7第七章 火车过桥问题火车过桥问题公式7个
火车过桥与错车、超车问题公式
火车速度=人的速度+车长÷时间
人的速度=火车速度-车长÷时间
快车车长+慢车车长=(快车速度-慢车速度)×时间
快车车长=(快车速度-慢车速度)×时间-慢车车长 快车速度=慢车速度+(快车车长+慢车车长)÷时间
慢车速度=快车速度-(快车车长+慢车车长)÷时间
火车从人的后面开来:
火车车长=火车与人的速度差×时间
车长=(火车速度-人的速度)×时间 时间=车长÷(火车速度-人的速度)
路程=速度×时间
①火车 过桥:桥长+车长=火车速度×时间 ②过树、人、电线杆:车长=火车速度×时间 ③完全在桥上:桥长-车长=火车速度×时间
路程和=速度和×时间
从相遇到相离: 两火车车身长之和=两火车速度和×时间
甲车身长+乙Hale Waihona Puke 身长=(甲车速度+乙车速度)×时间
乙车身长=(甲车速度+乙车速度)×时间-甲车身长
乙车速度=(甲车身长+乙车身长)÷时间-甲车速度
火车从人的对面开来:
火车车身长=火车与人的速度和×时间
车长=(火车速度+人的速度)×时间 时间=车长÷(火车速度+人的速度)
火车速度=车长÷时间-人的速度
人的速度=车长÷时间-火车速度
路程差=速度差×时间
从追上到完全超过: 两火车车长之和=两火车速度差×时间
火车过桥问题的公式(附例题)
火车过桥问题的公式(附例题)【列车过桥问题公式】(桥长+列车长)÷速度=过桥时间;(桥长+列车长)÷过桥时间=速度;速度×过桥时间=桥、车长度之和。
火车过人相遇:人的路程+车的路程=车长火车过人追及:车的路程-人的路程=车长火车完全在桥:车的路程=桥长-车长火车完全通过桥:车的路程=桥长+车长火车过桥问题教学目的:1、清楚理解火车行程问题中的等量关系;2、能够透过分析实际问题,提炼出等量关系;3、培养分析问题,解决实际问题,综合归纳整理的能力,以及理论联系实际的能力;基础知识:一、什么叫火车过桥问题?有关火车过桥(隧道)、两列火车车头相遇到车尾相离等问题,是一种行程问题。
在考虑速度、时间和路程三种数量关系时,必须考虑到火车本身的长度。
如果遇到复杂的情况,可利用作图或演示的方法来帮助解题。
二、火车过桥问题的解题思路是什么?解答火车行程问题可记住一下几点:① 火车过桥(或隧道)所用的时间=[桥长(隧道长)+火车车长]÷火车的速度② 两列火车相向而行:从相遇到相离所用的时间=两火车车身长度和÷两车速度和③ 两车同向而行:快车从追上到超过慢车所用的时间=两车车身长度和÷两车速度差在解决火车过桥问题时,也应该涉及速度、时间和路程三种数量关系,同时还必须考虑到火车本身的长度。
在思考时,必须要在运动的火车上找准一个固定点,使它转化成一般行程问题。
有些问题由于运动情况比较复杂,不容易一下子找出其中的数量关系,可以利用作图或演示的方法来帮助解题。
典型例题:1、求时间一列火车长150米,每秒钟行19米。
全车通过长800米的大桥,需要多少时间?一列火车长200米,它以每秒10米的速度穿过200米长的隧道,从车头进入隧道到车尾离开隧道共需要多少秒?2、求桥长(隧道长)一列火车长200米,以每秒8米的速度通过一条隧道,从车头进洞到车尾离洞,一共用了40秒。
这条隧道长多少米?一列火车长900米,从路旁的一棵大树旁通过用了1.5分钟,以同样的速度通过一座大桥用了3.5分钟。
奥数:火车过桥(问题详解版)
火车过桥一、火车过桥四大类问题1、火车+树(电线杆):一个有长度、有速度,一个没长度、没速度,解法:火车车长(总路程)=火车速度×通过时间;2、火车过桥(隧道):一个有长度、有速度,一个有长度、但没速度,解法:火车车长+桥(隧道)长度(总路程)=火车速度×通过的时间;3、火车+人:一个有长度、有速度,一个没长度、但有速度,(1)、火车+迎面行走的人:相当于相遇问题,解法:火车车长(总路程)=(火车速度+人的速度)×迎面错过的时间;(2)火车+同向行走的人:相当于追及问题,解法:火车车长(总路程)=(火车速度−人的速度)×追及的时间;(3)火车+坐在火车上的人:火车与人的相遇和追及问题解法:火车车长(总路程)=(火车速度 人的速度)×迎面错过的时间(追及的时间);4、火车+火车:一个有长度、有速度,一个也有长度、有速度,(1)错车问题:相当于相遇问题,解法:快车车长+慢车车长(总路程)=(快车速度+慢车速度)×错车时间;(2)超车问题:相当于追及问题,解法:快车车长+慢车车长(总路程)=(快车速度−慢车速度)×错车时间;二、火车过桥四类问题图示长度速度火车车长车速队伍队伍长(间隔,植树问题)队速长度速度方向树无无无桥桥长无无人无人速同向反向车车长车速同向反向例题1【提高】长150米的火车以18米/秒的速度穿越一条300米的隧道.那么火车穿越隧道(进入隧道直至完全离开)要多长时间?+=(米),已知火车的速度,那么火车穿越隧道所需时间为【分析】火车穿越隧道经过的路程为300150450÷=(秒).4501825【精英】小胖用两个秒表测一列火车的车速.他发现这列火车通过一座660米的大桥需要40秒,以同样速度从他身边开过需要10秒,请你根据小胖提供的数据算出火车的车身长是米.【分析】火车40秒走过的路程是660米+车身长,火车10秒走过一个车身长,则火车30秒走660米,所以÷=(米).火车车长为6603220例题2【提高】四、五、六3个年级各有100名学生去春游,都分成2列(竖排)并列行进.四、五、六年级的学生相邻两行之间的距离分别是1米、2米、3米,年级之间相距5米.他们每分钟都行走90米,整个队伍通过某座桥用4分钟,那么这座桥长________米.【分析】100名学生分成2列,每列50人,应该产生49个间距,所以队伍长为⨯-=(米).⨯+⨯+⨯+⨯=(米),那么桥长为9043045649149249352304【精英】一个车队以5米/秒的速度缓缓通过一座长200米的大桥,共用145秒.已知每辆车长5米,两车间隔8米.问:这个车队共有多少辆车?【分析】由“路程=时间×速度”可求出车队145秒行的路程为5×145=725(米),故车队长度为725−200=525(米).再由植树问题可得车队共有车(525−5)÷(5+8)+1=41(辆).例题3【提高】一列火车通过一座长540米的大桥需要35秒.以同样的速度通过一座846米的大桥需要53秒.这列火车的速度是多少?车身长多少米?【分析】火车用35秒走了——540米+车长;53秒走了——846米+车长,根据差不变的原则火车速度是:-÷-=(米/秒),车身长是:173554055(846540)(5335)17⨯-=(米).【精英】一列火车通过长320米的隧道,用了52秒,当它通过长864米的大桥时,速度比通过隧道时提高0.25倍,结果用了1分36秒.求通过大桥时的速度及车身的长度.【分析】速度提高0.25倍用时96秒,如果以原速行驶,则用时96×(1+0.25)=120秒,(864−320)÷(120−52)=8米/秒,车身长:52×8−320=96米.【拓展1】已知某铁路桥长960米,一列火车从桥上通过,测得火车从开始上桥到完全下桥共用100秒,整列火车完全在桥上的时间为60秒,求火车的速度和长度?【分析】 完全在桥上,60秒钟火车所走的路程=桥长—车长;通过桥,100秒火车走的路程=桥长+车长,由和差关系可得:火车速度为()96021006012⨯÷+=(米/秒),火车长:9601260240-⨯=(米).【拓展2】一列火车的长度是800米,行驶速度为每小时60千米,铁路上有两座隧洞.火车通过第一个隧洞用2分钟;通过第二个隧洞用3分钟;通过这两座隧洞共用6分钟,求两座隧洞之间相距多少米?【分析】 注意单位换算.火车速度60×1000÷60=1000(米/分钟).第一个隧洞长1000×2−800=1200(米),第二个隧洞长1000×3−800=2200(米),两个隧洞相距1000×6−1200−2200−800=1800(米).【拓展3】小明坐在火车的窗口位置,火车从大桥的南端驶向北端,小明测得共用时间80秒.爸爸问小明这座桥有多长,于是小明马上从铁路旁的某一根电线杆计时,到第10根电线杆用时25秒.根据路旁每两根电线杆的间隔为50米,小明算出了大桥的长度.请你算一算,大桥的长为多少米?【分析】 从第1根电线杆到第10根电线杆的距离为:50(101)450⨯-=(米),火车速度为:4502518÷=(米/秒),大桥的长为:18801440⨯=(米).例题4【提高】两列火车相向而行,甲车每时行48千米,乙车每时行60千米,两车错车时,甲车上一乘客从乙车车头经过他的车窗时开始计时,到车尾经过他的车窗共用13秒.问:乙车全长多少米?【分析】 390米.提示:乙车的全长等于甲、乙两车13秒走的路程之和.【精英】一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长是385米.坐在快车上的人看见慢车驶过的时间是11秒,那么坐在慢车上的人看见快车驶过的时间是多少秒?【分析】 8秒.提示:快车上的人看见慢车的速度与慢车上的人看见快车的速度相同,所以两车的车长比等于两车经过对方的时间比,故所求时间为280118385⨯=(秒)例题5【提高】铁路旁边有一条小路,一列长为110米的火车以30千米/时的速度向南驶去,8点时追上向南行走的一名军人,15秒后离他而去,8点6分迎面遇到一个向北行走的农民,12秒后离开这个农民.问军人与农民何时相遇?【分析】 8点30分.火车每分行30100060500⨯÷=(米), 军人每分行115001106044⎛⎫⨯-÷= ⎪⎝⎭(米),农民每分行111105005055⎛⎫-⨯÷= ⎪⎝⎭(米). 8点时军人与农民相距(500+50)×6=3300(米),两人相遇还需3300÷(60+50)=30(分),即8点30分两人相遇.【精英】铁路旁的一条与铁路平行的小路上,有一行人与骑车人同时向南行进,行人速度为3.6千米/时,骑车人速度为10.8千米/时,这时有一列火车从他们背后开过来,火车通过行人用22秒,通过骑车人用26秒,这列火车的车身总长是多少?【分析】 行人的速度为3.6千米/时=1米/秒,骑车人的速度为10.8千米/时=3米/秒.火车的车身长度既等于火车车尾与行人的路程差,也等于火车车尾与骑车人的路程差.如果设火车的速度为x 米/秒,那么火车的车身长度可表示为(x −1)×22或(x −3)×26,由此不难列出方程.法一:设这列火车的速度是x 米/秒,依题意列方程,得(x −1)×22=(x −3)×26.解得x =14.所以火车的车身长为:(14−1)×22=286(米).法二:直接设火车的车长是x ,那么等量关系就在于火车的速度上.可得:x /26+3=x /22+1,这样直接也可以x =286米法三:既然是路程相同我们同样可以利用速度和时间成反比来解决.两次的追及时间比是:22:26=11:13,所以可得:(V 车−1):(V 车−3)=13:11,可得V 车=14米/秒,所以火车的车长是(14−1)×22=286(米),这列火车的车身总长为286米.【拓展4】甲、乙两辆汽车在与铁路并行的道路上相向而行,一列长180米的火车以60千米/时的速度与甲车同向前进,火车从追上甲车到遇到乙车,相隔5分钟,若火车从追上到超过甲车用时30秒.从与乙车相遇到离开用时6秒,求乙车遇到火车后再过多少分钟与甲车相遇?【分析】 由火车与甲、乙两车的错车时间可知,甲车速度为6018030 3.638.4-÷⨯=千米/时.乙车速度为1806 3.66048÷⨯-=千米/时,火车追上甲车时,甲、乙两车相距5(6048)960+⨯=千米.经过9(38.448)60 6.25÷+⨯=分钟相遇,那么乙车遇到火车后1.25分钟与甲车相遇【拓展5】红星小学组织学生排成队步行去郊游,每分步行60米,队尾的王老师以每分行150米的速度赶到排头,然后立即返回队尾,共用10分.求队伍的长度.【分析】 630米.设队伍长为x 米.从队尾到排头是追及问题,需15060x -分;从排头返回队尾是相遇问题,需15060x +分.由101506015060x x +=-+,解得630x =米【拓展6】甲、乙两人在铁路旁边以同样的速度沿铁路方向相向而行,恰好有一列火车开来,整个火车经过甲身边用了18秒,2分后又用15秒从乙身边开过.问:(1)火车速度是甲的速度的几倍? (2)火车经过乙身边后,甲、乙二人还需要多少时间才能相遇?【分析】 (1)11倍;(2)11分15秒.(1)设火车速度为a 米/秒,行人速度为b 米/秒,则由火车的长度可列方程()()1815a b a b -=+,求出11a b=,即火车的速度是行人速度的11倍;从车尾经过甲到车尾经过乙,火车走了135秒,此段路程一人走需1350×11=1485(秒),因为甲已经走了135秒,所以剩下的路程两人走还需(1485−135)÷2=675(秒).例题6【提高】快车A 车长120米,车速是20米/秒,慢车B 车长140米,车速是16米/秒.慢车B 在前面行驶,快车A 从后面追上到完全超过需要多少时间?【分析】 从“追上”到“超过”就是一个“追及”过程,比较两个车头,“追上”时A 落后B 的车身长,“超过”时A 领先B (领先A 车身长),也就是说从“追上”到“超过”,A 的车头比B 的车头多走的路程是:B 的车长A +的车长,因此追及所需时间是:(A 的车长B +的车长)÷(A 的车速B -的车速).由此可得到,追及时间为:(A 车长B +车长)÷(A 车速B -车速)1201402016=+÷-()()65=(秒).【精英】快车长106米,慢车长74米,两车同向而行,快车追上慢车后,又经过1分钟才超过慢车;如果相向而行,车头相接后经过12秒两车完全离开.求两列火车的速度.【分析】 根据题目的条件,可求出快车与慢车的速度差和速度和,再利用和差问题的解法求出快车与慢车的速度.两列火车的长度之和:106+74=180(米)快车与慢车的速度之差:180÷60=3(米)快车与慢车的速度之和:180÷12=15(米)快车的速度:(15+3)÷2=9(米)慢车的速度:(15−3)÷2=6(米)【拓展7】从北京开往广州的列车长350米,每秒钟行驶22米,从广州开往北京的列车长280米,每秒钟行驶20米,两车在途中相遇,从车头相遇到车尾离开需要多少秒钟?【分析】 从两车车头相遇到车尾离开时,两车行驶的全路程就是这两列火车车身长度之和.解答方法是:(A 的车身长B +的车身长)÷(A 的车速B +的车速)=两车从车头相遇到车尾离开的时间也可以这样想,把两列火车的车尾看作两个运动物体,从相距630米(两列火车本身长度之和)的两地相向而行,又知各自的速度,求相遇时间.两车车头相遇时,两车车尾相距的距离:350280630+=(米)两车的速度和为:222042+=(米/秒);从车头相遇到车尾离开需要的时间为:6304215÷=(秒).综合列式:350280222015+÷+=()()(秒).例题7【提高】【精英】有两列同方向行驶的火车,快车每秒行33米,慢车每秒行21米.如果从两车头对齐开始算,则行20秒后快车超过慢车;如果从两车尾对齐开始算,则行25秒后快车超过慢车.那么,两车长分别是多少?如果两车相对行驶,两车从车头重叠起到车尾相离需要经过多少时间?【分析】 如图,如从车头对齐算,那么超车距离为快车车长,为:332120240-⨯=()(米); 如从车尾对齐算,那么超车距离为慢车车长,为332125300-⨯=()(米). 由上可知,两车错车时间为:300240332110+÷+=()()(秒).【拓展8】甲乙两列火车,甲车每秒行22米,乙车每秒行16米,若两车齐头并进,则甲车行30秒超过乙车;若两车齐尾并进,则甲车行26秒超过乙车.求两车各长多少米?【分析】 两车齐头并进:甲车超过乙车,那么甲车要比乙车多行了一个甲车的长度.每秒甲车比乙车多行22−16=6米,30秒超过说明甲车长6×30=180米.两车齐尾并进:甲超过乙车需要比乙车多行一整个乙车的长度,那么乙车的长度等于6×26=156米.【拓展9】铁路货运调度站有A 、B 两个信号灯,在灯旁停靠着甲、乙、丙三列火车.它们的车长正好构成一个等差数列,其中乙车的的车长居中,最开始的时候,甲、丙两车车尾对齐,且车尾正好位于A 信号灯处,而车头则冲着B 信号灯的方向.乙车的车尾则位于B 信号灯处,车头则冲着A 的方向.现在,三列火车同时出发向前行驶,10秒之后三列火车的车头恰好相遇.再过15秒,甲车恰好超过丙车,而丙车也正好完全和乙车错开,请问:甲乙两车从车头相遇直至完全错开一共用了几秒钟?【分析】 8.75秒例题8【提高】某列车通过250米长的隧道用25秒,通过210米长的隧道用23秒,若该列车与另一列长150米.时速为72千米的列车相遇,错车而过需要几秒钟?【分析】 根据另一个列车每小时走72千米,所以,它的速度为:72000÷3600=20(米/秒),某列车的速度为:(250−210)÷(25−23)=40÷2=20(米/秒)某列车的车长为:20×25−250=500−250=250(米),两列车的错车时间为:(250+150)÷(20+20)=400÷40=10(秒).快车慢车慢车快车快车慢车慢车快车【精英】在双轨铁道上,速度为54千米/小时的货车10时到达铁桥,10时1分24秒完全通过铁桥,后来一列速度为72千米/小时的列车,10时12分到达铁桥,10时12分53秒完全通过铁桥,10时48分56秒列车完全超过在前面行使的货车.求货车、列车和铁桥的长度各是多少米?【分析】 先统一单位:54千米/小时15=米/秒,72千米/小时20=米/秒,1分24秒84=秒,48分56秒12-分36=分56秒2216=秒.货车的过桥路程等于货车与铁桥的长度之和,为:15841260⨯=(米);列车的过桥路程等于列车与铁桥的长度之和,为:20531060⨯=(米).考虑列车与货车的追及问题,货车10时到达铁桥,列车10时12分到达铁桥,在列车到达铁桥时,货车已向前行进了12分钟(720秒),从这一刻开始列车开始追赶货车,经过2216秒的时间完全超过货车,这一过程中追及的路程为货车12分钟走的路程加上列车的车长,所以列车的长度为()2015221615720280-⨯-⨯=(米),那么铁桥的长度为1060280780-=(米),货车的长度为1260780480-=(米).【补充1】马路上有一辆车身长为15米的公共汽车由东向西行驶,车速为每小时18千米.马路一旁的人行道上有甲、乙两名年轻人正在练长跑,甲由东向西跑,乙由西向东跑.某一时刻,汽车追上了甲,6秒钟后汽车离开了甲;半分钟之后,汽车遇到了迎面跑来的乙;又过了2秒钟汽车离开了乙.问再过多少秒以后甲、乙两人相遇?【分析】 车速为每秒:181********⨯÷=(米),由“某一时刻,汽车追上了甲,6秒钟后汽车离开了甲”,可知这是一个追及过程,追及路程为汽车的长度,所以甲的速度为每秒:56156 2.5⨯-÷=()(米);而汽车与乙是一个相遇的过程,相遇路程也是汽车的长度,所以乙的速度为每秒:15522 2.5-⨯÷=()(米).汽车离开乙时,甲、乙两人之间相距:5 2.50.560280-⨯⨯+=()()(米),甲、乙相遇时间:80 2.5 2.516÷+=()(秒).【补充2】甲、乙二人沿铁路相向而行,速度相同,一列火车从甲身边开过用了8秒钟,离甲后5分钟又遇乙,从乙身边开过,只用了7秒钟,问从乙与火车相遇开始再过几分钟甲乙二人相遇?【分析】 火车开过甲身边用8秒钟,这个过程为追及问题:火车长=(V 车−V 人)×8;火车开过乙身边用7秒钟,这个过程为相遇问题火车长=(V 车+V 人)×7.可得8(V 车−V 人)=7(V 车+V 人),所以V 车=l 5V 人.甲乙二人的间隔是:车走308秒的路−人走308秒的路,由车速是人速的15倍,所以甲乙二人间隔15×308−308=14×308秒人走的路.两人相遇再除以2倍的人速.所以得到7×308秒=2156秒.乙走2秒甲走32秒车走6秒车走30秒甲走6秒甲乙二人的间隔距离甲乙练习1 一列长240米的火车以每秒30米的速度过一座桥,从车头上桥到车尾离桥用了1分钟,求这座桥长多少米?【分析】 火车过桥时间为1分钟60=秒,所走路程为桥长加上火车长为60301800⨯=(米),即桥长为180********-=(米).练习2小红站在铁路旁,一列火车从她身边开过用了21秒.这列火车长630米,以同样的速度通过一座大桥,用了1.5分钟.这座大桥长多少米?【分析】 因为小红站在铁路旁边没动,因此这列火车从她身边开过所行的路程就是车长,所以,这列火车的速度为:630÷21=30(米/秒),大桥的长度为:30×(1.5×60)−630=2070(米).练习3一列火车长450米,铁路沿线的绿化带每两棵树之间相隔3米,这列火车从车头到第1棵树到车尾离开第101棵树用了0.5分钟.这列火车每分钟行多少米?【分析】 第1棵树到第101棵树之间共有100个间隔,所以第1棵树与第101棵树相距3100300⨯=(米),火车经过的总路程为:450300750+=(米),这列火车每分钟行7500.51500÷=(米).练习4一列火车长200米,通过一条长430米的隧道用了42秒,这列火车以同样的速度通过某站台用了25秒钟,那么这个站台长多少米?【分析】 火车速度为:2004304215+÷=()(米/秒),通过某站台行进的路程为:1525375⨯=(米),已知火车长,所以站台长为375200175-=(米).练习5小新以每分钟10米的速度沿铁道边小路行走,⑴ 身后一辆火车以每分钟100米的速度超过他,从车头追上小新到车尾离开共用时4秒,那么车长多少米?⑵ 过了一会,另一辆货车以每分钟100米的速度迎面开来,从与小新相遇到离开,共用时3秒.那么车长是多少?【分析】 ⑴这是一个追击过程,把小新看作只有速度而没有车身长(长度是零)的火车.根据前面分析过的追及问题的基本关系式:(A 的车身长B +的车身长)÷(A 的车速B - 的车速)=从车头追上到车尾离开的时间,在这里,B 的车身长车长(也就是小新)为0,所以车长为:100104360-⨯=()(米);⑵这是一个相遇错车的过程,还是把小新看作只有速度而没有车身长(长度是零)的火车.根据相遇问题的基本关系式,(A 的车身长B +的车身长)÷(A 的车速B +的车速)=两车从车头相遇到车尾离开的时间,车长为:100103330+⨯=()(米).练习6一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长是385米,坐在快车上的人看见慢车驶过的时间是11秒,那么坐在慢车上的人看见块车驶过的时间是多少秒?【分析】 这个过程是火车错车,对于坐在快车上的人来讲,相当于他以快车的速度和慢车的车尾相遇,相遇路程和是慢车长;对于坐在慢车上的人来讲,相当于他以慢车的速度和快车的车尾相遇,相遇的路程变成了快车的长,相当于是同时进行的两个相遇过程,不同点在于路程和一个是慢车长,一个是快车长,相同点在于速度和都是快车速度加上慢车的速度.所以可先求出两车的速度和3851135÷=(米/秒),然后再求另一过程的相遇时间280358÷=(秒).练习7长180米的客车速度是每秒15米,它追上并超过长100米的货车用了28秒,如果两列火车相向而行,从相遇到完全离开需要多长时间?【分析】 根据题目的条件,可求出客车与货车的速度差,再求出货车的速度,进而可以求出两车从相遇到完全离开需要的时间,两列火车的长度之和为:180100280+=(米)两列火车的速度之差为:2802810÷=(米/秒)货车的速度为:15105-=(米)两列火车从相遇到完全离开所需时间为:28015514÷+=()(秒).练习8某列火车通过342米的隧道用了23秒,接着通过234米的隧道用了17秒,这列火车与另一列长88米,速度为每秒22米的列车错车而过,问需要几秒钟?【分析】 通过前两个已知条件,我们可以求出火车的车速和火车的车身长.车速为:342234231718-÷-=()()(米),车长:182334272⨯-=(米),两车错车是从车头相遇开始,直到两车尾离开才是错车结束,两车错车的总路程是两个车身之和,两车是做相向运动,所以,根据“路程和÷速度和=相遇时间”,可以求出两车错车需要的时间为728818224+÷+=()()(秒),所与两车错车而过,需要4秒钟.。
手把手教你解火车过桥问题
手把手教你解火车过桥问题什么是火车过桥问题?火车在行驶中,经常发生过桥与通过隧道,两车对开错车与快车超越慢车等情况. 火车过桥是指“全车通过”,即从车头上桥直到车尾离桥才算“过桥”。
列车过桥的总路程是桥长加车长,这是解决过桥问题的关键。
过桥问题也要用到一般行程问题的基本数量关系:过桥的路程=桥长+车长车速=(桥长+车长)-过桥时间通过桥的时间=(桥长+车长)、车速桥长=车速×过桥时间-车长车长=车速×过桥时间-桥长后三个都是根据第二个关系式逆推出的.对于火车过桥、火车和人相遇、火车追及人以及火车和火车之间的相遇、追及等等这几种类型的题目,在分析题目的时候一定得结合着图来进行.两列火车的"追及"情况,请看下图:火车A 火车A火车五火车B(1) (2)两列火车A与B, 图中(1)表示A已经追上B, 图中(2)A已经超过B. 从“追上”到“超过”就是一个“追及”过程,比较两个火车头,“追上”时A落后B 的车身长,“超过”时A 领先B 的车身长,也就是说,从“追上”到“超过”,A的车头比B 的车头多走的路程是B 的车身长+A 的车身长,因此所需时间为:(A的车身长+B的车身长)+(A的车速-B的车速)=从车头追上到车尾离开的时间两列火车的“相遇”情况,如下图:(2)图中(1)表示“碰上”,图中(2)表示“错过”,类似于前面的分析,“遇上”时两列火车车头相遇,“错过”时两列火车车尾离开.从“遇上”到“错过”所需要的时间为:(A 的车身长+B 的车身长)+(A 的车速+B 的车速)=两车从车头相遇到车尾离开的时间火车过桥问题的例题讲解1【例题】一列以相同速度行驶的火车,经过一根有信号灯的电线杆用了9秒,通过一座468 米长的铁桥用了35秒,这列火车长多少米?【分析】由题意,“经过一根有信号灯的电线杆用了9秒”,可知火车行驶一个车身长的路程用时9秒,那么行驶468米长的路程用时为:35-9=26(秒),所以火车长468÷26×9=162(米).火车过桥问题的例题讲解2【例题】一列火车长200米,通过一条长430米的隧道用了42秒,这列火车以同样的速度通过某站台用了25秒钟,那么这个站台长多少米?【分析】火车速度为:(200+430)÷42=15(米/秒),通过某站台行进的路程为:15×25=375 (米),已知火车长,所以站台长为375-200=175(米)。
7第七章 火车过桥问题-火车过桥问题公式7个
第七章火车过桥问题概念【数量关系】火车过桥问题可以分为三种情况:(1)人与车相遇:路程和=火车车长,速度和=车速+人速火车车长÷(车速+人速)=相遇时间追及:路程差=火车车长,速度差=车速-人速火车车长÷(车速-人速)=追及时间(2)车与车相遇:路程和=甲车长+乙车长速度和=甲车速+乙车速(甲车长+乙车长)÷(甲车速+乙车速)=相遇时间追及:路程差=快车长+慢车长,速度差=快车速-慢车速 (快车长+慢车长)÷(快车速-慢车速)=追及时间(3)头对齐,尾对齐:头对齐:路程差=快车车长速度差=快车速-慢车速快车车长÷(快车速-慢车速)=错车时间尾对齐:路程差=慢车车长,速度差=快车速-慢车速,慢车车长÷(快车速-慢车速)=错车时间【解题思路和方法】请大家做题的时候一定要分析好题是属于那种类型,同时要弄清公式,最好能把这三种情况的图画一遍,如果考试的时候忘记公式的时候可以通过画图分析,以不变应万变。
例题1.一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长是385米.坐在快车上的人看见慢车驶过的时间是11秒,那么坐在慢车上的人看见快车驶过的时间是多少秒?2.有两列同方向行驶的火车,快车每秒行30米,慢车每秒行22米,如果从两车头对齐开始算,则行24秒后快车超过慢车;如果从两车尾对齐开始算,则行28秒后快车超过慢车。
那么,两车长分别是多少?如果两车相对行驶,两车从头重叠起到尾相离需要经过多少时间?3. (真题)列车通过250米的隧道用25秒,通过210米长的隧道用23秒.又知列车的前方有一辆与它同向行驶的货车,货车车身长320米,速度为每秒17米.列车与货车从相遇到相离需要多少秒?4.一列火车长150米,每秒钟行19米。
全车通过长800米的大桥,需要多少时间?5. 一列火车长200米,以每秒8米的速度通过一条隧道,从车头进洞到车尾离洞,一共用了40秒。
7第七章 火车过桥问题-火车过桥问题公式7个
第七章火车过桥问题概念【数量关系】火车过桥问题可以分为三种情况:(1)人与车相遇:路程和=火车车长,速度和=车速+人速火车车长÷(车速+人速)=相遇时间追及:路程差=火车车长,速度差=车速-人速火车车长÷(车速-人速)=追及时间(2)车与车相遇:路程和=甲车长+乙车长速度和=甲车速+乙车速(甲车长+乙车长)÷(甲车速+乙车速)=相遇时间追及:路程差=快车长+慢车长,速度差=快车速-慢车速 (快车长+慢车长)÷(快车速-慢车速)=追及时间(3)头对齐,尾对齐:头对齐:路程差=快车车长速度差=快车速-慢车速快车车长÷(快车速-慢车速)=错车时间尾对齐:路程差=慢车车长,速度差=快车速-慢车速,慢车车长÷(快车速-慢车速)=错车时间【解题思路和方法】请大家做题的时候一定要分析好题是属于那种类型,同时要弄清公式,最好能把这三种情况的图画一遍,如果考试的时候忘记公式的时候可以通过画图分析,以不变应万变。
例题1.一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长是385米.坐在快车上的人看见慢车驶过的时间是11秒,那么坐在慢车上的人看见快车驶过的时间是多少秒?2.有两列同方向行驶的火车,快车每秒行30米,慢车每秒行22米,如果从两车头对齐开始算,则行24秒后快车超过慢车;如果从两车尾对齐开始算,则行28秒后快车超过慢车。
那么,两车长分别是多少?如果两车相对行驶,两车从头重叠起到尾相离需要经过多少时间?3. (真题)列车通过250米的隧道用25秒,通过210米长的隧道用23秒.又知列车的前方有一辆与它同向行驶的货车,货车车身长320米,速度为每秒17米.列车与货车从相遇到相离需要多少秒?4.一列火车长150米,每秒钟行19米。
全车通过长800米的大桥,需要多少时间?5. 一列火车长200米,以每秒8米的速度通过一条隧道,从车头进洞到车尾离洞,一共用了40秒。
火车过桥公式
火车过桥公式
1、火车过桥(隧道):一个有长度、有速度,一个有长度、但没速度。
解法:火车车长+桥(隧道)长度(总路程) =火车速度×通过的时间;
2、火车+树(电线杆):一个有长度、有速度,一个没长度、没速度。
解法:火车车长(总路程)=火车速度×通过时间;
3、火车+人:一个有长度、有速度,一个没长度、但有速度。
(1)火车+迎面行走的人:相当于相遇问题。
解法:火车车长(总路程) =(火车速度+人的速度)×迎面错过的时间;(2)火车+同向行走的人:相当于追及问题。
解法:火车车长(总路程) =(火车速度—人的速度) ×追及的时间;(3)火车+坐在火车上的人:火车与人的相遇和追及问题解法:火车车长(总路程) =(火车速度+/-人的速度) ×迎面错过的时间(追及的时间);
4、火车+火车:一个有长度、有速度,一个也有长度、有速度。
(1)错车问题:相当于相遇问题。
解法:快车车长+慢车车长(总路程) =(快车速度+慢车速度) ×错车时间;(2)超车问题:相当于追及问题。
解法:快车车长+慢车车长(总路程) =(快车速度—慢车速度) ×错车时间;。
火车过桥的解题思路
火车过桥的解题思路一、火车过桥问题解题思路。
1. 火车过桥问题的关键要素。
- 火车过桥时,所行的路程是桥长与火车车身长度之和。
这是因为火车过桥是从车头上桥开始,到车尾离桥结束,整个过程火车行驶的距离包括了桥的长度和火车自身的长度。
- 基本公式:路程 = 速度×时间。
在火车过桥问题中,路程 = 桥长 + 车长。
2. 不同情况的分析。
- 火车完全过桥:火车所行路程 = 桥长+车长,根据已知的速度和时间,可以求出桥长与车长的和,或者已知桥长和车长的和以及其中一个量(桥长或车长)和速度,求出时间等其他未知量。
- 火车完全在桥上:火车所行路程 = 桥长 - 车长。
这种情况是从车尾上桥到车头离桥的过程,此时火车行驶的距离是桥长减去火车自身的长度。
- 火车过山洞、隧道等问题,与火车过桥问题的原理相同,都是要考虑火车自身长度与所经过的物体(山洞、隧道)长度的关系。
二、题目与解析。
1. 一列火车长150米,每秒钟行19米。
全车通过长800米的大桥,需要多少时间?- 解析:全车通过大桥所行的路程 = 桥长+车长,即800 + 150=950米。
已知速度是每秒钟行19米,根据时间 = 路程÷速度,可得时间为950÷19 = 50秒。
2. 一列火车长200米,以每秒8米的速度通过一条隧道,从车头进洞到车尾离洞,一共用了40秒。
这条隧道长多少米?- 解析:火车40秒所行的路程 = 速度×时间=8×40 = 320米。
这个路程是隧道长与火车车身长度之和,所以隧道长 = 所行路程 - 车长,即320 - 200=120米。
3. 某列火车通过360米的第一个隧道用了24秒钟,接着通过第二个长216米的隧道用了16秒钟,求这列火车的长度?- 解析:设火车的长度为x米。
火车通过第一个隧道行驶的路程是(360 + x)米,速度为(360 + x)/(24);通过第二个隧道行驶的路程是(216+x)米,速度为(216 + x)/(16)。
列车过桥的问题公式
列车过桥的问题公式
列车过桥的问题可以用以下公式表示:
T = n*L/V
其中,T表示列车过桥所需的时间,n表示列车的数量,L表
示桥的长度,V表示列车的速度。
这个公式的基本思想是,每辆列车都需要一定的时间来通过桥梁,所以总共需要的时间就是所有列车所需要的时间之和。
假设每辆列车通过桥梁的时间都相同,那么总时间就等于单辆列车通过桥梁的时间乘以列车的数量。
而单辆列车通过桥的时间可以通过桥的长度除以列车的速度来计算。
需要注意的是,这个公式假设所有列车都以相同的速度通过桥,实际情况可能会有不同。
另外,公式中的速度可以是列车的平均速度,也可以是列车的最高速度,这取决于具体的问题。
火车行程问题
火车行程问题一:火车过桥、过隧道问题公式:路程=速度×时间基本数量关系是:火车长+桥长=火车速度×过桥时间火车速度=(火车长+桥长)÷过桥时间过桥时间=(火车长+桥长)÷火车速度一般的火车过桥所求的分为:求过桥时间;求桥长;求火车长;求火车的速度。
下面我们分别研究这些问题。
经典例题:基准1:一列火车长180米,每秒行25米。
全车通过一条120米的大桥,须要多长时间?求解:例如图过桥时间=(火车长+桥长)÷火车速度(180+120)÷25=300÷25=12(秒)答:需要12秒。
课堂训练:(1)一列火车长200米,它以每秒10米的速度沿着200米短的隧道,从车头步入隧道至车尾返回隧道共须要多少秒?(2)一列火车长250米,每秒行驶50米,全车通过一座长2750米的隧道,一共需要多少时间?(3)一列火车长150米,每秒高速行驶16米,全车通过一座长330米的大桥。
一共须要多少时间?(4)一列火车长210米,每秒钟行驶25米,全车通过一个190米的山洞需要多少时间?基准2:一列火车长160米,全车通过一座桥须要30秒钟,这列于火车每秒行20米,谋这座桥的长度.求解:由公式:火车长+桥长=火车速度×过桥时间变形可以得:桥长=火车速度×过桥时间-火车长20×30-160=600-160=440(米)答:这座桥长440米。
课堂训练:(5)一列350米长的火车以每秒25米的速度穿过一座桥花了20秒,问:大桥的长度是多少?1(6)一列长240米的火车以每秒30米的速度过一座桥,从车头上桥到车尾离桥用了1分钟,求这座桥长多少米?(7)一列火车长200米,以每秒8米的速度通过一条隧道,从车头进洞至车尾离洞,一共用了40秒。
这条隧道短多少米?(8)一座大桥长590米,一列火车以每秒15米的速度通过大桥,从车头上桥到车尾离开桥共用时间50秒,求这列火车长多少米?(9)一座大桥长2100米。
火车过桥问题
火车过桥问题火车在行驶中,经常发生过桥与通过隧道,两车对开错车与快车超越慢车等情况。
火车过桥是指“全车通过”,即从车头上桥到车尾离开桥才算“过桥”,如下图:火车桥火车桥列车过桥的总路程是桥长加车长,这是解决过桥问题的关键,过桥问题也要用到一般行程问题的基本数量关系:(1)过桥的路程=桥长+车长(2)车速=(桥长+车长)三过桥时间(3)通过桥的时间=(桥长+车长)F车速(4)桥长=车速X过桥时间一车长(5)车长=车速X过桥时间一桥长对于火车过桥、火车和人相遇、火车追及人以及火车和火车之间的相遇、追及等等这几种类型的题目,在分析题目的时候一定得结合着图来进行。
两列火车的追及情况,请看下图:两列火车A与B,图中(1)表示A已经追上B,图中(2)表示A已经超过B。
从追上到超过就是一个追及过程,比较两个火车头,追上时A落后B的车身长,超过时A领先B的车身长,也就是说,从追上到超过,A的车头比B的车头多走的路程是B的车身长+A的车身长,因此所需时间为:(A的车身长+B的车身长)F(A的车速一B的车速)=从车头追上到车尾离开的时间两列火车相遇的情况,请看下图:火军?1——P火军出—旺II⑴馋图中(1)表示碰上,图中(2)表示错过,类似于前面的分析,遇上时两列火车车头相遇,错过时两列火车车尾离开。
从遇上到错过所需要时间为:(A的车身长+B的车身长)三(A的车速+B的车速)=两车从车头相遇到车尾离开的时间(1)求过桥、过隧道的时间例1、一列火车长150米,每秒钟行19米。
全车通过长800米的大桥,需要多少时间?分析列车过桥,就是从车头上桥到车尾离桥止。
车尾经过的距离=车长+桥长,车尾行驶这段路程所用的时间用车长与桥长和除以车速。
解:(800+150)^19=50(秒)答:全车通过长800米的大桥,需要50秒。
练习:1、一列火车长200米,它以每秒10米的速度穿过200米长的隧道,从车头进入隧道到车尾离开隧道共需要多少秒?2、长150米的火车,以每秒18米的速度穿越一条长300米的隧道。
火车过桥问题
火车过桥问题【知识重点】1.火车过桥问题是行程问题的一种,它是研究火车过桥,过地道中的桥长、地道长、火车长、火车行走的行程、速度、时间之间的数目关系。
2.火车过桥是指:从车头上桥到车尾离桥。
3.火车过桥所走的总行程是:桥长与车长的和。
4.火车过桥所用的时间:是从车头上桥到车尾离桥所经过的时间。
5.火车过桥问题的一般数目关系是:(1)行程 =桥长 +车长(2)车速 =(桥长 +车长)÷经过时间(3)经过时间 =(桥长 +车长)÷车速(4)车长 =车速×经过时间 -桥长(5)桥长 =车速×经过时间 -车长典型例题精讲【例 1】一列火车长 128 米,经过一条 712 米的地道,正好用了 60 秒,求这列火车的速度。
【例 2】一列火车长 150 米,每秒钟行 19 米,全车经过 420 米的大桥需要多长时间【例 3】一列火车全长 450 米,每秒行驶 16 米,全车经过一条地道需要 90 秒,求这条地道长多少米【例 4】一列火车开过一座长 1800 米的大桥,需 100 秒,已知火车每秒行 180 米,求火车的长多少米【例 5】一列火车经过一座长 1000 米的大桥用 65 秒钟,假如以相同的速度穿过一条730 米的地道则要用 50 秒钟,求这列火车的速度和车长。
【例 6】一列火车从小明身边经过需要 15 秒,用相同的速度经过一座长 100 米的桥用了 20 秒。
这列火车的速度是多少【例 7】有两列火车,一列车长130 米,每秒行 23 米,另一列长250 米,每秒行15米,此刻两车相向而行,问:从相碰到走开需要多少秒【例 8】甲、乙两列火车在双轨铁路上同向而行,甲车长 150 米,乙车长 120 米,甲、乙两车的速度分别是每秒 17 米和 14 米。
求甲车追上乙车后,再经过多少时间可超出乙车【例 9】某人小步行的速度是每秒 2 米,一列火车迎面开来,从他身边经过用了 10 秒钟,已知火车的车身长 190 米,火车每秒行多少米【例 10】明显在铁路边的公路上漫步,速度是 4 米/ 秒,从后边开来一列长288 米的火车,从车头到车尾经过他身边共用了16 秒,火车的速度是多少【例 11】火车经过长为 82 米的铁桥用了 22 秒,假如火车的速度加速 1 倍,它经过162 米的铁桥就用 16 秒,求火车本来的速度和它的长度。
思维 火车过桥问题
思维火车过桥问题姓名:基本公式: (桥长+列车长)÷速度=过桥时间;(桥长+列车长)÷过桥时间=速度;速度×过桥时间=桥、车长度之和。
基本类型:1、火车过桥(隧道):一个有长度、有速度,一个有长度、但没速度,解法:火车车长+桥(隧道)长度(总路程) =火车速度×通过的时间;2、火车+树(电线杆):一个有长度、有速度,一个没长度、没速度,解法:火车车长(总路程)=火车速度×通过时间;3、火车+人:一个有长度、有速度,一个没长度、但有速度,(1)、火车+迎面行走的人:相当于相遇问题,解法:火车车长(总路程) =(火车速度+人的速度)×迎面错过的时间;(2)火车+同向行走的人:相当于追及问题,解法:火车车长(总路程) =(火车速度—人的速度) ×追及的时间;(3)火车+坐在火车上的人:火车与人的相遇和追及问题解法:火车车长(总路程) =(火车速度 人的速度) ×迎面错过的时间(追及的时间);4、火车+火车:一个有长度、有速度,一个也有长度、有速度,(1)错车问题:相当于相遇问题,解法:快车车长+慢车车长(总路程) =(快车速度+慢车速度) ×错车时间;(2)超车问题:相当于追及问题,解法:快车车长+慢车车长(总路程) =(快车速度—慢车速度) ×错车时间;【例题1】:甲火车长210米,每秒行18米;乙火车长140米,每秒行13米。
乙火车在前,两火车在双轨车道上行驶。
甲火车从后面追上到完全超过乙火车要用多少秒?【例题2】:一列火车长180米,每秒钟行25米。
全车通过一条120米的山洞,需要多长时间?【例题3】:有两列火车,一车长130米,每秒行23米;另一列火车长250米,每秒行15米。
现在两车相向而行,从相遇到离开需要几秒钟?【例题4】:一列火车通过2400米的大桥需要3分钟,用同样的速度从路边的一根电线杆旁边通过,只用了1分钟。
火车过桥问题
火车过桥问题基本公式:火车与桥:过桥总路程=火车车长+桥长车速=(火车车长+桥长)/过桥时间过桥时间=(火车车长+桥长)/车速桥长=车速✖过桥时间➖火车车长火车与人:相遇:路程和=火车车长速度和=车速+人速相遇时间=火车车长➗(车速+人速)追及:路程差=火车车长速度差=车速➖人速追及时间=火车车长➗(车速➖人速)火车与火车:相遇:路程和=甲车长➕乙车长速度和=甲车速➕乙车速相遇时间=(甲车长➕乙车长)➗(甲车速➕乙车速)追及:路程差=快车长➕慢车长速度差=快车速➖慢车速追及时间=(快车长➕慢车长)➗(快车速➖慢车速)例题1一列火车长360米,每秒钟行驶18米。
全车通过一座90米的大桥要用多长时间?例题2一列火车长240米,每秒钟行驶20米。
全车通过一座160米的大桥需要多少时间?例题3一列火车长210米,每秒钟行驶25米。
全车通过一个190米的山洞需要多少时间?例题4小明以每秒3米的速度沿着铁路边的人行道跑步,后面开来的一列180米的火车,火车每秒钟行驶18米。
求从火车追上小明到完全超过小明共用多少秒钟?例题5南京长江大桥全长6000米,一列火车以每分钟720米的速度通过这座大桥,从车头上桥到车尾离开大桥共用8.6分钟。
求这列火车长?例题6一列350米长的火车以每秒钟25米的速度穿过一座桥花了20秒,求大桥的桥长是多少?例题7有两列火车,客车长168米,每秒钟行驶23米,货车长288米,每秒行驶15米。
求从两车相遇到离开需要多长时间?例题8甲车每秒钟行驶18米,乙车每秒钟行驶12米。
若两车齐头并进,则甲车经过40秒超过乙车,若两车齐尾并进,则甲车经过30秒超过乙车。
求甲、乙车的长度?例题9小德沿着铁路散步,他每分钟走60米,迎面过来一列长300米的火车,他与车头相遇到与车尾离开共用了20秒,求火车的速度?。
初中火车过桥问题的公式
初中火车过桥问题的公式咱先来说说初中数学里这个有趣的火车过桥问题。
你知道吗,火车过桥问题看似简单,其实里面的门道可不少!这其中涉及到的公式就像是一把把解开谜题的钥匙。
先来讲讲最基本的公式:火车过桥走过的路程 = 桥长 + 车长。
就拿一个例子来说吧,有一列长 200 米的火车,要通过一座 800 米长的桥。
那这列火车从车头上桥到车尾离桥,一共走过的路程就是桥长 800 米加上车长 200 米,总共 1000 米。
这个公式理解起来不难,但是真正做题的时候,有些同学就容易迷糊啦。
我记得有一次在课堂上,给同学们讲这个知识点,当时有个同学特别积极,举手说:“老师,我懂啦!”然后我给他出了一道题,结果他做错了。
他满脸困惑地看着我,那表情仿佛在说:“老师,这和您讲的不一样啊!”我笑着给他又仔细讲解了一遍,他这才恍然大悟。
咱们再深入一点,假如火车的速度是一定的,比如说是每秒50 米,那通过这座 1000 米的路程所需要的时间就是路程除以速度,也就是1000÷50 = 20 秒。
在实际生活中,我们也能看到类似的情况。
就像有时候我们坐火车经过一些桥梁,你有没有想过,火车到底走了多远的距离呢?其实就是用这个公式来算的。
再来说说一些变形的情况。
如果是两列火车相向而行,那就要考虑它们的相对速度了。
比如说一列火车速度是每秒 40 米,另一列是每秒60 米,它们的相对速度就是 40 + 60 = 100 米每秒。
还有,如果两列火车同向而行,速度快的追速度慢的,那相对速度就是两者速度之差。
总之,火车过桥问题的公式虽然简单,但是运用起来却需要我们灵活多变,仔细分析题目中的条件。
同学们在做这类题的时候,一定要认真读题,画出示意图,把桥长和车长都标清楚,这样才能避免出错。
就像盖房子一样,公式是砖头,认真仔细是水泥,只有两者结合,才能盖出坚固的知识大厦。
希望大家通过对火车过桥问题公式的学习,能让数学变得更有趣,更轻松!加油,同学们!。
火车过桥的问题的公式
火车过桥的问题的公式火车过桥问题是咱们数学学习中挺有趣的一个部分。
那咱们就来好好聊聊火车过桥问题的公式!先来说说啥是火车过桥问题哈。
比如说,一列长长的火车要通过一座桥,从火车头刚上桥,到火车尾离开桥,这整个过程就形成了一个火车过桥的情境。
咱们来具体讲讲相关的公式。
一般来说,火车过桥的路程就等于桥的长度加上火车自身的长度。
为啥呢?想象一下,火车头刚上桥的时候,火车还没完全在桥上呢,等火车尾离开桥,这整个过程火车走过的距离不就是桥长加上火车长嘛。
那根据路程、速度和时间的关系,咱们就能得出时间 = (桥长 + 车长)÷速度。
我记得之前给学生们讲这个知识点的时候,有个小同学怎么都理解不了。
我就给他举了个特别好玩的例子。
我说,你就把火车想象成一条长长的贪吃蛇,桥呢,就是一个长长的大蛋糕。
贪吃蛇要从头开始吃,一直吃到尾巴离开蛋糕,它吃的长度不就是蛋糕的长度加上它自己的长度嘛。
这孩子一下子就笑了,然后好像也明白了。
咱们再深入点说,如果是两列火车相向而行,从车头相遇到车尾相离,这个路程就是两车的长度相加。
如果是同向而行,快车追上慢车到超过慢车,路程就是两车的长度相加。
在实际做题的时候,咱们得先仔细读题,搞清楚题目里说的是哪种情况,然后再选择对应的公式去计算。
比如说有这么一道题:一列火车长 200 米,速度是每秒 20 米,要通过一座 800 米长的桥,需要多长时间?这时候咱们就可以直接用公式啦,(800 + 200)÷ 20 = 50(秒),答案就出来啦。
还有一种稍微复杂点的情况,比如火车通过一个隧道,或者通过一个站台,其实道理都是一样的,都是要把路程搞清楚,是隧道或者站台的长度加上火车自身的长度。
总之呢,火车过桥问题看似有点复杂,但是只要咱们把公式理解透,多做几道题练练手,就一定能轻松搞定!就像咱们刚才说的那个小同学,后来他做这类题可溜了,还跟我说,老师,我觉得这贪吃蛇吃蛋糕的比喻太好玩啦,我再也不会做错这种题啦!所以啊,大家也别害怕,多想想,多练练,准能行!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章火车过桥问题概念【数量关系】火车过桥问题可以分为三种情况:(1)人与车相遇:路程和=火车车长,速度和=车速+人速火车车长÷(车速+人速)=相遇时间追及:路程差=火车车长,速度差=车速-人速火车车长÷(车速-人速)=追及时间(2)车与车相遇:路程和=甲车长+乙车长速度和=甲车速+乙车速(甲车长+乙车长)÷(甲车速+乙车速)=相遇时间追及:路程差=快车长+慢车长,速度差=快车速-慢车速(快车长+慢车长)÷(快车速-慢车速)=追及时间(3)头对齐,尾对齐:头对齐:路程差=快车车长速度差=快车速-慢车速快车车长÷(快车速-慢车速)=错车时间尾对齐:路程差=慢车车长,速度差=快车速-慢车速,慢车车长÷(快车速-慢车速)=错车时间【解题思路和方法】请大家做题的时候一定要分析好题是属于那种类型,同时要弄清公式,最好能把这三种情况的图画一遍,如果考试的时候忘记公式的时候可以通过画图分析,以不变应万变。
例题1.一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长是385米.坐在快车上的人看见慢车驶过的时间是11秒,那么坐在慢车上的人看见快车驶过的时间是多少秒?2.有两列同方向行驶的火车,快车每秒行30米,慢车每秒行22米,如果从两车头对齐开始算,则行24秒后快车超过慢车;如果从两车尾对齐开始算,则行28秒后快车超过慢车。
那么,两车长分别是多少?如果两车相对行驶,两车从头重叠起到尾相离需要经过多少时间?3. (真题)列车通过250米的隧道用25秒,通过210米长的隧道用23秒.又知列车的前方有一辆与它同向行驶的货车,货车车身长320米,速度为每秒17米.列车与货车从相遇到相离需要多少秒?4.一列火车长150米,每秒钟行19米。
全车通过长800米的大桥,需要多少时间?5. 一列火车长200米,以每秒8米的速度通过一条隧道,从车头进洞到车尾离洞,一共用了40秒。
这条隧道长多少米?6.一列火车长119米,它以每秒15米的速度行驶,小华以每秒2米的速度从对面走来,经过几秒钟后火车从小华身边通过?7.一列火车通过530米的桥需40秒钟,以同样的速度穿过380米的山洞需30秒钟。
求这列火车的速度是每秒多少米?车长多少米?8.某人沿着铁路边的便道步行,一列客车从身后开来,在身旁通过的时间是15秒钟,客车长105米,每小时速度为28.8千米.求步行人每小时行多少千米?9.两人沿着铁路线边的小道,从两地出发,两人都以每秒1米的速度相对而行。
一列火车开来,全列车从甲身边开过用了10秒。
3分后,乙遇到火车,全列火车从乙身边开过只用了9秒。
火车离开乙多少时间后两人相遇?10.一列火车通过360米长的铁路桥用了24秒钟,用同样的速度通过216米长的铁路桥用16秒钟,这列火车长米?11.一列火车长700米,以每分钟400米的速度通过一座长900米的大桥.从车头上桥到车尾离要多少分钟?12.一座铁路桥全长1200米,一列火车开过大桥需花费75秒;火车开过路旁电杆,只要花费15秒,那么火车全长是多少米?13.铁路沿线的电杆间隔是40米,某旅客在运行的火车中,从看到第一根电线杆到看到第51根电线杆正好是2分钟,火车每小时行多少千米?14.已知快车长182米,每秒行20米,慢车长1034米,每秒行18米.两车同向而行,当快车车尾接慢车车头时,称快车穿过慢车,则快车穿过慢车的时间是多少秒?15.两列火车,一列长120米,每秒行20米;另一列长160米,每秒行15米,两车相向而行,从车头相遇到车尾离开需要几秒钟?16.马路上有一辆车身为15米的公共汽车,由东向西行驶,车速为每小时18千米,马路一旁的人行道上有甲、乙两名年轻人正在练长跑,甲由东向西跑,乙由西向东跑.某一时刻,汽车追上甲,6秒钟后汽车离开了甲;半分钟之后汽车遇到迎面跑来的乙;又过了2秒钟,汽车离开了乙.问再过多少秒后,甲、乙两人相遇?17.(真题)一个人站在铁道旁,听见行近来的火车鸣汽笛声后,再过57秒钟火车经过他面前.已知火车汽笛时离他1360米;(轨道是笔直的)声速是每秒钟340米,求火车的速度?(得数保留整数)18.某人沿着铁路边的便道步行,一列客车从身后开来,在身旁通过的时间是15秒钟,客车长105米,每小时速度为28.8千米.求步行人每小时行多少千米?19.一人以每分钟60米的速度沿铁路边步行,一列长144米的客车对面而来,从他身边通过用了8秒钟,求列车的速度.20.一条单线铁路上有A,B,C,D,E5个车站,它们之间的路程如图所示(单位:千米).两列火车同时从A,E两站相对开出,从A站开出的每小时行60千米,从E站开出的每小时行50千米.由于单线铁路上只有车站才铺有停车的轨道,要使对面开来的列车通过,必须在车站停车,才能让开行车轨道.因此,应安排哪个站相遇,才能使停车等候的时间最短.先到这一站的那一列火车至少需要停车多少分钟?21.铁路旁的一条平行小路上,有一行人与一骑车人同时向南行进。
行人速度为3.6千米/小时,骑车人速度为10.8千米/小时。
这时有一列火车从他们背后开过来,火车通过行人用22秒,通过骑车人用26秒。
这列火车的车身总长是多少米?22. (真题)一个人站在铁道旁,听见行近来的火车汽笛声后,再过57秒钟火车经过他面前.已知火车汽笛时离他1360米;(轨道是笔直的)声速是每秒钟340米,求火车的速度?(得数保留整数)23.某人沿着铁路边的便道步行,一列客车从身后开来,在身旁通过的时间是15秒钟,客车长105米,每小时速度为28.8千米.求步行人每小时行多少千米?24.一条单线铁路上有A,B,C,D,E 5个车站,它们之间的路程如图所示(单位:千米).两列火车同时从A,E两站相对开出,从A站开出的每小时行60千米,从E站开出的每小时行50千米.由于单线铁路上只有车站才铺有停车的轨道,要使对面开来的列车通过,必须在车站停车,才能让开行车轨道.因此,应安排哪个站相遇,才能使停车等候的时间最短.先到这一站的那一列火车至少需要停车多少分钟?25.(真题)一列火车长200米,它以每秒10米的速度穿过200米长的隧道,从车头进入隧道到车尾离开隧道共需要_______时间.26.某人沿着铁路边的便道步行,一列客车从身后开来,在身旁通过的时间是15秒,客车长105米,每小时速度为28.8千米,求步行人每小时走______千米?27.一人以每分钟60米的速度沿铁路步行,一列长144米的客车对面开来,从他身边通过用了8秒钟,列车的速度是______米/秒.28.马路上有一辆车身为15米的公共汽车,由东向西行驶,车速为每小时18千米,马路一旁的人行道上有甲、乙两名年轻人正在练长跑,甲由东向西跑,乙由西向东跑.某一时刻,汽车追上甲,6秒钟后汽车离开了甲;半分钟之后汽车遇到迎面跑来的乙;又过了2秒钟,汽车离开了乙.问再过_____秒后,甲、乙两人相遇.29.一列火车长700米,以每分钟400米的速度通过一座长900米的大桥.从车头上桥到车尾离桥要_____分钟.30.一支队伍1200米长,以每分钟80米的速度行进.队伍前面的联络员用6分钟的时间跑到队伍末尾传达命令.问联络员每分钟行_____米.31.一列火车通过530米的桥需40秒钟,以同样的速度穿过380米的山洞需30秒钟.求这列火车的速度是______米/秒,全长是_____米.32.已知快车长182米,每秒行20米,慢车长1034米,每秒行18米.两车同向而行,当快车车尾接慢车车头时,称快车穿过慢车,则快车穿过慢车的时间是_____秒.33. (真题)一座铁路桥全长1200米,一列火车开过大桥需花费75秒;火车开过路旁电杆,只要花费15秒,那么火车全长是_______米.34.铁路沿线的电杆间隔是40米,某旅客在运行的火车中,从看到第一根电线杆到看到第51根电线杆正好是2分钟,火车每小时行______千米.35、一列慢车车身长125米,车速是每秒17米;一列快车车身长140米,车速是每秒22米。
慢车在前面行驶,快车从后面追上到完全超过需要多少秒?36、甲火车从后面追上到完全超过乙火车用了110秒,甲火车身长120米,车速是每秒20米,乙火车车速是每秒18米,乙火车身长多少米?37、甲火车从后面追上到完全超过乙火车用了31秒,甲火车身长150米,车速是每秒25米,乙火车身长160米,乙火车车速是每秒多少米?38.小王以每秒3米的速度沿着铁路跑步,迎面开来一列长147米的火车,它的行使速度每秒18米。
问:火车经过小王身旁的时间是多少?39.小王以每秒3米的速度沿着铁路跑步,后面开来一列长150米的火车,它的行使速度每秒18米。
问:火车经过小王身旁的时间是多少?40. (真题)长150米的火车,以每秒18米的速度穿越一条长300米的隧道。
问火车穿越隧道(进入隧道直至完全离开)要多少时间?41.一列火车,以每秒20米的速度通过一条长800米的大桥用了50秒,这列火车长多少米?42.某人步行的速度为每秒钟2米,一列火车从后面开来,越过他用了10秒钟,已知火车的长为90米,求列车的速度。
43.某列车通过250米长的隧道用25秒,通过210米的铁桥用23秒,该列车与另一列长320米,速度为每小时行64.8千米的火车错车时需要( )秒。
44.一列火车长160m,匀速行驶,首先用26s的时间通过甲隧道(即从车头进入口到车尾离开口为止),行驶了100km后又用16s的时间通过乙隧道,到达了某车站,总行程100.352km。
求甲、乙隧道的长?45. (真题)甲、乙两人分别沿铁轨反向而行,此时,一列火车匀速地向甲迎面驶来,列车在甲身旁开过,用了15秒,然后在乙身旁开过,用了17秒,已知两人的步行速度都是3.6千米/小时,这列火车有多长?46.A、B 两站相距28千米,甲车每小时行33千米,乙车每小时行37千米。
甲、乙两车分别从A、B 两站同时相对开出,往返于两站之间,那么,当两车第三次相遇时(迎头相遇),甲车行了多少千米?47.甲、乙两车同时从A、B两地出发相向而行,两车在离B地64千米处第一次相遇.相遇后两车仍以原速继续行驶,并且在到达对方出发点后,立即沿原路返回,途中两车在距A地48千米处第二次相遇,A、B之间的距离是多少?48.一个人站在铁道旁,听见行近来的火车鸣汽笛声后,再过57秒钟火车经过他面前.已知火车汽笛时离他1360米;(轨道是笔直的)声速是每秒钟340米,求火车的速度?(得数保留整数)49.某人沿着铁路边的便道步行,一列客车从身后开来,在身旁通过的时间是15秒钟,客车长105米,每小时速度为28.8千米.求步行人每小时行多少千米?50.一人以每分钟60米的速度沿铁路边步行,一列长144米的客车对面而来,从他身边通过用了8秒钟,求列车的速度.51.一条单线铁路上有A,B,C,D,E 5个车站,它们之间的路程如图所示(单位:千米).两列火车同时从A,E两站相对开出,从A站开出的每小时行60千米,从E站开出的每小时行50千米.由于单线铁路上只有车站才铺有停车的轨道,要使对面开来的列车通过,必须在车站停车,才能让开行车轨道.因此,应安排哪个站相遇,才能使停车等候的时间最短.先到这一站的那一列火车至少需要停车多少分钟?52.有甲、乙、丙三人同时同地出发,绕一个花圃行走,乙、丙二人同方向行走,甲于乙、丙背向而行。