2018年台湾省中考数学试卷含答案解析

合集下载

因式分解分式二次根式含解析-中考各地试题分类汇编

因式分解分式二次根式含解析-中考各地试题分类汇编

专题1.4 因式分解分式二次根式一、单选题1.【湖南省邵阳市2018年中考数学试卷】将多项式x﹣x3因式分解正确的是()A. x(x2﹣1) B. x(1﹣x2) C. x(x+1)(x﹣1) D. x(1+x)(1﹣x)【答案】D【解析】【分析】直接提取公因式x,然后再利用平方差公式分解因式即可得出答案.【详解】x﹣x3=x(1﹣x2)=x(1﹣x)(1+x).故选D.【点睛】本题主要考查了提取公因式法以及公式法分解因式,正确应用公式法是解题关键.2.【台湾省2018年中考数学试卷】已知某文具店贩售的笔记本每本售价均相等且超过10元,小锦和小勤在此文具店分别购买若干本笔记本.若小锦购买笔记本的花费为36元,则小勤购买笔记本的花费可能为下列何者?()A. 16元 B. 27元 C. 30元 D. 48元【答案】D点睛:此题主要考查了质因数分解,正确得出笔记本的单价是解题关键.3.【湖南省郴州市2018年中考数学试卷】下列运算正确的是()A. a3•a2=a6 B. a﹣2=﹣ C. 3﹣2= D.(a+2)(a﹣2)=a2+4【答案】C【解析】【分析】直接利用同底数幂的乘除运算法则、负指数幂的性质、二次根式的加减运算法则、平方差公式分别计算即可得出答案.【详解】A、a3•a2=a5,故A选项错误;B、a﹣2=,故B选项错误;C、3﹣2=,故C选项正确;D、(a+2)(a﹣2)=a2﹣4,故D选项错误,故选C.【点睛】本题考查了同底数幂的乘除运算以及负指数幂的性质以及二次根式的加减运算、平方差公式,正确掌握相关运算法则是解题关键.4.【河北省2018年中考数学试卷】若2n+2n+2n+2n=2,则n=()A.﹣1 B.﹣2 C. 0 D.【答案】A【点睛】本题考查了乘法的意义以及同底数幂的乘法,熟知相关的定义以及运算法则是解题的关键.同底数幂相乘,底数不变,指数相加,即a m•a n=a m+n(m,n是正整数).5.【湖北省孝感市2018年中考数学试题】已知,,则式子的值是()A. 48 B. C. 16 D. 12【答案】D【解析】分析:先通分算加法,再算乘法,最后代入求出即可.详解:(x-y+)(x+y-)===(x+y)(x-y),当x+y=4,x-y=时,原式=4×=12,故选:D.点睛:本题考查了分式的混合运算和求值,能正确根据分式的运算法则进行化简是解此题的关键.6.【湖南省邵阳市2018年中考数学试卷】据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm(1nm=10﹣9m),主流生产线的技术水平为14~28nm,中国大陆集成电路生产技术水平最高为28nm.将28nm用科学记数法可表示为()A.28×10﹣9m B. 2.8×10﹣8m C.28×109m D. 2.8×108m【答案】B【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.【四川省内江市2018年中考数学试卷】已知:﹣=,则的值是()A. B.﹣ C. 3 D.﹣3【答案】C【解析】分析:已知等式左边两项通分并利用同分母分式的减法法则计算,变形后即可得到结果.详解:∵﹣=,∴=,则=3,故选:C.点睛:此题考查了分式的化简求值,化简求值的方法有直接代入法,整体代入法等常用的方法,解题时可根据题目具体条件选择合适的方法,当未知的值没有明确给出时,所选取的未知数的值必须使原式的各分式都有意义,且除数不能为0.8.【四川省内江市2018年中考数学试卷】小时候我们用肥皂水吹泡泡,其泡沫的厚度是约0.000326毫米,用科学记数法表示为()A.毫米 B.毫米 C.厘米 D.厘米【答案】A点睛:此题考查了科学记数法—表示较小的数,绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.9.【河北省2018年中考数学试卷】老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是()A.只有乙 B.甲和丁 C.乙和丙 D.乙和丁【答案】D【解析】【分析】根据分式的乘除运算步骤和运算法则逐一计算即可判断.【详解】∵=====,∴出现错误是在乙和丁,故选D.【点睛】本题考查了分式的乘除法,熟练掌握分式乘除法的运算法则是解题的关键. 10.【四川省达州市2018年中考数学试】题二次根式中的x的取值范围是()A. x<﹣2 B.x≤﹣2 C. x>﹣2 D.x≥﹣2【答案】D点睛:本题考查了二次根式有意义的条件,利用被开方数是非负数得出不等式是解题关键.11.【台湾省2018年中考数学试卷】算式×(﹣1)之值为何?()A. B. C. 2- D. 1【答案】A【解析】分析:根据乘法分配律可以解答本题.详解:×(﹣1)=×﹣1=,故选:A.点睛:本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.12.【山东省聊城市2018年中考数学试卷】下列计算正确的是()A. B.C. D.【答案】B点睛:本题主要考查二次根式的混合运算,解题的关键是掌握二次根式混合运算顺序和运算法则. 13.【湖南省张家界市2018年初中毕业学业考试数学试题】下列运算正确的是()A. B. C. D.=【答案】D【解析】分析:根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;=a (a≥0);完全平方公式:(a±b)2=a2±2ab+b2;幂的乘方法则:底数不变,指数相乘进行计算即可.详解:A、a2和a不是同类项,不能合并,故原选项错误;B、=|a|,故原选项错误;C、(a+1)2=a2+2a+1,故原选项错误;D、(a3)2=a6,故原选项正确.故选:D.点睛:此题主要考查了二次根式的性质、合并同类项、完全平方公式、幂的乘方,关键是掌握各计算法则和计算公式.二、填空题14.【山东省东营市2018年中考数学试题】分解因式:x3﹣4xy2=_____.【答案】x(x+2y)(x﹣2y)【解析】分析:原式提取x,再利用平方差公式分解即可.详解:原式=x(x2-4y2)=x(x+2y)(x-2y),故答案为:x(x+2y)(x-2y)点睛:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.15.【湖南省郴州市2018年中考数学试卷】因式分解:a3﹣2a2b+ab2=_____.【答案】a(a﹣b)2.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.16.【湖南省怀化市2018年中考数学试题】因式分解:ab+ac=_____.【答案】a(b+c)【解析】分析:直接找出公因式进而提取得出答案.详解:ab+ac=a(b+c).故答案为:a(b+c).点睛:此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.17.【河北省2018年中考数学试卷】若a,b互为相反数,则a2﹣b2=_____.【答案】0【解析】【分析】直接利用平方差公式分解因式进而结合相反数的定义分析得出答案.【详解】∵a,b互为相反数,∴a+b=0,∴a2﹣b2=(a+b)(a﹣b)=0,故答案为:0.【点睛】本题考查了公式法分解因式以及相反数的定义,正确分解因式是解题关键.18.【山东省威海市2018年中考数学试题】分解因式:﹣a2+2a﹣2=__.【答案】﹣(a﹣2)2【解析】分析:原式提取公因式,再利用完全平方公式分解即可.详解:原式=﹣(a2﹣4a+4)=﹣(a﹣2)2,故答案为:﹣(a﹣2)2点睛:此题考查了因式分解﹣运用公式法,熟练掌握因式分解的方法是解本题的关键.19.【湖南省湘西州2018年中考数学试卷】要使分式有意义,则x的取值范围为_____.【答案】x≠﹣2【解析】【分析】根据分式有意义的条件可得x+2≠0,解这个不等式即可求出答案.【详解】由题意可知:x+2≠0,∴x≠﹣2,故答案为:x≠﹣2.【点睛】本题考查分式有意义的条件,解题的关键是正确理解分式有意义的条件:分母不为0.20.【湖北省襄阳市2018年中考数学试卷】计算的结果是_____.【答案】【点睛】本题考查了同分母分式的加减法,熟练掌握同分母公式加减法的法则是解题的关键,注意结果要化成最简分式.21.【湖北省武汉市2018年中考数学试卷】计算的结果是_____.【答案】【解析】【分析】根据分式的加减法法则进行计算即可得答案.【详解】原式===,故答案为:.【点睛】本题考查分式的加减运算,熟练掌握分式加减的运算法则是解题的关键,本题属于基础题.22.【山东省滨州市2018年中考数学试题】若分式的值为0,则x的值为______.【答案】-3点睛:本题主要考查分式的值为0的条件,注意分母不为0.23.【新疆自治区2018年中考数学试题】如果代数式有意义,那么实数x的取值范围是_____.【答案】x≥1.【解析】分析:直接利用二次根式的定义分析得出答案.详解:∵代数式有意义,∴x-1≥0,解得,x≥1.∴实数x的取值范围是:x≥1.故答案为:x≥1.点睛:此题主要考查了二次根式的定义,正确把握定义是解题关键.24.【山东省烟台市2018年中考数学试卷】与最简二次根式5是同类二次根式,则a=_____.【答案】2【解析】分析:先将化成最简二次根式,然后根据同类二次根式得到被开方数相同可得出关于a的方程,解出即可.详解:∵与最简二次根式5是同类二次根式,且=2,∴a+1=3,解得:a=2.故答案为2.点睛:本题考查了同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式.25.【黑龙江省哈尔滨市2018年中考数学试题】计算6﹣10的结果是_____.【答案】【解析】分析:首先化简,然后再合并同类二次根式即可.详解:原式=6-10×=6-2=4,故答案为:4.点睛:此题主要考查了二次根式的加减,关键是掌握二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.三、解答题26.【浙江省杭州市临安市2018年中考数学试卷】阅读下列题目的解题过程:已知a、b、c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状.解:∵a2c2﹣b2c2=a4﹣b4(A)∴c2(a2﹣b2)=(a2+b2)(a2﹣b2)(B)∴c2=a2+b2(C)∴△ABC是直角三角形问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号:;(2)错误的原因为:;(3)本题正确的结论为:.【答案】(1)C;(2)没有考虑a=b的情况;(3)△ABC是等腰三角形或直角三角形.(2)错误的原因为:没有考虑a=b的情况,故答案为:没有考虑a=b的情况;(3)本题正确的结论为:△ABC是等腰三角形或直角三角形,故答案为:△ABC是等腰三角形或直角三角形.【点睛】本题考查因式分解的应用、勾股定理的逆定理,解答本题的关键是明确题意,写出相应的结论,注意考虑问题要全面.27.【上海市2018年中考数学试卷】先化简,再求值:(﹣)÷,其中a=.【答案】原式=【点睛】本题考查了分式的化简求值,熟练掌握分式化简求值的步骤是解题的关键.28.【吉林省长春市2018年中考数学试卷】先化简,再求值:,其中x=﹣1.【答案】【解析】【分析】根据分式的加法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【详解】====x+1,当x=﹣1时,原式=﹣1+1=.【点睛】本题考查分式的化简求值,熟练掌握分式化简求值的方法是解答本题的关键.29.【云南省昆明市2018年中考数学试题】先化简,再求值:(+1)÷,其中a=tan60°﹣|﹣1|.【答案】原式=【解析】分析:根据分式的运算法则即可求出答案.详解:当a=tan60°-|-1|时,∴a=-1∴原式===.点睛:本题考查分式的运算法则,解题的关键是熟练运用分式运算法则.30.【黑龙江省哈尔滨市2018年中考数学试题】先化简,再求代数式(1﹣)÷的值,其中a=4cos30°+3tan45°.【答案】点睛:本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.31.【广西钦州市2018年中考数学试卷】计算:|﹣4|+3tan60°﹣﹣()﹣1【答案】+2【解析】【分析】按顺序先进行绝对值的化简、特殊角的三角函数值、二次根式的化简、负指数幂的计算,然后再按运算顺序进行计算即可得出答案.【详解】|﹣4|+3tan60°﹣﹣()﹣1=4+3﹣2﹣2=+2.【点睛】本题考查了实数的混合运算,涉及到特殊角的三角函数值、二次根式的化简、负指数幂的运算等,熟练掌握各运算的运算法则以及实数混合运算的运算法则是解题的关键.32.【江苏省徐州巿2018年中考数学试卷】计算:(﹣1)2008+π0﹣()﹣1+.【答案】1【解析】【分析】按顺序分别进行乘方的运算、0次幂的运算、负指数幂的运算、立方根的运算,然后再按去处顺序进行运算即可.【详解】(﹣1)2008+π0﹣()﹣1+=1+1﹣3+2=1.【点睛】本题考查了实数的混合运算,涉及到0次幂、负指数幂,熟练掌握0次幂的运算法则、负指数幂的运算法则以及实数混合运算的运算法则是解题的关键.33.【湖北省荆门市2018年中考数学试卷】先化简,再求值:(x+2+)÷,其中x=2.【答案】,4-2.【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算顺序和运算法则是解题的关键.34.【四川省达州市2018年中考数学试题】化简代数式:,再从不等式组的解集中取一个合适的整数值代入,求出代数式的值.【答案】0【解析】分析:直接将所给式子进行去括号,利用分式混合运算法则化简,再解不等式组,进而得出x的值,即可计算得出答案.点睛:此题主要考查了分式的化简求值以及不等式组解法,正确掌握分式的混合运算法则是解题关键.35.【湖南省邵阳市2018年中考数学试卷】计算:(﹣1)2+(π﹣3.14)0﹣|﹣2|【答案】【解析】【分析】按顺序先分别进行乘方的计算,零指数幂的运算、绝对值的化简,然后再按运算顺序进行计算即可.【详解】(﹣1)2+(π﹣3.14)0﹣|﹣2|=1+1-(2-)=1+1-2+=.【点睛】本题考查了实数的运算,熟练掌握运算法则是解本题的关键.36.【湖北省随州市2018年中考数学试卷】先化简,再求值:,其中x为整数且满足不等式组.【答案】,.【解析】【分析】括号内先通分进行分式的加减运算,然后再进行分式的乘除法运算,由x为整数且满足不等式组可以求得x的值,然后代入化简后的结果进行计算即可得答案.【详解】===,由得,2<x≤3,∵x是整数,∴x=3,∴原式=.【点睛】本题考查分式的化简求值、解一元一次不等式组、一元一次不等式组的整数解,熟练掌握分式的化简求值的方法是解答本题的关键.37.【山东省烟台市2018年中考数学试卷】先化简,再求值:(1+)÷,其中x满足x2﹣2x ﹣5=0.【答案】5点睛:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.38.【江苏省淮安市2018年中考数学试题】先化简,再求值:(1﹣)÷,其中a=﹣3.【答案】原式==﹣2.【解析】分析:原式利用分式混合运算顺序和运算法则化简,再将a的值代入计算可得.详解:原式===,当a=﹣3时,原式==﹣2.点睛:本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则.39.【贵州省(黔东南,黔南,黔西南)2018年中考数学试题】(1)计算:|﹣2|﹣2cos60°+()﹣1﹣(2018﹣)0(2)先化简(1﹣)•,再在1、2、3中选取一个适当的数代入求值.【答案】(1)6;(2)-2(2)(1﹣)•,===,当x=2时,原式=.点睛:本题考查分式的化简求值、绝对值、特殊角的三角函数值、负整数指数幂、零指数幂,解答本题的关键是明确它们各自的计算方法.40.【湖北省黄石市2018年中考数学试卷】先化简,再求值:.其中x=sin60°.【答案】【解析】分析:先根据分式的混合运算顺序和运算法则化简原式,再根据三角函数值代入计算可得.详解:原式==,当x=sin60°=时,原式==.点睛:本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.41.【江苏省盐城市2018年中考数学试题】先化简,再求值:,其中.【答案】原式=x-1=点睛:本题考查了分式的化简求值:先把分式的分子或分母因式分解,再进行通分或约分,得到最简分式或整式,然后把满足条件的字母的值代入计算得到对应的分式的值.42.【湖北省恩施州2018年中考数学试题】先化简,再求值:,其中x=2﹣1.【答案】【解析】分析:直接分解因式,再利用分式的混合运算法则计算得出答案.详解:==,把x=2-1代入得,原式==.点睛:此题主要考查了分式的化简求值,正确进行分式的混合运算是解题关键.43.【新疆自治区2018年中考数学试题】先化简,再求值:(+1)÷,其中x是方程x2+3x=0的根.【答案】-2点睛:本题考查分式的化简求值、一元二次方程的解,解答本题的关键是明确分式的化简求值的计算方法.44.【山东省聊城市2018年中考数学试卷】先化简,再求值:,其中.【答案】-4【解析】分析: 首先计算括号里面的减法,然后再计算除法,最后再计算减法,化简后,再代入a的值可得答案.详解:原式====-当a=-时,原式=-4.点睛:此题主要考查了分式的化简求值,关键是掌握化简求值,一般是先化简为最简分式或整式,再代入求值.45.【四川省眉山市2018年中考数学试题】先化简,再求值:,其中x满足x2-2x-2=0.【答案】点睛:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.46.【湖南省常德市2018年中考数学试卷】先化简,再求值:,其中.【答案】【解析】【分析】括号内先通分进行分式的加减运算,然后再进行分式的乘除运算,最后把数值代入化简后的结果进行计算即可得.【详解】原式=[+]×(x﹣3)2=×(x﹣3)2=x﹣3,当x=时,原式=﹣3=﹣.【点睛】本题主要考查了分式的化简求值,熟练掌握分式的混合运算法则是解题关键.47.【湖南省常德市2018年中考数学试卷】计算:.【答案】-2.【解析】【分析】按顺序先分别进行零指数幂运算、绝对值化简、二次根式化简、负指数幂的运算,然后再按运算顺序进行计算即可得.【详解】原式=1﹣(2﹣1)+2﹣4,=1﹣2+1+2﹣4,=﹣2.【点睛】本题主要考查了实数的混合运算,解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等的运算.48.【2018年湖南省湘潭市中考数学试卷】先化简,再求值:(1+)÷.其中x=3.【答案】x+2,5点睛:本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.49.【江苏省泰州市2018年中考数学试题】(1)计算:π0+2cos30°﹣|2﹣|﹣()﹣2;(2)化简:(2﹣)÷.【答案】(1)2﹣5;(2)【解析】分析:(1)先计算零指数幂、代入三角函数值,去绝对值符号、计算负整数指数幂,再计算乘法和加减可得;(2)根据分式的混合运算顺序和运算法则计算可得.详解:(1)原式=1+2×﹣(2﹣)﹣4=1+﹣2+-4=2﹣5;(2)原式=,=,=.点睛:本题主要考查分式和实数的混合运算,解题的关键是掌握零指数幂、三角函数值、绝对值性质、负整数指数幂及分式的混合运算顺序和运算法则.50.【山东省菏泽市2018年中考数学试题】先化简,再求值:,其中,.【答案】7点睛:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.。

2018年台湾省中考数学试卷

2018年台湾省中考数学试卷

2018年台湾省中考数学试卷第一部分:选择题(第1~26题)1.(3分)(2018•台湾)下列选项中的图形有一个为轴对称图形,判断此形为何?()A.B.C.D.2.(3分)(2018•台湾)已知a=(﹣)﹣,b=﹣(﹣),c=﹣﹣,判断下列叙述何者正确?()A.a=c,b=c B.a=c,b≠c C.a≠c,b=c D.a≠c,b≠c3.(3分)(2018•台湾)已知坐标平面上,一次函数y=3x+a的图形通过点(0,﹣4),其中a为一数,求a的值为何?()A.﹣12 B.﹣4 C.4 D.124.(3分)(2018•台湾)已知某文具店贩售的笔记本每本售价均相等且超过10元,小锦和小勤在此文具店分别购买若干本笔记本.若小绵购买笔记本的花费为36元,则小勤购买笔记本的花费可能为下列何者?()A.16元B.27元C.30元D.48元5.(3分)(2018•台湾)若二元一次联立方程式的解为x=a,y=b,则a+b之值为何?()A.24 B.0 C.﹣4 D.﹣86.(3分)(2018•台湾)已知甲、乙两袋中各装有若干颗球,其种类与数量如表所示“今阿冯打算从甲袋中抽出一颗球,小潘打算从乙袋中抽出一颗球,若甲袋中每颗球被抽出的机会相等,且乙袋中每颗球被抽出的机会相等,则下列叙述何者正确?()A.阿冯抽出红球的机率比小潘抽出红球的机率大B.阿冯抽出红球的机率比小潘抽出红球的机率小C.阿冯抽出黄球的机率比小潘抽出黄球的机率大D.阿冯抽出黄球的机率比小潘抽出黄球的机率小7.(3分)(2018•台湾)算式×(﹣1)之值为何?()A.B.C.2D.18.(3分)(2018•台湾)若一元二次方程式x2﹣8x﹣3×11=0的两根为a、b,且a>b,则a﹣2b之值为何?()A.﹣25 B.﹣19 C.5 D.179.(3分)(2018•台湾)如图,△ABC中,D为BC的中点,以D为圆心,BD长为半径画一弧交AC于E点,若∠A=60°,∠B=100°,BC=4,则扇形BDE的面积为何?()A.B.C.D.10.(3分)(2018•台湾)如图为大兴电器行的促销活动传单,已知促销第一天美食牌微波炉卖出10台,且其销售额为61000元,若活动期间此款微波炉总共卖出50台,则其总销售额为多少元?()A.305000 B.321000 C.329000 D.34200011.(3分)(2018•台湾)如图,五边形ABCDE中有一正三角形ACD,若AB=DE,BC=AE,∠E=115°,则∠BAE的度数为何?()A.115 B.120 C.125 D.13012.(3分)(2018•台湾)如图为O、A、B、C四点在数线上的位置图,其中O 为原点,且AC=1,OA=OB,若C点所表示的数为x,则B点所表示的数与下列何者相等?()A.﹣(x+1)B.﹣(x﹣1)C.x+1 D.x﹣113.(3分)(2018•台湾)如图的宣传单为菜克印刷公司设计与印刷卡片计价方式的说明,妮娜打算请此印刷公司设计一款母亲节卡片并印刷,她再将卡片以每张15元的价格贩售.若利润等于收入扣掉成本,且成本只考虑设计费与印刷费,则她至少需印多少张卡片,才可使得卡片全数售出后的利润超过成本的2成?()A.112 B.121 C.134 D.14314.(3分)(2018•台湾)如图,I点为△ABC的内心,D点在BC上,且ID⊥BC,若∠B=44°,∠C=56°,则∠AID的度数为何?()A.174 B.176 C.178 D.18015.(3分)(2018•台湾)如图为一直棱柱,其底面是三边长为5、12、13的直角三角形.若下列选项中的图形均由三个矩形与两个直角三角形组合而成,且其中一个为如图的直棱柱的展开图,则根据图形中标示的边长与直角记号判断,此展开图为何?()A. B.C.D.16.(3分)(2018•台湾)若小舒从1~50的整数中挑选4个数,使其由小到大排序后形成一等差数列,且4个数中最小的是7,则下列哪一个数不可能出现在小舒挑选的数之中?()A.20 B.25 C.30 D.3517.(3分)(2018•台湾)已知a=3.1×10﹣4,b=5.2×10﹣8,判断下列关于a﹣b 之值的叙述何者正确?()A.比1大B.介于0、1之间C.介于﹣1、0之间D.比﹣1小18.(3分)(2018•台湾)如图,锐角三角形ABC中,BC>AB>AC,甲、乙两人想找一点P,使得∠BPC与∠A互补,其作法分别如下:(甲)以A为圆心,AC长为半径画弧交AB于P点,则P即为所求;(乙)作过B点且与AB垂直的直线l,作过C点且与AC垂直的直线,交l于P 点,则P即为所求对于甲、乙两人的作法,下列叙述何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误 D.甲错误,乙正确19.(3分)(2018•台湾)已知甲、乙两班的学生人数相同,如图为两班某次数学小考成绩的盒状图,若甲班、乙班学生小考成绩的中位数分别为a、b;甲班、乙班中小考成绩超过80分的学生人数分别为c、d,则下列a、b、c、d的大小关系,何者正确?()A.a>b,c>d B.a>b,c<d C.a<b,c>d D.a<b,c<d20.(3分)(2018•台湾)如图1的矩形ABCD中,有一点E在AD上,今以BE 为折线将A点往右折,如图2所示,再作过A点且与CD垂直的直线,交CD于F点,如图3所示,若AB=6,BC=13,∠BEA=60°,则图3中AF的长度为何?()A.2 B.4 C.2 D.421.(3分)(2018•台湾)已知坐标平面上有一直线L,其方程式为y+2=0,且L 与二次函数y=3x2+a的图形相交于A,B两点;与二次函数y=﹣2x2+b的图形相交于C,D两点,其中a、b为整数.若AB=2,CD=4.则a+b之值为何?()A.1 B.9 C.16 D.2422.(3分)(2018•台湾)如图,两圆外切于P点,且通过P点的公切线为L,过P点作两直线,两直线与两圆的交点为A、B、C、D,其位置如图所示,若AP=10,CP=9,则下列角度关系何者正确?()A.∠PBD>∠PAC B.∠PBD<∠PAC C.∠PBD>∠PDB D.∠PBD<∠PDB 23.(3分)(2018•台湾)小柔要榨果汁,她有苹果、芭乐、柳丁三种水果,且其颗数比为9:7:6,小柔榨完果汁后,苹果、芭乐、柳丁的颗数比变为6:3:4,已知小柔榨果汁时没有使用柳丁,关于她榨果汁时另外两种水果的使用情形,下列叙述何者正确?()A.只使用苹果B.只使用芭乐C.使用苹果及芭乐,且使用的苹果颗数比使用的芭乐颗数多D.使用苹果及芭乐,且使用的芭乐颗数比使用的苹果颗数多24.(3分)(2018•台湾)如图,△ABC、△FGH中,D、E两点分别在AB、AC上,F点在DE上,G、H两点在BC上,且DE∥BC,FG∥AB,FH∥AC,若BG:GH:HC=4:6:5,则△ADE与△FGH的面积比为何?()A.2:1 B.3:2 C.5:2 D.9:425.(3分)(2018•台湾)某商店将巧克力包装成方形、圆形礼盒出售,且每盒方形礼盒的价钱相同,每盒圆形礼盒的价钱相同.阿郁原先想购买3盒方形礼盒和7盒圆形礼盒,但他身上的钱会不足240元,如果改成购买7盒方形礼盒和3盒圆形礼盒,他身上的钱会剩下240元.若阿郁最后购买10盒方形礼盒,则他身上的钱会剩下多少元?()A.360 B.480 C.600 D.72026.(3分)(2018•台湾)如图,坐标平面上,A、B两点分别为圆P与x轴、y 轴的交点,有一直线L通过P点且与AB垂直,C点为L与y轴的交点.若A、B、C的坐标分别为(a,0),(0,4),(0,﹣5),其中a<0,则a的值为何?()A.﹣2B.﹣2C.﹣8 D.﹣7第二部分:非选择题(第1~2题)27.(2018•台湾)一个箱子内有4颗相同的球,将4颗球分别标示号码1、2、3、4,今翔翔以每次从箱子内取一颗球且取后放回的方式抽取,并预计取球10次,现已取了8次,取出的结果如表所列:若每次取球时,任一颗球被取到的机会皆相等,且取出的号码即为得分,请回答下列问题:(1)请求出第1次至第8次得分的平均数.(2)承(1),翔翔打算依计划继续从箱子取球2次,请判断是否可能发生「这10次得分的平均数不小于2.2,且不大于2.4」的情形?若有可能,请计算出发生此情形的机率,并完整写出你的解题过程;若不可能,请完整说明你的理由.28.(2018•台湾)嘉嘉参加机器人设计活动,需操控机器人在5×5的方格棋盘上从A点行走至B点,且每个小方格皆为正方形,主办单位规定了三条行走路径R1,R2,R3,其行经位置如图与表所示:已知A、B、C、D、E、F、G七点皆落在格线的交点上,且两点之间的路径皆为直线,在无法使用任何工具测量的条件下,请判断R1、R2、R3这三条路径中,最长与最短的路径分别为何?请写出你的答案,并完整说明理由.2018年台湾省中考数学试卷参考答案与试题解析第一部分:选择题(第1~26题)1.(3分)(2018•台湾)下列选项中的图形有一个为轴对称图形,判断此形为何?()A.B.C.D.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,对称轴为两宽的中点的连线所在的直线,故本选项正确.故选:D.2.(3分)(2018•台湾)已知a=(﹣)﹣,b=﹣(﹣),c=﹣﹣,判断下列叙述何者正确?()A.a=c,b=c B.a=c,b≠c C.a≠c,b=c D.a≠c,b≠c【解答】解:∵a=(﹣)﹣=﹣﹣,b=﹣(﹣)=﹣+,c=﹣﹣,∴a=c,b≠c.故选:B.3.(3分)(2018•台湾)已知坐标平面上,一次函数y=3x+a的图形通过点(0,﹣4),其中a为一数,求a的值为何?()A.﹣12 B.﹣4 C.4 D.12【解答】解:∵次函数y=3x+a的图形通过点(0,﹣4),∴﹣4=0×3+a,∴a=﹣4,故选:B.4.(3分)(2018•台湾)已知某文具店贩售的笔记本每本售价均相等且超过10元,小锦和小勤在此文具店分别购买若干本笔记本.若小绵购买笔记本的花费为36元,则小勤购买笔记本的花费可能为下列何者?()A.16元B.27元C.30元D.48元【解答】解:∵某文具店贩售的笔记本每本售价均相等且超过10元,小绵购买笔记本的花费为36元,∴笔记本的单价为:36÷3=12(元)或36÷2=18(元)或36元;故小勤购买笔记本的花费为:12或18或36的倍数,只有选项48符合题意.故选:D.5.(3分)(2018•台湾)若二元一次联立方程式的解为x=a,y=b,则a+b之值为何?()A.24 B.0 C.﹣4 D.﹣8【解答】解:,①﹣②×3,得:﹣2x=﹣16,解得:x=8,将x=8代入②,得:24﹣y=8,解得:y=16,即a=8、b=16,则a+b=24,故选:A.6.(3分)(2018•台湾)已知甲、乙两袋中各装有若干颗球,其种类与数量如表所示“今阿冯打算从甲袋中抽出一颗球,小潘打算从乙袋中抽出一颗球,若甲袋中每颗球被抽出的机会相等,且乙袋中每颗球被抽出的机会相等,则下列叙述何者正确?()A.阿冯抽出红球的机率比小潘抽出红球的机率大B.阿冯抽出红球的机率比小潘抽出红球的机率小C.阿冯抽出黄球的机率比小潘抽出黄球的机率大D.阿冯抽出黄球的机率比小潘抽出黄球的机率小【解答】解:∵阿冯抽出红球的机率为、抽出黄球的机率为,小潘抽出红球的机率为=,小潘抽出黄球的机率为=,∴阿冯抽出红球的机率与小潘抽出红球的机率相等,阿冯抽出黄球的机率比小潘抽出黄球的机率大,故选:C.7.(3分)(2018•台湾)算式×(﹣1)之值为何?()A.B.C.2D.1【解答】解:×(﹣1)=,故选:A.8.(3分)(2018•台湾)若一元二次方程式x2﹣8x﹣3×11=0的两根为a、b,且a>b,则a﹣2b之值为何?()A.﹣25 B.﹣19 C.5 D.17【解答】解:(x﹣11)(x+3)=0,x﹣11=0或x+3=0,所以x1=11,x2=﹣3,即a=11,b=﹣3,所以a﹣2b=11﹣2×(﹣3)=11+6=17.故选:D.9.(3分)(2018•台湾)如图,△ABC中,D为BC的中点,以D为圆心,BD长为半径画一弧交AC于E点,若∠A=60°,∠B=100°,BC=4,则扇形BDE的面积为何?()A.B.C.D.【解答】解:∵∠A=60°,∠B=100°,∴∠C=180°﹣60°﹣100°=20°,∵DE=DC,∴∠C=∠DEC=20°,∴∠BDE=∠C+∠DEC=40°,==π.∴S扇形DBE故选:C.10.(3分)(2018•台湾)如图为大兴电器行的促销活动传单,已知促销第一天美食牌微波炉卖出10台,且其销售额为61000元,若活动期间此款微波炉总共卖出50台,则其总销售额为多少元?()A.305000 B.321000 C.329000 D.342000【解答】解:此款微波炉的单价为(61000+10×800)÷10=6900,则卖出50台的总销售额为:61000×2+6900×30=329000,故选:C.11.(3分)(2018•台湾)如图,五边形ABCDE中有一正三角形ACD,若AB=DE,BC=AE,∠E=115°,则∠BAE的度数为何?()A.115 B.120 C.125 D.130【解答】解:∵正三角形ACD,∴AC=AD,∠ACD=∠ADC=∠CAD=60°,∵AB=DE,BC=AE,∴△ABC≌△AED,∴∠B=∠E=115°,∠ACB=∠EAD,∠BAC=∠ADE,∴∠ACB+∠BAC=∠BAC+∠DAE=180°﹣115°=65°,∴∠BAE=∠BAC+∠DAE+∠CAD=65°+60°=125°,故选:C.12.(3分)(2018•台湾)如图为O、A、B、C四点在数线上的位置图,其中O 为原点,且AC=1,OA=OB,若C点所表示的数为x,则B点所表示的数与下列何者相等?()A.﹣(x+1)B.﹣(x﹣1)C.x+1 D.x﹣1【解答】解:∵AC=1,C点所表示的数为x,∴A点表示的数是x﹣1,又∵OA=OB,∴B点和A点表示的数互为相反数,∴B点所表示的数是﹣(x﹣1).故选:B.13.(3分)(2018•台湾)如图的宣传单为菜克印刷公司设计与印刷卡片计价方式的说明,妮娜打算请此印刷公司设计一款母亲节卡片并印刷,她再将卡片以每张15元的价格贩售.若利润等于收入扣掉成本,且成本只考虑设计费与印刷费,则她至少需印多少张卡片,才可使得卡片全数售出后的利润超过成本的2成?()A.112 B.121 C.134 D.143【解答】解:设妮娜需印x张卡片,根据题意得:15x﹣1000﹣5x>0.2(1000+5x),解得:x>133,∵x为整数,∴x≥134.答:妮娜至少需印134张卡片,才可使得卡片全数售出后的利润超过成本的2成.故选:C.14.(3分)(2018•台湾)如图,I点为△ABC的内心,D点在BC上,且ID⊥BC,若∠B=44°,∠C=56°,则∠AID的度数为何?()A.174 B.176 C.178 D.180【解答】解:连接CI,如图所示.在△ABC中,∠B=44°,∠ACB=56°,∴∠BAC=180°﹣∠B﹣∠ACB=80°.∵I点为△ABC的内心,∴∠CAI=∠BAC=40°,∠ACI=∠DCI=∠ACB=28°,∴∠AIC=180°﹣∠CAI﹣∠ACI=112°,又ID⊥BC,∴∠CID=90°﹣∠DCI=62°,∴∠AID=∠AIC+∠CID=112°+62°=174°.故选:A.15.(3分)(2018•台湾)如图为一直棱柱,其底面是三边长为5、12、13的直角三角形.若下列选项中的图形均由三个矩形与两个直角三角形组合而成,且其中一个为如图的直棱柱的展开图,则根据图形中标示的边长与直角记号判断,此展开图为何?()A. B.C.D.【解答】解:A选项中,展开图下方的直角三角形的斜边长为12,不合题意;B选项中,展开图上下两个直角三角形中的直角边不能与其它棱完全重合,不合题意;C选项中,展开图下方的直角三角形中的直角边不能与其它棱完全重合,不合题意;D选项中,展开图能折叠成一个三棱柱,符合题意;故选:D.16.(3分)(2018•台湾)若小舒从1~50的整数中挑选4个数,使其由小到大排序后形成一等差数列,且4个数中最小的是7,则下列哪一个数不可能出现在小舒挑选的数之中?()A.20 B.25 C.30 D.35【解答】解:A、∵7,20、33、46为等差数列,∴20可以出现,选项A不符合题意;B、∵7、16、25、34为等差数列,∴25可以出现,选项B不符合题意;C、∵30﹣7=23,23为质数,30+23>50,∴30不可能出现,选项C符合题意;D、∵7、21、35、49为等差数列,∴35可以出现,选项D不符合题意.故选:C.17.(3分)(2018•台湾)已知a=3.1×10﹣4,b=5.2×10﹣8,判断下列关于a﹣b 之值的叙述何者正确?()A.比1大B.介于0、1之间C.介于﹣1、0之间D.比﹣1小【解答】解:∵a=3.1×10﹣4,b=5.2×10﹣8,∴a=0.00031、b=0.000000052,则a﹣b=0.000309948,故选:B.18.(3分)(2018•台湾)如图,锐角三角形ABC中,BC>AB>AC,甲、乙两人想找一点P,使得∠BPC与∠A互补,其作法分别如下:(甲)以A为圆心,AC长为半径画弧交AB于P点,则P即为所求;(乙)作过B点且与AB垂直的直线l,作过C点且与AC垂直的直线,交l于P 点,则P即为所求对于甲、乙两人的作法,下列叙述何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误 D.甲错误,乙正确【解答】解:甲:如图1,∵AC=AP,∴∠APC=∠ACP,∵∠BPC+∠APC=180°∴∠BPC+∠ACP=180°,∴甲错误;乙:如图2,∵AB⊥PB,AC⊥PC,∴∠ABP=∠ACP=90°,∴∠BPC+∠A=180°,∴乙正确,故选:D.19.(3分)(2018•台湾)已知甲、乙两班的学生人数相同,如图为两班某次数学小考成绩的盒状图,若甲班、乙班学生小考成绩的中位数分别为a、b;甲班、乙班中小考成绩超过80分的学生人数分别为c、d,则下列a、b、c、d的大小关系,何者正确?()A.a>b,c>d B.a>b,c<d C.a<b,c>d D.a<b,c<d【解答】解:根据盒状图得到a>b,c>d.故选:A.20.(3分)(2018•台湾)如图1的矩形ABCD中,有一点E在AD上,今以BE 为折线将A点往右折,如图2所示,再作过A点且与CD垂直的直线,交CD于F点,如图3所示,若AB=6,BC=13,∠BEA=60°,则图3中AF的长度为何?()A.2 B.4 C.2 D.4【解答】解:作AH⊥BC于H.则四边形AFCH是矩形,AF=CH,AH=CF=3.在Rt△AHB中,∠ABH=30°,∴BH=AB•cos30°=9,∴CH=BC﹣BH=13﹣9=4,∴AF=CH=4,故选:B.21.(3分)(2018•台湾)已知坐标平面上有一直线L,其方程式为y+2=0,且L 与二次函数y=3x2+a的图形相交于A,B两点;与二次函数y=﹣2x2+b的图形相交于C,D两点,其中a、b为整数.若AB=2,CD=4.则a+b之值为何?()A.1 B.9 C.16 D.24【解答】解:如图,由题意A(1,﹣2),C(2,﹣2),分别代入y=3x2+a,y=﹣2x2+b可得a=﹣5,b=6,∴a+b=1,故选:A.22.(3分)(2018•台湾)如图,两圆外切于P点,且通过P点的公切线为L,过P点作两直线,两直线与两圆的交点为A、B、C、D,其位置如图所示,若AP=10,CP=9,则下列角度关系何者正确?()A.∠PBD>∠PAC B.∠PBD<∠PAC C.∠PBD>∠PDB D.∠PBD<∠PDB 【解答】解:如图,∵直线l是公切线∴∠1=∠B,∠2=∠A,∵∠1=∠2,∴∠A=∠B,∴AC∥BD,∴∠C=∠D,∵PA=10,PC=9,∴PA>PC,∴∠C>∠A,∴∠D>∠B.故选:D.23.(3分)(2018•台湾)小柔要榨果汁,她有苹果、芭乐、柳丁三种水果,且其颗数比为9:7:6,小柔榨完果汁后,苹果、芭乐、柳丁的颗数比变为6:3:4,已知小柔榨果汁时没有使用柳丁,关于她榨果汁时另外两种水果的使用情形,下列叙述何者正确?()A.只使用苹果B.只使用芭乐C.使用苹果及芭乐,且使用的苹果颗数比使用的芭乐颗数多D.使用苹果及芭乐,且使用的芭乐颗数比使用的苹果颗数多【解答】解:∵苹果、芭乐、柳丁三种水果,且其颗数比为9:7:6,∴设苹果为9x颗,芭乐7x颗,柳丁6x颗(x是正整数),∵小柔榨果汁时没有使用柳丁,∴设小柔榨完果汁后,苹果a颗,芭乐b颗,∵小柔榨完果汁后,苹果、芭乐、柳丁的颗数比变为6:3:4,∴,,∴a=9x,b=x,∴苹果的用量为9x﹣a=9x﹣9x=0,芭乐的用量为7x﹣b=7x﹣x=x>0,∴她榨果汁时,只用了芭乐,故选:B.24.(3分)(2018•台湾)如图,△ABC、△FGH中,D、E两点分别在AB、AC上,F点在DE上,G、H两点在BC上,且DE∥BC,FG∥AB,FH∥AC,若BG:GH:HC=4:6:5,则△ADE与△FGH的面积比为何?()A.2:1 B.3:2 C.5:2 D.9:4【解答】解:∵BG:GH:HC=4:6:5,可以假设BG=4k,GH=6k,HC=5k,∵DE∥BC,FG∥AB,FH∥AC,∴四边形BGFD是平行四边形,四边形EFHC是平行四边形,∴DF=BG=4k,EF=HC=5k,DE=DF+EF=9k,∠FGH=∠B=∠ADE,∠FHG=∠C=∠AED,∴△ADE∽△FGH,∴=()2=()2=.故选:D.25.(3分)(2018•台湾)某商店将巧克力包装成方形、圆形礼盒出售,且每盒方形礼盒的价钱相同,每盒圆形礼盒的价钱相同.阿郁原先想购买3盒方形礼盒和7盒圆形礼盒,但他身上的钱会不足240元,如果改成购买7盒方形礼盒和3盒圆形礼盒,他身上的钱会剩下240元.若阿郁最后购买10盒方形礼盒,则他身上的钱会剩下多少元?()A.360 B.480 C.600 D.720【解答】解:设每盒方形礼盒x元,每盒圆形礼盒y元,则阿郁身上的钱有(3x+7y ﹣240)元或(7x+3y+240)元.由题意,可得3x+7y﹣240=7x+3y+240,化简整理,得y﹣x=120.若阿郁最后购买10盒方形礼盒,则他身上的钱会剩下:(7x+3y+240)﹣10x=3(y﹣x)+240=3×120+240=600(元).故选:C.26.(3分)(2018•台湾)如图,坐标平面上,A、B两点分别为圆P与x轴、y 轴的交点,有一直线L通过P点且与AB垂直,C点为L与y轴的交点.若A、B、C的坐标分别为(a,0),(0,4),(0,﹣5),其中a<0,则a的值为何?()A.﹣2B.﹣2C.﹣8 D.﹣7【解答】解:连接AC,由题意得,BC=OB+OC=9,∵直线L通过P点且与AB垂直,∴直线L是线段AB的垂直平分线,∴AC=BC=9,在Rt△AOC中,AO==2,∵a<0,∴a=﹣2,故选:A.第二部分:非选择题(第1~2题)27.(2018•台湾)一个箱子内有4颗相同的球,将4颗球分别标示号码1、2、3、4,今翔翔以每次从箱子内取一颗球且取后放回的方式抽取,并预计取球10次,现已取了8次,取出的结果如表所列:若每次取球时,任一颗球被取到的机会皆相等,且取出的号码即为得分,请回答下列问题:(1)请求出第1次至第8次得分的平均数.(2)承(1),翔翔打算依计划继续从箱子取球2次,请判断是否可能发生「这10次得分的平均数不小于2.2,且不大于2.4」的情形?若有可能,请计算出发生此情形的机率,并完整写出你的解题过程;若不可能,请完整说明你的理由.【解答】解:(1)第1次至第8次得分的平均数=2.5;(2)∵这10次得分的平均数不小于2.2,且不大于2.4,∴这10次得分之和不小于22、不大于24,而前8次的得分之和为20,∴后两次的得分不小于2、不大于4,解:列表得:∴一共有16种情况,其中得分之和不小于2、不大于4的有6种结果,则后两次的得分不小于2、不大于4的概率为=.28.(2018•台湾)嘉嘉参加机器人设计活动,需操控机器人在5×5的方格棋盘上从A点行走至B点,且每个小方格皆为正方形,主办单位规定了三条行走路径R1,R2,R3,其行经位置如图与表所示:已知A、B、C、D、E、F、G七点皆落在格线的交点上,且两点之间的路径皆为直线,在无法使用任何工具测量的条件下,请判断R1、R2、R3这三条路径中,最长与最短的路径分别为何?请写出你的答案,并完整说明理由.【解答】解:第一条路径的长度为++=2+,第二条路径的长度为++1+=+++1,第三条路径的长度为+=2+,∵2+<2+<+++1,∴最长路径为A→E→D→F→B;最短路径为A→G→B.。

台湾省2018年中考数学真题试题(pdf,无答案)

台湾省2018年中考数学真题试题(pdf,无答案)

請考生依指示填寫准考證末兩碼107年國中教育會考數學科試題本請不要翻到次頁!讀完本頁的說明,聽從監試委員的指示才開始作答!※請先確認你的答案卷、准考證與座位號碼是否一致無誤。

請閱讀以下測驗作答說明:請聽到鐘(鈴)響起,於試題本右上角方格內填寫准考證末兩碼,再翻頁作答第一部分:選擇題(第1 ~ 26 題)1.下列選項中的圖形有一個為線對稱圖形,判斷此圖形為何?(A) (B) (C) (D)2. 已知a=(314− 215)−116,b=314− (215−116),c=314− 215−116,判斷下列敘述何者正確?(A)a=c,b=c(B)a=c,b≠c(C)a≠c,b=c(D)a≠c,b≠c3. 已知坐標平面上,一次函數y= 3x+a的圖形通過點(0 , −4),其中a為一數,求a的值為何?(A)−12(B)−4(C) 4(D) 124. 已知某文具店販售的筆記本每本售價均相等且超過 10 元,小錦和小勳在此文具店分別購買若干本筆記本。

若小錦購買筆記本的花費為 36 元,則小勳購買筆記本的花費可能為下列何者?(A) 16 元(B) 27 元(C) 30 元(D) 48 元1請翻頁繼續作答5. 若二元一次聯立方程式{7x− 3y= 83x−y= 8的解為x=a,y=b,則a+b之值為何?(A) 24(B) 0(C)−4(D)−86. 已知甲、乙兩袋中各裝有若干顆球,其種類與數量如表(一)所示。

今阿馮打算從甲袋中抽出一顆球,小潘打算從乙袋中抽出一顆球,若甲袋中每顆球被抽出的機會相等,且乙袋中每顆球被抽出的機會相等,則下列敘述何者正確?(A)阿馮抽出紅球的機率比小潘抽出紅球的機率大(B)阿馮抽出紅球的機率比小潘抽出紅球的機率小(C)阿馮抽出黃球的機率比小潘抽出黃球的機率大(D)阿馮抽出黃球的機率比小潘抽出黃球的機率小7. 算式×(− 1 )之值為何?(A)−(B)− 1(C) 2(D) 18. 若一元二次方程式x2 − 8x− 3×11 = 0 的兩根為a、b,且a > b,則a− 2b之值為何?(A) −25(B) −19(C) 5(D) 17表(一)2請翻頁繼續作答39. 如圖(一) , △ABC 中, D 為 BC 的中點,以 D 為圓心, BD 長為半徑畫一弧交 AC 於 E 點。

2018年台湾省中考数学试卷

2018年台湾省中考数学试卷

2018年台湾省中考数学试卷第一部分:选择题(第1~26题)1. 下列选项中的图形有一个为轴对称图形,判断此形为何?( )A.B.C.D.2. 已知a =(314−215)−116,b =314−(215−116),c =314−215−116,判断下列叙述何者正确?( )A.a =c ,b =cB.a =c ,b ≠cC.a ≠c ,b =cD.a ≠c ,b ≠c3. 已知坐标平面上,一次函数y =3x +a 的图形通过点(0, −4),其中a 为一数,求a 的值为何?( )A.−12B.−4C.4D.124. 已知某文具店贩售的笔记本每本售价均相等且超过10元,小锦和小勤在此文具店分别购买若干本笔记本.若小绵购买笔记本的花费为36元,则小勤购买笔记本的花费可能为下列何者?( )A.16元B.27元C.30元D.48元5. 若二元一次联立方程式{7x −3y =83x −y =8的解为x =a ,y =b ,则a +b 之值为何?( ) A.24 B.0 C.−4 D.−86. 已知甲、乙两袋中各装有若干颗球,其种类与数量如表所示“今阿冯打算从甲袋中抽出一颗球,小潘打算从乙袋中抽出一颗球,若甲袋中每颗球被抽出的机会相等,且乙袋中每颗球被抽出的机会相等,则下列叙述何者正确?( )B.阿冯抽出红球的机率比小潘抽出红球的机率小C.阿冯抽出黄球的机率比小潘抽出黄球的机率大D.阿冯抽出黄球的机率比小潘抽出黄球的机率小7. 算式√6×(√31)之值为何?( )A.√2−√6B.√2−1C.2−√6D.18. 若一元二次方程式x2−8x−3×11=0的两根为a、b,且a>b,则a−2b之值为何?()A.−25B.−19C.5D.179. 如图,△ABC中,D为BC的中点,以D为圆心,BD长为半径画一弧交AC于E点,若∠A=60∘,∠B=100∘,BC=4,则扇形BDE的面积为何?()A.1 3πB.23π C.49π D.59π10. 如图为大兴电器行的促销活动传单,已知促销第一天美食牌微波炉卖出10台,且其销售额为61000元,若活动期间此款微波炉总共卖出50台,则其总销售额为多少元?()A.305000B.321000C.329000D.34200011. 如图,五边形ABCDE中有一等边三角形ACD,若AB=DE,BC=AE,∠E=115∘,则∠BAE的度数为()A.115∘B.120∘C.125∘D.130∘12. 如图为O、A、B、C四点在数线上的位置图,其中O为原点,且AC=1,OA=OB,若C点所表示的数为x,则B点所表示的数与下列何者相等?()A.−(x+1)B.−(x−1)C.x+1D.x−113. 如图的宣传单为菜克印刷公司设计与印刷卡片计价方式的说明,妮娜打算请此印刷公司设计一款母亲节卡片并印刷,她再将卡片以每张15元的价格贩售.若利润等于收入扣掉成本,且成本只考虑设计费与印刷费,则她至少需印多少张卡片,才可使得卡片全数售出后的利润超过成本的2成?()A.112B.121C.134D.14314. 如图,I点为△ABC的内心,D点在BC上,且ID⊥BC,若∠B=44∘,∠C=56∘,则∠AID的度数为何?()A.174B.176C.178D.18015. 如图为一直棱柱,其底面是三边长为5、12、13的直角三角形.若下列选项中的图形均由三个矩形与两个直角三角形组合而成,且其中一个为如图的直棱柱的展开图,则根据图形中标示的边长与直角记号判断,此展开图为何?()A.B.C.D.16. 若小舒从1∼50的整数中挑选4个数,使其由小到大排序后形成一等差数列,且4个数中最小的是7,则下列哪一个数不可能出现在小舒挑选的数之中?()A.20B.25C.30D.3517. 已知a=3.1×10−4,b=5.2×10−8,判断下列关于a−b之值的叙述何者正确?()A.比1大B.介于0、1之间C.介于−1、0之间D.比−1小18. 如图,锐角三角形ABC中,BC>AB>AC,甲、乙两人想找一点P,使得∠BPC与∠A互补,其作法分别如下:(甲)以A为圆心,AC长为半径画弧交AB于P点,则P即为所求;(乙)作过B点且与AB垂直的直线l,作过C点且与AC垂直的直线,交l于P点,则P即为所求对于甲、乙两人的作法,下列叙述何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确19. 已知甲、乙两班的学生人数相同,如图为两班某次数学小考成绩的盒状图,若甲班、乙班学生小考成绩的中位数分别为a、b;甲班、乙班中小考成绩超过80分的学生人数分别为c、d,则下列a、b、c、d的大小关系,何者正确?()A.a>b,c>dB.a>b,c<dC.a<b,c>dD.a<b,c<d20. 如图1的矩形ABCD中,有一点E在AD上,今以BE为折线将A点往右折,如图2所示,再作过A点且与CD垂直的直线,交CD于F点,如图3所示,若AB=6√3,BC=13,∠BEA=60∘,则图3中AF的长度为何?()A.2B.4C.2√3D.4√321. 已知坐标平面上有一直线L,其方程式为y+2=0,且L与二次函数y=3x2+a的图形相交于A,B两点;与二次函数y=−2x2+b的图形相交于C,D两点,其中a、b为整数.若AB=2,CD=4.则a+b之值为何?()A.1B.9C.16D.2422. 如图,两圆外切于P点,且通过P点的公切线为L,过P点作两直线,两直线与两圆的交点为A、B、C、D,其位置如图所示,若AP=10,CP=9,则下列角度关系何者正确?()A.∠PBD>∠PACB.∠PBD<∠PACC.∠PBD>∠PDBD.∠PBD<∠PDB23. 小柔要榨果汁,她有苹果、芭乐、柳丁三种水果,且其颗数比为9:7:6,小柔榨完果汁后,苹果、芭乐、柳丁的颗数比变为6:3:4,已知小柔榨果汁时没有使用柳丁,关于她榨果汁时另外两种水果的使用情形,下列叙述何者正确?()A.只使用苹果B.只使用芭乐C.使用苹果及芭乐,且使用的苹果颗数比使用的芭乐颗数多D.使用苹果及芭乐,且使用的芭乐颗数比使用的苹果颗数多24. 如图,△ABC,△FGH中,D,E两点分别在AB,AC上,F点在DE上,G,H两点在BC上,且DE // BC,FG // AB,FH // AC,若BG:GH:HC=4:6:5,则△ADE与△FGH的面积比为何?()A.2:1B.3:2C.5:2D.9:425. 某商店将巧克力包装成方形、圆形礼盒出售,且每盒方形礼盒的价钱相同,每盒圆形礼盒的价钱相同.小明原先想购买3盒方形礼盒和7盒圆形礼盒,但他身上的钱还缺少120元,如果改成购买7盒方形礼盒和3盒圆形礼盒,他身上的钱会多出120元.若小明最后购买10盒方形礼盒,则他身上的钱会剩下多少元?()A.180B.240C.300D.36026. 如图,坐标平面上,A、B两点分别为圆P与x轴、y轴的交点,有一直线L通过P点且与AB垂直,C点为L与y轴的交点.若A、B、C的坐标分别为(a, 0),(0, 4),(0, −5),其中a<0,则a的值为何?()A.−2√14B.−2√5C.−8D.−7第二部分:非选择题(第1~2题)一个箱子内有4颗相同的球,将4颗球分别标示号码1、2、3、4,今翔翔以每次从箱子内取一颗球且取后放回的方式抽取,并预计取球10次,现已取了8次,取出的结果如表所列:若每次取球时,任一颗球被取到的机会皆相等,且取出的号码即为得分,请回答下列问题:(1)请求出第1次至第8次得分的平均数.(2)承(1),翔翔打算依计划继续从箱子取球2次,请判断是否可能发生「这10次得分的平均数不小于2.2,且不大于2.4」的情形?若有可能,请计算出发生此情形的机率,并完整写出你的解题过程;若不可能,请完整说明你的理由.嘉嘉参加机器人设计活动,需操控机器人在5×5的方格棋盘上从A点行走至B点,且每个小方格皆为正方形,主办单位规定了三条行走路径R1,R2,R3,其行经位置如图与表所示:已知、、、、、、七点皆落在格线的交点上,且两点之间的路径皆为直线,在无法使用任何工具测量的条件下,请判断R1、R2、R3这三条路径中,最长与最短的路径分别为何?请写出你的答案,并完整说明理由.参考答案与试题解析2018年台湾省中考数学试卷第一部分:选择题(第1~26题)1.【答案】D【考点】轴对称图形【解析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形.这条直线叫做对称轴.【解答】A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,对称轴为两宽的中点的连线所在的直线,故本选项正确.2.【答案】B【考点】有理数的减法【解析】根据有理数的减法的运算方法,判断出a、c,b、c的关系即可.【解答】∵a=(314−215)−116=314−215−116,b=314−(215−116)=314−215+116,c=314−215−116,∴a=c,b≠c.3.【答案】B【考点】一次函数图象上点的坐标特点【解析】利用待定系数法即可解决问题.【解答】∵次函数y=3x+a的图形通过点(0, −4),∴−4=0×3+a,∴a=−4,4.【答案】D【考点】质因数分解【解析】直接利用小绵购买笔记本的花费为36元,得出笔记本的单价,进而得出小勤购买笔记【解答】∵ 某文具店贩售的笔记本每本售价均相等且超过10元,小绵购买笔记本的花费为36元,∴ 笔记本的单价为:36÷3=12(元)或36÷2=18(元)或36元;故小勤购买笔记本的花费为:12或18或36的倍数,只有选项48符合题意.5.【答案】A【考点】二元一次方程组的解【解析】利用加减法解二元一次方程组,求得a 、b 的值,再代入计算可得答案.【解答】{7x −3y =83x −y =8,①-②×3,得:−2x =−16,解得:x =8,将x =8代入②,得:24−y =8,解得:y =16,即a =8、b =16,则a +b =24,6.【答案】C【考点】概率公式【解析】根据概率公式分别计算出两人抽出红球、黄球的概率,比较大小即可得.【解答】∵ 阿冯抽出红球的机率为25、抽出黄球的机率为25,小潘抽出红球的机率为410=25,小潘抽出黄球的机率为210=110,∴ 阿冯抽出红球的机率与小潘抽出红球的机率相等,阿冯抽出黄球的机率比小潘抽出黄球的机率大,7.【答案】A【考点】二次根式的混合运算【解析】根据乘法分配律可以解答本题.【解答】 √6×(√3−1)8.【答案】D【考点】解一元二次方程-因式分解法【解析】先利用因式分解法解方程得到a=11,b=−3,然后计算代数式a−2b的值.【解答】(x−11)(x+3)=0,x−11=0或x+3=0,所以x1=11,x2=−3,即a=11,b=−3,所以a−2b=11−2×(−3)=11+6=17.9.【答案】C【考点】三角形内角和定理扇形面积的计算【解析】求出扇形的圆心角以及半径即可解决问题;【解答】∵∠A=60∘,∠B=100∘,∴∠C=180∘−60∘−100∘=20∘,∵DE=DC,∴∠C=∠DEC=20∘,∴∠BDE=∠C+∠DEC=40∘,∴S扇形DBE =40∗π∗22360=49π.10.【答案】C【考点】有理数的混合运算【解析】根据题意求出此款微波炉的单价,列式计算即可.【解答】此款微波炉的单价为(61000+10×800)÷10=6900,则卖出50台的总销售额为:61000×2+6900×30=329000,11.【答案】C【考点】全等三角形的性质与判定等边三角形的性质【解析】此题暂无解析【解答】此题暂无解答12.【答案】B【考点】在数轴上表示实数【解析】首先根据AC=1,C点所表示的数为x,求出A表示的数是多少,然后根据OA=OB,求出B点所表示的数是多少即可.【解答】∵AC=1,C点所表示的数为x,∴A点表示的数是x−1,又∵OA=OB,∴B点和A点表示的数互为相反数,∴B点所表示的数是−(x−1).13.【答案】C【考点】一元一次不等式的运用【解析】设妮娜需印x张卡片,根据利润=收入-成本结合利润超过成本的2成,即可得出关于x 的一元一次不等式,解之即可得出x的取值范围,取其内最小的整数即可得出结论.【解答】设妮娜需印x张卡片,根据题意得:15x−1000−5x>0.2(1000+5x),,解得:x>13313∵x为整数,∴x≥134.答:妮娜至少需印134张卡片,才可使得卡片全数售出后的利润超过成本的2成.故选:C.14.【答案】A【考点】三角形的内切圆与内心【解析】连接CI,利用三角形内角和定理可求出∠BAC的度数,由I点为△ABC的内心,可得出∠CAI、∠ACI、∠DCI的度数,利用三角形内角和定理可得出∠AIC、∠CID的度数,再由∠AID=∠AIC+∠CID即可求出∠AID的度数.【解答】连接CI,如图所示.在△ABC中,∠B=44∘,∠ACB=56∘,∴∠BAC=180∘−∠B−∠ACB=80∘.∵I点为△ABC的内心,∴∠CAI=12∠BAC=40∘,∠ACI=∠DCI=12∠ACB=28∘,∴∠AIC=180∘−∠CAI−∠ACI=112∘,又ID⊥BC,∴∠CID=90∘−∠DCI=62∘,∴∠AID=∠AIC+∠CID=112∘+62∘=174∘.15.【答案】D【考点】几何体的展开图【解析】三棱柱的侧面展开图是长方形,底面是三角形,据此进行判断即可.【解答】A选项中,展开图下方的直角三角形的斜边长为12,不合题意;B选项中,展开图上下两个直角三角形中的直角边不能与其它棱完全重合,不合题意;C选项中,展开图下方的直角三角形中的直角边不能与其它棱完全重合,不合题意;D选项中,展开图能折叠成一个三棱柱,符合题意;16.【答案】C【考点】规律型:图形的变化类规律型:点的坐标规律型:数字的变化类【解析】A、找出7,20、33、46为等差数列,进而可得出20可以出现,选项A不符合题意;B、找出7、16、25、34为等差数列,进而可得出25可以出现,选项B不符合题意;C、由30−7=23,23为质数,30+23>50,进而可得出30不可能出现,选项C符合题意;D、找出7、21、35、49为等差数列,进而可得出35可以出现,选项D不符合题意.【解答】A、∵7,20、33、46为等差数列,∴20可以出现,选项A不符合题意;B、∵7、16、25、34为等差数列,∴25可以出现,选项B不符合题意;C、∵30−7=23,23为质数,30+23>50,∴30不可能出现,选项C符合题意;D、∵7、21、35、49为等差数列,∴35可以出现,选项D不符合题意.17.【答案】B【考点】科学记数法–表示较小的数【解析】由科学计数法还原a、b两数,相减计算结果可得答案.【解答】∵a=3.1×10−4,b=5.2×10−8,∴a=0.00031、b=0.000000052,则a−b=0.000309948,18.【答案】D【考点】作图—复杂作图【解析】甲:根据作图可得AC=AP,利用等边对等角得:∠APC=∠ACP,由平角的定义可知:∠BPC+∠APC=180∘,根据等量代换可作判断;乙:根据四边形的内角和可得:∠BPC+∠A=180∘.【解答】甲:如图1,∵AC=AP,∴∠APC=∠ACP,∵∠BPC+∠APC=180∘∴∠BPC+∠ACP=180∘,∴甲错误;乙:如图2,∵AB⊥PB,AC⊥PC,∴∠ABP=∠ACP=90∘,∴∠BPC+∠A=180∘,∴乙正确,19.【答案】A【考点】中位数【解析】根据中位数的定义和成绩分布进行判断.【解答】根据盒状图得到a>b,c>d.20.【答案】B【考点】矩形的性质翻折变换(折叠问题)【解析】作AH⊥BC于H.则四边形AFCH是矩形,AF=CH,AH=CF=3√3.在Rt△ABH中,解直角三角形即可解决问题;【解答】作AH⊥BC于H.则四边形AFCH是矩形,AF=CH,AH=CF=3√3.在Rt△AHB中,∠ABH=30∘,∴BH=AB⋅cos30∘=9,∴CH=BC−BH=13−9=4,∴AF=CH=4,21.【答案】A【考点】二次函数图象上点的坐标特征【解析】判断出A、C两点坐标,利用待定系数法求出a、b即可;【解答】如图,由题意A(1, −2),C(2, −2),分别代入y=3x2+a,y=−2x2+b可得a=−5,b=6,∴a+b=1,22.【答案】D【考点】直线与圆的位置关系圆与圆的位置关系相切两圆的性质【解析】根据大边对大角,平行线的判定和性质即可判断;【解答】如图,∵直线l是公切线∴∠1=∠B,∠2=∠A,∵∠1=∠2,∴∠A=∠B,∴AC // BD,∴∠C=∠D,∵PA=10,PC=9,∴ PA >PC ,∴ ∠C >∠A ,∴ ∠D >∠B .23.【答案】B【考点】推理与论证【解析】根据三种水果的颗数的关系,设出三种水果的颗数,再根据榨果汁后的颗数的关系,求出榨果汁后,苹果和芭乐的颗数,进而求出苹果,芭乐的用量,即可得出结论.【解答】∵ 苹果、芭乐、柳丁三种水果,且其颗数比为9:7:6,∴ 设苹果为9x 颗,芭乐7x 颗,柳丁6x 颗(x 是正整数),∵ 小柔榨果汁时没有使用柳丁,∴ 设小柔榨完果汁后,苹果a 颗,芭乐b 颗,∵ 小柔榨完果汁后,苹果、芭乐、柳丁的颗数比变为6:3:4,∴ a 6x =64,b 6x =34,∴ a =9x ,b =92x ,∴ 苹果的用量为9x −a =9x −9x =0,芭乐的用量为7x −b =7x −92x =52x >0,∴ 她榨果汁时,只用了芭乐,24.【答案】D【考点】相似三角形的性质与判定【解析】只要证明△ADE ∽△FGH ,可得S △ADES △FGH =(DE GH )2,由此即可解决问题; 【解答】解:∵ BG:GH:HC =4:6:5,可以假设BG =4k ,GH =6k ,HC =5k ,∵ DE // BC ,FG // AB ,FH // AC ,∴ 四边形BGFD 是平行四边形,四边形EFHC 是平行四边形,∴ DF =BG =4k ,EF =HC =5k ,DE =DF +EF =9k ,∠FGH =∠B =∠ADE ,∠FHG =∠C =∠AED ,∴△ADE∼△FGH,∴S△ADES△FGH =(DEGH)2=(9k6k)2=94.故选D.25.【答案】C【考点】二元一次方程的应用【解析】设每盒方形礼盒x元,每盒圆形礼盒y元,根据阿郁身上的钱数不变得出方程3x+7y−240=7x+3y+240,化简整理得y−x=120.那么阿郁最后购买10盒方形礼盒后他身上的钱会剩下(7x+3y+240)−10x,化简得3(y−x)+240,将y−x=120计算即可.【解答】解:设每盒方形礼盒x元,每盒圆形礼盒y元,则小明身上的钱有(3x+7y−120)元或(7x+3y+120)元.由题意,可得3x+7y−120=7x+3y+120,化简整理,得y−x=60.若小明最后购买10盒方形礼盒,则他身上的钱会剩下:(7x+3y+120)−10x=3(y−x)+120=3×60+120=300(元).故选C.26.【答案】A【考点】垂径定理坐标与图形性质勾股定理【解析】连接AC,根据线段垂直平分线的性质得到AC=BC,根据勾股定理求出OA,得到答案.【解答】连接AC,由题意得,BC=OB+OC=9,∵直线L通过P点且与AB垂直,∴直线L是线段AB的垂直平分线,∴AC=BC=9,在Rt△AOC中,AO=√AC2−OC2=2√14,∵a<0,∴a=−2√14,第二部分:非选择题(第1~2题)【答案】第1次至第8次得分的平均数1+3+4+4+2+1+4+18=2.5;∵这10次得分的平均数不小于2.2,且不大于2.4,∴这10次得分之和不小于22、不大于24,而前8次的得分之和为20,∴后两次的得分不小于2、不大于4,列表得:∴一共有16种情况,其中得分之和不小于2、不大于4的有6种结果,则后两次的得分不小于2、不大于4的概率为616=38.【考点】算术平均数列表法与树状图法【解析】(1)根据算术平均数的定义列式计算可得;(2)先根据这10次得分的平均数不小于2.2,且不大于2.4得出后两次得分的范围,再列表得出所有等可能结果,从中找打符合条件的结果数,利用概率公式计算可得.【解答】第1次至第8次得分的平均数1+3+4+4+2+1+4+18=2.5;∵这10次得分的平均数不小于2.2,且不大于2.4,∴这10次得分之和不小于22、不大于24,而前8次的得分之和为20,∴后两次的得分不小于2、不大于4,列表得:∴一共有16种情况,其中得分之和不小于2、不大于4的有6种结果,则后两次的得分不小于2、不大于4的概率为616=38.【答案】第一条路径的长度为√12+32+√12+12+√12+32=2√10+√2,第二条路径的长度为√12+12+√12+32+1+√12+22=√2+√10+√5+1,第三条路径的长度为√42+22+√12+32=2√5+√10,∵2√5+√10<2√10+√2<√2+√10+√5+1,∴最长路径为A→E→D→F→B;最短路径为A→G→B.【考点】勾股定理的应用线段的性质:两点之间线段最短【解析】利用勾股定理分别计算出三条路径的长,比较大小即可得.【解答】第一条路径的长度为√12+32+√12+12+√12+32=2√10+√2,第二条路径的长度为√12+12+√12+32+1+√12+22=√2+√10+√5+1,第三条路径的长度为√42+22+√12+32=2√5+√10,∵2√5+√10<2√10+√2<√2+√10+√5+1,∴最长路径为A→E→D→F→B;最短路径为A→G→B.。

2018年台湾省中考数学试卷

2018年台湾省中考数学试卷

2018年台湾省中考数学试卷第一部分:选择题(第1~26题)1.(3分)下列选项中的图形有一个为轴对称图形,判断此形为何?()A.B.C.D.2.(3分)已知a=(﹣)﹣,b=﹣(﹣),c=﹣﹣,判断下列叙述何者正确?()A.a=c,b=c B.a=c,b≠c C.a≠c,b=c D.a≠c,b≠c3.(3分)已知坐标平面上,一次函数y=3x+a的图形通过点(0,﹣4),其中a 为一数,求a的值为何?()A.﹣12 B.﹣4 C.4 D.124.(3分)已知某文具店贩售的笔记本每本售价均相等且超过10元,小锦和小勤在此文具店分别购买若干本笔记本.若小绵购买笔记本的花费为36元,则小勤购买笔记本的花费可能为下列何者?()A.16元B.27元C.30元D.48元5.(3分)若二元一次联立方程式的解为x=a,y=b,则a+b之值为何?()A.24 B.0 C.﹣4 D.﹣86.(3分)已知甲、乙两袋中各装有若干颗球,其种类与数量如表所示“今阿冯打算从甲袋中抽出一颗球,小潘打算从乙袋中抽出一颗球,若甲袋中每颗球被抽出的机会相等,且乙袋中每颗球被抽出的机会相等,则下列叙述何者正确?()A.阿冯抽出红球的机率比小潘抽出红球的机率大B.阿冯抽出红球的机率比小潘抽出红球的机率小C.阿冯抽出黄球的机率比小潘抽出黄球的机率大D.阿冯抽出黄球的机率比小潘抽出黄球的机率小7.(3分)算式×(﹣1)之值为何?()A.B.C.2D.18.(3分)若一元二次方程式x2﹣8x﹣3×11=0的两根为a、b,且a>b,则a﹣2b之值为何?()A.﹣25 B.﹣19 C.5 D.179.(3分)如图,△ABC中,D为BC的中点,以D为圆心,BD长为半径画一弧交AC于E点,若∠A=60°,∠B=100°,BC=4,则扇形BDE的面积为何?()A.B.C.D.10.(3分)如图为大兴电器行的促销活动传单,已知促销第一天美食牌微波炉卖出10台,且其销售额为61000元,若活动期间此款微波炉总共卖出50台,则其总销售额为多少元?()A.305000 B.321000 C.329000 D.34200011.(3分)如图,五边形ABCDE中有一正三角形ACD,若AB=DE,BC=AE,∠E=115°,则∠BAE的度数为何?()A.115 B.120 C.125 D.13012.(3分)如图为O、A、B、C四点在数线上的位置图,其中O为原点,且AC=1,OA=OB,若C点所表示的数为x,则B点所表示的数与下列何者相等?()A.﹣(x+1)B.﹣(x﹣1)C.x+1 D.x﹣113.(3分)如图的宣传单为菜克印刷公司设计与印刷卡片计价方式的说明,妮娜打算请此印刷公司设计一款母亲节卡片并印刷,她再将卡片以每张15元的价格贩售.若利润等于收入扣掉成本,且成本只考虑设计费与印刷费,则她至少需印多少张卡片,才可使得卡片全数售出后的利润超过成本的2成?()A.112 B.121 C.134 D.14314.(3分)如图,I点为△ABC的内心,D点在BC上,且ID⊥BC,若∠B=44°,∠C=56°,则∠AID的度数为何?()A.174 B.176 C.178 D.18015.(3分)如图为一直棱柱,其底面是三边长为5、12、13的直角三角形.若下列选项中的图形均由三个矩形与两个直角三角形组合而成,且其中一个为如图的直棱柱的展开图,则根据图形中标示的边长与直角记号判断,此展开图为何?()A. B.C.D.16.(3分)若小舒从1~50的整数中挑选4个数,使其由小到大排序后形成一等差数列,且4个数中最小的是7,则下列哪一个数不可能出现在小舒挑选的数之中?()A.20 B.25 C.30 D.3517.(3分)已知a=3.1×10﹣4,b=5.2×10﹣8,判断下列关于a﹣b之值的叙述何者正确?()A.比1大B.介于0、1之间C.介于﹣1、0之间D.比﹣1小18.(3分)如图,锐角三角形ABC中,BC>AB>AC,甲、乙两人想找一点P,使得∠BPC与∠A互补,其作法分别如下:(甲)以A为圆心,AC长为半径画弧交AB于P点,则P即为所求;(乙)作过B点且与AB垂直的直线l,作过C点且与AC垂直的直线,交l于P 点,则P即为所求对于甲、乙两人的作法,下列叙述何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误 D.甲错误,乙正确19.(3分)已知甲、乙两班的学生人数相同,如图为两班某次数学小考成绩的盒状图,若甲班、乙班学生小考成绩的中位数分别为a、b;甲班、乙班中小考成绩超过80分的学生人数分别为c、d,则下列a、b、c、d的大小关系,何者正确?()A.a>b,c>d B.a>b,c<d C.a<b,c>d D.a<b,c<d20.(3分)如图1的矩形ABCD中,有一点E在AD上,今以BE为折线将A点往右折,如图2所示,再作过A点且与CD垂直的直线,交CD于F点,如图3所示,若AB=6,BC=13,∠BEA=60°,则图3中AF的长度为何?()A.2 B.4 C.2 D.421.(3分)已知坐标平面上有一直线L,其方程式为y+2=0,且L与二次函数y=3x2+a 的图形相交于A,B两点:与二次函数y=﹣2x2+b的图形相交于C,D两点,其中a、b为整数.若AB=2,CD=4.则a+b之值为何?()A.1 B.9 C.16 D.2422.(3分)如图,两圆外切于P点,且通过P点的公切线为L,过P点作两直线,两直线与两圆的交点为A、B、C、D,其位置如图所示,若AP=10,CP=9,则下列角度关系何者正确?()A.∠PBD>∠PAC B.∠PBD<∠PAC C.∠PBD>∠PDB D.∠PBD<∠PDB 23.(3分)小柔要榨果汁,她有苹果、芭乐、柳丁三种水果,且其颗数比为9:7:6,小柔榨完果汁后,苹果、芭乐、柳丁的颗数比变为6:3:4,已知小柔榨果汁时没有使用柳丁,关于她榨果汁时另外两种水果的使用情形,下列叙述何者正确?()A.只使用苹果B.只使用芭乐C.使用苹果及芭乐,且使用的苹果颗数比使用的芭乐颗数多D.使用苹果及芭乐,且使用的芭乐颗数比使用的苹果颗数多24.(3分)如图,△ABC、△FGH中,D、E两点分别在AB、AC上,F点在DE 上,G、H两点在BC上,且DE∥BC,FG∥AB,FH∥AC,若BG:GH:HC=4:6:5,则△ADE与△FGH的面积比为何?()A.2:1 B.3:2 C.5:2 D.9:425.(3分)某商店将巧克力包装成方形、圆形礼盒出售,且每盒方形礼盒的价钱相同,每盒圆形礼盒的价钱相同.阿郁原先想购买3盒方形礼盒和7盒圆形礼盒,但他身上的钱会不足240元,如果改成购买7盒方形礼盒和3盒形礼盒,他身上的钱会剩下240元.若阿郁最后购买10盒方形礼盒,则他身上的钱会剩下多少元?()A.360 B.480 C.600 D.72026.(3分)如图,坐标平面上,A、B两点分别为圆P与x轴、y轴的交点,有一直线L 通过P 点且与AB 垂直,C 点为L 与y 轴的交点.若A 、B 、C 的坐标分别为(a ,0),(0,4),(0,﹣5),其中a <0,则a 的值为何?( )A .﹣2 B .﹣2 C .﹣8 D .﹣7第二部分:非选择题(第1~2题)27.一个箱子内有4颗相同的球,将4颗球分别标示号码1、2、3、4,今翔翔以每次从箱子内取一颗球且取后放回的方式抽取,并预计取球10次,现已取了8次,取出的结果如表所列:若每次取球时,任一颗球被取到的机会皆相等,且取出的号码即为得分,请回答下列问题:(1)请求出第1次至第8次得分的平均数.(2)承(1),翔翔打算依计划继续从箱子取球2次,请判断是否可能发生「这10次得分的平均数不小于2.2,且不大于2.4」的情形?若有可能,请计算出发生此情形的机率,并完整写出你的解题过程;若不可能,请完整说明你的理由. 28.嘉嘉参加机器人设计活动,需操控机器人在5×5的方格棋盘上从A 点行走至B 点,且每个小方格皆为正方形,主办单位规定了三条行走路径R 1,R 2,R 3,其行经位置如图与表所示:已知A、B、C、D、E、F、G七点皆落在格线的交点上,且两点之间的路径皆为直线,在无法使用任何工具测量的条件下,请判断R1、R2、R3这三条路径中,最长与最短的路径分别为何?请写出你的答案,并完整说明理由.2018年台湾省中考数学试卷参考答案与试题解析第一部分:选择题(第1~26题)1.(3分)下列选项中的图形有一个为轴对称图形,判断此形为何?()A.B.C.D.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形.这条直线叫做对称轴.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,对称轴为两宽的中点的连线所在的直线,故本选项正确.故选:D.【点评】本题考查轴对称图形,注意掌握轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.(3分)已知a=(﹣)﹣,b=﹣(﹣),c=﹣﹣,判断下列叙述何者正确?()A.a=c,b=c B.a=c,b≠c C.a≠c,b=c D.a≠c,b≠c【分析】根据有理数的减法的运算方法,判断出a、c,b、c的关系即可.【解答】解:∵a=(﹣)﹣=﹣﹣,b=﹣(﹣)=﹣+,c=﹣﹣,∴a=c,b≠c.故选:B.【点评】此题主要考查了有理数的减法,要熟练掌握,解答此题的关键是要明确:有理数减法法则:减去一个数,等于加上这个数的相反数.3.(3分)已知坐标平面上,一次函数y=3x+a的图形通过点(0,﹣4),其中a 为一数,求a的值为何?()A.﹣12 B.﹣4 C.4 D.12【分析】利用待定系数法即可解决问题.【解答】解:∵次函数y=3x+a的图形通过点(0,﹣4),∴﹣4=0×3+a,∴a=﹣4,故选:B.【点评】本题考查一次函数的应用、待定系数法等知识,熟练掌握待定系数法是解题的关键,属于中考基础题.4.(3分)已知某文具店贩售的笔记本每本售价均相等且超过10元,小锦和小勤在此文具店分别购买若干本笔记本.若小绵购买笔记本的花费为36元,则小勤购买笔记本的花费可能为下列何者?()A.16元B.27元C.30元D.48元【分析】直接利用小绵购买笔记本的花费为36元,得出笔记本的单价,进而得出小勤购买笔记本的花费.【解答】解:∵某文具店贩售的笔记本每本售价均相等且超过10元,小绵购买笔记本的花费为36元,∴笔记本的单价为:36÷3=12(元)或36÷2=18(元)或36元;故小勤购买笔记本的花费为:12或18或36的倍数,只有选项48符合题意.故选:D.【点评】此题主要考查了质因数分解,正确得出笔记本的单价是解题关键.5.(3分)若二元一次联立方程式的解为x=a,y=b,则a+b之值为何?()A.24 B.0 C.﹣4 D.﹣8【分析】利用加减法解二元一次方程组,求得a、b的值,再代入计算可得答案.【解答】解:,①﹣②×3,得:﹣2x=﹣16,解得:x=8,将x=8代入②,得:24﹣y=8,解得:y=16,即a=8、b=16,则a+b=24,故选:A.【点评】本题主要考查二元一次方程组的解,解题的关键是熟练掌握加减消元法解二元一次方程组的能力.6.(3分)已知甲、乙两袋中各装有若干颗球,其种类与数量如表所示“今阿冯打算从甲袋中抽出一颗球,小潘打算从乙袋中抽出一颗球,若甲袋中每颗球被抽出的机会相等,且乙袋中每颗球被抽出的机会相等,则下列叙述何者正确?()A.阿冯抽出红球的机率比小潘抽出红球的机率大B.阿冯抽出红球的机率比小潘抽出红球的机率小C.阿冯抽出黄球的机率比小潘抽出黄球的机率大D.阿冯抽出黄球的机率比小潘抽出黄球的机率小【分析】根据概率公式分别计算出两人抽出红球、黄球的概率,比较大小即可得.【解答】解:∵阿冯抽出红球的机率为、抽出黄球的机率为,小潘抽出红球的机率为=,小潘抽出黄球的机率为=,∴阿冯抽出红球的机率与小潘抽出红球的机率相等,阿冯抽出黄球的机率比小潘抽出黄球的机率大,故选:C.【点评】本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.7.(3分)算式×(﹣1)之值为何?()A.B.C.2D.1【分析】根据乘法分配律可以解答本题.【解答】解:×(﹣1)=,故选:A.【点评】本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.8.(3分)若一元二次方程式x2﹣8x﹣3×11=0的两根为a、b,且a>b,则a﹣2b之值为何?()A.﹣25 B.﹣19 C.5 D.17【分析】先利用因式分解法解方程得到a=11,b=﹣3,然后计算代数式a﹣2b的值.【解答】解:(x﹣11)(x+3)=0,x﹣11=0或x﹣3=0,所以x1=11,x2=﹣3,即a=11,b=﹣3,所以a﹣2b=11﹣2×(﹣3)=11+6=17.故选:D.【点评】本题考查了解一元二次方程﹣因式分解法:因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).9.(3分)如图,△ABC中,D为BC的中点,以D为圆心,BD长为半径画一弧交AC于E点,若∠A=60°,∠B=100°,BC=4,则扇形BDE的面积为何?()A.B.C.D.【分析】求出扇形的圆心角以及半径即可解决问题;【解答】解:∵∠A=60°,∠B=100°,∴∠C=180°﹣60°﹣100°=20°,∵DE=DC,∴∠C=∠DEC=20°,∴∠BDE=∠C+∠DEC=40°,==π.∴S扇形DBE故选:C.【点评】本题考查扇形的面积公式、三角形内角和定理等知识,解题的关键是记住扇形的面积公式:S=.10.(3分)如图为大兴电器行的促销活动传单,已知促销第一天美食牌微波炉卖出10台,且其销售额为61000元,若活动期间此款微波炉总共卖出50台,则其总销售额为多少元?()A.305000 B.321000 C.329000 D.342000【分析】根据题意求出此款微波炉的单价,列式计算即可.【解答】解:此款微波炉的单价为(61000+10×800)÷10=6900,则卖出50台的总销售额为:61000×2+6900×30=329000,故选:C.【点评】本题考查的是有理数的混合运算,根据题意正确列出算式是解题的关键.11.(3分)如图,五边形ABCDE中有一正三角形ACD,若AB=DE,BC=AE,∠E=115°,则∠BAE的度数为何?()A.115 B.120 C.125 D.130【分析】根据全等三角形的判定和性质得出△ABC与△AED全等,进而得出∠B=∠E,利用多边形的内角和解答即可.【解答】解:∵正三角形ACD,∴AC=AD,∠ACD=∠ADC=∠CAD=60°,∵AB=DE,BC=AE,∴△ABC≌△AED,∴∠B=∠E=115°,∠ACB=∠EAD,∠BAC=∠ADE,∴∠ACB+∠BAC=∠BAC+∠DAE=180°﹣115°=65°,∴∠BAE=∠BAC+∠DAE+∠CAD=65°+60°=125°,故选:C.【点评】此题考查全等三角形的判定和性质,关键是根据全等三角形的判定和性质得出△ABC与△AED全等.12.(3分)如图为O、A、B、C四点在数线上的位置图,其中O为原点,且AC=1,OA=OB,若C点所表示的数为x,则B点所表示的数与下列何者相等?()A.﹣(x+1)B.﹣(x﹣1)C.x+1 D.x﹣1【分析】首先根据AC=1,C点所表示的数为x,求出A表示的数是多少,然后根据OA=OB,求出B点所表示的数是多少即可.【解答】解:∵AC=1,C点所表示的数为x,∴A点表示的数是x﹣1,又∵OA=OB,∴B点和A点表示的数互为相反数,∴B点所表示的数是﹣(x﹣1).故选:B.【点评】此题主要考查了在数轴上表示数的方法,以及数轴的特征和应用,要熟练掌握.13.(3分)如图的宣传单为菜克印刷公司设计与印刷卡片计价方式的说明,妮娜打算请此印刷公司设计一款母亲节卡片并印刷,她再将卡片以每张15元的价格贩售.若利润等于收入扣掉成本,且成本只考虑设计费与印刷费,则她至少需印多少张卡片,才可使得卡片全数售出后的利润超过成本的2成?()A.112 B.121 C.134 D.143【分析】设妮娜需印x张卡片,根据利润=收入﹣成本结合利润超过成本的2成,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,取其内最小的整数即可得出结论.【解答】解:设妮娜需印x张卡片,根据题意得:15x﹣1000﹣5x>0.2(1000+5x),解得:x>133,∵x为整数,∴x≥134.答:妮娜至少需印134张卡片,才可使得卡片全数售出后的利润超过成本的2成.故选:C.【点评】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.14.(3分)如图,I点为△ABC的内心,D点在BC上,且ID⊥BC,若∠B=44°,∠C=56°,则∠AID的度数为何?()A.174 B.176 C.178 D.180【分析】连接CI,利用三角形内角和定理可求出∠BAC的度数,由I点为△ABC 的内心,可得出∠CAI、∠ACI、∠DCI的度数,利用三角形内角和定理可得出∠AIC、∠CID的度数,再由∠AID=∠AIC+∠CID即可求出∠AID的度数.【解答】解:连接CI,如图所示.在△ABC中,∠B=44°,∠ACB=56°,∴∠BAC=180°﹣∠B﹣∠ACB=80°.∵I点为△ABC的内心,∴∠CAI=∠BAC=40°,∠ACI=∠DCI=∠ACB=28°,∴∠AIC=180°﹣∠CAI﹣∠ACI=112°,又ID⊥BC,∴∠CID=90°﹣∠DCI=62°,∴∠AID=∠AIC+∠CID=112°+62°=174°.故选:A.【点评】本题考查了三角形的内心、三角形内角和定理以及角平分线的性质,根据三角形内心的性质结合三角形内角和定理求出∠AIC、∠CID的度数是解题的关键.15.(3分)如图为一直棱柱,其底面是三边长为5、12、13的直角三角形.若下列选项中的图形均由三个矩形与两个直角三角形组合而成,且其中一个为如图的直棱柱的展开图,则根据图形中标示的边长与直角记号判断,此展开图为何?()A. B.C.D.【分析】三棱柱的侧面展开图是长方形,底面是三角形,据此进行判断即可.【解答】解:A选项中,展开图下方的直角三角形的斜边长为12,不合题意;B选项中,展开图上下两个直角三角形中的直角边不能与其它棱完全重合,不合题意;C选项中,展开图下方的直角三角形中的直角边不能与其它棱完全重合,不合题意;D选项中,展开图能折叠成一个三棱柱,符合题意;故选:D.【点评】本题主要考查了几何体的展开图,从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.16.(3分)若小舒从1~50的整数中挑选4个数,使其由小到大排序后形成一等差数列,且4个数中最小的是7,则下列哪一个数不可能出现在小舒挑选的数之中?()A.20 B.25 C.30 D.35【分析】A、找出7,20、33、46为等差数列,进而可得出20可以出现,选项A 不符合题意;B、找出7、16、25、34为等差数列,进而可得出25可以出现,选项B不符合题意;C、由30﹣7=23,23为质数,30+23>50,进而可得出30不可能出现,选项C 符合题意;D、找出7、21、35、49为等差数列,进而可得出35可以出现,选项D不符合题意.【解答】解:A、∵7,20、33、46为等差数列,∴20可以出现,选项A不符合题意;B、∵7、16、25、34为等差数列,∴25可以出现,选项B不符合题意;C、∵30﹣7=23,23为质数,30+23>50,∴30不可能出现,选项C符合题意;D、∵7、21、35、49为等差数列,∴35可以出现,选项D不符合题意.故选:C.【点评】本题考查了规律型中数字的变化类,根据等差数列的定义结合四个选项中的数字,找出符合题意得等差数列是解题的关键.17.(3分)已知a=3.1×10﹣4,b=5.2×10﹣8,判断下列关于a﹣b之值的叙述何者正确?()A.比1大B.介于0、1之间C.介于﹣1、0之间D.比﹣1小【分析】由科学计数法还原a、b两数,相减计算结果可得答案.【解答】解:∵a=3.1×10﹣4,b=5.2×10﹣8,∴a=0.00031、b=0.000000052,则a﹣b=0.000309948,故选:B.【点评】本题主要考查科学计数法﹣表示较小的数,用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.18.(3分)如图,锐角三角形ABC中,BC>AB>AC,甲、乙两人想找一点P,使得∠BPC与∠A互补,其作法分别如下:(甲)以A为圆心,AC长为半径画弧交AB于P点,则P即为所求;(乙)作过B点且与AB垂直的直线l,作过C点且与AC垂直的直线,交l于P 点,则P即为所求对于甲、乙两人的作法,下列叙述何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误 D.甲错误,乙正确【分析】甲:根据作图可得AC=AP,利用等边对等角得:∠APC=∠ACP,由平角的定义可知:∠BPC+∠APC=180°,根据等量代换可作判断;乙:根据四边形的内角和可得:∠BPC+∠A=180°.【解答】解:甲:如图1,∵AC=AP,∴∠APC=∠ACP,∵∠BPC+∠APC=180°∴∠BPC+∠ACP=180°,∴甲错误;乙:如图2,∵AB⊥PB,AC⊥PC,∴∠ABP=∠ACP=90°,∴∠BPC+∠A=180°,∴乙正确,故选:D.【点评】本题考查了垂线的定义、四边形的内角和定理、等腰三角形的性质,正确的理解题意是解题的关键.19.(3分)已知甲、乙两班的学生人数相同,如图为两班某次数学小考成绩的盒状图,若甲班、乙班学生小考成绩的中位数分别为a、b;甲班、乙班中小考成绩超过80分的学生人数分别为c、d,则下列a、b、c、d的大小关系,何者正确?()A.a>b,c>d B.a>b,c<d C.a<b,c>d D.a<b,c<d【分析】根据中位数的定义和成绩分布进行判断.【解答】解:根据盒状图得到a>b,c<d.故选:B.【点评】本题考查了中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.20.(3分)如图1的矩形ABCD中,有一点E在AD上,今以BE为折线将A点往右折,如图2所示,再作过A点且与CD垂直的直线,交CD于F点,如图3所示,若AB=6,BC=13,∠BEA=60°,则图3中AF的长度为何?()A.2 B.4 C.2 D.4【分析】作AH⊥BC于H.则四边形AFCH是矩形,AF=CH,AH=CF=3.在Rt △ABH中,解直角三角形即可解决问题;【解答】解:作AH⊥BC于H.则四边形AFCH是矩形,AF=CH,AH=CF=3.在Rt△AHB中,∠ABH=30°,∴BH=AB•cos30°=9,∴CH=BC﹣BH=13﹣9=4,∴AF=CH=4,故选:B.【点评】本题考查翻折变换、矩形的性质、勾股定理、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.21.(3分)已知坐标平面上有一直线L,其方程式为y+2=0,且L与二次函数y=3x2+a 的图形相交于A,B两点:与二次函数y=﹣2x2+b的图形相交于C,D两点,其中a、b为整数.若AB=2,CD=4.则a+b之值为何?()A.1 B.9 C.16 D.24【分析】判断出A、C两点坐标,利用待定系数法求出a、b即可;【解答】解:如图,由题意A(1,﹣2),C(2,﹣2),分别代入y=3x2+a,y=﹣2x2+b可得a=﹣5,b=6,∴a+b=1,故选:A.【点评】本题考查二次函数图形上点的坐标特征,待定系数法等知识,解题的关键是理解题意,判断出A、C两点坐标是解决问题的关键.22.(3分)如图,两圆外切于P点,且通过P点的公切线为L,过P点作两直线,两直线与两圆的交点为A、B、C、D,其位置如图所示,若AP=10,CP=9,则下列角度关系何者正确?()A.∠PBD>∠PAC B.∠PBD<∠PAC C.∠PBD>∠PDB D.∠PBD<∠PDB 【分析】根据大边对大角,平行线的判定和性质即可判断;【解答】解:如图,∵直线l是公切线∴∠1=∠B,∠2=∠A,∵∠1=∠2,∴∠A=∠B,∴AC∥BD,∴∠C=∠D,∵PA=10,PC=9,∴PA>PC,∴∠C>∠A,∴∠D>∠B.故选:D.【点评】本题考查圆与圆的位置关系,直线与圆的位置关系,相切两个圆的性质等知识,解题的关键是证明AC∥BD.23.(3分)小柔要榨果汁,她有苹果、芭乐、柳丁三种水果,且其颗数比为9:7:6,小柔榨完果汁后,苹果、芭乐、柳丁的颗数比变为6:3:4,已知小柔榨果汁时没有使用柳丁,关于她榨果汁时另外两种水果的使用情形,下列叙述何者正确?()A.只使用苹果B.只使用芭乐C.使用苹果及芭乐,且使用的苹果颗数比使用的芭乐颗数多D.使用苹果及芭乐,且使用的芭乐颗数比使用的苹果颗数多【分析】根据三种水果的颗数的关系,设出三种水果的颗数,再根据榨果汁后的颗数的关系,求出榨果汁后,苹果和芭乐的颗数,进而求出苹果,芭乐的用量,即可得出结论.【解答】解:∵苹果、芭乐、柳丁三种水果,且其颗数比为9:7:6,∴设苹果为9x颗,芭乐7x颗,铆钉6x颗(x是正整数),∵小柔榨果汁时没有使用柳丁,∴设小柔榨完果汁后,苹果a颗,芭乐b颗,∵小柔榨完果汁后,苹果、芭乐、柳丁的颗数比变为6:3:4,∴,,∴a=9x,b=x,∴苹果的用量为9x﹣a=9x﹣9x=0,芭乐的用量为7x﹣b=7x﹣x=x>0,∴她榨果汁时,只用了芭乐,故选:B.【点评】此题是推理与论证题目,主要考查了根据比例的关系,比例的性质,求出榨汁后苹果和芭乐的数量是解本题的关键.24.(3分)如图,△ABC、△FGH中,D、E两点分别在AB、AC上,F点在DE 上,G、H两点在BC上,且DE∥BC,FG∥AB,FH∥AC,若BG:GH:HC=4:6:5,则△ADE与△FGH的面积比为何?()A.2:1 B.3:2 C.5:2 D.9:4【分析】只要证明△ADE∽△FGH,可得=()2,由此即可解决问题;【解答】解:∵BG:GH:HC=4:6:5,可以假设BG=4k,GH=6k,HC=5k,∵DE∥BC,FG∥AB,FH∥AC,∴四边形BGFD是平行四边形,四边形EFHC是平行四边形,∴DF=BG=4k,EF=HC=5k,DE=DF+EF=9k,∠FGH=∠B=∠ADE,∠FHG=∠C=∠AED,∴△ADE∽△FGH,∴=()2=()2=.故选:D.【点评】本题考查相似三角形的判定和性质,平行四边形的判定和性质等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.25.(3分)某商店将巧克力包装成方形、圆形礼盒出售,且每盒方形礼盒的价钱相同,每盒圆形礼盒的价钱相同.阿郁原先想购买3盒方形礼盒和7盒圆形礼盒,但他身上的钱会不足240元,如果改成购买7盒方形礼盒和3盒形礼盒,他身上的钱会剩下240元.若阿郁最后购买10盒方形礼盒,则他身上的钱会剩下多少元?()A.360 B.480 C.600 D.720【分析】设每盒方形礼盒x元,每盒圆形礼盒y元,根据阿郁身上的钱数不变得出方程3x+7y﹣240=7x+3y+240,化简整理得y﹣x=120.那么阿郁最后购买10盒方形礼盒后他身上的钱会剩下(7x+3y+240)﹣10x,化简得3(y﹣x)+240,将y﹣x=120计算即可.【解答】解:设每盒方形礼盒x元,每盒圆形礼盒y元,则阿郁身上的钱有(3x+7y ﹣240)元或(7x+3y+240)元.由题意,可得3x+7y﹣240=7x+3y+240,化简整理,得y﹣x=120.若阿郁最后购买10盒方形礼盒,则他身上的钱会剩下:(7x+3y+240)﹣10x=3(y﹣x)+240=3×120+240=600(元).故选:C.【点评】本题考查了二元一次方程的应用,分析题意,找到关键描述语,得出每盒方形礼盒与每盒圆形礼盒的钱数之间的关系是解决问题的关键.26.(3分)如图,坐标平面上,A、B两点分别为圆P与x轴、y轴的交点,有一直线L通过P点且与AB垂直,C点为L与y轴的交点.若A、B、C的坐标分别为(a,0),(0,4),(0,﹣5),其中a<0,则a的值为何?()A.﹣2B.﹣2C.﹣8 D.﹣7【分析】连接AC,根据线段垂直平分线的性质得到AC=BC,根据勾股定理求出OA,得到答案.【解答】解:连接AC,由题意得,BC=OB+OC=9,∵直线L通过P点且与AB垂直,∴直线L是线段AB的垂直平分线,∴AC=BC=9,在Rt△AOC中,AO==2,∵a<0,∴a=﹣2,故选:A.【点评】本题考查的是垂径定理、坐标与图形的性质以及勾股定理,掌握垂径定理的推论是解题的关键.第二部分:非选择题(第1~2题)27.一个箱子内有4颗相同的球,将4颗球分别标示号码1、2、3、4,今翔翔以每次从箱子内取一颗球且取后放回的方式抽取,并预计取球10次,现已取了8次,取出的结果如表所列:若每次取球时,任一颗球被取到的机会皆相等,且取出的号码即为得分,请回答下列问题:(1)请求出第1次至第8次得分的平均数.(2)承(1),翔翔打算依计划继续从箱子取球2次,请判断是否可能发生「这10次得分的平均数不小于2.2,且不大于2.4」的情形?若有可能,请计算出发生此情形的机率,并完整写出你的解题过程;若不可能,请完整说明你的理由.【分析】(1)根据算术平均数的定义列式计算可得;(2)先根据这10次得分的平均数不小于2.2,且不大于2.4得出后两次得分的范围,再列表得出所有等可能结果,从中找打符合条件的结果数,利用概率公式计算可得.【解答】解:(1)第1次至第8次得分的平均数=2.5;(2)∵这10次得分的平均数不小于2.2,且不大于2.4,∴这10次得分之和不小于22、不大于24,而前8次的得分之和为20,∴后两次的得分不小于2、不大于4,解:列表得:∴一共有16种情况,其中得分之和不小于2、不大于4的有6种结果,则后两次的得分不小于2、不大于4的概率为=.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以。

台湾中考数学真题与解析

台湾中考数学真题与解析

台湾中考数学真题与解析部门: xxx时间: xxx整理范文,仅供参考,可下载自行编辑由图可知男生身高的中位数约165(cm>,女生身高的中位数约160(cm>设小明买了x包饼干,则剩下的钱为300-(50+90+120+13x>元,整理后为(40-13x>元3,40-13x=1故选(B>,得(A>依题意得:(A>3=错误!<错误!<错误!=4 ⇒错误!=3.…⇒甲=5+错误!=8.…p1EanqFDPw 4=错误!<错误!<错误!=5 ⇒错误!=4.…⇒乙=3+错误!=7.…DXDiTa9E3d 4=错误!<错误!<错误!=5 ⇒错误!=4.…⇒丙=1+错误!=5.…RTC rpUDGiT(A>由关系式可知2x-100 ⇒两件商品减100元0.3 ⇒打3折<1000 ⇒不到1000元所以0.3(2x-100><1000即为(B>完成短除法如下8、12、18的最小公倍数为2×3×2×2×1×3=72故选(B>(C>四千零七十亿元可写成407000000000(C>六人份需20×6=120克砂糖,尚需120-50=70克砂糖所求=70×错误!=21(小匙>故选(C>5PCzVD7HxA 的方格纸上有一平行四边形ABCD,其顶点(A> (B>(C> (D>由(A>、(B>、(C>、(D>四个图可知,(D>图上的F点到的距离>E点到的距离jLBHrnAILg所以△FBC的面积>△EBC的面积故选(D>(B>完成线对称图形如右则涂成灰色的小方格在第二列第一行的外接圆由∠DAE=12°得错误!=12°×2=24°∵错误!=错误!=错误!,∴错误!=(360°-24°>÷3=112°xHAQX74J0X∠ABC=错误!(错误!+错误!>=错误!(24°+112°>=68°,故选抽出红色牌机率==错误!Zzz6ZB2Ltk抽出黄色牌机率==错误!dvzfvkwMI1(-1000错误!>×(5-10>=-(1000+错误!>×(-5>EmxvxOtOco=1000×5+错误!×58x2-10x+2=2(4x2-5x+1>=2(4x-1>(x-1>=(4x-1>(2x-2>故选(A>另解:分别将8x2-10x+2除以四个选项如右图连,以A点为圆心,为半径画弧,交大圆于B1、B2两点SixE2yXPq5则B1、B2即为所求(==>6ewMyirQFL∴满足条件的B点共有2个(B>如右图,延长,交于N点∵= △ABC为等腰三角形又M是△ABC的重心∴为中线,且⊥kavU42VRUs∴==错误!=8y6v3ALoS89=错误!=15=错误!错误!=错误!×15=10M2ub6vSTnP(A>(B>(C>(D>(B>由数字乘以3可得3x加6可得3x+6结果除以3可得(3x+6>÷3=x+2再减去一开始写的数字可得x+2-x=2y=ax2+bx+c-5x2-3x+7=(a-5>x2+(b-3>x+(c+7>若此二次函数图形有最低点则图形的开口向上⇒x2项系数为正数⇒a-5>0,a>5|a-c|=(A>|a|+|b|+|c|=++≠0YujCfmUCw(B>|a-b|+|c-b|=+=eUts8ZQVRd(C>|a-d|-|d-c|=-=sQsAEJkW5T(D>|a|+|d|-|c-d|=+-=GMsIasNXkA(A> 10 (B> 45 (C> 55 (D> 99(C>由表知36~42岁及50~56岁的职员人数共有200-6-40-42-2=110人a%+b%=×100%=55%⇒a+b=55如右图∵ABCDEF为正六边形∴∠ABC=120°,∠CBG=60°又=1(==>TIrRGchYzg∴=错误!(=错误!>7EqZcWLZNX四边形CDHG的周长=(1+错误!>×2=2+错误!lzq7IGf02E∵两段圆柱形树干的体积比为2:1∴两段圆柱形树干的柱高比为2:1则体积较大的树干柱高为15×错误!=10(公尺>∵圆柱体的底面积为9π平方公尺∴圆柱体的底圆半径为3公尺所求=(2×π×3>×10=60π(平方公尺>原式=(错误!>6×[(错误!>-2]2(∵错误!=(错误!>-1∴(错误!>2=[(错误!>-1]2=(错误!>-2>zvpgeqJ1hk=(错误!>6×(错误!>-4NrpoJac3v1=(错误!>6-4=(错误!>21nowfTG4KI由题意知红豆汤圆每杯错误!元,豆花每杯错误!元fjnFLDa5Zo又豆花每杯比红豆汤圆便宜10元即错误!=错误!-10 ⇒错误!=错误!+10tfnNhnE6e5由L:3x-y=-3可知,L交y轴于(0 , 3>,由图可知当0<a<3时L'与L的交点会在第二象限,故选(A>。

最新-台湾全区2018第一次中考数学真题与简答 精品

最新-台湾全区2018第一次中考数学真题与简答 精品

100第一次國民中學基本學力測驗 數學科題本班級: 座號: 姓名:(A ) 1. 座標平面上,若點(3, b )在方程式923-=x y 的圖形上,則b 值為何? (A)-1 (B) 2 (C) 3 (D) 9(C ) 2. 計算33)4(7-+之值為何?(A) 9 (B) 27 (C) 279 (D) 418(D ) 3. 化簡)23(4)32(5x x ---之後,可得下列哪一個結果?(A) 2x -27 (B) 8x -15 (C) 12x -15 (D) 18x -27(D ) 4. 下列有一面國旗是線對稱圖形,根據選項中的圖形,判斷此國旗為何? (A) (B)(C) (D)(A ) 5. 下列四個多項式,哪一個是3522-+x x 的因式?(A) 2x -1 (B) 2x -3 (C) x -1 (D) x -3(A ) 6. 圖(一)為某校782名學生小考成績的次數分配直方圖,若下列有一選項為圖(一)成績的累積次數分配直方圖,則此圖為何?(A)(B)(C)(D)(C ) 7. 若△ABC 中,2(∠A +∠C )=3∠B ,則∠B 的外角度數為何? (A) 36 (B) 72 (C) 118 (D) 144(D ) 8. 若949)7(22+-=-bx x a x ,則b a +之值為何?(A) 18 (B) 24 (C) 39 (D) 45(B ) 9. 在早餐店裡,王伯伯買5顆饅頭,3顆包子,老闆少拿2元,只要50元。

李太太買了11顆饅頭,5顆包子,老闆以售價的九折優待,只要90元。

若饅頭每顆x 元,包子每顆y 元,則下列哪一個二元一次聯立方程式可表示題目中的數量關係?(A)⎩⎨⎧⨯=++=+9.09051125035y x y x(B)⎩⎨⎧÷=++=+9.09051125035y x y x(C)⎩⎨⎧⨯=+-=+9.09051125035y x y x(D)⎩⎨⎧÷=+-=+9.09051125035y x y x(C )10. 若(a -1):7=4:5,則10a +8之值為何?(A) 54 (B) 66 (C) 74 (D) 80(C )11. 圖(二)數線上有O 、A 、B 、C 、D 五點,根據圖中各點所表示的數,判斷18在數線上的位置會落在下列哪一線段上? (A)OA (B)AB (C)BC (D)CD(A )12. 判斷312是96的幾倍?(A) 1(B) (31)2(C) (31)6(D) (-6)2(A )13. 解不等式-51x -3>2,得其解的範圍為何? (A) x <-25 (B) x >-25 (C) x <5 (D) x >5(B )14. 計算)4(433221-⨯++之值為何? (A)-1 (B)-611 (C)-512 (D)-323(B )15.圖(三)的座標平面上有一正五邊形ABCDE ,其中C 、D兩點座標分別為(1,0)、(2,0) 。

2018年台湾省中考数学试卷(带解析)

2018年台湾省中考数学试卷(带解析)

5.(3 分)若二元一次联立方程式
а а
何?( )
A.24 B.0 C.﹣4 D.﹣8
【解答】解: а


а㚄
①﹣②×3,得:﹣2x=﹣16, 解得:x=8, 将 x=8 代入②,得:24﹣y=8, 解得:y=16, 即 a=8、b=16, 则 a+b=24, 故选:A.
㚄 㚄
的解为 x=a,y=b,则 a+b 之值为
12.(3 分)如图为 O、A、B、C 四点在数线上的位置图,其中 O 为原点,且 AC=1, OA=OB,若 C 点所表示的数为 x,则 B 点所表示的数与下列何者相等?( )
A.﹣(x+1) B.﹣(x﹣1) C.x+1 D.x﹣1 【解答】解:∵AC=1,C 点所表示的数为 x, ∴A 点表示的数是 x﹣1, 又∵OA=OB, ∴B 点和 A 点表示的数互为相反数, ∴B 点所表示的数是﹣(x﹣1).
第 5页(共 17页)
故选:B. 13.(3 分)如图的宣传单为菜克印刷公司设计与印刷卡片计价方式的说明,妮 娜打算请此印刷公司设计一款母亲节卡片并印刷,她再将卡片以每张 15 元的价 格贩售.若利润等于收入扣掉成本,且成本只考虑设计费与印刷费,则她至少需 印多少张卡片,才可使得卡片全数售出后的利润超过成本的 2 成?( )
A.305000 B.321000 C.329000 D.342000
第 4页(共 17页)
【解答】解:此款微波炉的单价为(61000+10×800)÷10=6900, 则卖出 50 台的总销售额为:61000×2+6900×30=329000, 故选:C.
11.(3 分)如图,五边形 ABCDE 中有一正三角形 ACD,若 AB=DE,BC=AE,∠E=115°, 则∠BAE 的度数为何?( )

最新-台湾全区第一次中考数学真题试卷(仅选择题) 精品

最新-台湾全区第一次中考数学真题试卷(仅选择题) 精品

2018台湾第一次中考(全区) 数学真题及答案(仅选择题)1.坐标平面上,若点(3, b )在方程式923-=x y 的图形上,则b 值为何?(A )(A)-1 (B) 2 (C) 3 (D) 92.计算33)4(7-+之值为何?(C )(A) 9 (B) 27 (C) 279 (D) 4183.化简)23(4)32(5x x ---之后,可得下列哪一个结果?(D )(A) 2x -27 (B) 8x -15 (C) 12x -15 (D) 18x -274.下列有一面国旗是线对称图形,根据选项中的图形,判断此国旗为何?(D ) (A)(B) (C) (D)5.下列四个多项式,哪一个是3522-+x x 的因式?(A )(A) 2x -1 (B) 2x -3 (C) x -1 (D) x -36.图(一)为某校782名学生小考成绩的次数分配直方图,若下列有一选项为图(一)成绩的累积次数分配直方图,则此图为何?(A ) (A) (B)(C) (D)7.若△ABC 中,2(∠A +∠C )=3∠B ,则∠B 的外角度数为何?(C )(A) 36 (B) 72 (C) 118 (D) 1448.若949)7(22+-=-bx x a x ,则b a +之值为何?(D )(A) 18 (B) 24 (C) 39 (D) 459.在早餐店里,王伯伯买5颗馒头,3颗包子,老板少拿2元,只要50元。

李太太买了11颗馒头,5颗包子,老板以售价的九折优待,只要90元。

若馒头每颗x 元,包子每颗y 元,则下列哪一个二元一次联立方程式可表示题目中的数量关系?(B )(A)⎩⎨⎧⨯=++=+9.09051125035y x y x (B)⎩⎨⎧÷=++=+9.09051125035y x y x (C)⎩⎨⎧⨯=+-=+9.09051125035y x y x (D)⎩⎨⎧÷=+-=+9.09051125035y x y x10.若(a -1):7=4:5,则10a +8之值为何?(C )(A) 54 (B) 66 (C) 74 (D) 8011.图(二)数在线有O 、A 、B 、C 、D 五点,根据图中各点所表示的数,判断18在数在线的位置会落在下列哪一线段上?(C )(A)OA (B)AB (C)BC (D)CD12.判断312是96的几倍?(A ) (A) 1 (B) (31)2 (C) (31)6 (D) (-6)213.解不等式-51x -3>2,得其解的范围为何?(A ) (A) x <-25 (B) x >-25 (C) x <5 (D) x >514.计算)4(433221-⨯++之值为何?(B ) (A)-1 (B)-611 (C)-512 (D)-32315.图(三)的坐标平面上有一正五边形ABCDE ,其中C 、D 两点坐标分别为(1,0)、(2,0) 。

台湾中考数学真题与解析

台湾中考数学真题与解析

2018年台湾中考数学真题与解读(C)由图可知男生身高的中位数约165(cm),女生身高的中位数约160(cm)(B)设小明买了x包饼干,则剩下的钱为300-(50+90+120+13x)元,整理后为(40-13x)元=1故选(B)(A)依题意得:{ 197x +4y =11 197x =19-2y ⇒{197x +4y =11……○1197x +2y =19……○2 由○1-○2得:2y =-8,y =-4故选(A)(A)3=9<15<16=4 ⇒15=3.…⇒甲=5+15=8.…4=16<17<25=5 ⇒17=4.…⇒乙=3+17=7.…4=16<19<25=5 ⇒19=4.…⇒丙=1+19=5.…(A)由关系式可知2x-100 ⇒两件商品减100元0.3 ⇒打3折<1000 ⇒不到1000元所以0.3(2x-100)<1000即为两件商品减100元打3折不到1000元故选(A)(B)完成短除法如下8、12、18的最小公倍数为2×3×2×2×1×3=72故选(B)(C)四千零七十亿元可写成40700000000011(C)六人份需20×6=120克砂糖,尚需120-50=70克砂糖(D)(D)由(A)、(B)、(C)、(D)四个图可知,(D)图上的F点到的距离>E点到的距离(B)完成线对称图形如右则涂成灰色的小方格在第二列第一行故选(B)(D)由∠DAE =12°得︵AD =12°×2=24°∵︵AB =︵BC =︵CD ,∴︵CD =(360°-24°)÷3=112° ︵︵(B)抽出红色牌机率==抽出黄色牌机率==(D) (-1000)×(5-10)=-(1000+)×(-5)=1000×5+×5(A)8x2-10x+2=2(4x2-5x+1)=2(4x-1)(x-1)=(4x-1)(2x-2) 故选(A)另解:分别将8x2-10x+2除以四个选项可得(A)(8x2-10x+2)÷(2x-2)=4x-1故选(A)(C)如右图连,以A点为圆心,为半径画弧,交大圆于B1、B2两点则B1、B2即为所求(==)∴满足条件的B点共有2个故选(C)(B)如右图,延长,交于N点∵= △ABC为等腰三角形又M是△ABC的重心∴为中线,且⊥∴===8=172-82=15==×15=10故选(B)根据图(十一),假设小美在纸上写的数字为x,魔术师猜中的答案为y,则下列哪一(D)(B)由数字乘以3可得3x加6可得3x+6结果除以3可得(3x+6)÷3=x+2再减去一开始写的数字可得x+2-x=2(D)y=ax2+bx+c-5x2-3x+7=(a-5)x2+(b-3)x+(c+7)若此二次函数图形有最低点则图形的开口向上⇒x2项系数为正数⇒a-5>0,a>5故选(D)(A)|a-c|=(A)|a|+|b|+|c|=++≠(B)|a-b|+|c-b|=+=(C)|a-d|-|d-c|=-=(D)|a|+|d|-|c-d|=+-=故选(A)(A) 10 (B) 45 (C) 55 (D) 99(C)由表知36~42岁及50~56岁的职员人数共有200-6-40-42-2=110人a%+b%=×100%=55%a+b=55故选(C)(D)如右图∵ABCDEF为正六边形∴∠ABC=120°,∠CBG=60°又=1(==)∴=32)(=)四边形CDHG的周长=(1+32))×2=2+ 3(A)∵两段圆柱形树干的体积比为2:1∴两段圆柱形树干的柱高比为2:1则体积较大的树干柱高为15×=10(公尺)∵圆柱体的底面积为9π平方公尺∴圆柱体的底圆半径为3公尺所求=(2×π×3)×10=60π(平方公尺)故选(A)(C)原式=()6×[()-2]2(∵=()-1∴()2=[()-1]2=()-2) =()6×()-4=()6-4=()2故选(C)(A)由题意知红豆汤圆每杯元,豆花每杯元又豆花每杯比红豆汤圆便宜10元即=-10 ⇒=+10故选(A)(A)由L:3x-y=-3可知,L交y轴于(0 , 3),由图可知当0<a<3时(D)(C)设=x,=8-x则x-2<8-x<x+2 由8-x<x+2得x>3 由x-2<8-x得x<5 3<x<5(B)第1圈红球在1、○4、7、10、13、16、19号箱内第2圈红球在2、5、8、11、14、17、20号箱内第3圈红球在3、6、9、12、15、18号箱内第4圈红球在1、○4、7、10、13、16、19号箱内…且第1、4、7、……、100圈会在4号箱内丢一颗红球a n=a1+(n-1)d100=1+3(n-1)33=n-1n=34故选(B)(C)如右图,连梯形ABCD面积==30△ABC面积=×5×4=10△ACD面积=30-10=20∵:=1:4∴△ACE面积=20×=16∴四边形ABCE面积=10+16=26故选(C)(C)∵二次函数图形的对称轴为x=-5又图形与x轴的两个交点距离为4∴此两点的坐标为(-7 , 0)和(-3 , 0)设二次函数y=(x+7)(x+3)将x=-6代入,得y=(-6+7)(-6+3)=-3 ⇒图形会通过点(-6 ,-3)故选(C)(D)x2-2x-3599=0⇒x2-2x=3599⇒x2-2x+1=3599+1⇒ (x-1)2=3600⇒x-1=60或x-1=-60∴x=61或x=-59又a>b,∴a=61,b=-59⇒ 2a-b=2×61-(-59)=181故选(D)(B)在△BEF 与△CFD 中∠1+∠2=∠2+∠3=90°⇒∠1=∠3且∠B =∠C =90°,∴△BEF ~△CFD (AA 相似)又=2+2=122+92=15 ∴,)=,),=,15)⇒=故选(B)(D)(1)由甲的作法,可知︵BP ≠︵CP(2)由乙的作法,连可知△BEC为等腰三角形又直线PE⊥,∴∠1=∠2故︵BP=︵CP∴甲错误,乙正确故选(D)(A) 30(B) 32.5(C) 35(D)∵=2=2,∠A=∠A'=90°∴△ABE、△A'BE皆为30°、60°、90°的三角形⇒∠1=∠AEB=60°,∠AED'=180°-60°-60°=60°⇒∠DED'=∠AED+∠AED'=15°+60°=75°⇒∠2=∠DED'=37.5°∴∠BCE=37.5°故选(D)。

台湾中考数学试卷(含答案)

台湾中考数学试卷(含答案)

2018年台湾省中考数学试卷解读一、选择题<共34小题,每小题3分,满分99分)1.<2018•台湾)三年甲班男、女生各有20人,如图为三年甲班男、女生身高的盒状图.若班上每位同学的身高均不相等,则全班身高的中位数在下列哪一个范围?< )b5E2RGbCAPA .150~155B.155~160C.160~165D.165~170考点:中位数。

分析:根据所给的图形和中位数的定义即可得到答案.解答:解:由图可知:男生身高的中位数约165<cm),女生身高的中位数约160<cm),所以全班身高的中位数在160~165<cm),故选C点评:此题考查了中位数,将一组数据从小到大依次排列,把中间数据<或中间两数据的平均数)叫做中位数.2.<2018•台湾)小明原有300元,如图记录了他今天所有支出,其中饼干支出的金额被涂黑.若每包饼干的售价为13元,则小明可能剩下多少元?< )p1EanqFDPwA .4B.14C.24D.34考点:一元一次不等式的应用。

分析:根据设小明买了x包饼干,则剩下的钱为300﹣<50+90+120+13x)元,再分别分析得出可能剩下的钱数.解答:解:设小明买了x包饼干,则剩下的钱为300﹣<50+90+120+13x)元,整理后为<40﹣13x)元,当x=1,40﹣13x=27,当x=2,40﹣13x=14,当x=3,40﹣13x=1;故选;B.点评:此题主要考查了实际生活问题应用,利用已知表示出剩下的钱是解题关键.3.<2018•台湾)解二元一次联立方程式,得y=< )A .﹣4B.﹣C.D.5考点:解二元一次方程组。

专题:计算题。

分析:原方程组即:,两式相减即可消去x,得到关于y的方程,即可求得y的值.解答:解:原方程组即:,①﹣②得:2y=﹣8,解得:y=﹣4.故选A.点评:本题考查了加减法解方程组,解方程组的基本思路是消元.4.<2018•台湾)已知甲、乙、丙三数,甲=5+,乙=3+,丙=1+,则甲、乙、丙的大小关系,下列何者正确?< )DXDiTa9E3dA .丙<乙<甲B.乙<甲<丙C.甲<乙<丙D.甲=乙=丙考点:实数大小比较。

2018年台湾省中考数学试卷

2018年台湾省中考数学试卷

2018年台湾省中考数学试卷第一部分:选择题(第1~26题)1.(3分)下列选项中的图形有一个为轴对称图形,判断此形为何?()A.B.C.D.2.(3分)已知a=(﹣)﹣,b=﹣(﹣),c=﹣﹣,判断下列叙述何者正确?()A.a=c,b=c B.a=c,b≠c C.a≠c,b=c D.a≠c,b≠c3.(3分)已知坐标平面上,一次函数y=3x+a的图形通过点(0,﹣4),其中a 为一数,求a的值为何?()A.﹣12 B.﹣4 C.4 D.124.(3分)已知某文具店贩售的笔记本每本售价均相等且超过10元,小锦和小勤在此文具店分别购买若干本笔记本.若小绵购买笔记本的花费为36元,则小勤购买笔记本的花费可能为下列何者?()A.16元B.27元C.30元D.48元5.(3分)若二元一次联立方程式的解为x=a,y=b,则a+b之值为何?()A.24 B.0 C.﹣4 D.﹣86.(3分)已知甲、乙两袋中各装有若干颗球,其种类与数量如表所示“今阿冯打算从甲袋中抽出一颗球,小潘打算从乙袋中抽出一颗球,若甲袋中每颗球被抽出的机会相等,且乙袋中每颗球被抽出的机会相等,则下列叙述何者正确?()A.阿冯抽出红球的机率比小潘抽出红球的机率大B.阿冯抽出红球的机率比小潘抽出红球的机率小C.阿冯抽出黄球的机率比小潘抽出黄球的机率大D.阿冯抽出黄球的机率比小潘抽出黄球的机率小7.(3分)算式×(﹣1)之值为何?()A.B.C.2D.18.(3分)若一元二次方程式x2﹣8x﹣3×11=0的两根为a、b,且a>b,则a﹣2b之值为何?()A.﹣25 B.﹣19 C.5 D.179.(3分)如图,△ABC中,D为BC的中点,以D为圆心,BD长为半径画一弧交AC于E点,若∠A=60°,∠B=100°,BC=4,则扇形BDE的面积为何?()A.B.C.D.10.(3分)如图为大兴电器行的促销活动传单,已知促销第一天美食牌微波炉卖出10台,且其销售额为61000元,若活动期间此款微波炉总共卖出50台,则其总销售额为多少元?()A.305000 B.321000 C.329000 D.34200011.(3分)如图,五边形ABCDE中有一正三角形ACD,若AB=DE,BC=AE,∠E=115°,则∠BAE的度数为何?()A.115 B.120 C.125 D.13012.(3分)如图为O、A、B、C四点在数线上的位置图,其中O为原点,且AC=1,OA=OB,若C点所表示的数为x,则B点所表示的数与下列何者相等?()A.﹣(x+1)B.﹣(x﹣1)C.x+1 D.x﹣113.(3分)如图的宣传单为菜克印刷公司设计与印刷卡片计价方式的说明,妮娜打算请此印刷公司设计一款母亲节卡片并印刷,她再将卡片以每张15元的价格贩售.若利润等于收入扣掉成本,且成本只考虑设计费与印刷费,则她至少需印多少张卡片,才可使得卡片全数售出后的利润超过成本的2成?()A.112 B.121 C.134 D.14314.(3分)如图,I点为△ABC的内心,D点在BC上,且ID⊥BC,若∠B=44°,∠C=56°,则∠AID的度数为何?()A.174 B.176 C.178 D.18015.(3分)如图为一直棱柱,其底面是三边长为5、12、13的直角三角形.若下列选项中的图形均由三个矩形与两个直角三角形组合而成,且其中一个为如图的直棱柱的展开图,则根据图形中标示的边长与直角记号判断,此展开图为何?()A. B.C.D.16.(3分)若小舒从1~50的整数中挑选4个数,使其由小到大排序后形成一等差数列,且4个数中最小的是7,则下列哪一个数不可能出现在小舒挑选的数之中?()A.20 B.25 C.30 D.3517.(3分)已知a=3.1×10﹣4,b=5.2×10﹣8,判断下列关于a﹣b之值的叙述何者正确?()A.比1大B.介于0、1之间C.介于﹣1、0之间D.比﹣1小18.(3分)如图,锐角三角形ABC中,BC>AB>AC,甲、乙两人想找一点P,使得∠BPC与∠A互补,其作法分别如下:(甲)以A为圆心,AC长为半径画弧交AB于P点,则P即为所求;(乙)作过B点且与AB垂直的直线l,作过C点且与AC垂直的直线,交l于P 点,则P即为所求对于甲、乙两人的作法,下列叙述何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误 D.甲错误,乙正确19.(3分)已知甲、乙两班的学生人数相同,如图为两班某次数学小考成绩的盒状图,若甲班、乙班学生小考成绩的中位数分别为a、b;甲班、乙班中小考成绩超过80分的学生人数分别为c、d,则下列a、b、c、d的大小关系,何者正确?()A.a>b,c>d B.a>b,c<d C.a<b,c>d D.a<b,c<d20.(3分)如图1的矩形ABCD中,有一点E在AD上,今以BE为折线将A点往右折,如图2所示,再作过A点且与CD垂直的直线,交CD于F点,如图3所示,若AB=6,BC=13,∠BEA=60°,则图3中AF的长度为何?()A.2 B.4 C.2 D.421.(3分)已知坐标平面上有一直线L,其方程式为y+2=0,且L与二次函数y=3x2+a 的图形相交于A,B两点:与二次函数y=﹣2x2+b的图形相交于C,D两点,其中a、b为整数.若AB=2,CD=4.则a+b之值为何?()A.1 B.9 C.16 D.2422.(3分)如图,两圆外切于P点,且通过P点的公切线为L,过P点作两直线,两直线与两圆的交点为A、B、C、D,其位置如图所示,若AP=10,CP=9,则下列角度关系何者正确?()A.∠PBD>∠PAC B.∠PBD<∠PAC C.∠PBD>∠PDB D.∠PBD<∠PDB 23.(3分)小柔要榨果汁,她有苹果、芭乐、柳丁三种水果,且其颗数比为9:7:6,小柔榨完果汁后,苹果、芭乐、柳丁的颗数比变为6:3:4,已知小柔榨果汁时没有使用柳丁,关于她榨果汁时另外两种水果的使用情形,下列叙述何者正确?()A.只使用苹果B.只使用芭乐C.使用苹果及芭乐,且使用的苹果颗数比使用的芭乐颗数多D.使用苹果及芭乐,且使用的芭乐颗数比使用的苹果颗数多24.(3分)如图,△ABC、△FGH中,D、E两点分别在AB、AC上,F点在DE 上,G、H两点在BC上,且DE∥BC,FG∥AB,FH∥AC,若BG:GH:HC=4:6:5,则△ADE与△FGH的面积比为何?()A.2:1 B.3:2 C.5:2 D.9:425.(3分)某商店将巧克力包装成方形、圆形礼盒出售,且每盒方形礼盒的价钱相同,每盒圆形礼盒的价钱相同.阿郁原先想购买3盒方形礼盒和7盒圆形礼盒,但他身上的钱会不足240元,如果改成购买7盒方形礼盒和3盒形礼盒,他身上的钱会剩下240元.若阿郁最后购买10盒方形礼盒,则他身上的钱会剩下多少元?()A.360 B.480 C.600 D.72026.(3分)如图,坐标平面上,A、B两点分别为圆P与x轴、y轴的交点,有一直线L 通过P 点且与AB 垂直,C 点为L 与y 轴的交点.若A 、B 、C 的坐标分别为(a ,0),(0,4),(0,﹣5),其中a <0,则a 的值为何?( )A .﹣2 B .﹣2 C .﹣8 D .﹣7第二部分:非选择题(第1~2题)27.一个箱子内有4颗相同的球,将4颗球分别标示号码1、2、3、4,今翔翔以每次从箱子内取一颗球且取后放回的方式抽取,并预计取球10次,现已取了8次,取出的结果如表所列:若每次取球时,任一颗球被取到的机会皆相等,且取出的号码即为得分,请回答下列问题:(1)请求出第1次至第8次得分的平均数.(2)承(1),翔翔打算依计划继续从箱子取球2次,请判断是否可能发生「这10次得分的平均数不小于2.2,且不大于2.4」的情形?若有可能,请计算出发生此情形的机率,并完整写出你的解题过程;若不可能,请完整说明你的理由. 28.嘉嘉参加机器人设计活动,需操控机器人在5×5的方格棋盘上从A 点行走至B 点,且每个小方格皆为正方形,主办单位规定了三条行走路径R 1,R 2,R 3,其行经位置如图与表所示:已知A、B、C、D、E、F、G七点皆落在格线的交点上,且两点之间的路径皆为直线,在无法使用任何工具测量的条件下,请判断R1、R2、R3这三条路径中,最长与最短的路径分别为何?请写出你的答案,并完整说明理由.2018年台湾省中考数学试卷参考答案与试题解析第一部分:选择题(第1~26题)1.(3分)下列选项中的图形有一个为轴对称图形,判断此形为何?()A.B.C.D.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形.这条直线叫做对称轴.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,对称轴为两宽的中点的连线所在的直线,故本选项正确.故选:D.【点评】本题考查轴对称图形,注意掌握轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.(3分)已知a=(﹣)﹣,b=﹣(﹣),c=﹣﹣,判断下列叙述何者正确?()A.a=c,b=c B.a=c,b≠c C.a≠c,b=c D.a≠c,b≠c【分析】根据有理数的减法的运算方法,判断出a、c,b、c的关系即可.【解答】解:∵a=(﹣)﹣=﹣﹣,b=﹣(﹣)=﹣+,c=﹣﹣,∴a=c,b≠c.故选:B.【点评】此题主要考查了有理数的减法,要熟练掌握,解答此题的关键是要明确:有理数减法法则:减去一个数,等于加上这个数的相反数.3.(3分)已知坐标平面上,一次函数y=3x+a的图形通过点(0,﹣4),其中a 为一数,求a的值为何?()A.﹣12 B.﹣4 C.4 D.12【分析】利用待定系数法即可解决问题.【解答】解:∵次函数y=3x+a的图形通过点(0,﹣4),∴﹣4=0×3+a,∴a=﹣4,故选:B.【点评】本题考查一次函数的应用、待定系数法等知识,熟练掌握待定系数法是解题的关键,属于中考基础题.4.(3分)已知某文具店贩售的笔记本每本售价均相等且超过10元,小锦和小勤在此文具店分别购买若干本笔记本.若小绵购买笔记本的花费为36元,则小勤购买笔记本的花费可能为下列何者?()A.16元B.27元C.30元D.48元【分析】直接利用小绵购买笔记本的花费为36元,得出笔记本的单价,进而得出小勤购买笔记本的花费.【解答】解:∵某文具店贩售的笔记本每本售价均相等且超过10元,小绵购买笔记本的花费为36元,∴笔记本的单价为:36÷3=12(元)或36÷2=18(元)或36元;故小勤购买笔记本的花费为:12或18或36的倍数,只有选项48符合题意.故选:D.【点评】此题主要考查了质因数分解,正确得出笔记本的单价是解题关键.5.(3分)若二元一次联立方程式的解为x=a,y=b,则a+b之值为何?()A.24 B.0 C.﹣4 D.﹣8【分析】利用加减法解二元一次方程组,求得a、b的值,再代入计算可得答案.【解答】解:,①﹣②×3,得:﹣2x=﹣16,解得:x=8,将x=8代入②,得:24﹣y=8,解得:y=16,即a=8、b=16,则a+b=24,故选:A.【点评】本题主要考查二元一次方程组的解,解题的关键是熟练掌握加减消元法解二元一次方程组的能力.6.(3分)已知甲、乙两袋中各装有若干颗球,其种类与数量如表所示“今阿冯打算从甲袋中抽出一颗球,小潘打算从乙袋中抽出一颗球,若甲袋中每颗球被抽出的机会相等,且乙袋中每颗球被抽出的机会相等,则下列叙述何者正确?()A.阿冯抽出红球的机率比小潘抽出红球的机率大B.阿冯抽出红球的机率比小潘抽出红球的机率小C.阿冯抽出黄球的机率比小潘抽出黄球的机率大D.阿冯抽出黄球的机率比小潘抽出黄球的机率小【分析】根据概率公式分别计算出两人抽出红球、黄球的概率,比较大小即可得.【解答】解:∵阿冯抽出红球的机率为、抽出黄球的机率为,小潘抽出红球的机率为=,小潘抽出黄球的机率为=,∴阿冯抽出红球的机率与小潘抽出红球的机率相等,阿冯抽出黄球的机率比小潘抽出黄球的机率大,故选:C.【点评】本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.7.(3分)算式×(﹣1)之值为何?()A.B.C.2D.1【分析】根据乘法分配律可以解答本题.【解答】解:×(﹣1)=,故选:A.【点评】本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.8.(3分)若一元二次方程式x2﹣8x﹣3×11=0的两根为a、b,且a>b,则a﹣2b之值为何?()A.﹣25 B.﹣19 C.5 D.17【分析】先利用因式分解法解方程得到a=11,b=﹣3,然后计算代数式a﹣2b的值.【解答】解:(x﹣11)(x+3)=0,x﹣11=0或x﹣3=0,所以x1=11,x2=﹣3,即a=11,b=﹣3,所以a﹣2b=11﹣2×(﹣3)=11+6=17.故选:D.【点评】本题考查了解一元二次方程﹣因式分解法:因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).9.(3分)如图,△ABC中,D为BC的中点,以D为圆心,BD长为半径画一弧交AC于E点,若∠A=60°,∠B=100°,BC=4,则扇形BDE的面积为何?()A.B.C.D.【分析】求出扇形的圆心角以及半径即可解决问题;【解答】解:∵∠A=60°,∠B=100°,∴∠C=180°﹣60°﹣100°=20°,∵DE=DC,∴∠C=∠DEC=20°,∴∠BDE=∠C+∠DEC=40°,==π.∴S扇形DBE故选:C.【点评】本题考查扇形的面积公式、三角形内角和定理等知识,解题的关键是记住扇形的面积公式:S=.10.(3分)如图为大兴电器行的促销活动传单,已知促销第一天美食牌微波炉卖出10台,且其销售额为61000元,若活动期间此款微波炉总共卖出50台,则其总销售额为多少元?()A.305000 B.321000 C.329000 D.342000【分析】根据题意求出此款微波炉的单价,列式计算即可.【解答】解:此款微波炉的单价为(61000+10×800)÷10=6900,则卖出50台的总销售额为:61000×2+6900×30=329000,故选:C.【点评】本题考查的是有理数的混合运算,根据题意正确列出算式是解题的关键.11.(3分)如图,五边形ABCDE中有一正三角形ACD,若AB=DE,BC=AE,∠E=115°,则∠BAE的度数为何?()A.115 B.120 C.125 D.130【分析】根据全等三角形的判定和性质得出△ABC与△AED全等,进而得出∠B=∠E,利用多边形的内角和解答即可.【解答】解:∵正三角形ACD,∴AC=AD,∠ACD=∠ADC=∠CAD=60°,∵AB=DE,BC=AE,∴△ABC≌△AED,∴∠B=∠E=115°,∠ACB=∠EAD,∠BAC=∠ADE,∴∠ACB+∠BAC=∠BAC+∠DAE=180°﹣115°=65°,∴∠BAE=∠BAC+∠DAE+∠CAD=65°+60°=125°,故选:C.【点评】此题考查全等三角形的判定和性质,关键是根据全等三角形的判定和性质得出△ABC与△AED全等.12.(3分)如图为O、A、B、C四点在数线上的位置图,其中O为原点,且AC=1,OA=OB,若C点所表示的数为x,则B点所表示的数与下列何者相等?()A.﹣(x+1)B.﹣(x﹣1)C.x+1 D.x﹣1【分析】首先根据AC=1,C点所表示的数为x,求出A表示的数是多少,然后根据OA=OB,求出B点所表示的数是多少即可.【解答】解:∵AC=1,C点所表示的数为x,∴A点表示的数是x﹣1,又∵OA=OB,∴B点和A点表示的数互为相反数,∴B点所表示的数是﹣(x﹣1).故选:B.【点评】此题主要考查了在数轴上表示数的方法,以及数轴的特征和应用,要熟练掌握.13.(3分)如图的宣传单为菜克印刷公司设计与印刷卡片计价方式的说明,妮娜打算请此印刷公司设计一款母亲节卡片并印刷,她再将卡片以每张15元的价格贩售.若利润等于收入扣掉成本,且成本只考虑设计费与印刷费,则她至少需印多少张卡片,才可使得卡片全数售出后的利润超过成本的2成?()A.112 B.121 C.134 D.143【分析】设妮娜需印x张卡片,根据利润=收入﹣成本结合利润超过成本的2成,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,取其内最小的整数即可得出结论.【解答】解:设妮娜需印x张卡片,根据题意得:15x﹣1000﹣5x>0.2(1000+5x),解得:x>133,∵x为整数,∴x≥134.答:妮娜至少需印134张卡片,才可使得卡片全数售出后的利润超过成本的2成.故选:C.【点评】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.14.(3分)如图,I点为△ABC的内心,D点在BC上,且ID⊥BC,若∠B=44°,∠C=56°,则∠AID的度数为何?()A.174 B.176 C.178 D.180【分析】连接CI,利用三角形内角和定理可求出∠BAC的度数,由I点为△ABC 的内心,可得出∠CAI、∠ACI、∠DCI的度数,利用三角形内角和定理可得出∠AIC、∠CID的度数,再由∠AID=∠AIC+∠CID即可求出∠AID的度数.【解答】解:连接CI,如图所示.在△ABC中,∠B=44°,∠ACB=56°,∴∠BAC=180°﹣∠B﹣∠ACB=80°.∵I点为△ABC的内心,∴∠CAI=∠BAC=40°,∠ACI=∠DCI=∠ACB=28°,∴∠AIC=180°﹣∠CAI﹣∠ACI=112°,又ID⊥BC,∴∠CID=90°﹣∠DCI=62°,∴∠AID=∠AIC+∠CID=112°+62°=174°.故选:A.【点评】本题考查了三角形的内心、三角形内角和定理以及角平分线的性质,根据三角形内心的性质结合三角形内角和定理求出∠AIC、∠CID的度数是解题的关键.15.(3分)如图为一直棱柱,其底面是三边长为5、12、13的直角三角形.若下列选项中的图形均由三个矩形与两个直角三角形组合而成,且其中一个为如图的直棱柱的展开图,则根据图形中标示的边长与直角记号判断,此展开图为何?()A. B.C.D.【分析】三棱柱的侧面展开图是长方形,底面是三角形,据此进行判断即可.【解答】解:A选项中,展开图下方的直角三角形的斜边长为12,不合题意;B选项中,展开图上下两个直角三角形中的直角边不能与其它棱完全重合,不合题意;C选项中,展开图下方的直角三角形中的直角边不能与其它棱完全重合,不合题意;D选项中,展开图能折叠成一个三棱柱,符合题意;故选:D.【点评】本题主要考查了几何体的展开图,从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.16.(3分)若小舒从1~50的整数中挑选4个数,使其由小到大排序后形成一等差数列,且4个数中最小的是7,则下列哪一个数不可能出现在小舒挑选的数之中?()A.20 B.25 C.30 D.35【分析】A、找出7,20、33、46为等差数列,进而可得出20可以出现,选项A 不符合题意;B、找出7、16、25、34为等差数列,进而可得出25可以出现,选项B不符合题意;C、由30﹣7=23,23为质数,30+23>50,进而可得出30不可能出现,选项C 符合题意;D、找出7、21、35、49为等差数列,进而可得出35可以出现,选项D不符合题意.【解答】解:A、∵7,20、33、46为等差数列,∴20可以出现,选项A不符合题意;B、∵7、16、25、34为等差数列,∴25可以出现,选项B不符合题意;C、∵30﹣7=23,23为质数,30+23>50,∴30不可能出现,选项C符合题意;D、∵7、21、35、49为等差数列,∴35可以出现,选项D不符合题意.故选:C.【点评】本题考查了规律型中数字的变化类,根据等差数列的定义结合四个选项中的数字,找出符合题意得等差数列是解题的关键.17.(3分)已知a=3.1×10﹣4,b=5.2×10﹣8,判断下列关于a﹣b之值的叙述何者正确?()A.比1大B.介于0、1之间C.介于﹣1、0之间D.比﹣1小【分析】由科学计数法还原a、b两数,相减计算结果可得答案.【解答】解:∵a=3.1×10﹣4,b=5.2×10﹣8,∴a=0.00031、b=0.000000052,则a﹣b=0.000309948,故选:B.【点评】本题主要考查科学计数法﹣表示较小的数,用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.18.(3分)如图,锐角三角形ABC中,BC>AB>AC,甲、乙两人想找一点P,使得∠BPC与∠A互补,其作法分别如下:(甲)以A为圆心,AC长为半径画弧交AB于P点,则P即为所求;(乙)作过B点且与AB垂直的直线l,作过C点且与AC垂直的直线,交l于P 点,则P即为所求对于甲、乙两人的作法,下列叙述何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误 D.甲错误,乙正确【分析】甲:根据作图可得AC=AP,利用等边对等角得:∠APC=∠ACP,由平角的定义可知:∠BPC+∠APC=180°,根据等量代换可作判断;乙:根据四边形的内角和可得:∠BPC+∠A=180°.【解答】解:甲:如图1,∵AC=AP,∴∠APC=∠ACP,∵∠BPC+∠APC=180°∴∠BPC+∠ACP=180°,∴甲错误;乙:如图2,∵AB⊥PB,AC⊥PC,∴∠ABP=∠ACP=90°,∴∠BPC+∠A=180°,∴乙正确,故选:D.【点评】本题考查了垂线的定义、四边形的内角和定理、等腰三角形的性质,正确的理解题意是解题的关键.19.(3分)已知甲、乙两班的学生人数相同,如图为两班某次数学小考成绩的盒状图,若甲班、乙班学生小考成绩的中位数分别为a、b;甲班、乙班中小考成绩超过80分的学生人数分别为c、d,则下列a、b、c、d的大小关系,何者正确?()A.a>b,c>d B.a>b,c<d C.a<b,c>d D.a<b,c<d【分析】根据中位数的定义和成绩分布进行判断.【解答】解:根据盒状图得到a>b,c<d.故选:B.【点评】本题考查了中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.20.(3分)如图1的矩形ABCD中,有一点E在AD上,今以BE为折线将A点往右折,如图2所示,再作过A点且与CD垂直的直线,交CD于F点,如图3所示,若AB=6,BC=13,∠BEA=60°,则图3中AF的长度为何?()A.2 B.4 C.2 D.4【分析】作AH⊥BC于H.则四边形AFCH是矩形,AF=CH,AH=CF=3.在Rt △ABH中,解直角三角形即可解决问题;【解答】解:作AH⊥BC于H.则四边形AFCH是矩形,AF=CH,AH=CF=3.在Rt△AHB中,∠ABH=30°,∴BH=AB•cos30°=9,∴CH=BC﹣BH=13﹣9=4,∴AF=CH=4,故选:B.【点评】本题考查翻折变换、矩形的性质、勾股定理、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.21.(3分)已知坐标平面上有一直线L,其方程式为y+2=0,且L与二次函数y=3x2+a 的图形相交于A,B两点:与二次函数y=﹣2x2+b的图形相交于C,D两点,其中a、b为整数.若AB=2,CD=4.则a+b之值为何?()A.1 B.9 C.16 D.24【分析】判断出A、C两点坐标,利用待定系数法求出a、b即可;【解答】解:如图,由题意A(1,﹣2),C(2,﹣2),分别代入y=3x2+a,y=﹣2x2+b可得a=﹣5,b=6,∴a+b=1,故选:A.【点评】本题考查二次函数图形上点的坐标特征,待定系数法等知识,解题的关键是理解题意,判断出A、C两点坐标是解决问题的关键.22.(3分)如图,两圆外切于P点,且通过P点的公切线为L,过P点作两直线,两直线与两圆的交点为A、B、C、D,其位置如图所示,若AP=10,CP=9,则下列角度关系何者正确?()A.∠PBD>∠PAC B.∠PBD<∠PAC C.∠PBD>∠PDB D.∠PBD<∠PDB 【分析】根据大边对大角,平行线的判定和性质即可判断;【解答】解:如图,∵直线l是公切线∴∠1=∠B,∠2=∠A,∵∠1=∠2,∴∠A=∠B,∴AC∥BD,∴∠C=∠D,∵PA=10,PC=9,∴PA>PC,∴∠C>∠A,∴∠D>∠B.故选:D.【点评】本题考查圆与圆的位置关系,直线与圆的位置关系,相切两个圆的性质等知识,解题的关键是证明AC∥BD.23.(3分)小柔要榨果汁,她有苹果、芭乐、柳丁三种水果,且其颗数比为9:7:6,小柔榨完果汁后,苹果、芭乐、柳丁的颗数比变为6:3:4,已知小柔榨果汁时没有使用柳丁,关于她榨果汁时另外两种水果的使用情形,下列叙述何者正确?()A.只使用苹果B.只使用芭乐C.使用苹果及芭乐,且使用的苹果颗数比使用的芭乐颗数多D.使用苹果及芭乐,且使用的芭乐颗数比使用的苹果颗数多【分析】根据三种水果的颗数的关系,设出三种水果的颗数,再根据榨果汁后的颗数的关系,求出榨果汁后,苹果和芭乐的颗数,进而求出苹果,芭乐的用量,即可得出结论.【解答】解:∵苹果、芭乐、柳丁三种水果,且其颗数比为9:7:6,∴设苹果为9x颗,芭乐7x颗,铆钉6x颗(x是正整数),∵小柔榨果汁时没有使用柳丁,∴设小柔榨完果汁后,苹果a颗,芭乐b颗,∵小柔榨完果汁后,苹果、芭乐、柳丁的颗数比变为6:3:4,∴,,∴a=9x,b=x,∴苹果的用量为9x﹣a=9x﹣9x=0,芭乐的用量为7x﹣b=7x﹣x=x>0,∴她榨果汁时,只用了芭乐,故选:B.【点评】此题是推理与论证题目,主要考查了根据比例的关系,比例的性质,求出榨汁后苹果和芭乐的数量是解本题的关键.24.(3分)如图,△ABC、△FGH中,D、E两点分别在AB、AC上,F点在DE 上,G、H两点在BC上,且DE∥BC,FG∥AB,FH∥AC,若BG:GH:HC=4:6:5,则△ADE与△FGH的面积比为何?()A.2:1 B.3:2 C.5:2 D.9:4【分析】只要证明△ADE∽△FGH,可得=()2,由此即可解决问题;【解答】解:∵BG:GH:HC=4:6:5,可以假设BG=4k,GH=6k,HC=5k,∵DE∥BC,FG∥AB,FH∥AC,∴四边形BGFD是平行四边形,四边形EFHC是平行四边形,∴DF=BG=4k,EF=HC=5k,DE=DF+EF=9k,∠FGH=∠B=∠ADE,∠FHG=∠C=∠AED,∴△ADE∽△FGH,∴=()2=()2=.故选:D.【点评】本题考查相似三角形的判定和性质,平行四边形的判定和性质等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.25.(3分)某商店将巧克力包装成方形、圆形礼盒出售,且每盒方形礼盒的价钱相同,每盒圆形礼盒的价钱相同.阿郁原先想购买3盒方形礼盒和7盒圆形礼盒,但他身上的钱会不足240元,如果改成购买7盒方形礼盒和3盒形礼盒,他身上的钱会剩下240元.若阿郁最后购买10盒方形礼盒,则他身上的钱会剩下多少元?()A.360 B.480 C.600 D.720【分析】设每盒方形礼盒x元,每盒圆形礼盒y元,根据阿郁身上的钱数不变得出方程3x+7y﹣240=7x+3y+240,化简整理得y﹣x=120.那么阿郁最后购买10盒方形礼盒后他身上的钱会剩下(7x+3y+240)﹣10x,化简得3(y﹣x)+240,将y﹣x=120计算即可.【解答】解:设每盒方形礼盒x元,每盒圆形礼盒y元,则阿郁身上的钱有(3x+7y ﹣240)元或(7x+3y+240)元.由题意,可得3x+7y﹣240=7x+3y+240,化简整理,得y﹣x=120.若阿郁最后购买10盒方形礼盒,则他身上的钱会剩下:(7x+3y+240)﹣10x=3(y﹣x)+240=3×120+240=600(元).故选:C.【点评】本题考查了二元一次方程的应用,分析题意,找到关键描述语,得出每盒方形礼盒与每盒圆形礼盒的钱数之间的关系是解决问题的关键.26.(3分)如图,坐标平面上,A、B两点分别为圆P与x轴、y轴的交点,有一直线L通过P点且与AB垂直,C点为L与y轴的交点.若A、B、C的坐标分别为(a,0),(0,4),(0,﹣5),其中a<0,则a的值为何?()A.﹣2B.﹣2C.﹣8 D.﹣7【分析】连接AC,根据线段垂直平分线的性质得到AC=BC,根据勾股定理求出OA,得到答案.【解答】解:连接AC,由题意得,BC=OB+OC=9,∵直线L通过P点且与AB垂直,∴直线L是线段AB的垂直平分线,∴AC=BC=9,在Rt△AOC中,AO==2,∵a<0,∴a=﹣2,故选:A.【点评】本题考查的是垂径定理、坐标与图形的性质以及勾股定理,掌握垂径定理的推论是解题的关键.第二部分:非选择题(第1~2题)27.一个箱子内有4颗相同的球,将4颗球分别标示号码1、2、3、4,今翔翔以每次从箱子内取一颗球且取后放回的方式抽取,并预计取球10次,现已取了8次,取出的结果如表所列:若每次取球时,任一颗球被取到的机会皆相等,且取出的号码即为得分,请回答下列问题:(1)请求出第1次至第8次得分的平均数.(2)承(1),翔翔打算依计划继续从箱子取球2次,请判断是否可能发生「这10次得分的平均数不小于2.2,且不大于2.4」的情形?若有可能,请计算出发生此情形的机率,并完整写出你的解题过程;若不可能,请完整说明你的理由.【分析】(1)根据算术平均数的定义列式计算可得;(2)先根据这10次得分的平均数不小于2.2,且不大于2.4得出后两次得分的范围,再列表得出所有等可能结果,从中找打符合条件的结果数,利用概率公式计算可得.【解答】解:(1)第1次至第8次得分的平均数=2.5;(2)∵这10次得分的平均数不小于2.2,且不大于2.4,∴这10次得分之和不小于22、不大于24,而前8次的得分之和为20,∴后两次的得分不小于2、不大于4,解:列表得:∴一共有16种情况,其中得分之和不小于2、不大于4的有6种结果,则后两次的得分不小于2、不大于4的概率为=.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以。

【真题】台湾地区中考数学试题含答案解析(Word版)

【真题】台湾地区中考数学试题含答案解析(Word版)

台湾省中考数学试题(解析版)一、选择题(本大题共26小题)1.(•台湾)算式(﹣2)×|﹣5|﹣|﹣3|之值为何()A.13 B.7 C.﹣13 D.﹣7【分析】原式先计算绝对值运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:原式=﹣2×5﹣3=﹣10﹣3=﹣13,故选C【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.2.(•台湾)下列哪一个选项中的等式成立()A.=2 B.=3 C.=4 D.=5【分析】根据二次根式的性质和化简方法,逐项判断即可.【解答】解:∵=2,∴选项A符合题意;∵=3,∴选项B不符合题意;∵=16,∴选项C不符合题意;∵=25,∴选项D不符合题意.故选:A.【点评】此题主要考查了二次根式的性质和化简,要熟练掌握,化简二次根式的步骤:①把被开方数分解因式;②利用积的算术平方根的性质,把被开方数中能开得尽方的因数(或因式)都开出来;③化简后的二次根式中的被开方数中每一个因数(或因式)的指数都小于根指数2.3.(•台湾)计算6x•(3﹣2x)的结果,与下列哪一个式子相同()A.﹣12x2+18x B.﹣12x2+3 C.16x D.6x【分析】根据单项式乘以多项式法则可得.【解答】解:6x•(3﹣2x)=18x﹣12x2,故选:A.【点评】本题主要考查整式的乘法,熟练掌握单项式乘以多项式的法则是解题的关键.4.(•台湾)若阿光以四种不同的方式连接正六边形ABCDEF的两条对角线,连接后的情形如下列选项中的图形所示,则下列哪一个图形不是轴对称图形()A.B.C.D.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、是轴对称图形,故此选项错误;B、是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项正确;故选:D.【点评】此题主要考查了轴对称图形,关键是掌握轴对称图形的概念.5.(•台湾)已知坐标平面上有两直线相交于一点(2,a),且两直线的方程式分别为2x+3y=7,3x﹣2y=b,其中a,b为两数,求a+b之值为何()A.1 B.﹣1 C.5 D.﹣5【分析】把问题转化为关于a、b的方程组即可解决问题.【解答】解:由题意,解得,∴a+b=5,故选C.【点评】本题考查两条直线相交或平行的性质,二元一次方程组等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题.6.(•台湾)阿信、小怡两人打算搭乘同一班次电车上学,若此班次电车共有5节车厢,且阿信从任意一节车厢上车的机会相等,小怡从任意一节车厢上车的机会相等,则两人从同一节车厢上车的概率为何()A.B.C.D.【分析】根据阿信、小怡各有5节车厢可选择,共有25种,两人在不同车厢的情况数是20种,得出在同一节车厢上车的情况数是5种,根据概率公式即可得出答案.【解答】解:二人上5节车厢的情况数是:5×5=25,两人在不同车厢的情况数是5×4=20,则两人从同一节车厢上车的概率是=;故选B.【点评】此题主要考查了概率的求法.用到的知识点为:概率=所求情况数与总情况数之比.7.(•台湾)平面上有A、B、C三点,其中AB=3,BC=4,AC=5,若分别以A、B、C为圆心,半径长为2画圆,画出圆A,圆B,圆C,则下列叙述何者正确()A.圆A与圆C外切,圆B与圆C外切B.圆A与圆C外切,圆B与圆C外离C.圆A与圆C外离,圆B与圆C外切D.圆A与圆C外离,圆B与圆C外离【分析】根据圆和圆的位置与两圆的圆心距、半径的数量之间的关系,即可判定.【解答】解:∵AC=5>2+2,即AC>R A+R B,∴⊙A与⊙C外离,∵BC=4=2+2,即BC=R B+R C,∴⊙B与⊙C相切.故选C.【点评】本题考查圆与圆的位置关系,记住:①两圆外离⇔d>R+r;②两圆外切⇔d=R+r;③两圆相交⇔R﹣r<d<R+r(R≥r);④两圆内切⇔d=R﹣r(R>r);⑤两圆内含⇔d<R﹣r(R>r)是解题的关键.8.(•台湾)下列选项中所表示的数,哪一个与252的最大公因数为42()A.2×3×52×72B.2×32×5×72C.22×3×52×7 D.22×32×5×7【分析】先将42与252分别分解质因数,再找到与252的最大公因数为42的数即可.【解答】解:∵42=2×3×7,252=22×32×7,∴2×3×52×72与252的最大公因数为42.故选:A.【点评】考查了有理数的乘方,有理数的乘法,关键是将42与252分解质因数.9.(•台湾)某高中的篮球队球员中,一、二年级的成员共有8人,三年级的成员有3人,一、二年级的成员身高(单位:公分)如下:172,172,174,174,176,176,178,178若队中所有成员的平均身高为178公分,则队中三年级成员的平均身高为几公分()A.178 B.181 C.183 D.186【分析】先求出一、二年级的成员的总共身高,再根据总数=平均数×数量可求一、二、三年级的成员的总共身高,依此可求三年级成员的总共身高,再除以3即可求解.【解答】解:172+172+174+174+176+176+178+178=1400(公分),(178×11﹣1400)÷3=(1958﹣1400)÷3=186(公分).答:队中三年级成员的平均身高为186公分.故选:D.【点评】考查了平均数问题,关键是熟练掌握平均数的计算公式.10.(•台湾)已知在卡乐芙超市内购物总金额超过190元时,购物总金额有打八折的优惠,安妮带200元到卡乐芙超市买棒棒糖.若棒棒糖每根9元,则她最多可买多少根棒棒糖()A.22 B.23 C.27 D.28【分析】设买x根棒棒糖,根据题意列出不等式,解不等式即可.【解答】解:设买x根棒棒糖,由题意得,9x×0.8≤200,解得,x≤,∴她最多可买27根棒棒糖,故选:C.【点评】本题考查的是一元一次不等式的应用,根据题意正确列出不等式、并正确解出不等式是解题的关键.11.(•台湾)如图,△ABC中,D,E两点分别在AB,BC上,若AD:DB=CE:EB=2:3,则△DBE与△ADC的面积比为()A.3:5 B.4:5 C.9:10 D.15:16【分析】根据三角形面积求法进而得出S△BDC :S△ADC=3:2,S△BDE:S△DCE=3:2,即可得出答案.【解答】解:∵AD:DB=CE:EB=2:3,∴S△BDC :S△ADC=3:2,S△BDE:S△DCE=3:2,∴设S△BDC =3x,则S△ADC=2x,S△BED=1.8x,S△DCE=1.2x,故△DBE与△ADC的面积比为:1.8x:2x=9:10.故选:C.【点评】此题主要考查了三角形面积求法,正确利用三角形边长关系得出面积比是解题关键.12.(•台湾)一元二次方程式x2﹣8x=48可表示成(x﹣a)2=48+b的形式,其中a、b为整数,求a+b之值为何()A.20 B.12 C.﹣12 D.﹣20【分析】将一元二次方程式x2﹣8x=48配方,可求a、b,再代入代数式即可求解.【解答】解:x2﹣8x=48,x2﹣8x+16=48+16,(x﹣4)2=48+16,a=4,b=16,a+b=20.故选:A.【点评】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.13.(•台湾)已知坐标平面上有一长方形ABCD,其坐标分别为A(0,0),B(2,0),C(2,1),D(0,1),今固定B点并将此长方形依顺时针方向旋转,如图所示.若旋转后C点的坐标为(3,0),则旋转后D点的坐标为何()A.(2,2) B.(2,3) C.(3,3) D.(3,2)【分析】先根据旋转后C点的坐标为(3,0),得出点C落在x轴上,再根据AC=3,DC=2,即可得到点D的坐标为(3,2).【解答】解:∵旋转后C点的坐标为(3,0),∴点C落在x轴上,∴此时AC=3,DC=2,∴点D的坐标为(3,2),故选:D.【点评】本题主要考查了旋转的性质以及矩形的性质的运用,解题时注意:矩形的四个角都是直角,对边相等.14.(•台湾)如图为平面上五条直线L1,L2,L3,L4,L5相交的情形,根据图中标示的角度,判断下列叙述何者正确()A.L1和L3平行,L2和L3平行B.L1和L3平行,L2和L3不平行C.L1和L3不平行,L2和L3平行D.L1和L3不平行,L2和L3不平行【分析】根据同旁内角不互补,可得两直线不平行;根据内错角相等,可得两直线平行.【解答】解:∵92°+92°≠180°,∴L1和L3不平行,∵88°=88°,∴L2和L3平行,故选:C.【点评】本题主要考查了平行线的判定,解题时注意:同旁内角互补,两直线平行;内错角相等,两直线平行.15.(•台湾)威立到小吃店买水饺,他身上带的钱恰好等于15粒虾仁水饺或20粒韭菜水饺的价钱,若威立先买了9粒虾仁水饺,则他身上剩下的钱恰好可买多少粒韭菜水饺()A.6 B.8 C.9 D.12【分析】可设1粒虾仁水饺为x元,1粒韭菜水饺为y元,由题意可得到y与x 之间的关系式,再利用整体思想可求得答案.【解答】解:设1粒虾仁水饺为x元,1粒韭菜水饺为y元,则由题意可得15x=20y,∴3x=4y,∴15x﹣9x=6x=2×3x=2×4y=8y,∴他身上剩下的钱恰好可买8粒韭菜水饺,故选B.【点评】本题主要考查方程的应用,利用条件找到1粒虾仁水饺和1粒韭菜水饺的价钱之间的关系是解题的关键,注意整体思想的应用.16.(•台湾)将图1中五边形纸片ABCDE的A点以BE为折线往下折,A点恰好落在CD上,如图2所示,再分别以图2的AB,AE为折线,将C,D两点往上折,使得A、B、C、D、E五点均在同一平面上,如图3所示,若图1中∠A=124°,则图3中∠CAD的度数为何()A.56 B.60 C.62 D.68【分析】根据三角形内角和定理和折叠的性质来解答即可.【解答】解:由图(2)知,∠BAC+∠EAD=180°﹣124°=56°,所以图(3)中∠CAD=180°﹣56°×2=68°.故选:D.【点评】本题考查了多边形内角与外角,结合图形解答,需要学生具备一定的读图能力和空间想象能力.17.(•台湾)若a,b为两质数且相差2,则ab+1之值可能为下列何者()A.392B.402C.412D.422【分析】根据选项的数值,得到ab+1的值,进一步根据平方差公式得到ab的乘积形式,再根据质数的定义即可求解.【解答】解:A、当ab+1=392时,ab=392﹣1=40×38,与a,b为两质数且相差2不符合,故本选项错误;B、当ab+1=402时,ab=402﹣1=41×39,与a,b为两质数且相差2不符合,故本选项错误;C、当ab+1=412时,ab=412﹣1=42×40,与a,b为两质数且相差2不符合,故本选项错误;D、当ab+1=422时,ab=422﹣1=43×41,正好与a,b为两质数且相差2符合,故本选项正确,故选:D.【点评】本题考查的是因式分解的应用,质数的定义,解答此类题目的关键是得到ab是哪两个相差为2的数的积.18.(•台湾)如图,O为锐角三角形ABC的外心,四边形OCDE为正方形,其中E点在△ABC的外部,判断下列叙述何者正确()A.O是△AEB的外心,O是△AED的外心B.O是△AEB的外心,O不是△AED的外心C.O不是△AEB的外心,O是△AED的外心D.O不是△AEB的外心,O不是△AED的外心【分析】根据三角形的外心的性质,可以证明O是△ABE的外心,不是△AED的外心.【解答】解:如图,连接OA、OB、OD.∵O是△ABC的外心,∴OA=OB=OC,∵四边形OCDE是正方形,∴OA=OB=OE,∴O是△ABE的外心,∵OA=OE≠OD,∴O表示△AED的外心,故选B.【点评】本题考查三角形的外心的性质.正方形的性质等知识,解本题的关键是灵活运用所学知识解决问题,属于中考常考题型.19.(•台湾)如图为互相垂直的两直线将四边形ABCD分成四个区域的情形,若∠A=100°,∠B=∠D=85°,∠C=90°,则根据图中标示的角,判断下列∠1,∠2,∠3的大小关系,何者正确()A.∠1=∠2>∠3 B.∠1=∠3>∠2 C.∠2>∠1=∠3 D.∠3>∠1=∠2【分析】根据多边形的内角和与外角和即可判断.【解答】解:∵(180°﹣∠1)+∠2=360°﹣90°﹣90°=180°∴∠1=∠2∵(180°﹣∠2)+∠3=360°﹣85°﹣90°=185°∴∠3﹣∠2=5°,∴∠3>∠2∴∠3>∠1=∠2故选(D)【点评】本题考查多边形的内角与外角,解题的关键是熟练运用多边形的内角和与外角和,本题属于基础题型.20.(•台湾)如图的数轴上有O、A、B三点,其中O为原点,A点所表示的数为106,根据图中数轴上这三点之间的实际距离进行估计,下列何者最接近B点所表示的数()A.2×106B.4×106C.2×107D.4×108【分析】根据数轴上的数据求出OA的长度,从而估算出OB的长度,即可估算出点B表示的数,从而得解.【解答】解:由数轴的信息知:OA=106;∴B点表示的实数为:20=2×107;故选C.【点评】本题考查了数轴与有理数的加法运算,求出点D表示的数是解题的关键.21.(•台湾)如图,△ABC、△ADE中,C、E两点分别在AD、AB上,且BC与DE相交于F点,若∠A=90°,∠B=∠D=30°,AC=AE=1,则四边形AEFC的周长为何()A.2 B.2 C.2+D.2+【分析】根据三角形的内角和得到∠AED=∠ACB=60°,根据三角形的外角的性质得到∠B=∠EFB=∠CFD=∠D,根据等腰三角形的判定得到BE=EF=CF=CD,于是得到四边形AEFC的周长=AB+AC.【解答】解:∵∠A=90°,∠B=∠D=30°,∴∠AED=∠ACB=60°,∵∠AED=∠B+∠EFB=∠ACB=∠CFD+∠D=60°,∴∠EFB=∠CFD=30°,∴∠B=∠EFB=∠CFD=∠D,∴BE=EF=CF=CD,∴四边形AEFC的周长=AB+AC,∵∠A=90°,AE=AC=1,∴AB=AD=,∴四边形AEFC的周长=2.故选B.【点评】本题考查了等腰三角形的性质,解直角三角形,三角形的外角的性质,熟练掌握等腰三角形的判定与性质是解题的关键.22.(•台湾)已知坐标平面上有两个二次函数y=a(x+1)(x﹣7),y=b(x+1)(x ﹣15)的图形,其中a、b为整数.判断将二次函数y=b(x+1)(x﹣15)的图形依下列哪一种方式平移后,会使得此两图形的对称轴重叠()A.向左平移4单位 B.向右平移4单位C.向左平移8单位 D.向右平移8单位【分析】将二次函数解析式展开,结合二次函数的性质找出两二次函数的对称轴,二者做差后即可得出平移方向及距离.【解答】解:∵y=a(x+1)(x﹣7)=ax2﹣6ax﹣7a,y=b(x+1)(x﹣15)=bx2﹣14bx ﹣15b,∴二次函数y=a(x+1)(x﹣7)的对称轴为直线x=3,二次函数y=b(x+1)(x﹣15)的对称轴为直线x=7,∵3﹣7=﹣4,∴将二次函数y=b(x+1)(x﹣15)的图形向左平移4个单位,两图形的对称轴重叠.故选A.【点评】本题考查了二次函数图象与几何变换以及二次函数的性质,根据二次函数的性质找出两个二次函数的对称轴是解题的关键.23.(•台湾)如图为阿辉,小燕一起到商店分别买了数杯饮料与在家分饮料的经过.若每杯饮料的价格均相同,则根据图中的对话,判断阿辉买了多少杯饮料()A.22 B.25 C.47 D.50【分析】根据题意列出算式,计算即可得到结果.【解答】解:根据题意得:[(1000+120)﹣(2000﹣1120)]÷6=40,880÷40=22(杯),则阿辉买了22杯饮料,故选A【点评】此题考查了有理数的混合运算,列出正确的算式是解本题的关键.24.(•台湾)如图,水平桌面上有个内部装水的长方体箱子,箱内有一个与底面垂直的隔板,且隔板左右两侧的水面高度为别为40公分,50公分,今将隔板抽出,若过程中箱内的水量未改变,且不计箱子及隔板厚度,则根据图中的数据,求隔板抽出后水面静止时,箱内的水面高度为多少公分()A.43 B.44 C.45 D.46【分析】设长方形的宽为x公分,抽出隔板后之水面高度为h公分,根据题意列出方程,求出方程的解即可.【解答】解:设长方形的宽为x公分,抽出隔板后之水面高度为h公分,长方形的长为130+70=200(公分)×40+×50=200•x•h,解得:h=44,故选B.【点评】本题考查了一元一次方程的应用,能根据题意列出方程是解此题的关键.25.(•台湾)如图,某计算机中有、、三个按键,以下是这三个按键的功能.1.:将荧幕显示的数变成它的正平方根,例如:荧幕显示的数为49时,按下后会变成7.2.:将荧幕显示的数变成它的倒数,例如:荧幕显示的数为25时,按下后会变成0.04.3.:将荧幕显示的数变成它的平方,例如:荧幕显示的数为6时,按下后会变成36.若荧幕显示的数为100时,小刘第一下按,第二下按,第三下按,之后以、、的顺序轮流按,则当他按了第100下后荧幕显示的数是多少()A.0.01 B.0.1 C.10 D.100【分析】根据题中的按键顺序确定出显示的数即可.【解答】解:根据题意得:=10,=0.1,0.12=0.01,=0.1,=10,102=100,100÷6=16…4,则第100次为0.1.故选B【点评】此题考查了计算器﹣数的平方,弄清按键顺序是解本题的关键.26.(•台湾)如图为两正方形ABCD,BPQR重叠的情形,其中R点在AD上,CD 与QR相交于S点.若两正方形ABCD、BPQR的面积分别为16、25,则四边形RBCS的面积为何()A.8 B.C.D.【分析】根据正方形的边长,根据勾股定理求出AR,求出△ABR∽△DRS,求出DS,根据面积公式求出即可.【解答】解:∵正方形ABCD的面积为16,正方形BPQR面积为25,∴正方形ABCD的边长为4,正方形BPQR的边长为5,在Rt△ABR中,AB=4,BR=5,由勾股定理得:AR=3,∵四边形ABCD是正方形,∴∠A=∠D=∠BRQ=90°,∴∠ABR +∠ARB=90°,∠ARB +∠DRS=90°, ∴∠ABR=∠DRS , ∵∠A=∠D , ∴△ABR ∽△DRS , ∴=, ∴=,∴DS=,∴阴影部分的面积S=S 正方形ABCD ﹣S △ABR ﹣S △RDS =4×4﹣﹣1××=,故选D .【点评】本题考查了正方形的性质,相似三角形的性质和判定,能求出△ABR 和△RDS 的面积是解此题的关键.二、解答题(本大题共2小题)27.(•台湾)今有甲、乙、丙三名候选人参与某村村长选举,共发出1800张选票,得票数最高者为当选人,且废票不计入任何一位候选人之得票数内,全村设有四个投开票所,目前第一、第二、第三投开票所已开完所有选票,剩下第四投开票所尚未开票,结果如表所示: 投开票所候选人 废票 合计甲乙 丙 一 200 211 147 12 570 二2868524415630三97412057350四250(单位:票)请回答下列问题:(1)请分别写出目前甲、乙、丙三名候选人的得票数;(2)承(1),请分别判断甲、乙两名候选人是否还有机会当选村长,并详细解释或完整写出你的解题过程.【分析】(1)直接根据题意将三个投票所得所有票数相加得出答案;(2)利用(1)中所求,进而分别分析得票的张数得出答案.【解答】解:(1)由图表可得:甲得票数为:200+286+97=583;乙得票数为:211+85+41=337;丙得票数为:147+244+205=596;(2)由(1)得:596﹣583=13,即丙目前领先甲13票,所以第四投票所甲赢丙14票以上,则甲当选,故甲可能当选;596﹣337=259>250,若第四投票所250票皆给乙,乙的总票数仍然比丙低,故乙不可能当选.【点评】此题主要考查了推理与论证,正确利用表格中数据分析得票情况是解题关键.28.(•台湾)如图,在坐标平面上,O为原点,另有A(0,3),B(﹣5,0),C (6,0)三点,直线L通过C点且与y轴相交于D点,请回答下列问题:(1)已知直线L的方程为5x﹣3y=k,求k的值.(2)承(1),请完整说明△AOB与△COD相似的理由.【分析】(1)利用函数图象上的点的特点,即可求出k的值;(2)先求出OA,OB,OC,OD,即可得出,即可得出结论.【解答】解:(1)∵直线L:5x﹣3y=k过点C(6,0),∴5×6﹣3×0=k,∴k=30,(2)由(1)知,直线L:5x﹣3y=30,∵直线L与y轴的交点为D,令x=0,∴﹣3y=30,∴y=﹣10,∴D(0,﹣10),∴OD=10,∵A(0,3),B(﹣5,0),C(6,0),∴OA=3,OB=5,OC=6,∴=,=,∴,∵∠AOB=∠COD=90°,∴△AOB∽△COD.【点评】此题是一次函数综合题,主要考查了函数图象上点的特点,相似三角形的判定,解本题的根据是求出点D的坐标.。

台湾省第二次中考数学试卷

台湾省第二次中考数学试卷

2018年台湾省第二次中考数学试卷一、选择题(共34小题,每小题5分,满分170分)1、(2018•台湾)若下列只有一个图形不是右图的展开图,则此图为何?()A、B、C、D、考点:几何体的展开图。

专题:几何图形问题。

分析:能将展开图还原成立体图形,即可作出判断.解答:解:选项D的四个三角形面不能折叠成原图形的四棱锥,而是有一个三角形面与正方形面重合,故不能组合成原题目的立体图形.故选D.点评:考查了生活中的立体图形,由平面图形的折叠及几何体的展开图解题.2、(2018•台湾)计算﹣+(﹣2)之值为何?()A、﹣B、﹣2C、﹣D、﹣14考点:有理数的加减混合运算。

分析:根据有理数的运算法则,可以首先计算﹣和﹣2的和,再进一步根据绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并让较大的绝对值减去较小的绝对值.解答:解:﹣+(﹣2),=﹣(+2),=﹣3,=﹣2.故选B.点评:此题考查了有理数的加减运算法则,注意其中的简便计算方法:分别让其中的正数和负数结合计算.3、(2018•台湾)安安班上有九位同学,他们的体重资料如下:57,54,47,42,49,48,45,47,50.(单位:公斤)关于此数据的中位数与众数的叙述,下列何者正确?()A、中位数为49B、中位数为47C、众数为57D、众数为47考点:众数;中位数。

专题:计算题。

分析:根据定义,对选项一一分析,采用排除法选择正确答案.解答:解题技巧:先将所有的数据值依序排列后才取中位数[解析]将9笔资料值由小到大依序排列如下:42,45,47,47,48,49,50,54,57∵(9+1)÷2=5,∴中位数取第5笔资料值,即中位数=48,∵47公斤的次数最多(2次)∴众数=47,故选(D)教材对应:统计量点评:本题考查了众数及中位数的定义,解题的关键是掌握统计中的有关概念.4、(2018•台湾)若二元一次联立方程式的解为x=a,y=b,则a+b之值为何?()A、1B、3C、4D、6考点:解二元一次方程组。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年台湾省中考数学试卷第一部分:选择题(第1~26题)1.(3分)下列选项中的图形有一个为轴对称图形,判断此形为何?(). CDA.. B .﹣,判断下列叙述(﹣﹣(2.(﹣)﹣,3c=分)已知a=)﹣,b=)何者正确?(A.a=c,b=c B.a=c,b≠c C.a≠c,b=c D.a≠c,b≠c3.(3分)已知坐标平面上,一次函数y=3x+a的图形通过点(0,﹣4),其中a 为一数,求a的值为何?()A.﹣12B.﹣4 C.4D.124.(3分)已知某文具店贩售的笔记本每本售价均相等且超过10元,小锦和小勤在此文具店分别购买若干本笔记本.若小绵购买笔记本的花费为36元,则小勤购买笔记本的花费可能为下列何者?()A.16元 B.27元 C.30元 D.48元分)若二元一次联立方程式3.(之值为何?()5,则的解为x=a,y=ba+b A.24 B.0C.﹣4 D.﹣86.(3分)已知甲、乙两袋中各装有若干颗球,其种类与数量如表所示“今阿冯打算从甲袋中抽出一颗球,小潘打算从乙袋中抽出一颗球,若甲袋中每颗球被抽出的机会相等,且乙袋中每颗球被抽出的机会相等,则下列叙述何者正确?()甲乙红黄绿总计5颗颗10A.阿冯抽出红球的机率比小潘抽出红球的机率大1B.阿冯抽出红球的机率比小潘抽出红球的机率小C.阿冯抽出黄球的机率比小潘抽出黄球的机率大D.阿冯抽出黄球的机率比小潘抽出黄球的机率小×(﹣1)之值为何?(3 分)算式).7(2. B.. C D.1A2﹣8x﹣3×11=0的两根为a、b,且a>b,则(8.3分)若一元二次方程式xa ﹣2b之值为何?()A.﹣25B.﹣19C.5D.179.(3分)如图,△ABC中,D为BC的中点,以D为圆心,BD长为半径画一弧交AC于E点,若∠A=60°,∠B=100°,BC=4,则扇形BDE的面积为何?(). CDA.. B.10.(3分)如图为大兴电器行的促销活动传单,已知促销第一天美食牌微波炉卖出10台,且其销售额为61000元,若活动期间此款微波炉总共卖出50台,则其总销售额为多少元?()A.305000 B.321000 C.329000 D.34200011.(3分)如图,五边形ABCDE中有一正三角形ACD,若AB=DE,BC=AE,∠E=115°,则∠BAE的度数为何?()2130..125 D.115 B.120 CA,若,OA=OB四点在数线上的位置图,其中O为原点,且AC=1分)如图为3O、A、B、C12.(),则B点所表示的数与下列何者相等?(点所表示的数为Cx1﹣x+1 D.xx﹣1) C.BA.﹣(x+1).﹣(分)如图的宣传单为菜克印刷公司设计与印刷卡片计价方式的说明,妮娜打算请此印313.(若利润等于收入扣元的价格贩售.她再将卡片以每张15刷公司设计一款母亲节卡片并印刷,出掉成本,且成本只考虑设计费与印刷费,则她至少需印多少张卡片,才可使得卡片全数售)成?(后的利润超过成本的2143134 D.112 B.121 C.A.,若∠B=44°,∠C=56°,BCID⊥点在ABC的内心,DBC上,且点为△(14.3分)如图,I) AID则∠的度数为何?(180..178 D176 CA.174 B.的直角三角形.若下列选项中的13、、分)如图为一直棱柱,其底面是三边长为(15.3512 3图形均由三个矩形与两个直角三角形组合而成,且其中一个为如图的直棱柱的展开图,则根据图形中标示的边长与直角记号判断,此展开图为何?().DC.. B .A16.(3分)若小舒从1~50的整数中挑选4个数,使其由小到大排序后形成一等差数列,且4个数中最小的是7,则下列哪一个数不可能出现在小舒挑选的数之中?()A.20 B.25 C.30 D.35﹣4﹣8,判断下列关于a﹣b之值的叙述何者正确?10(,b=5.2×10 ).17(3分)已知a=3.1×A.比1大 B.介于0、1之间 C.介于﹣1、0之间 D.比﹣1小18.(3分)如图,锐角三角形ABC中,BC>AB>AC,甲、乙两人想找一点P,使得∠BPC与∠A互补,其作法分别如下:(甲)以A为圆心,AC长为半径画弧交AB于P点,则P即为所求;(乙)作过B点且与AB垂直的直线l,作过C点且与AC垂直的直线,交l于P 点,则P即为所求对于甲、乙两人的作法,下列叙述何者正确?()A.两人皆正确 B.两人皆错误C.甲正确,乙错误 D.甲错误,乙正确19.(3分)已知甲、乙两班的学生人数相同,如图为两班某次数学小考成绩的盒状图,若甲班、乙班学生小考成绩的中位数分别为a、b;甲班、乙班中小考成绩超过80分的学生人数分别为c、d,则下列a、b、c、d的大小关系,何者正确?()4dc<<b,><b,cd D.a>>b,cd B.a>b,c<d C.aA.a2A点往右折,如图上,今以BE为折线将的矩形ABCD中,有一点E在AD120.(3分)如图,∠BC=13AB=6,于F点,如图3所示,若CD所示,再作过A点且与垂直的直线,交CD) BEA=60°,则图3中AF的长度为何?(4DC4 ..2 A.2 B.2的图形y=3x+ay+2=0,且L与二次函数,其方程式为21.(3分)已知坐标平面上有一直线L2,若AB=2a、b为整数.+b的图形相交于C,D两点,其中﹣相交于A,B两点:与二次函数y=2x).则a+b之值为何?(CD=424..C16 DA.1 B.9点作两直线,两直线与P点的公切线为L,过3分)如图,两圆外切于P点,且通过P(22.,则下列角度关系何者正确?CP=9AP=10,、C、D,其位置如图所示,若两圆的交点为A、B)(PDB<∠D.∠PBDPAC C.∠PBD>∠PDB <∠PAC A.∠PBD>∠B.∠PBD,小柔:6分)小柔要榨果汁,她有苹果、芭乐、柳丁三种水果,且其颗数比为9:7323.(,已知小柔榨果汁时没有使用柳丁,4:3:榨完果汁后,苹果、芭乐、柳丁的颗数比变为6)关于她榨果汁时另外两种水果的使用情形,下列叙述何者正确?(.只使用苹果A.只使用芭乐B.使用苹果及芭乐,且使用的苹果颗数比使用的芭乐颗数多C5D.使用苹果及芭乐,且使用的芭乐颗数比使用的苹果颗数多24.(3分)如图,△ABC、△FGH中,D、E两点分别在AB、AC上,F点在DE上,G、H两点在BC上,且DE∥BC,FG∥AB,FH∥AC,若BG:GH:HC=4:6:5,则△ADE与△FGH的面积比为何?()A.2:1 B.3:2 C.5:2 D.9:425.(3分)某商店将巧克力包装成方形、圆形礼盒出售,且每盒方形礼盒的价钱相同,每盒圆形礼盒的价钱相同.阿郁原先想购买3盒方形礼盒和7盒圆形礼盒,但他身上的钱会不足240元,如果改成购买7盒方形礼盒和3盒形礼盒,他身上的钱会剩下240元.若阿郁最后购买10盒方形礼盒,则他身上的钱会剩下多少元?()A.360 B.480 C.600 D.72026.(3分)如图,坐标平面上,A、B两点分别为圆P与x轴、y轴的交点,有一直线L通过P点且与AB垂直,C点为L与y轴的交点.若A、B、C的坐标分别为(a,0),(0,4),(0,﹣5),其中a<0,则a的值为何?()2 C.﹣8 D.﹣2 B.﹣.﹣7A第二部分:非选择题(第1~2题)27.一个箱子内有4颗相同的球,将4颗球分别标示号码1、2、3、4,今翔翔以每次从箱子内取一颗球且取后放回的方式抽取,并预计取球10次,现已取了8次,取出的结果如表所列:61若每次取球时,任一颗球被取到的机会皆相等,且取出的号码即为得分,请回答下列问题:次得分的平均数.次至第8(1)请求出第1次得分的次,请判断是否可能发生「这10),翔翔打算依计划继续从箱子取球2(2)承(1」的情形?若有可能,请计算出发生此情形的机率,并完整2.4,且不大于平均数不小于2.2写出你的解题过程;若不可能,请完整说明你的理由.点,且每B的方格棋盘上从A点行走至28.嘉嘉参加机器人设计活动,需操控机器人在5×5,其行经位置如图与表所示:RR,个小方格皆为正方形,主办单312AB、CD、这三条路径中,最长与最短的路径分别为何?R、、使用任何工具测量的条件下,请判断RR321请写出你的答案,并完整说明理由.72018年台湾省中考数学试卷参考答案与试题解析第一部分:选择题(第1~26题)1.(3分)下列选项中的图形有一个为轴对称图形,判断此形为何?().D. B . AC.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形.这条直线叫做对称轴.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,对称轴为两宽的中点的连线所在的直线,故本选项正确.故选:D.【点评】本题考查轴对称图形,注意掌握轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.﹣c=,判断下列叙述)﹣,b=﹣(2.3分)已知a=﹣((﹣),﹣)何者正确?(c,cb≠.cC,b=c A.a=c,B.a=cb≠c .a≠,b=c Da≠的关系即可.cc【分析】根据有理数的减法的运算方法,判断出a、,b、c=﹣)﹣﹣a=解:【解答】∵(=﹣﹣,b=(﹣)=﹣+,,﹣﹣∴a=c,b≠c.故选:B.【点评】此题主要考查了有理数的减法,要熟练掌握,解答此题的关键是要明确:有理数减法法则:减去一个数,等于加上这个数的相反数.83.(3分)已知坐标平面上,一次函数y=3x+a的图形通过点(0,﹣4),其中a 为一数,求a的值为何?()A.﹣12B.﹣4 C.4D.12【分析】利用待定系数法即可解决问题.【解答】解:∵次函数y=3x+a的图形通过点(0,﹣4),∴﹣4=0×3+a,∴a=﹣4,故选:B.【点评】本题考查一次函数的应用、待定系数法等知识,熟练掌握待定系数法是解题的关键,属于中考基础题.4.(3分)已知某文具店贩售的笔记本每本售价均相等且超过10元,小锦和小勤在此文具店分别购买若干本笔记本.若小绵购买笔记本的花费为36元,则小勤购买笔记本的花费可能为下列何者?()A.16元 B.27元 C.30元 D.48元【分析】直接利用小绵购买笔记本的花费为36元,得出笔记本的单价,进而得出小勤购买笔记本的花费.【解答】解:∵某文具店贩售的笔记本每本售价均相等且超过10元,小绵购买笔记本的花费为36元,∴笔记本的单价为:36÷3=12(元)或36÷2=18(元)或36元;故小勤购买笔记本的花费为:12或18或36的倍数,只有选项48符合题意.故选:D.【点评】此题主要考查了质因数分解,正确得出笔记本的单价是解题关键.分)若二元一次联立方程式的解为x=a,y=b,则a+b之值为何?(.5(3 )8.﹣0B.A24 .C4 D.﹣【分析】利用加减法解二元一次方程组,求得a、b的值,再代入计算可得答案.9 ,【解答】解:,﹣16,得:﹣①﹣②×32x=,解得:x=8,﹣y=8将x=8代入②,得:24,解得:y=16,、b=16即a=8,则a+b=24.A故选:【点评】本题主要考查二元一次方程组的解,解题的关键是熟练掌握加减消元法解二元一次方程组的能力.分)已知甲、乙两袋中各装有若干颗球,其种类与数量如表所示“今阿冯打算从甲袋36.(中抽出一颗球,小潘打算从乙袋中抽出一颗球,若甲袋中每颗球被抽出的机会相等,且乙袋)中每颗球被抽出的机会相等,则下列叙述何者正确?(红球42颗颗黄球2颗2颗绿球4颗1颗总计510颗颗.阿冯抽出红球的机率比小潘抽出红球的机率大A.阿冯抽出红球的机率比小潘抽出红球的机率小B.阿冯抽出黄球的机率比小潘抽出黄球的机率大C.阿冯抽出黄球的机率比小潘抽出黄球的机率小D【分析】根据概率公式分别计算出两人抽出红球、黄球的概率,比较大小即可得.,、抽出黄球的机率为【解答】解:∵阿冯抽出红球的机率为,==小潘抽出红球的机率为,小潘抽出黄球的机率为∴阿冯抽出红球的机率与小潘抽出红球的机率相等,阿冯抽出黄球的机率比小潘抽出黄球的机率大,10故选:C.【点评】本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.×(﹣1)之值为何?(.(3 分)算式)72.A1. B .C D.【分析】根据乘法分配律可以解答本题.×(﹣【解答】解:1),=故选:A.【点评】本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.2﹣8x﹣3×11=0的两根为a、b,且a>b,则a8.(3分)若一元二次方程式x﹣2b之值为何?()A.﹣25B.﹣19C.5D.17【分析】先利用因式分解法解方程得到a=11,b=﹣3,然后计算代数式a﹣2b的值.【解答】解:(x﹣11)(x+3)=0,x﹣11=0或x﹣3=0,所以x=11,x=﹣3,21即a=11,b=﹣3,所以a﹣2b=11﹣2×(﹣3)=11+6=17.故选:D.【点评】本题考查了解一元二次方程﹣因式分解法:因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).9.(3分)如图,△ABC中,D为BC的中点,以D为圆心,BD长为半径画一弧交AC于E点,11若∠A=60°,∠B=100°,BC=4,则扇形BDE的面积为何?().D.. B. AC【分析】求出扇形的圆心角以及半径即可解决问题;【解答】解:∵∠A=60°,∠B=100°,∴∠C=180°﹣60°﹣100°=20°,∵DE=DC,∴∠C=∠DEC=20°,∴∠BDE=∠C+∠DEC=40°,==π.∴S DBE扇形.故选:C【点评】本题考查扇形的面积公式、三角形内角和定理等知识,解题的关键是记住扇形的面.积公式:S=台,.10(3分)如图为大兴电器行的促销活动传单,已知促销第一天美食牌微波炉卖出10台,则其总销售额为多少元?且其销售额为6100050元,若活动期间此款微波炉总共卖出)(A.305000 B.321000 C.329000 D.342000【分析】根据题意求出此款微波炉的单价,列式计算即可.【解答】解:此款微波炉的单价为(61000+10×800)÷10=6900,12则卖出50台的总销售额为:61000×2+6900×30=329000,故选:C.【点评】本题考查的是有理数的混合运算,根据题意正确列出算式是解题的关键.(3分)如图,五边形ABCDE中有一正三角形ACD,若AB=DE,BC=AE,∠E=115°,11.则∠BAE的度数为何?()A.115 B.120 C.125 D.130【分析】根据全等三角形的判定和性质得出△ABC与△AED全等,进而得出∠B=∠E,利用多边形的内角和解答即可.【解答】解:∵正三角形ACD,∴AC=AD,∠ACD=∠ADC=∠CAD=60°,∵AB=DE,BC=AE,∴△ABC≌△AED,∴∠B=∠E=115°,∠ACB=∠EAD,∠BAC=∠ADE,∴∠ACB+∠BAC=∠BAC+∠DAE=180°﹣115°=65°,∴∠BAE=∠BAC+∠DAE+∠CAD=65°+60°=125°,故选:C.【点评】此题考查全等三角形的判定和性质,关键是根据全等三角形的判定和性质得出△ABC与△AED全等.12.(3分)如图为O、A、B、C四点在数线上的位置图,其中O为原点,且AC=1,OA=OB,若C点所表示的数为x,则B点所表示的数与下列何者相等?()A.﹣(x+1) B.﹣(x﹣1) C.x+1 D.x﹣1【分析】首先根据AC=1,C点所表示的数为x,求出A表示的数是多少,然后根据OA=OB,求13出B点所表示的数是多少即可.【解答】解:∵AC=1,C点所表示的数为x,∴A点表示的数是x﹣1,又∵OA=OB,∴B点和A点表示的数互为相反数,∴B点所表示的数是﹣(x﹣1).故选:B.【点评】此题主要考查了在数轴上表示数的方法,以及数轴的特征和应用,要熟练掌握.13.(3分)如图的宣传单为菜克印刷公司设计与印刷卡片计价方式的说明,妮娜打算请此印刷公司设计一款母亲节卡片并印刷,她再将卡片以每张15元的价格贩售.若利润等于收入扣掉成本,且成本只考虑设计费与印刷费,则她至少需印多少张卡片,才可使得卡片全数售出后的利润超过成本的2成?()A.112 B.121 C.134 D.143【分析】设妮娜需印x张卡片,根据利润=收入﹣成本结合利润超过成本的2成,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,取其内最小的整数即可得出结论.【解答】解:设妮娜需印x张卡片,根据题意得:15x﹣1000﹣5x>0.2(1000+5x),133,x解得:>∵x为整数,∴x≥134.答:妮娜至少需印134张卡片,才可使得卡片全数售出后的利润超过成本的2成.14故选:C.【点评】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.14.(3分)如图,I点为△ABC的内心,D点在BC上,且ID⊥BC,若∠B=44°,∠C=56°,则∠AID的度数为何?()A.174 B.176 C.178 D.180【分析】连接CI,利用三角形内角和定理可求出∠BAC的度数,由I点为△ABC 的内心,可得出∠CAI、∠ACI、∠DCI的度数,利用三角形内角和定理可得出∠AIC、∠CID的度数,再由∠AID=∠AIC+∠CID即可求出∠AID的度数.【解答】解:连接CI,如图所示.在△ABC中,∠B=44°,∠ACB=56°,∴∠BAC=180°﹣∠B﹣∠ACB=80°.∵I点为△ABC的内心,DCI=∠ACB=28°,ACI=∴∠∠CAI=∠BAC=40°,∠∴∠AIC=180°﹣∠CAI﹣∠ACI=112°,又ID⊥BC,∴∠CID=90°﹣∠DCI=62°,∴∠AID=∠AIC+∠CID=112°+62°=174°.故选:A.【点评】本题考查了三角形的内心、三角形内角和定理以及角平分线的性质,根据三角形内15心的性质结合三角形内角和定理求出∠AIC、∠CID的度数是解题的关键.15.(3分)如图为一直棱柱,其底面是三边长为5、12、13的直角三角形.若下列选项中的图形均由三个矩形与两个直角三角形组合而成,且其中一个为如图的直棱柱的展开图,则根据图形中标示的边长与直角记号判断,此展开图为何?().D.. CA . B【分析】三棱柱的侧面展开图是长方形,底面是三角形,据此进行判断即可.【解答】解:A选项中,展开图下方的直角三角形的斜边长为12,不合题意;B选项中,展开图上下两个直角三角形中的直角边不能与其它棱完全重合,不合题意;C选项中,展开图下方的直角三角形中的直角边不能与其它棱完全重合,不合题意;D选项中,展开图能折叠成一个三棱柱,符合题意;故选:D.【点评】本题主要考查了几何体的展开图,从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.16.(3分)若小舒从1~50的整数中挑选4个数,使其由小到大排序后形成一等差数列,且4个数中最小的是7,则下列哪一个数不可能出现在小舒挑选的数之中?()A.20 B.25 C.30 D.35【分析】A、找出7,20、33、46为等差数列,进而可得出20可以出现,选项A 不符合题意;B、找出7、16、25、34为等差数列,进而可得出25可以出现,选项B不符合题意;C、由30﹣7=23,23为质数,30+23>50,进而可得出30不可能出现,选项C 符合题意;D、找出7、21、35、49为等差数列,进而可得出35可以出现,选项D不符合题意.【解答】解:A、∵7,20、33、46为等差数列,16∴20可以出现,选项A不符合题意;B、∵7、16、25、34为等差数列,∴25可以出现,选项B不符合题意;C、∵30﹣7=23,23为质数,30+23>50,∴30不可能出现,选项C符合题意;D、∵7、21、35、49为等差数列,∴35可以出现,选项D不符合题意.故选:C.【点评】本题考查了规律型中数字的变化类,根据等差数列的定义结合四个选项中的数字,找出符合题意得等差数列是解题的关键.﹣4﹣8,判断下列关于a﹣b之值的叙述何者正确?(a=3.1×10 ,b=5.2×10 ).17(3分)已知A.比1大 B.介于0、1之间 C.介于﹣1、0之间 D.比﹣1小【分析】由科学计数法还原a、b两数,相减计算结果可得答案.﹣4﹣8,10,【解答】解:∵a=3.1×10b=5.2×∴a=0.00031、b=0.000000052,则a﹣b=0.000309948,故选:B.【点评】本题主要考查科学计数法﹣表示较小的数,用科学记数法表示较小的数,一般形式﹣n,其中1≤|a|<10,为a×10n为由原数左边起第一个不为零的数字前面的0的个数所决定.18.(3分)如图,锐角三角形ABC中,BC>AB>AC,甲、乙两人想找一点P,使得∠BPC与∠A互补,其作法分别如下:(甲)以A为圆心,AC长为半径画弧交AB于P点,则P即为所求;(乙)作过B点且与AB垂直的直线l,作过C点且与AC垂直的直线,交l于P 点,则P即为所求对于甲、乙两人的作法,下列叙述何者正确?()17.两人皆错误 BA.两人皆正确.甲错误,乙正确DC.甲正确,乙错误,由平角的定义可知:ACPAPC=∠【分析】甲:根据作图可得AC=AP,利用等边对等角得:∠°,根据等量代换可作判断;APC=180BPC+∠∠∠A=180°.根据四边形的内角和可得:∠BPC+乙:,,∵AC=AP【解答】解:甲:如图1,∠ACP∴∠APC=∠APC=180°BPC+∵∠∠ACP=180°,BPC+∴∠∴甲错误;,⊥PC⊥PB,AC,∵乙:如图2AB∠ACP=90°,ABP=∴∠∠A=180°,BPC+∴∠∴乙正确,.D故选:【点评】本题考查了垂线的定义、四边形的内角和定理、等腰三角形的性质,正确的理解题18意是解题的关键.19.(3分)已知甲、乙两班的学生人数相同,如图为两班某次数学小考成绩的盒状图,若甲班、乙班学生小考成绩的中位数分别为a、b;甲班、乙班中小考成绩超过80分的学生人数分别为c、d,则下列a、b、c、d的大小关系,何者正确?()A.a>b,c>d B.a>b,c<d C.a<b,c>d D.a<b,c<d【分析】根据中位数的定义和成绩分布进行判断.【解答】解:根据盒状图得到a>b,c<d.故选:B.【点评】本题考查了中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.20.(3分)如图1的矩形ABCD中,有一点E在AD上,今以BE为折线将A点往右折,如图2AB=6,BC=13,∠于F点,如图3所示,若所示,再作过A点且与CD垂直的直线,交CD)AF中的长度为何?( BEA=60°,则图34.2 4 2 B.C.D.AAH=CF=3.在Rt△ABH中,解直AF=CHHAH【分析】作⊥BC于.则四边形AFCH是矩形,,角三角形即可解决问题;AH=CF=3,.AF=CHAFCHHBCAH【解答】解:作⊥于.则四边形是矩形,19中,∠ABH=30°,AHBRt△在∴BH=AB?cos30°=9,,9=4BH=13﹣∴CH=BC﹣,AF=CH=4∴.B故选:【点评】本题考查翻折变换、矩形的性质、勾股定理、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.2的图形+a,且L与二次函数y=3x21.(3分)已知坐标平面上有一直线L,其方程式为y+2=02,AB=2b为整数.若两点,C,D其中a﹣相交于A,B两点:与二次函数y=2x、+b的图形相交于) a+b之值为何?( CD=4.则24.16 DB.9C.A.1即可;、b、AC两点坐标,利用待定系数法求出a【分析】判断出【解答】解:如图,,)2,﹣2,﹣12),C(由题意A(22,b=6﹣a=5,分别代入y=3x,+ay=﹣2x+b可得,a+b=1∴.故选:A【点评】本题考查二次函数图形上点的坐标特征,待定系数法等知识,解题的关键是理解题两点坐标是解决问题的关键.、CA意,判断出2022.(3分)如图,两圆外切于P点,且通过P点的公切线为L,过P点作两直线,两直线与两圆的交点为A、B、C、D,其位置如图所示,若AP=10,CP=9,则下列角度关系何者正确?()A.∠PBD>∠PAC B.∠PBD<∠PAC C.∠PBD>∠PDB D.∠PBD<∠PDB【分析】根据大边对大角,平行线的判定和性质即可判断;【解答】解:如图,∵直线l是公切线∴∠1=∠B,∠2=∠A,∵∠1=∠2,∴∠A=∠B,∴AC∥BD,∴∠C=∠D,∵PA=10,PC=9,∴PA>PC,∴∠C>∠A,∴∠D>∠B.故选:D.【点评】本题考查圆与圆的位置关系,直线与圆的位置关系,相切两个圆的性质等知识,解题的关键是证明AC∥BD.23.(3分)小柔要榨果汁,她有苹果、芭乐、柳丁三种水果,且其颗数比为9:7:6,小柔榨完果汁后,苹果、芭乐、柳丁的颗数比变为6:3:4,已知小柔榨果汁时没有使用柳丁,21关于她榨果汁时另外两种水果的使用情形,下列叙述何者正确?()A.只使用苹果B.只使用芭乐C.使用苹果及芭乐,且使用的苹果颗数比使用的芭乐颗数多D.使用苹果及芭乐,且使用的芭乐颗数比使用的苹果颗数多【分析】根据三种水果的颗数的关系,设出三种水果的颗数,再根据榨果汁后的颗数的关系,求出榨果汁后,苹果和芭乐的颗数,进而求出苹果,芭乐的用量,即可得出结论.【解答】解:∵苹果、芭乐、柳丁三种水果,且其颗数比为9:7:6,∴设苹果为9x颗,芭乐7x颗,铆钉6x颗(x是正整数),∵小柔榨果汁时没有使用柳丁,∴设小柔榨完果汁后,苹果a颗,芭乐b颗,∵小柔榨完果汁后,苹果、芭乐、柳丁的颗数比变为6:3:4,,∴,b=x,∴a=9x,∴苹果的用量为9x﹣a=9x﹣9x=0,x=x>07x﹣b=7x﹣,芭乐的用量为∴她榨果汁时,只用了芭乐,故选:B.【点评】此题是推理与论证题目,主要考查了根据比例的关系,比例的性质,求出榨汁后苹果和芭乐的数量是解本题的关键.24.(3分)如图,△ABC、△FGH中,D、E两点分别在AB、AC上,F点在DE上,G、H两点在BC上,且DE∥BC,FG∥AB,FH∥AC,若BG:GH:HC=4:6:5,则△ADE与△FGH的面积比为何?()2249:2 D.3:2 C.5:A.2:1 B.2,可得ADE∽△=)(FGH,由此即可解决问题;【分析】只要证明△,HC=5k,GH=6k,6:5,可以假设BG=4k:【解答】解:∵BG:GH:HC=4,ACFH∥,BCFG∥AB,∵DE∥是平行四边形,EFHCBGFD是平行四边形,四边形∴四边形,∠C=AEDADE,∠FHG=∠,EF=HC=5k,DE=DF+EF=9k,∠FGH=∠B=∠∴DF=BG=4k ,∽△FGH∴△ADE22.(∴=)()==.故选:D【点评】本题考查相似三角形的判定和性质,平行四边形的判定和性质等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.分)某商店将巧克力包装成方形、圆形礼盒出售,且每盒方形礼盒的价钱相同,每盒325.(盒圆形礼盒,但他身上的钱会不足7圆形礼盒的价钱相同.阿郁原先想购买3盒方形礼盒和元.若阿郁最后2403盒形礼盒,他身上的钱会剩下盒方形礼盒和240元,如果改成购买7)盒方形礼盒,则他身上的钱会剩下多少元?(购买10720600 D.480 C.360 B..A3x+7y元,根据阿郁身上的钱数不变得出方程元,每盒圆形礼盒yx【分析】设每盒方形礼盒盒方形礼盒后他身上的钱会10﹣x=120.那么阿郁最后购买240=7x+3y+240﹣,化简整理得y计算即可.﹣x=120)+240,将y﹣,化简得剩下(7x+3y+240)﹣10x3(yx)﹣3x+7y240元,每盒圆形礼盒【解答】解:设每盒方形礼盒xy元,则阿郁身上的钱有()元.元或(7x+3y+240,﹣240=7x+3y+2403x+7y由题意,可得23化简整理,得y﹣x=120.若阿郁最后购买10盒方形礼盒,则他身上的钱会剩下:(7x+3y+240)﹣10x=3(y﹣x)+240=3×120+240=600(元).故选:C.【点评】本题考查了二元一次方程的应用,分析题意,找到关键描述语,得出每盒方形礼盒与每盒圆形礼盒的钱数之间的关系是解决问题的关键.26.(3分)如图,坐标平面上,A、B两点分别为圆P与x轴、y轴的交点,有一直线L通过P点且与AB垂直,C点为L与y轴的交点.若A、B、C的坐标分别为(a,0),(0,4),(0,﹣5),其中a<0,则a的值为何?()2 C.﹣ B.﹣8 D.﹣7A.﹣2【分析】连接AC,根据线段垂直平分线的性质得到AC=BC,根据勾股定理求出OA,得到答案.【解答】解:连接AC,由题意得,BC=OB+OC=9,∵直线L通过P点且与AB垂直,∴直线L是线段AB的垂直平分线,∴AC=BC=9,=2,AOC中,AO=△在Rt,0<∵a,﹣a=2∴.故选:A24【点评】本题考查的是垂径定理、坐标与图形的性质以及勾股定理,掌握垂径定理的推论是解题的关键.)题(第1~2第二部分:非选择题,今翔翔以每次从箱子4、3、4颗球分别标示号码1、2颗相同的球,将27.一个箱子内有4取出的结果如表所列:次,次,现已取了8内取一颗球且取后放回的方式抽取,并预计取球101414324号码1即为得分,请回答下列问题:若每次取球时,任一颗球被取到的机会皆相等,且取出的号码次得分的平均数.8)请求出第1次至第(1次得分的102次,请判断是否可能发生「这2)承(1),翔翔打算依计划继续从箱子取球(」的情形?若有可能,请计算出发生此情形的机率,并完整2.42.2,且不大于平均数不小于写出你的解题过程;若不可能,请完整说明你的理由.)根据算术平均数的定义列式计算可得;(1【分析】得出后两次得分的范围,再列,且不大于2.410次得分的平均数不小于2.2)先根据这(2表得出所有等可能结果,从中找打符合条件的结果数,利用概率公式计算可得.;=2.5次至第8次得分的平均数【解答】解:(1)第1,,且不大于2.4102)∵这次得分的平均数不小于2.2(,24次得分之和不小于22、不大于10∴这,次的得分之和为208而前,4∴后两次的得分不小于2、不大于解:列表得:25)4()4,((2,4)3,4(1,4))33)(2,3)()4,(3,3,(1)2(((1,2)2,2)4,(3,2))1)1)(2,1(4,(31),,(1种结果,64的有∴一共有16种情况,其中得分之和不小于2、不大于.=4的概率为则后两次的得分不小于2、不大于【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗所求情况数与总=漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率情况数之比.。

相关文档
最新文档