机械基础课件:带传动

合集下载

机械基础(第四版)课件第四章 机械传动

机械基础(第四版)课件第四章 机械传动

三、滚子链 1.滚子链的组成 滚子链由滚子、套筒、轴销、内链板和外链板组成。
2.滚子链的参数
滚子链的基本特性参数为节距p。节距越大,链的 各组件尺寸越大,链传动的功率也就越大。但当链轮齿 数确定后,节距大会使链轮直径增大。
四、链传动比
五、链轮的结构与材料 链轮是链传动的重要零件,链轮齿形已经标准化。
(3)传动比 V带传动的传动比i≤7。
(4)带的基准长度Ld 带的基准长度是V带在规定的张紧力下,位于测量带 轮基准直径上的周线长度。(注意:基准长度有国标)
(5)传动实际中心距a
中心距一般根据结构要求来确定,若未给出中心距,
可根据下式初 定中心距,即:
0.7(dd1+dd2)≤a0≤2(dd1+dd2)
自行车用链传动
汽车叉车用链传动
一、链传动的组成 链传动是由主动链轮、链条、从动链轮组成的。链 轮上制有特殊齿形的齿,通过链轮轮齿与链条的啮合来 传递运动和动力。
链传动
二、链传动的类型、特点和应用
链传动的特点
优点是: 1.没有弹性滑动与打滑现象,平均传动比恒定不变; 2.链条装在链轮上,不需要很大的张紧力,对轴的压力小; 3.能传递较大的圆周力,效率较高; 4.维护容易,并有一定的缓冲减振作用; 5.能在较恶劣的环境下(如高温、多尘、油污、潮湿、泥 沙、易燃及有腐蚀性条件)工作。 缺点是: 瞬时传动比不恒定,工作时有噪音;磨损后容易发生跳齿; 不宜在载荷变化很大和急速反向的传动中应用。
2.传动时噪声小,并可在运转中变速、变向。 3.过载时,两轮接触处会产生打滑,可以防止薄弱零 件的损坏,起到安全保护作用。 4.因在接触处有产生打滑的可能,所以不能保证准确 的传动比,传动效率比较低。

机械基础带传动PPT课件

机械基础带传动PPT课件

常见故障类型及原因分析
传动带打滑
由于张紧力不足、带轮磨损或传 动带松弛等原因导致,表现为传 动带在带轮上滑动,无法有效传
递动力。
传动带断裂
由于过载、疲劳磨损、带轮不对中 或异物卡入等原因导致,表现为传 动带突然断裂,造成设备停机。
带轮磨损
由于长时间使用、润滑不良或材质 问题等原因导致,表现为带轮表面 磨损严重,影响传动效率和稳定性 。
通常采用铸铁、铸钢或铝 合金等,要求具有足够的 强度和耐磨性。
传动带类型及特点
平带
截面形状为矩形或近似矩形, 适用于两轴平行且中心距较大
的场合。
V带
截面形状为等腰梯形,与轮槽 侧面紧密贴合,适用于传递较 大功率和较高速度的场合。
多楔带
截面形状为多个楔形,具有较 高的传动效率和较大的传递功 率,适用于紧凑的传动系统。
带传动的性能直接影响到机械设备的运 行效率和使用寿命。
重要性
作为机械设备中的重要传动方式之一, 带传动在动力传递过程中发挥着关键作 用。
02
带传动基本组成及功能
主动轮与从动轮
01
02
03
主动轮
驱动传动带运动的轮子, 通常与动力源(如电机) 相连。
从动轮
被传动带带动的轮子,用 于传递动力和运动。
轮子材料
弹性滑动与打滑现象
弹性滑动是由于带的弹性变形引 起的带与带轮之间的微量滑动。
打滑是由于过载或摩擦系数降低 等原因导致带与带轮之间发生显
著的相对滑动。
打滑会导致传动效率降低、带磨 损加剧甚至失效。
传动效率影响因素
影响传动效率的因素包括
带的类型、张紧力、摩擦系数、带轮直径和转速等。
提高传动效率的方法包括

机械设计基础带传动

机械设计基础带传动
带传动的张紧、安装与调试 了解带传动的张紧方法、安装步骤和 调试技巧,确保带传动的正常运行。
学生自我评价报告
知识掌握情况
团队协作与沟通能力
通过课程学习,我对带传动的类型、 特点、工作原理和设计计算有了深入 的理解,能够独立完成相关设计任务。
在课程设计和实验中,我与同学积极 协作,共同解决问题,提高了自己的 团队协作和沟通能力。
摩擦系数
摩擦系数越小,越容易发生打 滑。
带的类型与材料
不同类型和材料的带具有不同 的抗滑性能。
参数计算方法及实例
计算方法
根据给定的设计条件和要求,选择合适的带型、带轮直径、中心距等参数,并进行必要的校核计算。
实例分析
以某型号V带传动为例,介绍参数计算过程。首先根据传递功率和转速选择合适的V带型号和带轮直径, 然后根据中心距和张紧力要求进行设计计算,最后进行传动效率和滑动率的校核。通过实例分析,可以加 深对带传动性能评价和参数计算的理解。
3
关注新技术和新方法
随着科技的不断进步,新的设计方法和制造技术 不断涌现,建议关注和学习这些新技术和新方法, 提高自己的竞争力。
感谢您的观看
THANKS
寿命与可靠性
通过合理的设计和材料选择,提 高带传动的寿命和可靠性。
维护与保养
设计时应考虑方便维护和保养的 因素,如易于更换传动带和张紧
装置等。
03
带传动性能评价与参数计 算
传动效率及影响因素
传动效率定义
带传动中,输入功率与输出功率之比,反映 了传动的能量损失情况。
张紧力
适当的张紧力可以提高传动效率,但过大的 张紧力会导致带的磨损和能量损失。
滑,起到保护其他零件的作用。常用于两轴平行且旋转方向相同的场合。

机械设计基础第8章 带传动

机械设计基础第8章 带传动

7
第二节 带传动的受力分析及运动特性 一、传动的主要几何参数 带传动的主要几何参数有中心距a、带长L(V 带为Ld)、包角α和带轮基准直径d等,如图8.6所 示。
图8.6 带的几何参数
8
二、带传动的受力分析 带以一定的初拉力张紧在两带轮上,使带与带 轮接触面上产生正压力。带传动未工作时,带的两 边都受到相同的初拉力F0,如图8.7(a)。带传动 工作时,主动轮对带的摩擦力Ff与带的运动方向一 致;从动轮对带的摩擦力Ff与带的运动方向相反, 如图8.7(b),这样,传动带两边的拉力就不相等。
因此,带传动的传动比i和转速n2应为
15
第四节 普通V带传动计算 一、带的规格 通V带为无接头的环形橡胶带,由伸张层(顶 胶)、强力层(抗拉体)、压缩层(底胶)和包布 层(胶帆布)组成如图8.11。
图8.11
V带的结构
16
图8.12
V带的节线和节面
17
表8.1
普通V带截面尺寸(GB 11544—89)
39
三、带轮结构尺寸 带轮结构如图8.15。带轮基准直径较小时,常 采用实心式结构,代号为S,如图8.15(a);中等直 径小于350 mm的带轮可采用腹板式结构,代号为 P如图8.15(b);若腹板面积较大时,在板上加工出 孔,为孔板式,代号为H如图8.15(c);直径大于35 0 mm时,可采用轮辐式结构,如图8.15(d)。
18
19
二、带传动的主要失效形式及设计准则 (1)主要失效形式 1)打滑 当传递的圆周力F超过了带与带轮之 间摩擦力总和的极限时,发生过载打滑,使传动失 效。 2)疲劳破坏 传动带在变应力的长期作用下 ,因疲劳而发生裂纹、脱层、松散,直至断裂。
20
(2)设计准则 带传动的设计准则是:保证带传动不发生打滑 的前提下,充分发挥带传动的能力,并使传动带具 有一定的疲劳强度和寿命。

机械基础——第五章 第一节 带传动

机械基础——第五章 第一节  带传动

V带已经标准化,每根V带顶面都有水洗不掉的标记。
普通V带标记:
A2000 GB/T11544——1997
标准号 基准长度Ld=2000mm A型普通V带
(二)普通V带轮的典型结构
材料:灰铸铁、铸钢、铸铝、工程塑料
带轮由轮缘、腹板(轮辐) 和轮毂三部分组成。 轮缘指带轮的工作部分,制
有梯形轮槽。
轮毂是带轮与轴的联接部分。 轮辐(腹板)是连接轮缘与 轮毂的部分。
(二)普通V带轮的典型结构
V带轮按腹板结构的不同分为以下几种型式: 实心带轮 dd≤(2.5~3)d d—轴的直径
腹板带轮
dd≤250~300mm
孔板带轮 Dd=250~400mm
椭圆轮辐带轮 dd> 400 mm
三、V带的安装与张紧装臵 1、V带的正确安装与使用
(1)保证V带的截面在轮槽中的正确位臵。
二、普通V带与带轮的结构、型号 (一)普通V带的结构、型号
V 带为无接头环形带 , 带两侧
工作面的夹角α称为带的楔角 , 一
般取α=40°。
有帘布芯结构和绳芯结构两种。 帘布芯结构的V带抗拉强度较高,制造方便; 绳芯结构的V带柔韧性好,抗弯强度高,适用于转速较高、 带轮直径较小的场合。 现在生产中越来越多地采用绳芯结构的V带。
带的弹性滑动
产生的原因 带的弹性、松边与紧边拉力差
弹性滑动的特点
不可避免的
对带传动影响
传动比不准确、效率降低、带的磨损加重
带的打滑
带打滑时的现象?
产生的原因
外载荷增加,使得 F F f max 如何避免带发生 打滑?
打滑的特点
可以避免的
带的磨损急剧增加、从动轮的转速急剧下 降,直至传动失效。

带传动及其传动比精品ppt课件

带传动及其传动比精品ppt课件
较远距离传动。
V带
截面形状为梯形,适用于传递 较大功率和较高速度的场合。
多楔带
截面形状为多个楔形,适用于 传递小功率和较高速度的场合

同步带
具有等距的齿形结构,适用于 高精度、高速度的同步传动。
张紧装置与支撑结构
张紧装置
用于调整传动带的张紧力,保证传动 的稳定性和可靠性。常见的张紧装置 有张紧轮、张紧螺栓等。
带传动及其传动比精 品ppt课件
contents
目录
• 带传动概述 • 带传动基本结构 • 传动比计算与分析 • 带传动性能评价与优化 • 带传动设计方法与实例 • 带传动故障诊断与排除 • 总结与展望

01
带传动概述
定义与分类
定义
带传动是一种通过带作为中间挠 性件,依靠带与带轮之间的摩擦 力或啮合来传递运动和动力的机 械传动。
平带传动、V带传动 、多楔带传动和同 步带传动等。
传动比的计算
传动比i等于主动轮 转速n1与从动轮转 速n2之比,即 i=n1/n2。
带传动的基本原理
通过带与带轮之间 的摩擦力传递运动 和动力。
带传动的特点
结构简单、传动平 稳、噪音小、能缓 冲吸振等。
带的张紧与调整
通过调整中心距或 采用张紧轮等方式 实现带的张紧。
校核强度和刚度
根据设计参数和所选材料,校核带 传动的强度和刚度,确保满足设计 要求。
考虑振动和噪声
针对带传动的振动和噪声问题,采 取相应的措施,如增加阻尼、改善 结构等。
典型案例分析
案例一
某型汽车发动机带传动设计。根据汽车发动机的工作条件和设计要求,选择合适的带型和 尺寸,设计合适的带轮和中心距,校核强度和刚度,最终得到满足设计要求的带传动方案 。

《机械设计基础》(贾磊)课件 第8章 带传动

《机械设计基础》(贾磊)课件 第8章 带传动
:::::《机械设计基础》:::::
8.2.2 V带轮的材料、结构及轮槽 尺寸
V带轮的结构尺寸可以查设计手册,也可以按下面的经验公式确定。 d1=(1.8~2)d,D0=0.5(D1+d1)
d0=(0.2~0.3)(D1-d1),C΄=(1/7-1/4B)S h2=0.8h1,b1=0.4h1,b2=0.8b1,f=0.2h1,f1=0.2h2
在带传动中,起传递作用的拉力是紧边与松边的拉力之差,称为有效 拉力,用F表示。其表达式为
F=F1-F2 有效拉力的值等于带与带轮之间接触面上摩擦力的总和,于是可得带 传动所传递的功率为
P Fv 1000
:::::《机械设计基础》:::::
8.3.1 带传动的工作情况分析
带传动的紧边拉力与松边拉力的关系可以用欧拉公式表示为
L=(1.5~2)d(当B<1.5d时,L=B)
:::::《机械设计基础》:::::
8.2.2 V带轮的材料、结构及轮槽 尺寸
3.V带轮的轮槽尺寸
V带轮轮槽的横截面及其各部分尺寸如表8-4所示。
注意: V带两侧间的夹角(楔角)为40°,但V带弯曲时,V带的下部会膨胀
,使得弯曲的V带的楔角小于槽轮的轮槽角。为了使皮带与槽轮侧面保持 接触良好,应使轮槽角小于楔角,国标规定V带轮的轮槽角为32°、34°、 36°、38°。
在工程实际中,带的实际工作条件与上述特定条件不同,所以应对P0 加以修正。因此,实际工作条件下单根V带的基本额定功率[P0]为
[P0]=(P0+ΔP0)KαKL
:::::《机械设计基础》:::::
8.3.2 V带的设计计算
2.带传动的设计步骤与参数的选择
(1)确定计算功率
计算功率是指根据传递的额定功率,并考虑载荷性质以及每天工作运 转时间的长短等因素的影响而确定的,即

机械设计基础带传动

机械设计基础带传动

s
b1
s
C
)(1
1 e f
)
Av
1000
➢ 基本额定功率可查表5-3、表5-4
➢ 基本额定功率拟定条件:i =1,特定带长,工作平稳
➢ 实际工作中单根带所能传递旳许用功率:
[P0 ] (P0 P0 )K K L
长度系数 包角系数
i 1 时旳功率增量
机械设计基础——带传动
三、设计环节
❖ 已知条件及设计内容:
带1基 1准d整z8d0长成20YPP=8c度原di、,则dd2dPa拟表值10(d1z5d定–1-≥2εPP)初0c5,77K.拉?圆3NLK0 力1270F0 0
N 6、验算主动轮旳包角α1
7、计算带旳根数 z
机械设计基础——带传动
拟定中心距
初定中心距 a0 0.7(dd1+dd2) < a0 < 2(dd1+dd2)
根据图5-9 高速级还是低速级?
2、根据n1、 Pc 选择带旳型号带 大F轮 ,0 愈 所50小 以01Fd,Q0d2、弯1.52≥K曲带zdFKz应m0v轮sin力iPn构c 愈21造qv2设计
3、拟定带轮基准直径dd1、dd2
9、计算压轴力 FQ
N
4、验算带速v (v=5~25m/s)
5、拟定中心距 a 及带长 Ld
紧松边判断: 绕进主动轮旳一边→紧边
机械设计基础——带传动
F0F2
F0
松边
紧边由F0→F1
Ff 拉F力0 增长F1F,0带增长紧边
松边由F0→F2 拉力降低,带缩短
总长不变 带增长量=带缩短量
F1-F0=F0-F2 ; F1+F2=2F0
有效拉力: F1 - F2 即带所传递旳圆周力F 圆周力F:F = F1 - F2 = Ff 打滑:

机械基础 课件 第十三章-带传动

机械基础 课件 第十三章-带传动

解:(1)传递的圆周力
Fe v P 1000
1000 P 1000 15 Fe 1000N v 15
(2)紧边、松边拉力
170 F1 F1 f 1 1 2.97 rad 2.437 e 180 F2 F2 F F F 1000 1 2 e 解得F 1694 N, F 694 N
设小、大带轮的直径为d1、 d2 ,带长为Ld。 则包角 2
d 2 d1 180 57.3 a 式中“”适用大轮包角2, “”适用小轮包角1 。
d 2 d1 sin 代入 2a
带长Ld: Ld 2AB BC AD
2a cos
弹性滑动 ——是指正常工作时的微量滑动现象,由 拉力差(即带的紧边与松边拉力不等)引 起了带的不同弹性变形量,使得带的速度 低于主动轮的速度,高于从动轮的速度, 带沿着轮面产生滑动。这在带的工作中是 不可避免。
弹性滑动引起的不良后果: ● 使从动轮的圆周速度低于主动轮 ,即 v2 < v1; ● 产生摩擦功率损失,降低了传动效率 ; ● 引起带的磨损,并使带温度升高 ; 打滑引起的不良后果: 打滑将造成带的严重磨损,带的运动处于不稳定状 态,致使传动失效。
第十三章 带传动
§13-1 带传动概述 §13-2 带传动的受力分析
§13-3 带传动的计算 §13-4 V带轮的结构 §13-5 带传动的张紧装置 补充:链传动
挠性传动——
通过中间挠性件传递运动和动力的传动机构; 由主动轮、从动轮和中间挠性件所组成; 包括:带传动、链传动和绳传动。
挠性传动的工作原理——
越大,传动比的变化越大。一般V带传动的滑动率在1%2%内, 一般计算不予考虑。

机械基础课件:摩擦轮传动与带传动

机械基础课件:摩擦轮传动与带传动

转速n1=1400 r/min, 主动轮直径D1=200 mm , 从动轮直径 D2=400 mm,中心距a=800 mm, 试求传动比、从动轮转速、 带长,并验算小轮包角。
摩擦轮传动与带传动
5.2.3 V
1. V V 带是没有接头的环形带,根据其宽度和高度相对尺寸 的不同,可以分为普通V带、宽V带、窄V带、联组V带、大 楔角V带等多种类型,其中普通V V带是横截面为等腰梯形或近似为等腰梯形的传动带, 其工作面为两侧面。工作时,一条或数条V带安装在相应的 轮槽内,仅与轮槽的两侧面相接触,而不与槽底接触。V带 的结构如图5-5所示,由包布层、伸张层、压缩层和强力层组 成。包布层主要为胶帆布,对V带起保护作用;伸张层和压 缩层的材料为橡胶,用来增加V带的弹性;强力层为V带工 作时的主要承载部分,根据使用的材料不同,强力层结构有
摩擦轮传动与带传动
在V带轮上,与所配用V带节面处于同一位置的槽形轮 廓宽度称为基准宽度bd, 基准宽度处的带轮直径称为基准直径 dd(见图5-6)。在规定的张紧力下,V带位于带轮基准直径上 的周线长度称为V带的基准长度Ld
摩擦轮传动与带传动
图5-6 V带轮的轮槽截面
摩擦轮传动与带传动
V带已经标准化,其标准为GB/T 11544—1997,普通V 带的型号按截面尺寸由小到大分为Y、Z、A、B、C、D、E 七种。V带的截面积越大,其功率的传递能力也越大。基准 长度Ld标准系列见表5-1
摩擦轮传动与带传动
5.1 摩擦轮传动 5.2 带传动 思考题
摩擦轮传动与带传动
5.1 摩 擦 轮 传 动
5.1.1
图5-1所示为两个相互压紧的圆柱形摩擦轮,两轮之间 由于压紧而产生一定的正压力,工作时,当主动轮受外力作 用而旋转时,主动轮就依靠两轮间产生的摩擦力带动从动轮 一起旋转,从而实现运动和动力的传递。因此,摩擦轮传动 是利用两轮直接接触所产生的摩擦力来传递运动和动力的一 种机械传动。只要两轮接触产生的摩擦力,使主动轮产生的 摩擦力矩能克服从动轮上产生的阻力矩,就能保证传动的正 常进行。

机械设计基础第十三章带传动

机械设计基础第十三章带传动

3.由带弯曲运动而产生的离心拉应力: FC → σC 由带弯曲运动而产生的离心拉应力 由带弯曲运动而产生的离心拉应力
FC=qV2
→发生在带作圆周运动部分, 作用于带的全长 为限制离心拉应力σ 不过大→限制 限制V 为限制离心拉应力 C不过大 限制 但Vmin≥5 m/S (P=FV/1000) → Vmax≤25m/S
第十三章 带传动
P.204
§13-1 带传动的类型和应用 13 §13-2 带传动工作情况分析 13 §13-5 普通V带传动的计算 13- 普通V §13-7 V带传动的张紧装置 13-
§13-1 带传动的类型和应用
构成 工作原理 : 带轮1,带轮2,环形带 : 靠带与带轮接触弧间的摩擦力 传递运 动和动力 带 α2 带轮2 α 带轮1 α1 d2 ,d1-大小轮直径 α -中心距 α 2 , α 1-大小轮包角 L-带长 计算公式见p.205
(二)弹性滑动与打滑 二
P.211 §13-4
1. 什么是弹性滑动 什么是打滑 什么是弹性滑动, 什么是打滑? 2. 为什么会发生弹性滑动或打滑 是否可以避免 为什么会发生弹性滑动或打滑? 是否可以避免? 3. V1, V2,V带之间的关系如何 为什么 带之间的关系如何?为什么 带之间的关系如何 为什么?
(一)带传动中的力分析 一 带传动中的力分析 初始状态: 一. 初始状态 P.206
P.196~201
(二)弹性滑动与打滑 带两边拉力相等= 带两边拉力相等=F0 → 张紧力 相等
(三)带传动最大有效拉力Fec 带两边拉力不相等 带两边拉力不相等 工作状态: 二. 工作状态 (四)带传动的应力分析 拉力增加→紧边 紧边拉力 拉力增加 紧边 F0↗F1 紧边拉力 (五)带传动的优缺点 拉力减少→松边 松边拉力 拉力减少 松边 F0↘F2 松边拉力

机械设计基础课件 第六章 带传动

机械设计基础课件 第六章 带传动
有效拉力 F= F1- F2 F1=F0+F/2 F2=F0-F/2
O1 n1
F0 F1 O2
30/115
工作中
第三节 带传动工作情况分析
有效拉力 F 由工作条件确定
31/115
1000P F v
带轮之间的产生的摩擦力也越大 有效拉力可否无限大?
功率 圆周速度
带速一定时,传递的功率越大,有效拉力越大,要求带与
带 传 动
摩擦型 传动
带剖面
V 带
多楔带 圆形带
具体应用
窄形V带、
汽车V带、
宽V带等
啮合型 传动
同步带
第二节 带传动类型及工作原理
二、摩擦型带传动 传动带张紧在主、从动轮上产生张紧力 带与两轮的接触面间产生摩擦力 主动轮旋转时,正压力产生摩擦力拖拽带 运动,同样带拖拽从动轮旋转
14/115
d1
d2
第二节 带传动类型及工作原理
类型: 按带的截面形状,分为 平带传动 V带传动 多楔带传动 圆形带传动等具体型式。
15/115
第二节 带传动类型及工作原理
截面为矩形 内表面为工作面 带挠性好 带轮制造方便 适合于两轴平行,转向相同的
平带传动
16/115
远距离传动 轻质薄型的平带广泛用于高速 传动,中心距较大等场合
许多工作机的转速需要能根据工作要求进行调整, 而依靠原动机调速往往不经济,甚至不可能,而用 传动装臵很容易达到调整速度的目的
传动装置
(3) 改变运动形式
5/115
原动机的输出轴常为等速回转运动,而工作机要求的 运动形式则是多种多样的,如直线运动, 螺旋运动,间 歇运动等,靠传动装臵可实现运动形式的改变 (4) 增大转矩 工作机需要的转矩往往是原动机输出转矩的几倍或 几十倍,减速传动装臵可实现增大转矩的要求 (5) 动力和运动的传递和分配 一台原动机常要带动若干个不同速度,不同负载的工 作机,这时传动装臵还起到分配动力和运动的作用。

机械设计基础下册课件第二十三章 带传动

机械设计基础下册课件第二十三章  带传动
一、高速带传动
范围:υ>30m/s,转轴n=(10000~50000)rpm。 要求:运转平稳、可靠、具有高寿命。
二、同步带传动
优点: ●传动比正确; ●预紧力较小,使轴和轴承上所受的载荷较小; ●薄而轻,允许高速。 缺点:安装时中心距要求严格,且价格较贵。
14
1.确定计算功率Pd : Pd K A P 2.选择带型号:
3.确定带轮直径及验算带速υ :
● ● ●
(KW)
选择小轮基准直径dd1
验算带速υ : d d 1n1 / 601000 计算从动轮基准直径dd2 : d d 2 id d 1
4.确定中心距a和带的基准长度Ld : 初选a0 : 0.7(d d 1 d d 2 ) a0 2(d d 1 d d 2 ) (d d 2 d d 1 ) 2 ●计算L :
7
带传动工作情况分析
三、极限有效拉力及其影响因素
F1 F2 e f
1 180
Fe lim
dd 2 dd1 57.3 a 1 1 f f e 1 e ) 2 F (1 2 ) 2 F0 ( f ) 2 F0 ( 0 1 e 1 1 e f 1 f e
FQ 2 F0 z sin 2
12
V带带轮设计和带传动的张紧与维护
一、V带带轮设计 1.带轮材料:常用材料有灰铸铁、铸钢。 2.结构尺寸: ●实心式 ●腹板式 ●孔板式 ●轮辐式 二、带的张紧方法 ●调节中心距:①定期张紧;②自动张紧。 ●加张紧轮:①定期张紧;②自动张紧。
13
其它带传动简介
§23-3
§23-4 §23-5
V带传动设计
V带带轮设计和带传动的张紧与维护 其它带传动简介
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(4)适用于两轴距离较大的传动;
(1)不能保证恒定的传动比,传动
精度和传动效率低。
(2)带对轴有很大的压轴力。
(3)带传动装置结构不够紧凑。
缺 点
(4)带的寿命较短。
(5)不适用于高温、易燃及有腐蚀
介质的场合。
应用:
带传动适用于要求传动平稳、传动比不 要求准确,100KW以下的中小功率的远距 离传动。如:汽车发动机、拖拉机、石材 切割机等。
槽相啮合实现传动,如同步带传动。
传动带:用于传递动力 2、按用途分 输送带:用于输送物品
3、按传动带的截面形状分: 平带、V 带、多楔带、圆形带、齿形带(同 步带)
平带 : 平带的截面形状为矩形,工
作面为内表面, 主要用于两轴 平行, 转向相同的较远距离的 传动。
平带传动动画展示
1—外覆盖层 2、4—布层 3—片基层 5—工作面覆盖层
包角α: 2
A θ
因θ较小, 以sin d2 d1
α1
θ
代入得:
d2d1
2a
d1
(ra)d D
B θ
α2 d2
带长:
18 0d2 d15.7 3
L2AB BC AD
aC
中心距
2 a c o d s2( 2 ) d 1( 2 )
2
2
2 a co 2 s (d 1 d 2 )(d 2 d 1 )
(三)教学的重点与难点
1、带传动的受力分析、应力分析及 弹性滑动。
2、V带传动的设计计算。
一、概述
带传动是一种常用的机械传动装置。 主要作用:
用来传递转矩和改变转速。 工作原理:
主要是依靠挠性传动带与带轮间的摩擦力 来传递运动和动力。
带传动概述
一、带传动的组成
固联于主动轴上的带轮1(主动轮); 固联于从动轴上的带轮2(从动轮); 紧套在两轮上的传动带3。
三、传动形式
§13-1
开口传动:两轴平行,1、2同向。 交叉传动:两轴平行,1、2反向。 半交叉传动:两轴交错,不能逆转。
带传动的类型和应用
§13-1 带传动的类型和应用
四、带传动的类型
平带 ----结构简单,带轮容易制造,用于中心距较大的场合;
摩擦型
V 型带 ----横截面为等腰梯形,摩擦力大,应用广泛; 多楔带 ----扁平部分+纵向槽,摩擦力大,受力均匀,结构紧凑。
2
n2
3
二、工作原理
摩擦传动:通过带和带轮间的摩擦力传递动力(平带和V带) 啮合传动:通过带和带轮间的齿啮合,传递动力(同步带)
(一)带传动的类型
带传动的分类方法有三种: 1、按传动原理分: (1)摩擦带传动: 靠传动带与带轮间的摩擦力实现 传动,如V带传动、平带传动等。
(2)啮合带传动: 靠带内侧凸齿与带轮外缘上的齿
(3)圆形带: 横截面为圆形。只用于小功率传动。
(4)多楔带: 它是在平带基体上由多根V带组成的传动带。可传递很大的功
率。多楔带传动兼有平带传动和V带传动的优点,柔韧性好、摩 擦力大,主要用于传递大功率而结构要求紧凑的场合。
2)啮合式带传动
同步带传动是一种啮合传动,具有的优点是:无滑动,能保证固 定的传动比;带的柔韧性好,所用带轮直径可较小;传递功率大。用 于要求传动平稳,传动精度较高的场合。
二.带传动工作原理
摩擦传动:当主动轮转动时,由于带和带轮间的摩擦力,便拖 动从动Байду номын сангаас一起转动,并传递动力(平带和V带传动)。
啮合传动:当主动轮转动时,由于带和带轮间的啮合,便拖动 从动轮一起转动,并传递动力(同步带传动)。
潘存云教授研制
归纳:带传动是利用带作为中间绕性件,依靠带与带轮之间的 摩擦力或啮合来传递运动或动力的。
平带传动
一、平带传动的形式
动开 口 传
开口传动是带轮轴线平行、两轮宽的 对称平面重合、转向相同的带传动。


交叉传动是带轮轴线平行、两轮宽的 对称平面重合、转向相反的带传动。



半交叉传动是带轮两轴线在空间交

错的带传动,交错角度通常为90°



§13-1 带传动的类型和应用
五、带传动的几何关系
带传动的组成:主动轮、从动轮、紧套在两 轮上的传动带和机架组成。
工作过程:原动机驱动主动带轮转动,通过带 与带轮之间产生的摩擦力,使从动带轮一起转 动,从而实现运动和动力的传递。
一、带传动的组成
主动轮 (带轮1 ), 从动轮 (带轮2 ), 传动带3,及张紧轮。
§13-1 带传动的类型和应用
1
n1
以 co s 1si2n112 及 d2 d1 代入得:
2
2a
L2 a2(d 1d 2)d 24 a d 12
§13-1 带传动的类型和应用
B
A
α1
θ
α1
d2
d1
D
aC
带长: L2 a2(d 1d 2)d 24 a d 12
带传动
带传动
带传动概述 带传动的工作情况分析 平带传动 V带传动的设计计算 V带轮的结构设计 同步带传动简介 带传动特点 带传动的张紧与维护 带传动的设计实例
(二)教学要求 1、了解带传动的类型、特点与应用。 2、掌握带传动的受力分析、应力分析 及弹性滑动的概念。 3、掌握V带传动的设计计算方法。 4、熟悉带传动的张紧与维护。
V带:
V带的截面形状为梯形,工作面为 两侧面, 带轮的轮槽截面也为梯形。 在相同张紧力和相同摩擦系数的条 件下, V带产生的摩擦力要比平带的 摩擦力大,所以, V带传动能力强, 结 构更紧凑, 在机械传动中应用最广泛。
v带传动动画展示
多楔带:
多楔带是平带基体上有若干纵向楔形凸起, 它兼有 平带和V带的优点且弥补其不足, 多用于结构紧凑的大功 率传动中。
多楔带传动动画展示
圆形带:
圆形带的截面形状为圆 形。 仅用于如缝纫机、 仪 器等低速小功率的传动。
齿形带(同步带):
同步齿形带即为啮合型传动带。 同步带内周有 一定形状的齿。
(二)带传动的特点和应用
(1)能缓冲吸振,传动平稳,噪
音小。
(2)具有过载保护作用。

(3)结构简单,制造、安装和维

护方便,成本低;
圆形带 ----牵引力小,用于仪器。
啮合型 同步带----无滑动,能保证固定的传动比。
三、类型 1)摩擦式带传动
按传动带的截面形状分 (1)平带 平带的截面形状为矩形,内表面为工作面。平 带传动,结构简单,带轮也容易制造,在传动中心距较大的 场合应用较多。
(2)V带: 截面形状为梯形,两侧面为工作表面。应用 最广的带传动是V带传动,在同样的张紧力下,V带传 动较平带传动能产生更大的摩擦力,应用广泛。
相关文档
最新文档