电动汽车非接触式充电系统设计探讨

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电动汽车非接触式充电系统设计探讨

摘要:通过了解电动汽车发展的现状及电动汽车非接触式充电模式,介绍了电动汽车非接触式充电系统架构,阐述了电动汽车非接触式充电系统互感等效模型,分析了一种电动汽车非接触式充电系统的组成及优势,旨在为促进电动汽车优化发展奠定坚实基础。

关键词:电动汽车;非接触式;充电;系统;设计

前言

电动汽车动力电池为支持,噪音低、能源清洁、场地限制小、可实现接近燃油汽车的续航及最高时速[1]。电动汽车充电方式分为导线充电及无线能量传输。无线充电(WPT,wirelessPowerTransmission)以耦合电磁场为媒介,完成能量传输[2]。无线充电与优化导线充电中的机械磨损、触电老化现象,可实现一对多充电,实现“边驾驶边充电”。

1无线充电传输组成

电动汽车无线充电系统由信号源、功率放大电路、同步电路、发射线圈、接收线圈、整流电路及负载组成:其中,信号源及功率放大电路发出稳定交流电,在发射线圈固定位置安装接收线圈,确保接收、发射线圈共振频率相同[3]。两线圈在固定频率下耦合共振,产生高频交变磁场,能量传递给接收线圈,整流电路将接收线圈高频交流电转化为直流电,为汽车充电。

2电动汽车非接触式充电系统研制及系统架构分析

2.1电动汽车非接触式充电系统拓扑结构

当下,单纯电动驱动汽车体积大、寿命低,自身结构还不完善,随市场应用前景广阔,但技术上还存在一定难题:充电慢、成本高[4]。该结构现状必然影响电动汽车的推广使用,徒增运行维护成本。下文提出“即时模式”,分析电动汽车非接触式充电系统设计。

2.1.1非接触送电

电容储存电能无法维持汽车运动后,系统送电,电网侧为电动汽车送电。此时,送电断开关谐振逆变,电能以互感耦合方式传递给汽车接收端,接收端以PWM整流,稳定交流电,转化为直流电,为电动汽车供电,保证其续航稳定。

2.1.2非接触馈电

电动汽车下坡、制动、车载发电设备电量充足、盈余下,为确保系统稳定运行,需将电能以系统为媒介馈电,电动汽车为送电端,电网为接收端。电能以的互感耦合集中到接收端,接收端以PWM将电流转化为直流电,为电网运行奠定基础。其中,非接触馈电功能可降低电动汽车驱动运行中,受电力过分盈余引起的运行隐患。

2.2电动汽车非接触式充电系统等效模型分析

在电动汽车上,可以利用车载新能源发电设备,为电动汽车运行提供动力支持,降低其对非接触送电电源的实际需求,进而发挥分布式电源的最大化作用。该拓扑结构支持下的电动汽车,可具备电能回馈功能,对于电动汽车充电过于盈余的情况,通过电能回馈,将不合理的电能及时输送出去,降低电动汽车驱动系统实际运行风险,确保电动汽车稳定运行。由上述模型可得,模型设计中引入M1、M2及δ,

可实现对系统的可靠性控制。

3控制系统电路设计

3.1STM32最小系统

对电动汽车非接触式充电系统设计,应优化系统设计,确保充电稳定性及安全性。STM32最小系统属于先进控制系统,其对控制环境要求严格,在电路中,还需配置CAN标准通信和汽车通信,以STM32最小系统为支持,实现对电路的科学控制。横向比较控制器,采用新型的系统芯片为系统设计核心,合理封装,提高一般工作效率。此外,配置先进转换器及控制器,外设配置以ADC、SPI、I2C、USART及定时器为支持,实现充电在线调控。

3.2电源设计

电源均衡稳定对充电系统稳定有直接影响,采用STM32芯片支持,电源设计为2-3.6V,可选择不同供电方式:(1)USB供电,电流约为500mA;(2)外部电源供电;(3)以JLinkV8供电。

3.3JTAG接口电路设计

采用JTAG辅助设计,具有良好稳定性,JTAG协议可在线编程,无需预先变成,再安装到电路板中,直接将芯片安装到电路板上,针对需求编程,提高了工作效率。JTAG结构电路设计中,以20针调试接口为支持设计。

3.4电压检测电路设计

电动汽车使用的电源电池具有特殊性,其容量较大,关系到电动汽车运行的稳定性,因此,要在充电稳定性及充电安全性上优化设计。

电池充电时,需考虑到充电电压及充电电流的实时监测,发现异常及时报警。为确保充电状态在检测时,获取有效结果,对主电路输出电压检测,选择霍尔电压传感器CHV-25P进行检测。设计中,STM32中ADC模块输入0.3V输入范围(仅限参考),将裕量变化考虑在内,在基础3V上限上,乘以约80%的数,获取的设计输入最大值,得到2.5V。原信号经过处理后进入STM32对应ADCCINA1端口:经电压跟随器,缓冲、隔离、后级滤波,进入差动输入运算系统,获取0-2.5V 电压,之后将信号经钳位处理后,送至STM32ADCCINA1端口(钳位电路可稳定ADC端口电压,控制电压处于0.3.3V范围)。

3.5输出电流检测

对主电路输出电流检测,以HBC20LSO检测,但是,该工具不直接检测,其以传感器为支持,以被测电流穿过传感器中心孔,间接获取电压值。电流信号不直接供给给处理器,需经过一系列调试后,再供给。

3.6控制系统软件设计

软件也是电动汽车非接触式充电系统设计重要组成之一,在控制系统当中,软件设计起到对整体系统的引导、指导性作用,可指导系统按照规范性步骤“按部就班”的执行,维护主程序稳定。程序设计中,主程序对系统工作指挥。考虑到非接触性系统的特点,在编程中,需对各个对应的寄存器对英国配置,采取模块化编程方式,注重编程整体结构的稳定性,充分发挥各个模块的最大化功能,对模块变量的参数、AD采样、PWM控制等优化管理。

4总结

文章对电动汽车非接触式充电系统设计分析,将非接触式充电系统拓扑结构及系统等效模型设计分析,对其控制系统电路设计分析。通过实现电动汽车和智能电网的交互,将多余电能输送给电网,减低电网供电压力,同时优化电动汽车能源结构,可有效减少对不可再生能源的依赖。分析电动汽车非接触式充电系统,应注重对电路拓扑及磁路优化设计,规划好无线电能传输及地车底盘、地面之间的距离,采用新型磁材料,感受汽车实际位置,提高充电效率。通过分析全新自动充电技术的,为电动汽车推广提供技术支持,可减轻电网压力,减少污染。

参考文献

[1]杨晨.电动汽车非接触式充电系统设计[J].工业设计,2017(11):136-137.

[2]尹静文,苑璐,徐坤,等.基于RFID的电动汽车充电桩结算系统设计[J].周口师范学院学报,2018,35(2):41-44.

[3]高巧玲,秦灿华,余娟.感应耦合电动汽车无线充电的关键因素分析[J].电子世界,2017(22):155-156.

[4]翟娟.电动汽车充电桩充电管理系统设计[J].内燃机与配件,2018(1):194-195.

作者:钱程齐雄单位:宁波供电公司

相关文档
最新文档