数学建模中统计学常用方法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、1多元回归
1、 方法概述:
在研究变量之间的相互影响关系模型时候,用到这类方法,具体地说:北可以定量地描述某一现象与某些因素之间 的函数关系,将各变量的已知值带入回归方程可以求出因变量的估计值,从而可以进行预测等相关研究。
2、 分类
分为两类:多元线性回归与非线性线性回归;其中非线性回归可以通过一定的变化转化为线性回归,比如:y=lnx 可 以转化为y=u u=lnx 来解决;所以这里主要说明多元线性回归应该注意的问题。
3、 注意事项
在做回归的时候,一定要注意两件事:
(1) 回归方程的显著性检验(可以通过sas 与spss 来解决)
(2) 回归系数的显著性检验(可以通过sas 与spss 来解决)
检验就是很多学生在建模中不注意的地方,好的检验结果可以体现出您模型的优劣,就是完整论文的体现•所以这 点大家一定要注意。
4、 使用步骤:
(1) 根据己知条件的数据•通过预处理得出图像的大致趋势或者数据之间的大致关系;
(2) 选取适当的回归方程;
(3) 拟合回归参数;
(4) 回归方程显著性检验及回归系数显著性检验
(5) 进行后继研究(如:预测等)
这种模型的的特点就是直观,容易理解。
这体现在:动态聚类图可以很直观地体现出来!
当然,这只就是直观的一个方而!
2、 分类
聚类有两种类型:
(1) Q 型聚类:即对样本聚类;
(2) R 型聚类:即对变量聚类;
聚类方法:
最短距离法
最长距离法
中间距离法
重心法 (5) 类平均法
(6) 可变类平均法
(7) 可变法
(8) 利差平均与法
在具体做题中,适当选取方法;
3、 注意事项
在样本量比较大时,要得到聚类结果就显得不就是很容易,这时需要根据背景知识与相关的其她方法辅助处理。 还需要注意的就是:如果总体样本的显著性差异不就是特別大的时候,使用的时候也要注意!
4、 方法步骤
(1) 首先把每个样本自成一类;
2)选取适当的衡量标准,得到衡量矩阵,比如说:距离矩阵或相似性矩阵.找到矩阵中最小的元素,将该元素对应的两 个类归为一类,
(4)重复第2步,直到只剩下一个类;
(4)重复第2步,直到只剩下一个类;
补充:聚类分析就是一种无监督的分类,下而将介绍有监督的“分类”。
我简单说明下,无监督学习与有监督学习就是什么
无监督学习:发现的知识就是未知的
)< 12 3 4
而有监督学习:发现的知识就是已知的
或者这么说吧:
有监督学习就是对一个已知模型做优化,而无监督学习就是从数据中挖掘模型
她们在分类中应用比较广泛
(非数值分类)
如果就是数值分类就就是预测了,这点要注意
1、3数据分类
1、方法概述
数据分类就是一种典型的有监督的机器学习方法,其目的就是从一组已知类别的数据中发现分类模型,以预测新数据的未知类别。
这里需要说明的就是:预测与分类就是有区别的,预测就是对数据的预测,而分类就是类别的预测。
2、类别
方法:
⑴神经网路
(2)决策树(这里不再阐述,有兴趣的同学,可以参考数据挖掘与数据仓库相关书籍)
3、注意事项
1》神经网路适用于下列情况的分类:
< 1)数据量比较小,缺少足够的样本建立数学模型;
<2)数据的结构难以用传统的统汁方法来描述
(3)分类模型难以表示为传统的统计模型
这里主要介绍以上三点,其她的情况大家可以自己总结!
2》神经网路的优点:
分类准确度高,并行分布处理能力强,
对噪声数据有较强的鲁棒性与容错能力
能够充分逼近复杂的非线性关系,具备联想记忆的功能等。
3》神经网路缺点:
需要大量的参数,不能观察中间学习过程,输出结果较难解释,会影响到结果的可信度,需要较长的学习时间,当数据量较大的时候,学习速度会制约其应用。
4、步骤
这里只做简略说明,具体步骤,大家可以査阅《神经网路》《数据挖掘》等相关书籍
(1)初始化全系数
(2)输入训练样本
(3)计算实际输出值
⑷计算实际输出值与期望输出值之间的误差
(5)用误差去修改权系数
(6)判断就是否满足终止条件,如果满足终止,否则进入第二步
、4判别分析
1、概述
其就是基于已知类別的训练样本,对未知类别的样本判别的一种统计方法,也就是一种有监督的学习方法,就是分类的一个子方法!
具体就是:在研究已经过分类的样本基础上,根据某些判别分析方法建立判别式,然后对未知分类的样本进行分类!
2、分类
根据判别分析方法的不同,可分为下而几类:
(1)距离判别法
(2)Fisher判别法
⑶Bayes判别法
(4)逐步判别法
关于这几类的方法的介绍,大家可以参考《多元统汁学》,英中比较常用的就是bayes判别法与逐步判别法
数学建模中统计学常用方法
3、注意事项:
判别分析主要针对的就是有监督学习的分类问题。共有四种方法,这里重点注意其优缺点:\(1)距离判别方法简单容易理解,但就是它将总体等概率瞧待,没有差异性;
⑵Bayes判别法有效地解决了距离判别法的不足,即:英考虑了先验概率一一所以通常这种方法在实际中应用比较多!
(3)在进行判别分析之前,应首先检验各类均值就是不就是有差异(因为判别分析要求给定的样本数据必须有明显的差异),
如果检验后某两个总体的差异不明显,应将这两个总体合为一个总体,再由剩下的互不相同的总体重现建立判别分析函数。⑷ 这里说明下Fisher判别法与bayes判别法的使用要求:两者对总体的数据的分布要求不同,具体的.Fisher要求对数据分布没有特殊要求,而bayes则要求数据分布就是多元正态分布,但实际中却没有这么严格!
(5)这种方法可以利用spss,sas等软件来轻松实现
4、方法步骤
这里以bayes判别法为例简要讲述,具体的方法与软件实现,可以去数学中国网站下载或者参考《多元统汁学》
(1)计算各■类中变量的均值xj及均值向量xh,各变量的总均值xi及均值向疑x
(2)计算类内协方差及其逆矩阵
⑶ 计算bayes判别函数中,各个变量的系数及常数项并写岀判别函数
(4)计算类内协方差矩阵及各总协方差矩阵做多个变量的全体判别效果的检验
(5)做各个变量的判别能力检验
(6)判别样本应属于的类別
1、5主成分分析
1、槪述
主成分分析就是一种降维数的数学方法,具体就就是,通过降维技术奖多个变量化为少数几个主成分的统计分析方法。在建模中,主要用于降维,系统评估,回归分析,加权分析等等。
2、分类(无)
3、注意事项
在应用主成分分析时候,应该注意:
(1)综合指标彼此独立或者不想
(2)每个综合指标所反映的各个样本的总信息量等于对应特征向量的特征值。通常要选取的综合指标的特征值贡献率之
与应为80%以上
(3)其在应用上侧重于信息贡献影响力的综合评价
(4)当主成分因子负荷的符号有正也有负的时候,综合评价的函数意义就不明确!
4、方法步骤
大家可以参考《多元统计学》这本书籍,在这里就不做阐述,也可以从数学中国网站的统计学板块下载!
I、6因子分析
1、槪述
其就是也就是将变量总与为数量较少的几个因子,就是降维的一种数学技术!
它与主成分分析的最大区别就是:其就是一种探索性分析方法,即:通过用最少个数的几个不可观察的变量来说明出现在可观察变量中的相关模型(有点类似于前而讲述的分类与聚类的区别,大家好好体会下)它提供了一种有效的利用数学模型来解释事物之间的关系,体现出数据挖掘的一点精神!
2、分类
因子分析就是R型,即对变量研究
3、注意事项
(1)其不就是对研究总体的变量的降维,而就是根拯原始变量信息构造新的变量,作为共同因子,这点区别于主成分分析