 f ′(x )=(ln x )′·x -ln x ·(x )′x 2=1x ·x -ln x x 2 =1-ln x x 2, 所以f ′(1)=1.5.已知函数f (x )=f ′⎝⎛⎭⎫π4cos x +sin x ,则f ⎝⎛⎭⎫π4的值为________. 答案 1解析 ∵f ′(x )=-f ′⎝⎛⎭⎫π4sin x +cos x ,∴f ′⎝⎛⎭⎫π4=-f ′⎝⎛⎭⎫π4×22+22,得f ′⎝⎛⎭⎫π4=2-1. ∴f (x )=(2-1)cos x +sin x ,∴f ⎝⎛⎭⎫π4=1.1.知识清单:(1)导数的运算法则.(2)综合运用导数公式和导数运算法则求函数的导数.2.方法归纳:转化法.3.常见误区:对于函数求导,一般要遵循先化简、再求导的基本原则.1.(多选)下列运算中正确的是( )A .(ax 2+bx +c )′=a (x 2)′+b (x )′B .(sin x -2x 2)′=(sin x )′-2′(x 2)′C.⎝⎛⎭⎫sin x x 2′=(sin x )′-(x 2)′x 2D .(cos x ·sin x )′=(cos x )′sin x +cos x (sin x )′答案 AD解析 A 项中,(ax 2+bx +c )′=a (x 2)′+b (x )′,故正确;B 项中,(sin x -2x 2)′=(sin x )′-2(x 2)′,故错误;C 项中,⎝⎛⎭⎫sin x x 2′=(sin x )′x 2-sin x (x 2)′(x 2)2,故错误; D 项中,(cos x ·sin x )′=(cos x )′sin x +cos x (sin x )′,故正确.2.函数f (x )=e x cos x 的图象在点(0,f (0))处的切线的倾斜角为( )A .0 B.π4 C .1 D.π2答案 B解析 对函数求导得f ′(x )=e x (cos x -sin x ),∴f ′(0)=1,∴函数f (x )=e x cos x 的图象在点(0,f (0))处的切线的倾斜角为π4. 3.设f (x )=x ln x ,若f ′(x 0)=2,则x 0等于( )A .e 2B .e C.ln 22D .ln 2 答案 B解析 ∵f (x )=x ln x ,∴f ′(x )=ln x +1(x >0),由f ′(x 0)=2,得ln x 0+1=2,即ln x 0=1,解得x 0=e.4.若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)等于( )A .-1B .-2C .2D .0答案 B解析 ∵f ′(x )=4ax 3+2bx ,f ′(x )为奇函数,∴f ′(-1)=-f ′(1)=-2.5.(多选)当函数y =x 2+a 2x(a >0)在x =x 0处的导数为0时,那么x 0可以是( ) A .a B .0 C .-a D .a 2答案 AC解析 y ′=⎝ ⎛⎭⎪⎫x 2+a 2x ′=2x ·x -(x 2+a 2)x 2=x 2-a 2x 2, 由x 20-a 2=0得x 0=±a .6.已知f (x )=sin x 1+cos x,则f ′⎝⎛⎭⎫π3=________. 答案 23解析 因为f ′(x )=(sin x )′(1+cos x )-sin x (1+cos x )′(1+cos x )2=cos x (1+cos x )-sin x (-sin x )(1+cos x )2=cos x +cos 2x +sin 2x (1+cos x )2=cos x +1(1+cos x )2 =11+cos x . 所以f ′⎝⎛⎭⎫π3=11+cos π3=23. 7.已知f (x )=e x x,则f ′(1) =________,若f ′(x 0)+f (x 0)=0,则x 0=________. 答案 0 12解析 因为f ′(x )=(e x )′x -e x (x )′x 2=e x (x -1)x 2(x ≠0). 所以f ′(1)=0.由f ′(x 0)+f (x 0)=0,得()00020e 1e 0.x x x x x 0-+= 解得x 0=12. 8.已知函数f (x )=e x ·sin x ,则曲线y =f (x )在点(0,f (0))处的切线方程是____________. 答案 y =x解析 ∵f (x )=e x ·sin x ,f ′(x )=e x (sin x +cos x ),f ′(0)=1,f (0)=0,∴曲线y =f (x )在点(0,0)处的切线方程为y -0=1×(x -0),即y =x .9.若曲线y =x 2-ax +ln x 存在垂直于y 轴的切线,求实数a 的取值范围.解 ∵y =x 2-ax +ln x ,∴y ′=2x -a +1x, 由题意可知,存在实数x >0使得2x -a +1x=0, 即a =2x +1x成立,∴a =2x +1x ≥22(当且仅当2x =1x ,即x =22时等号成立).∴a 的取值范围是[22,+∞).10.已知函数f (x )=ax 2+bx +3(a ≠0),其导函数f ′(x )=2x -8.(1)求a ,b 的值;(2)设函数g (x )=e x sin x +f (x ),求曲线g (x )在x =0处的切线方程.解 (1)因为f (x )=ax 2+bx +3(a ≠0),所以f ′(x )=2ax +b ,又f ′(x )=2x -8,所以a =1,b =-8.(2)由(1)可知g (x )=e x sin x +x 2-8x +3,所以g ′(x )=e x sin x +e x cos x +2x -8,所以g ′(0)=e 0sin 0+e 0cos 0+2×0-8=-7,又g (0)=3,所以曲线g (x )在x =0处的切线方程为y -3=-7(x -0),即7x +y -3=0.11.已知曲线f (x )=x 2+ax +1在点(1,f (1))处切线的倾斜角为3π4,则实数a 等于( )A .1B .-1C .7D .-7答案 C解析 ∵f ′(x )=2x (x +1)-(x 2+a )(x +1)2=x 2+2x -a (x +1)2,又f ′(1)=tan 3π4=-1,∴a =7.12.已知曲线f (x )=(x +a )·ln x 在点(1,f (1))处的切线与直线2x -y =0垂直,则a 等于() A.12 B .1 C .-32 D .-1答案 C解析 因为f (x )=(x +a )·ln x ,x >0,所以f ′(x )=ln x +(x +a )·1x ,所以f ′(1)=1+a .又因为f (x )在点(1,f (1))处的切线与直线2x -y =0垂直,所以f ′(1)=-12,所以a =-32,故选C. 13.已知函数f (x )=f ′(-1)x 22-2x +3,则f (-1)的值为________. 答案 92解析 ∵f ′(x )=f ′(-1)·x -2,∴f ′(-1)=-f ′(-1)-2,解得f ′(-1)=-1.∴f (x )=-x 22-2x +3, ∴f (-1)=92. 14.已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为______________.答案 x -y -1=0解析 ∵点(0,-1)不在曲线f (x )=x ln x 上,∴设切点坐标为(x 0,y 0).又∵f ′(x )=1+ln x (x >0),∴⎩⎪⎨⎪⎧y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0,解得x 0=1,y 0=0.∴切点坐标为(1,0),∴f ′(1)=1+ln 1=1.∴直线l 的方程为y =x -1,即x -y -1=0.15.等比数列{a n }中,a 1=2,a 8=4,函数f (x )=x (x -a 1)(x -a 2)·…·(x -a 8),则f ′(0)=________. 答案 212解析 因为f ′(x )=(x )′·[(x -a 1)(x -a 2)·…·(x -a 8)]+[(x -a 1)·(x -a 2)·…·(x -a 8)]′·x =(x -a 1)(x -a 2)·…·(x -a 8)+[(x -a 1)·(x -a 2)·…·(x -a 8)]′·x ,所以f ′(0)=(0-a 1)(0-a 2)·…·(0-a 8)+0=a 1a 2·…·a 8.因为数列{a n }为等比数列,所以a 1a 8=a 2a 7=a 3a 6=a 4a 5=8,所以f ′(0)=84=212.16.偶函数f (x )=ax 4+bx 3+cx 2+dx +e 的图象过点P (0,1),且在x =1处的切线方程为y =x -2,求f (x )的解析式.解 ∵f (x )的图象过点P (0,1),∴e =1.又∵f (x )为偶函数,∴f (x )=f (-x ).故ax 4+bx 3+cx 2+dx +e =ax 4-bx 3+cx 2-dx +e .∴b =0,d =0.∴f (x )=ax 4+cx 2+1.∵函数f (x )在x =1处的切线方程为y =x -2,∴切点坐标为(1,-1).∴a +c +1=-1.∵f ′(1)=4a +2c ,∴4a +2c =1.∴a =52,c =-92. ∴函数f (x )的解析式为f (x )=52x 4-92x 2+1.。

高中数学导数的计算精选题目(附答案)

高中数学导数的计算精选题目(附答案)

高中数学导数的计算精选题目(附答案)(1)基本初等函数的导数公式(2)导数运算法则①[f (x )±g (x )]′=f ′(x )±g ′(x );②[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); 当g (x )=c 时,[cf (x )]′=cf ′(x ).③⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).(3)复合导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.1.求下列函数的导数: (1)y =10x ; (2)y =lg x ; (3)y =log 12x ;(4)y =4x 3;(5)y =⎝ ⎛⎭⎪⎫sin x2+cos x 22-1.2.求下列函数的导数: (1)y =⎝ ⎛⎭⎪⎫1e x ;(2)y =⎝ ⎛⎭⎪⎫110x ;(3)y =lg 5; (4)y =3lg 3x ; (5)y =2co S 2x2-1. 3.(1)y =x 3·e x ; (2)y =x -S i n x 2co S x2; (3)y =x 2+log 3x; (4)y =e x +1e x -1.4.求下列函数的导数: (1)y =cos x x ; (2)y =xS i n x +x ; (3)y =1+x 1-x +1-x1+x; (4)y =lg x -1x 2.5.点P 是曲线y =e x 上任意一点,求点P 到直线y =x 的最小距离. 6.求过曲线y =co S x 上点P ⎝ ⎛⎭⎪⎫π3,12且与曲线在这点处的切线垂直的直线方程.7.求下列函数的导数. (1)y =1-2x 2; (2)y =e S i n x ;(3)y =S i n ⎝ ⎛⎭⎪⎫2x +π3;(4)y =5log 2(2x +1) 8.求下列函数的导数. (1)f (x )=(-2x +1)2; (2)f (x )=l n (4x -1); (3)f (x )=23x +2; (4)f (x )=5x +4; (5)f (x )=S i n ⎝ ⎛⎭⎪⎫3x +π6;(6)f (x )=co S 2x .9.求下列函数的导数. (1)y =x 1+x 2;(2)y =x co S ⎝ ⎛⎭⎪⎫2x +π2S i n ⎝ ⎛⎭⎪⎫2x +π2.10.求下列函数的导数. (1)y =S i n 2x3; (2)y =S i n 3x +S i n x 3; (3)y =11-x 2; (4)y =x l n (1+x ).11. 设f (x )=l n (x +1)+x +1+ax +b (a ,b ∈R ,a ,b 为常数),曲线y =f (x )与直线y =32x 在(0,0)点相切.求a ,b 的值.12.曲线y =e -2x +1在点(0,2)处的切线与直线y =0和y =x 围成的三角形的面积为( )A.13B.12C.23 D .1参考答案:1.解: (1)y ′=(10x )′=10x l n 10. (2)y ′=(lg x )′=1x ln 10.(3)y ′=(log 12x )′=1x ln 12=-1x ln 2.(4)y ′=(4x 3)′=(x 34)′=34x -14=344x.(5)∵y =⎝ ⎛⎭⎪⎫sin x2+cos x 22-1=S i n 2x2+2S i n x 2co S x 2+co S 2x 2-1 =S i n x ,∴y ′=(S i n x )′=co S x .2.解:(1)y ′=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1e x ′=⎝ ⎛⎭⎪⎫1e x l n 1e =-1e x =-e -x .(2)y ′=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫110x ′=⎝ ⎛⎭⎪⎫110x l n 110=-ln 1010x=-10-x l n 10.(3)∵y =lg 5是常数函数,∴y ′=(lg 5)′=0. (4)∵y =3 lg 3x =lg x ,∴y ′=(lg x )′=1x ln 10.(5)∵y =2co S 2x2-1=co S x ,∴y ′=(co S x )′=-S i n x . 3.解: (1)y ′=(x 3)′e x +x 3(e x )′=3x 2e x +x 3e x =x 2(3+x )e x . (2)∵y =x -12S i n x ,∴y ′=x ′-12(S i n x )′=1-12co S x . (3)y ′=(x 2+log 3x )′=(x 2)′+(log 3x )′=2x +1x ln 3. (4)y ′=(e x +1)′(e x -1)-(e x +1)(e x -1)′(e x -1)2=e x (e x -1)-(e x +1)e x (e x -1)2=-2e x (e x -1)2.4.解:(1)y ′=⎝ ⎛⎭⎪⎫cos x x ′=(cos x )′·x -cos x ·(x )′x 2=-x ·sin x -cos x x 2=-x sin x +cos xx 2.(2)y ′=(xS i n x )′+(x )′=S i n x +x co S x +12x.(3)∵y =(1+x )21-x +(1-x )21-x =2+2x 1-x =41-x -2,∴y ′=⎝ ⎛⎭⎪⎫41-x -2′=-4(1-x )′(1-x )2=4(1-x )2.(4)y ′=⎝ ⎛⎭⎪⎫lg x -1x 2′=(lg x )′-⎝ ⎛⎭⎪⎫1x 2′=1x ln 10+2x 3. 5.解:如图,当曲线y =e x 在点P (x 0,y 0)处的切线与直线y =x 平行时,点P 到直线y =x 的距离最近.则曲线y =e x 在点P (x 0,y 0)处的切线斜率为1,又y ′=(e x )′=e x ,∴e x 0=1,得x 0=0,代入y =e x ,得y 0=1,即P (0,1).利用点到直线的距离公式得最小距离为22.6.解:∵y =co S x ,∴y ′=(co S x )′=-S i n x ,∴曲线在点P π3,12处的切线的斜率为k =y ′|x =π3=-S i n π3=-32,∴过点P 且与切线垂直的直线的斜率为233,∴满足题意的直线方程为y -12=233⎝ ⎛⎭⎪⎫x -π3,即233x -y +12-239π=0. 7.解: (1)设y =u 12,u =1-2x 2, 则y ′=⎝ ⎛⎭⎪⎫u 12′(1-2x 2)′=⎝ ⎛⎭⎪⎫12u -12·(-4x ) =12(1-2x 2)-12(-4x )=-2x 1-2x 2 .(2)设y =e u ,u =S i n x ,则y x ′=y u ′·u x ′=e u ·co S x =e S i n x co S x . (3)设y =S i n u ,u =2x +π3,则y x ′=y u ′·u x ′=co S u ·2=2co S ⎝ ⎛⎭⎪⎫2x +π3.(4)设y =5log 2u ,u =2x +1, 则y ′=5(log 2u )′(2x +1)′=10u ln 2=10(2x +1)ln 2.8.解:(1)设y =u 2,u =-2x +1,则y ′=y u ′·u x ′=2u ·(-2)=-4(-2x +1)=8x -4. (2)设y =l n u ,u =4x -1, 则y ′=y u ′·u x ′=1u ·4=44x -1.(3)设y =2u ,u =3x +2,则y ′=y u ′·u x ′=2u l n 2·3=3l n 2·23x +2. (4)设y =u ,u =5x +4, 则y ′=y u ′·u x ′=12u·5=525x +4.(5)设y =S i n u ,u =3x +π6,则y ′=y u ′·u x ′=co S u ·3=3co S ⎝ ⎛⎭⎪⎫3x +π6.(6)法一:设y =u 2,u =co S x , 则y ′=y u ′·u x ′=2u ·(-S i n x ) =-2co S x ·S i n x =-S i n 2x ; 法二:∵f (x )=co S 2x =1+cos 2x 2=12+12co S 2x , 所以f ′(x )=⎝ ⎛⎭⎪⎫12+12cos 2x ′=0+12·(-S i n 2x )·2=-S i n 2x . 9.解: (1)y ′=(x 1+x 2)′ =x ′1+x 2+x (1+x 2)′ =1+x 2+x 21+x 2=(1+2x 2)1+x 21+x 2.(2)∵y =x co S ⎝ ⎛⎭⎪⎫2x +π2S i n ⎝ ⎛⎭⎪⎫2x +π2=x (-S i n 2x )co S 2x =-12xS i n 4x ,∴y ′=⎝ ⎛⎭⎪⎫-12x sin 4x ′=-12S i n 4x -x2co S 4x ·4 =-12S i n 4x -2x co S 4x .10.解:(1)y ′=⎝ ⎛⎭⎪⎫sin 2x 3′=2S i n x 3·⎝ ⎛⎭⎪⎫sin x 3′ =2S i n x 3·co S x 3·⎝ ⎛⎭⎪⎫x 3′=13S i n 2x3.(2)y ′=(S i n 3x +S i n x 3)′=(S i n 3x )′+(S i n x 3)′ =3S i n 2x co Sx +co S x 3·3x 2=3S i n 2x co S x +3x 2co S x 3. (3)y ′=0-(1-x 2)′1-x 2=-12(1-x 2)-12(1-x 2)′1-x 2=x (1-x 2)-121-x 2=x(1-x 2) 1-x 2.(4)y ′=x ′l n (1+x )+x []ln (1+x )′ =l n (1+x )+x 1+x. 11.解: 由曲线y =f (x )过(0,0)点,可得l n 1+1+b =0,故b =-1.由f (x )=l n (x +1)+x +1+ax +b ,得f ′(x )=1x +1+12x +1+a ,则f ′(0)=1+12+a =32+a ,此即为曲线y =f (x )在点(0,0)处的切线的斜率.由题意,得32+a =32,故a =0.12.解析:选A 依题意得y ′=e -2x ·(-2)=-2e -2x ,y ′|x =0=-2e-2×0=-2.曲线y =e-2x+1在点(0,2)处的切线方程是y -2=-2x ,即y =-2x +2.在坐标系中作出直线y =-2x +2、y =0与y =x 的图象,因为直线y =-2x +2与y =x的交点坐标是⎝ ⎛⎭⎪⎫23,23,直线y =-2x +2与x 轴的交点坐标是(1,0),结合图象可得,这三条直线所围成的三角形的面积等于12×1×23=13.。

高中数学导数及其应用导数的计算几个常用函数的导数基本初等函数的导数公式及导数的运算法则

高中数学导数及其应用导数的计算几个常用函数的导数基本初等函数的导数公式及导数的运算法则

2021/12/8
第十页,共二十八页。
[规律方法] 1.若所求函数符合导数公式,则直接利用公式求解 2.对于不能直接利用公式的类型,一般遵循“先化简,再求导”的基本原 则,避免不必要的运算失误 3.要特别注意“1x与ln x”,“ax与logax”,“sin x与cos x”的导数区别.
2021/12/8
第一章 导数及其应用(yìngyòng)。谢谢观看
No Image
12/8/2021
第二十八页,共二十八页。
2021/12/8
第十九页,共二十八页。
其中正确命题的个数为( )
A.1
B.2
C.3
D.4
C
[对于①,y′=0,故①错;对于②,∵y′=-
2 x3
,∴y′|x=3=-
2 27

故②正确;显然③,④正确,故选C.]
2021/12/8
第二十页,共二十八页。
2.已知f(x)=xα(α∈Q*),若f′(1)=14,则α等于(
(4)若y=2sin x-cos x,则y′=2cos x+sin x.( )
[答案] (1)× (2)× (3)√ (4)√
2021/12/8
第六页,共二十八页。
2.若函数y=10xn 10
D.10l1n 10
C [∵y′=10xln 10,∴y′|x=1=10ln 10.]
)
A.13
B.12
C.18
D.14
D [∵f(x)=xα,∴f′(x)=αxα-1,∴f′(1)=α=14.]
2021/12/8
第二十一页,共二十八页。
3.设y=-2exsin x,则y′等于( )
【导学号:31062023】

高中数学的归纳微积分的基本概念与计算总结

高中数学的归纳微积分的基本概念与计算总结

高中数学的归纳微积分的基本概念与计算总结在高中数学学习中,微积分是一个重要的学科,它包含着许多基本概念和计算方式。

归纳微积分是微积分的基础,我们需要掌握其中的基本概念,并学会运用这些概念进行计算。

本文将对高中数学中归纳微积分的基本概念与计算方法进行总结。

一、导数与导数的计算导数是微积分的核心概念之一。

在高中数学中,我们学习了导数的定义与性质,并通过一些基本公式进行导数的计算。

常见的导数计算包括:1. 常数的导数计算:对于常数c,其导数为0。

2. 一次函数的导数计算:对于一次函数y=ax+b,其导数为斜率a。

3. 幂函数的导数计算:对于幂函数y=x^n,其导数为y'=nx^(n-1)。

4. 指数函数和对数函数的导数计算:对于指数函数y=a^x,以及对数函数y=log_a(x),它们的导数分别为y'=a^x ln(a),以及y'=(1/x) ln(a)。

通过掌握这些基本公式,我们可以计算出各种函数的导数,为解决实际问题提供了重要的工具。

二、不定积分与基本积分的计算不定积分,也称为原函数,是导数的逆运算。

高中数学中,我们学习了一些基本函数的不定积分公式,通过这些公式,可以简化积分的计算。

常见的基本积分计算包括:1. 常数的不定积分计算:对于常数c,其积分为Cx,其中C为常数。

2. 一次函数的不定积分计算:对于一次函数y=ax+b,其积分为(1/2)ax^2+bx。

3. 幂函数的不定积分计算:对于幂函数y=x^n,其中n不等于-1,其积分为(1/(n+1))x^(n+1)。

4. 指数函数和对数函数的不定积分计算:对于指数函数y=a^x,以及对数函数y=log_a(x),它们的不定积分分别为(1/ln(a))a^x,以及x(log_a(x)-1)。

通过掌握这些基本积分公式,我们可以对各类函数进行积分,求解曲线下的面积等问题。

三、微分方程的求解微分方程是微积分中的另一个重要内容。

我们常见的微分方程包括一阶和二阶微分方程。

新人教A版高中数学(选修22)1.2《导数的计算》word教案4篇

新人教A版高中数学(选修22)1.2《导数的计算》word教案4篇

§1.2.2基本初等函数的导数公式及导数的运算法则教学目标:1.熟练掌握基本初等函数的导数公式; 2.掌握导数的四则运算法则;3.能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数。

教学重点:基本初等函数的导数公式、导数的四则运算法则教学难点: 基本初等函数的导数公式和导数的四则运算法则的应用 教学过程: 一.创设情景四种常见函数y c =、y x =、2y x =、1y x=的导数公式及应用二.新课讲授(一)基本初等函数的导数公式表)(2)推论:[]''()()cf x cf x =(常数与函数的积的导数,等于常数乘函数的导数)三.典例分析例1.假设某国家在20年期间的年均通货膨胀率为5%,物价p (单位:元)与时间t (单位:年)有如下函数关系0()(15%)t p t p =+,其中0p 为0t =时的物价.假定某种商品的01p =,那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到0.01)?解:根据基本初等函数导数公式表,有'() 1.05ln1.05t p t =所以'10(10) 1.05ln1.050.08p =≈(元/年)因此,在第10个年头,这种商品的价格约为0.08元/年的速度上涨. 例2.根据基本初等函数的导数公式和导数运算法则,求下列函数的导数. (1)323y x x =-+ (2)y =xx --+1111; (3)y =x · sin x · ln x ;(4)y =xx 4; (5)y =xxln 1ln 1+-.(6)y =(2 x 2-5 x +1)e x(7) y =xx x xx x sin cos cos sin +-【点评】① 求导数是在定义域内实行的.② 求较复杂的函数积、商的导数,必须细心、耐心. 例3日常生活中的饮水通常是经过净化的.随着水纯净度的提高,所需净化费用不断增加.已知将1吨水净化到纯净度为%x 时所需费用(单位:元)为5284()(80100)100c x x x=<<-求净化到下列纯净度时,所需净化费用的瞬时变化率:(1)90% (2)98% 解:净化费用的瞬时变化率就是净化费用函数的导数.''''252845284(100)5284(100)()()100(100)x x c x x x ⨯--⨯-==-- 20(100)5284(1)(100)x x ⨯--⨯-=-25284(100)x =-(1)因为'25284(90)52.84(10090)c ==-,所以,纯净度为90%时,费用的瞬时变化率是52.84元/吨.(2)因为'25284(98)1321(10090)c ==-,所以,纯净度为98%时,费用的瞬时变化率是1321元/吨.函数()f x 在某点处导数的大小表示函数在此点附近变化的快慢.由上述计算可知,''(98)25(90)c c =.它表示纯净度为98%左右时净化费用的瞬时变化率,大约是纯净度为90%左右时净化费用的瞬时变化率的25倍.这说明,水的纯净度越高,需要的净化费用就越多,而且净化费用增加的速度也越快.四.课堂练习 1.课本P 92练习2.已知曲线C :y =3 x 4-2 x 3-9 x 2+4,求曲线C 上横坐标为1的点的切线方程;(y =-12 x +8)五.回顾总结(1)基本初等函数的导数公式表 (2)导数的运算法则六.布置作业§1.1.2 导数的概念学习目标1.掌握用极限给瞬时速度下的精确的定义;2.会运用瞬时速度的定义,求物体在某一时刻的瞬时速度. 一、预习与反馈(预习教材P 4~ P 6,找出疑惑之处)探究任务一:瞬时速度问题1:在高台跳水运动中,运动员有不同时刻的速度是 新知:1. 瞬时速度定义:物体在某一时刻(某一位置)的速度,叫做瞬时速度.探究任务二:导数问题2: 瞬时速度是平均速度ts∆∆当t ∆趋近于0时的 导数的定义:函数()y f x =在0x x =处的瞬时变化率是0000()()limlimx x f x x f x fx x∆→∆→+∆-∆=∆∆,我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或 即000()()()limx f x x f x f x x∆→+∆-'=∆注意:(1)。

高中数学公式大全导数的计算与应用公式

高中数学公式大全导数的计算与应用公式

高中数学公式大全导数的计算与应用公式高中数学公式大全:导数的计算与应用公式1. 导数的定义与计算在微积分中,导数是用来描述函数变化率的重要工具。

对于函数f(x),导数可以用极限来定义,并可以使用以下公式进行计算:(1) 一阶导数:f'(x) = lim (h→0) [f(x+h) - f(x)] / h(2) 高阶导数:f''(x) = (d/dx) [f'(x)](3) 链式法则:若函数f(x)和g(x)都可导,则复合函数 (f(g(x))) 的导数可以计算为:(f(g(x)))' = f'(g(x)) * g'(x)2. 常用导数公式(1) 常数函数导数:如果f(x)是一个常数c,则f'(x) = 0(2) 幂函数导数:对于函数f(x) = x^n,其中n是实数常数,则f'(x) = n * x^(n-1)(3) 指数函数导数:对于函数f(x) = a^x,其中a是常数且a>0且a≠1,则f'(x) = a^x * ln(a)(4) 对数函数导数:对于函数f(x) = log_a(x),其中a是常数且a>0且a≠1,则f'(x) = 1 / (x * ln(a))(5) 三角函数导数:sin'(x) = cos(x)cos'(x) = -sin(x)tan'(x) = sec^2(x)cot'(x) = -csc^2(x)sec'(x) = sec(x) * tan(x)csc'(x) = -csc(x) * cot(x)3. 导数的应用导数在数学中有广泛的应用,以下介绍几个常见的应用领域。

(1) 切线与法线:导数可以用来求解函数在某一点的切线和法线。

函数在某一点的导数即为该点切线的斜率,法线的斜率为切线斜率的负倒数。

(2) 极值点与拐点:通过求解函数的导数为零的点,可以判断函数的极大值和极小值。

高中数学导数与积分知识点归纳总结

高中数学导数与积分知识点归纳总结

高中数学导数与积分知识点归纳总结在高中数学中,导数和积分是两个重要的概念。

它们在计算和解决数学问题时起着关键作用。

以下是导数和积分的一些核心知识点的总结。

导数导数可以理解为函数在某一点的变化率。

它描述了函数在不同点的斜率或曲线的切线。

以下是导数的一些重要知识点:1. 导数的定义:函数f(x)在点x处的导数定义为f'(x) =lim(h→0) [(f(x+h) - f(x))/h]。

2. 导数的计算:使用导数的定义,我们可以通过求极限来计算导数。

另外,还有一些常见函数的导数公式,如幂函数、指数函数、对数函数和三角函数等。

3. 导数的性质:导数具有一些重要的性质,如线性性、乘法法则、除法法则和链式法则等。

这些性质可以简化导数计算的过程。

4. 高阶导数:除了一阶导数外,函数还可以有更高阶的导数,称为二阶导数、三阶导数等。

高阶导数描述了函数的曲率和曲线的变化情况。

积分积分可以理解为函数的累积总和。

它是导数的逆运算,可以用来计算曲线下面的面积或实现函数的反向操作。

以下是积分的一些重要知识点:1. 定积分:定积分是指对函数在给定区间上的积分。

定积分的计算可以使用黎曼和或牛顿-莱布尼茨公式等方法。

2. 不定积分:不定积分是指对函数求积分得到的含有任意常数的函数。

不定积分可以通过求导的逆运算来计算。

3. 积分的性质:积分具有一些重要的性质,如线性性、换元法、分部积分法等。

这些性质可以简化积分计算的过程。

4. 定积分的应用:定积分在几何学、物理学和经济学等领域有广泛的应用。

它可以用来计算曲线下的面积、质心、弧长以及求解各种实际问题。

以上是高中数学中导数和积分的一些核心知识点的归纳总结。

导数和积分在数学的不同领域中都具有重要的应用价值,例如计算、物理学、工程学等。

希望这份总结对您的学习和应用有所帮助。

高中数学选修1-1 第三章 导数 第2节 导数的运算

高中数学选修1-1 第三章 导数 第2节  导数的运算

第2节 导数的运算1.基本初等函数的导数公式表y =f (x )y ′=f ′(x ) y =c y ′=0y =x n (n ∈N +)y ′=nx n -1,n 为正整数y =x μ(x >0,μ≠0且μ∈Q) y ′=μx μ-1,μ为有理数 y =a x (a >0,a ≠1,x >0) y ′=a x ln a y =log a x (a >0,a ≠1,x >0)y ′=1x ln ay =sin x y ′=cos_x y =cos xy =-sin_x例1:求下列函数的导数:(1)y =x 12 (2)y =5x 3 (3)y =log 2x (4)y =2sin x 2cos x2 (5)y=2018sin60°[精解详析] (1)y ′=(x 12)′=12x 11;(2)y ′=(5x 3)′=(x 35)′=35x 25-=355x 2;(3)y ′=(log 2x )′=1x ln 2; (4)y ′=⎝ ⎛⎭⎪⎫2sin x 2cos x 2′=(sin x )′=cos x .(5)0练习:下列导数运算正确的是( ) A .(sinx )'=﹣cosx B .C .(3x )'=3xD .解:(sinx )′=cosx ;(log2x )′=;(3x )′=3x ln3;()′=﹣,故选:B . 例2:函数y=2x 在x=0处的导数是( )A.0 B.1 C.ln2 D.解:∵y′=2x ln2,∴y′|x=0=ln2,故选:C.练习:函数y=在x=1处的导数值为()A.﹣B.2 C.1 D.解:∵,∴f′(1)=.故选:D.例3:若函数f(x)=sinx,则=()A.B.C.1 D.0 解:根据题意,f(x)=sinx,则f′(x)=cosx,则f(x)+f′(x)=sinx+cosx,则=sin+cos=+=;故选:B.练习:已知函数f(x)=,则f′()=()A.﹣B.﹣C.﹣8 D.﹣16 解:函数的导数f′(x)=﹣2x﹣3=﹣,则f′()=﹣=﹣16,故选:D.例4:若f(x)=x5,f′(x0)=20,则x0的值为()A.B.±C.﹣2 D.±2 解:函数的导数f′(x)=5x4,∵f′(x0)=20,∴5x04=20,得x04=4,则x0=±,故选:B.练习:设f(x)=lnx,若f′(x0)=2,则x0=()A .2B .C .D .ln2解:f (x )=lnx ,则f′(x )=, f′(x 0)=2, 可得x 0=. 故选:B .2.导数的四则运算法则 (1)设f (x ),g (x )是可导的,则法则语言叙述[]f (x )±g (x )′=f ′(x )±g ′(x )两个函数的和(或差)的导数,等于这两个函数的导数和(或差)[f (x )g (x )]′=f ′(x )g (x )+f (x )g ′(x ) 两个函数的积的导数,等于第一个函数的导数乘上第二个函数,加上第一个函数乘上第二个函数的导数⎣⎢⎡⎦⎥⎤f (x )g (x )′=g (x )f ′(x )-f (x )g ′(x )g 2(x )(g (x )≠0)两个函数的商的导数,等于分子的导数乘以分母减去分母的导数乘以分子的差除以分母的平方(2)特别地,[cf (x )]′=cf ′(x ), ⎣⎢⎡⎦⎥⎤1g (x )′=-g ′(x )g 2(x )(g (x )≠0). 例5:已知函数,且f'(x 0)=4,则x 0= . 解:函数的导数f′(x )=2x ﹣8,∵f'(x 0)=4, ∴2x 0﹣8=4,即2x 0=12得x 0=3.故答案为:3.练习:已知函数y=ax 2+b 在点(1,3)处的导数为2,则= . 解:函数y=ax 2+b 的导数为y′=2ax ,由函数在点(1,3)处的切线斜率为2,可得f (1)=a +b=3,f′(1)=2a=2,解得a=1,b=2.则=2.故答案为2例6:已知函数f(x)的导数为f′(x),若有f(x)=3x2+2xf′(2),则f′(2)=()A.﹣12 B.12 C.6 D.﹣6解:根据题意,f(x)=3x2+2xf′(2),则导数f′(x)=6x+2f′(2),令x=2可得:f′(2)=12+2f′(2),解可得f′(2)=﹣12,故选:A.练习:(1)设f(x)=sinx+2xf'(),f'(x)是f(x)的导函数,则f'()=.解:∵f(x)=sinx+2xf'(),∴f'(x)=cosx+2f'(),令x=,可得:f'()=cos+2f'(),解得f'()=﹣,则f'()=+2×=﹣1.故答案为:﹣1.(2)已知函数f(x)=f′()sinx+cosx,则f()的值为()A.1 B.2 C.﹣2 D.﹣1解:∵f(x)=f′()sinx+cosx,∴f′(x)=f′()cosx﹣sinx,令x=,则f′()=f′()cos﹣sin=f′()﹣,则f′()==﹣(),则f(x)=﹣()sinx+cosx,则f()=﹣()sin+cos=﹣()×+=﹣1,故选:D.例7:设y=﹣2e x sinx,则y′等于()A.﹣2e x cosx B.﹣2e x sinxC.2e x sinx D.﹣2e x(sinx+cosx)解:∵y=﹣2e x sinx,∴y′=(﹣2e x)′sinx+(﹣2e x)•(sinx)′=﹣2e x sinx﹣2e x cosx=﹣2e x(sinx+cosx).故选:D.练习:已知函数f(x)=axlnx,x∈(0,+∞),其中a为实数,f′(x)为f(x)的导函数,若f′(1)=3,则a的值为.解:因为f(x)=axlnx,所以f′(x)=alnx+ax=alnx+a,又f′(1)=3,所以a=3;故答案为:3.例8:函数的导数是()A.B.﹣sinxC.D.解:根据导数的运算法则可得,y′====﹣故选:C.练习:设f′(x)是函数的导函数,则f'(0)的值为()A.1 B.0 C.﹣1 D.解:根据题意,,其导数f′(x)==﹣,则f'(0)=﹣1;故选:C.例9:已知函数f(x)=e x lnx,f′(x)为f(x)的导函数,则f′(1)的值为.解:函数f(x)=e x lnx,则f′(x )=e x lnx +•e x ; ∴f′(1)=e•ln1+1•e=e . 故答案为:e . 练习:已知函数f (θ)=,则 f′(0)= .解:函数f (θ)=,则 f′(θ)==所以f′(0)= 故答案为例10:设函数f (x )=ax -bx ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形面积为定值,并求此定值.[精解详析] (1)由7x -4y -12=0得y =74x -3.当x =2时,y =12,∴f (2)=2a -b 2=12.①又f ′(x )=a +b x 2,∴f ′(2)=a +b 4=74.②(2分)由①②得⎩⎨⎧ 4a -b =1,4a +b =7,解得⎩⎨⎧a =1,b =3.故f (x )=x -3x .(6分)(2)证明:设P (x 0,y 0)为曲线上任一点,由y ′=1+3x 2知,曲线在点P (x 0,y 0)处的切线方程为 y -y 0=⎝ ⎛⎭⎪⎫1+3x 20(x -x 0),即y -⎝ ⎛⎭⎪⎫x 0-3x 0=⎝ ⎛⎭⎪⎫1+3x 20(x -x 0).(8分)令x=0得y=-6x0,从而得切线与直线x=0的交点坐标为(0,-6x0).(9分)令y=x得y=x=2x0,从而得切线与直线y=x的交点坐标为(2x0,2x0).(10分)所以点P(x0,y0)处的切线与直线x=0,y=x所围成的三角形面积为12⎪⎪⎪⎪⎪⎪-6x0|2x0|=6.故曲线y=f(x)上任一点处的切线与直线x=0,y=x所围成的三角形的面积为定值,此定值为6.(12分)练习:设函数f(x)=ax+(a,b∈Z),曲线y=f(x)在点(2,f(2))处的切线方程为y=3(1)求f(x)的解析式(2)求f(x)在点(3,f(3))处的切线与两个坐标轴围成的三角形的面积.解:(1)函数f(x)=ax+(a,b∈Z),导数f′(x)=a﹣,曲线y=f(x)在点(2,f(2))处的切线方程为y=3,可得f(2)=2a+=3,f′(2)=a﹣=0,解方程可得a=1,b=﹣1,(分数舍去),则f(x)=x+;(2)由f(x)的导数为f′(x)=1﹣,可得在点(3,f(3))处的切线斜率为1﹣=,切点为(3,),则在点(3,f(3))处的切线方程为y﹣=(x﹣3),令x=0,可得y=﹣=;令y=0,可得x=3﹣=﹣,则切线与两个坐标轴围成的三角形的面积为××=.。

高中数学导数公式及导数的运算法则

高中数学导数公式及导数的运算法则

高中数学导数公式及导数的运算法则一、导数的定义导数是函数变化速率的一种描述方式,用函数f(x)在点x处的变化率来近似表示。

导数的定义如下:设函数y=f(x)在点x处有定义,如果当自变量x自小于且无限接近于x时,函数值的变化量Δy始终与自变量的变化量Δx之比近似为一个定值,即lim(Δx→0) Δy/Δx = lim(Δx→0) [f(x + Δx) - f(x)]/Δx这个极限值称为函数f(x)在点x处的导数,记作f'(x),也可以写成dy/dx。

二、常见函数的导数公式1.幂函数的导数若y = xⁿ,n为常数,则y' = nxⁿ⁻¹。

2.反函数的导数若y=f⁻¹(x),则y'=1/f'(f⁻¹(x))。

3.指数函数的导数若y = aˣ,a > 0,a ≠ 1,则y' = (lna) * aˣ。

4.对数函数的导数(a) 若y = logₐ(x),a > 0,且a ≠ 1,则y' = 1/(xlna)。

(b) 若y = ln(x),则y' = 1/x。

5.指数对数函数的导数(a) 若y = aˣ(x > 0),则y' = aˣ(lna)。

(b) 若y = logₐx(a > 0,且a ≠ 1),则y' = 1/(xlna)。

(c) 若y = ln,x,则y' = 1/x。

6.三角函数的导数(1) 若y = sinx,则y' = cosx。

(2) 若y = cosx,则y' = -sinx。

(3) 若y = tanx,则y' = sec²x。

1.基本运算法则(a)常数乘积法则:k*f(x)的导数是k*f'(x)。

(b)和差法则:[f(x)±g(x)]的导数是f'(x)±g'(x)。

(c)常数倍数法则:k*f(x)的导数是k*f'(x)。

高中数学教材知识点:导数的定义及其计算

高中数学教材知识点:导数的定义及其计算

高中数学教材知识点:导数的定义及其计算一、知识概述导数是高中数学中重要的概念之一,是微积分学中的基本内容。

导数的定义为:若函数y=f(x)在x0处有导数,则该导数称为函数f(x)在点x0处的导数,记为f'(x0)。

导数可理解为函数在某一点处的瞬时变化率,是函数曲线在该点处的斜率。

二、知识详解1.导数的定义函数y=f(x)在x0处的导数用极限表示为:f'(x0)=lim(h→0)(f(x0+h)-f(x0))/h其中,x0为自变量,h为一个极小的实数,f(x0)和f(x0+h)为函数f(x)在x0处和x0+h处的函数值。

2.导数的计算常见的导数计算方法包括:基本导数公式法、对数求导法、复合函数求导法、高阶导数求法等。

(1)基本导数公式法通过对基本函数的导数公式的掌握,可以求出大部分函数的导数。

常见的基本导数公式如下:函数导数常数函数 0幂函数 x^n的导数为nx^(n-1)指数函数 a^x的导数为a^xlna对数函数 loga(x)的导数为1/(xlna)三角函数 sinx的导数为cosx,cosx的导数为-sinx,tanx的导数为sec^2x(2)对数求导法a^x和loga(x)是互相反函数,利用两者的关系可以在求出一者导数的基础上得出另一者的导数。

具体公式如下:(a^x)'=lna*a^x(loga(x))'=1/(xlna)(3)复合函数求导法对于复合函数,通过链式法则可以求出导数。

链式法则公式如下:若y=f(u),u=g(x),则y对x的导数为:dy/dx=dy/du * du/dx(4)高阶导数函数f(x)的高阶导数为其导数的导数,可表示为f'(x)、f''(x)、f'''(x)……三、常见问题解答1.导数有什么应用?导数可以用来求函数的极值、函数的最大值和最小值、函数的凹凸性、函数的图像和曲线的切线等。

2.什么情况下函数没有导数?若函数在某一点处存在间断点或者没有定义,则函数在该点处没有导数。

高中数学选择性必修二——导数的四则运算

高中数学选择性必修二——导数的四则运算

导数的四则运算学习目标:1.能根据公式求函数的导数。

2.能根据导数的四则运算法则,求简单函数的导数。

学习重点:导数公式和导数的四则运算。

学习难点:灵活运用导数公式和导数的四则运算进行相关运算。

课堂导学: 一、知识回顾1.基本初等函数的导数公式:(1)='C (C 为常数); (2)=)'(αx (为常数α); (3)=)'(sin x ; (4)=)'(cos x ;(5)=)'(x e ; (6)=)'(xa ; (7)=)'(ln x ; (8)=)'(log x a 。

特别地:(9)1()x'= ;(10)'=3.给出下列结论:①1(cos)sin662ππ'=-=-;②若21y x=,则32y x -'=-;③若()3f x x =,则[(1)]3f '=;④.若3()f x x =,则'(1)3f =⑤若y =y '=_________________.二、合作探讨已知函数()u x 与()v x 同时存在导函数,那么两个函数“和、差、积、商”的导数公式如下:[]()()u x v x '±=_______________[]()()u x v x '⋅=______________________[]()C u x '⋅=______________()_______________________(()0)()u x v x v x '⎡⎤=≠⎢⎥⎣⎦三、例题分析 例1.求下列函数的导数第一组:(1) ()21f x x =+ (2)2()31f x x x =-+ (3)32()22g x x x x =--+第二组:(1) ()sin 1f x x x =+-(2) ()ln f x x = (3) 2()2x f x x =+第三组:(1)()sin f x x x = (2)2()xf x x e = (3) ()ln f x x x =第四组:(1) 2()1x f x x =+ (2)ln ()x f x x= (3) tan y x =第五组:(1) ()221y x =+ (2) sin 2y x = (3)2ln y x =(x >0)例2.已知质点M 按规律201()2s t v t at =+做匀变速直线运动(位移s 单位:m ,时间t 单位:s ) 求证:该质点在时间t 的瞬时速度为0()v t v at =+四、巩固训练 1.填空:①[(3x 2+1)(4x 2-3)]′=( )(4x 2-3)+(3x 2+1)( ) ②323(sin )'(___)sin ()x x x x x =+⋅⎽⎽⎽③2222()(1)()()'1(1)x x x x x ⎽⎽⎽+-⎽⎽⎽= ++ ④2221()sin (1)()()'sin sin x x x x x-⎽⎽⎽- -⎽⎽⎽= 2.下列求导过程是否正确,为什么?如不正确加以改正。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学导数的计算
1.求下列函数的导数: (1)y=x x;(2)y=log31x;(3)y=2-x; (4)y=log2x2-log2x;(5)y=-2sin2x(1-2cos24x).
高中数学导数的计算
求下列函数的导数. (1)f(x)=13ax3+bx2+c; (2)f(x)=xln x+2x; (3)f(x)=xx+-11; (4)f(x)=x2·ex.
高中数学导数的计算
• [题后感悟] 求曲线在点P(x0,y0)处的切线方程,关键是 确定切线的斜率,即函数在x=x0处的导数值,然后用点斜式 写出切线方程,研究其有关性质.
高中数学导数的计算
• 本节总结 • 1.求导数的方法 • (1)定义法:运用导数的定义来求函数的导数. • (2)公式法:运用已知函数的导数公式及导数的四则运算法 则求导数.
高中数学导数的计算
• 作业布置 • 课本课后习题
高中数学导数的计算
此课件下载可自行编辑修改,供参考! 感谢你的支持,我们会努力做得更好!
y′= y′=μxμ-1 y′=axln_a
y=ex
y′=ex
高中数学导数的计算
原函数
导函数
y=logax(a>0,a≠1,x>0) y=ln x
y′=xln1 a y′=1x
y=sin x
y′=cos x
y=cos x
y′=-sin x
高中数学导数的计算
• 3.导数的四则运算法则 • 设f(x)、公g式(x)是可导的.Leabharlann • A.-9B.-3
• C.9
D.15
• 解析: y′=3x2,故曲线在点P(1,12)处的切线斜率是3, 故切线方程是y-12=3(x-1),令x=0得y=9.
• 答案: C
高中数学导数的计算
求曲线 y=x+ x在点(1,2)处的切线在 x 轴上的截距.
解答本题可先运用求导法则求出 y′,进而求出 y′|x=1, 再用点斜式写出切线方程,令 y=0,求出 x 的值,即为切线 在 x 轴上的截距.
是否有更简便的求导数的方法呢?
高中数学导数的计算
带着问题看课本: 1,基本初等函数的导数公式是什么? 2,导数的运算法则是什么? 3,如何利用公式和法则进行简单的计算

高中数学导数的计算
• 2.基本初等函数的导数公式 原函数
导函数
y=C
y′=0
y=xn(n为自然数) y=xμ(x>0,μ≠0,μ为有理 数) y=ax(a>0,a≠1)
高中数学导数的计算
2.求下列函数的导数.
(1)y=x·tan x;(2)y=(x+1)(x+2)(x+3);
(3)y=xx2++33;(4)y=xsin x-co2s x;
(5)y=
x5+
x7+ x
x9;
(6)y=x-sin2xcos2x.
高中数学导数的计算
• (2011·山东高考)曲线y=x3+11在点P(1,12)处的切线与y轴 交点的纵坐标是( )
高中数学导数的计算
高铁是目前一个非常受欢迎的交通工具,既低碳又快 捷.设一高铁走过的路程 s(单位:m)关于时间 t(单位:s)的 函数 s=f(t)=2t2,求它的瞬时速度,即求 f(t)的导数.根据 导数的定义,就是求当 Δt→0 时,ΔΔst所趋近的那个定值,运 算比较复杂,而且,有的函数如 y=sin x,y=ln x 等很难运 用定义求导数.
语言叙述
常数与函数积的导数, 等于常数乘以函数的导数
gfxx′=gxf′xg-2xfxg′x (g(x)≠0)
两个函数商的导数等于 分母上的函数乘上分子的导 数,减去分子乘以分母的导 数所得的差除以分母的平方
高中数学导数的计算
求下列函数的导函数: (1)y=x12;(2)y=x14;(3)y=5 x3; (4)y=2sin2xcos2x;(5)y=log12x;(6)y=3x.
高中数学导数的计算
注意导数公式和导数法则的应用,先化简再求导数.
高中数学导数的计算
• [题后感悟] (1)应用基本初等函数的导数公式和导数的四 则运算法则可迅速解决一些简单的求导问题.要透彻理解函 数求导法则的结构特点,准确记忆公式,还要注意挖掘知识 的内在联系及其规律. • (2)在求较复杂函数的导数时,首先利用代数或三角恒等变 形对已知函数解析式进行化简变形.如,把乘积的形式展开 ,分式形式变为和或差的形式,根式化为分数指数幂,然后 再求导,这样可减少计算量.
高中数学导数的计算
高中数学导数的计算
• [总结] (1)应用导数的定义求导,是求导数的基本方法, 但运算较繁琐,而利用导数公式求导数,可以简化求导过程 ,降低运算难度,是常用的求导方法. • (2)利用导数公式求导,应根据所给问题的特征,恰当地选 择求导公式,有时还要先对函数解析式进行化简整理,这样 能够简化运算过程.
语言叙述
[f(x)±g(x)]′= f′(x)±g′(x)
[f(x)g(x)]′= f′(x)g(x)+f(x)g′(x)
两个函数的和(或差)的导数, 等于这两个函数的导数的 和(差)
两个函数的积的导数,等于 第一个函数的导数乘上第二个函 数,加上第一个函数乘上第二个 函数的导数
高中数学导数的计算
公式 [Cf(x)]′=C f′(x)
高中数学导数的计算
• 3.已知抛物线y=ax2+bx+c通过点(1,1),且在(2,-1)处 的切线方程为y=x-3,求a,b,c的值.
解析:
由题意知a4+a+b+2bc+=c1=-1
① ②
又∵y′=(ax2+bx+c)′=2ax+b,
∴y′|x=2=4a+b=1.

由①②③解得 a=3,b=-11,c=9.
• 导数的计算
高中数学导数的计算
• 1.掌握基本初等函数的导数公式. • 2.掌握导数的和、差、积、商的求导法则. • 3.会运用导数的四则运算法则解决一些函数的求导问题.
高中数学导数的计算
• 1.导数公式表的记忆.(重点) • 2.应用四则运算法则求导.(重点) • 3.利用导数研究函数性质.(难点)
相关文档
最新文档