(完整)圆内接四边形拔高练习题.docx
【专题】圆的内接四边形
AOC 120 .
D 60 ,
故选: B .
D.120
3. 如图,四边形 ABCD 是 O 的内接四边形, AD BC .若 BAC 45 , B 105 ,则下列等式成立的是 (
)
9
针对训练
强化提高
A. AB 1 CD 2
.
39. 如图,在 O 的内接四边形 ABCD 中, AB AD , C 110 .若点 P 为 AB 上,求 P 的度数.
40. 如图,已知四边形 ADBC 是 O 的内接四边形, AB 是直径, AB 10cm , BC 8cm , CD 平分 ACB .
(1)求 AC 与 BD 的长; (2)求四边形 ADBC 的面积.
32. 如图,四边形 ABCD 内接于 O , AB 9 , AD 15 ,BCD 120 ,弦 AC 平分 BAD ,则 AC 的长是 ()
A. 7 3 C.12
B. 8 3 D.13
33. 在圆内接四边形 ABCD 中,ACB ACD 60 ,对角线 AC 、BD 交于点 E .已知 BC 3 2 ,CD 2 2 ,
9. 如图,四边形 ABDC 内接于 O , BAC 60 , AD 平分 BAC 交 O 于点 D ,连接 OB 、 OC 、 BD 、 CD .
(1)求证:四边形 OBDC 是菱形; (2)若 ABO 15 , OB 1 ,求弦 AC 长.
10. 已知四边形 ABCD 是圆内接四边形, 1112 ,求 CDE .
则 CBE 度.
36. 如图, O 的内接四边形 ABCD 中,AB BC ,D 72,则 BAC
.
7
中考数学总复习 圆内接四边形专项练习题
中考数学总复习圆内接四边形专项练习题例题1:如图,已知四边形ABCD内接于⊙O,OC∥AD,∠DAB=60°,∠ADC=106°.求∠OCB及弧DC的度数.练:如图,四边形ABCD是⊙O的内接四边形,AB∥DC,∠BAD的平分线交⊙O于点P,交DC的延长线于点E,若∠BAD=86°,则∠PCE= °,⌒ADC的度数为例题2,如图,四边形ABCD是⊙O的内接四边形,弧AB=弧AD,∠BCD=120°,连接AC,DE⊥AC于点E,连接BE,若∠BED=150°,AC=37 ,求DE的长.练:如图,四边形ABCD是⊙O的内接四边形,AB=BD,BM⊥AC于点M,已知AC=11,CD=7,求CM的长.例3.如图,在△ABC中,AB=AC,在△ABC的外侧作直线AP,点B与点D关于AP轴对称,连接BD,CD,CD与AP交于点E. 求证:∠1=∠2.练:如图,在△ABC内有一点D,使得DA=DB=DC,若∠DAB=20°,则∠ACB= °.例题2,如图,E是正方形ABCD的边AB上的一点,过点E作DE的垂线交∠ABC的外角平分线于点F.求证:EF=DE.练:如图,锐角△ABC中,BD,CE是高线,DG⊥CE于点G,EF⊥BD于点F.求证:FG∥BC6.如图,已知△ABC,∠C=90°,将△ABC绕点A顺时针旋转x度(α为锐角),得到△ADE,连接BE,CD,延长CD交BE于点F.(1)用含有x的代数式表示∠ACD的度数为;(2)求证:点B,C,A,F四点共圆.(3)求证:点F为BE的中点.7.如图,在△ABC中,∠BAC=45°,AD是BC边上的高,且BD=6,CD=2.求AD的长度,课后习题:1.如图,⊙O内接四边形ABCD中,点E在BC延长线上,∠A+∠BOD=150°,则∠DCE= °2.如图,四边形ABCD是⊙O的内接四边形,∠A与∠C的度数之比为2:3,且弧AD的度数为100°,则弧AB的度数°3,如图,∠DAE是⊙O的内接四边形ABCD的一个外角,且DB=DC.AC是直径,若∠ACB=52°,则∠DAE= °4.如图,在平行四边形ABCD中,AD=2,∠A=120°,CF⊥AB于F,连接DF交CB延长线于E,连接AE,则△AEF的面积为5.如图,已知P为长方形内一点,S△P AB=5, S△PBC=12, 则S△PBD=6.如图,在菱形ABCD中,∠A=110°,点E,F分别是边AB和BC的中点,EP⊥CD于点P,则∠FPC=()7.已知如图,四边形ABCD中,AB∥CD,AB=AC=AD=5,BC=6,求BD的长.8.如图,已知△ABC中,AH是高线,AT是角平分线,且TD⊥AB于点D,TE⊥AC于点E.求证:∠AHD=∠AHE.。
初中数学:圆内接四边形练习(含答案)
初中数学:圆内接四边形练习(含答案)知识点 1 圆内接四边形的性质——圆内接四边形的对角互补1.2016·丽水如图3-6-1,四边形ABCD为⊙O的内接四边形.已知∠ BCD=110°,则∠BAD=_______ °.2.已知四边形ABCD内接于⊙ O,且∠ A∶∠C=1∶2,则∠A=_____ °.图3-6-23.如图3-6-2,四边形ABCD是⊙ O的内接四边形,且∠ ABC=115°,那么∠ AOC=4.如图3-6-3,AB是半圆O的直径,C,D 是AB上两点,∠ ADC=120°,则∠ BAC=图3-6-3图3-6-45.如图3-6-4,点A,B,C,D都在⊙ O上,∠ B=90°,AD=3,CD=2,则⊙ O的直径是____ .6.在圆内接四边形ABCD中,∠ A∶∠ B∶∠ C=2∶3∶6,求∠ D的度数.CD.7.如图3-6-5,四边形ABCD内接于⊙ O,AD∥BC,求证:AB=图3-6-5知识点 2 圆内接四边形的性质的推论——圆内接四边形的外角等于其内对角8.2017·嵊州市模拟如图3-6-6,点A,B,C,D在圆O上,点 E 在AD的延长线上,若∠ ABC=60°,则∠ CDE的度数为( )A.30°B.45°C.60°D.70°9.如图3-6-7,四边形ABCD内接于⊙ O,点E在BC的延长线上,若∠ BOD=120°,则∠DCE=___ °.10.如图3-6-8 所示,已知A,B,C,D是⊙O上的四点,延长DC,AB相交于点 E. 若BC=BE.求证:△ ADE是等腰三角形.图3-6-6图3-6-811.如图3-6-9,△ ABC 内接于⊙ O ,∠ OBC =40°,则∠ A 的度数为 ( ) A .80° B .100° C .110° D .130°12.如图 3-6-10,在平面直角坐标系中, ⊙C 过原点 O ,且与两坐标轴分别交于点 A ,B , 点 A 的坐标为(0,3),M 是O ︵B 上一点,且在第三象限内.若∠BMO =120°,则⊙C 的半径为 ()A .6B .5C .3 2D .313.如图 3-6-11,已知四边形 ABCD 内接于半径为 4的⊙O 中,且∠C =2∠A ,则 BD =图 3- 6- 11图 3-6-1014.如图3-6-12,在圆内接四边形ABCD中,AB=AD,AC=1,∠ACD=60°,求四边形ABCD的面积.图3-6-1215.(1) 已知:如图3-6-13①,四边形ABCD内接于⊙ O,延长BC至点E,则∠A+∠ BCD =180°,∠ DCE=∠A.(2) 依已知条件和(1) 中的结论:如图②,若点 C 在⊙O外,且A,C两点分别在直线BD的两侧.试确定∠ A+∠ BCD 与180°的大小关系;如图③,若点 C 在⊙O内,且A,C两点分别在直线BD的两侧.试确定∠ A+∠ BCD与180°的大小关系.(3) 如图3-6-14,四边形ABCD内接于⊙ O,∠DAB=130°,连结OC,P 是半径OC上任意一点,连结DP,BP,则∠ BPD的度数可能为_____ (写出一个即可).图3-6-14详解详析1.702.60 [解析]∵四边形ABCD内接于⊙ O,∴∠A+∠C=180°.又∵∠A∶∠C=1∶2,∠A=60°.3.130 [解析]∵四边形ABCD是⊙ O的内接四边形,且∠ ABC=115°,∴∠ ADC=180 -∠ ABC=180°-115°=65°,∴∠AOC=2∠ADC=2×65°=130°.4.305. 136.解:∵四边形ABCD是圆内接四边形,∴∠ A+∠ C=180°,∠ B+∠D=180°.∵∠ A∶∠ B∶∠ C=2∶3∶6,设∠ A=2α,∠ B=3α,∠ C=6α,则2α+6α=180°,∴α =22.5 °,∴∠ B=3α =67.5 °,∴∠ D=180°-∠ B=112.5 °.7.证明:∵ AD∥BC,∴∠ A+∠ B=180°.∵四边形ABCD内接于⊙ O,∴∠ A+∠ C=180°,∴∠ B=∠ C,∴ AC=BD,∴AC-AD=BD-AD,即AB=CD,∴AB=CD.8.C [解析]∵四边形ABCD为圆O的内接四边形,∴∠ABC+∠ADC=180°.∵∠CDE+∠ADC=180°,∠ ABC=60°,∴∠CDE=∠ABC=60°.故选 C.9.60 [解析]∵∠BOD=120°,∴∠BAD=60°. 又∠ BAD+∠ BCD=180 =180°,∴∠ DCE=∠ BAD=60°.10.证明:∵ BC=BE,∴∠ E=∠ BCE.∵四边形ABCD是圆内接四边形,∴∠ A+∠ DCB=180°.∵∠BCE+∠DCB=180°,∴∠ A=∠ BCE,则∠ A=∠E,∴AD=DE,∴△ ADE是等腰三角形.11.D [解析]如图,连结OC.∵OB=OC,∴∠OCB=∠OBC=40∴∠ BOC=100∵∠ 1+∠ BOC=360°,,∠DCE+∠ BCD∴∠ 1=260°.1∵∠A=2∠1,∴∠A=130°.故选 D.12.D [解析]∵四边形ABMO内接于⊙ C,∴∠BMO+∠BAO=180°. ∵∠ BMO=120°,∴∠BAO=60°.又∵AO⊥BO,A(0,3),∴AB=2AO=6,∴⊙C的半径为 3.故选 D.13.4 3 [解析]连结OD,OB,过点O作OF⊥BD,垂足为F,∴DF=BF,∠DOF=∠BOF.∵ 四边形ABCD内接于⊙O,∴∠A+∠C=180°.∵∠C =2∠A,∴∠A=60°,∴∠BOD =120°,∴∠ BOF=60°. ∵OB=4,∴ BF=2 3,∴ BD=2BF=4 3.14.解:如图,过点A作AE⊥BC于点E,AF⊥CD于点 F.∵∠ADF+∠ABC=180°(圆内接四边形的对角互补),∠ ABE+∠ ABC=180∴∠ ADF=∠ ABE.在△ AEB与△ AFD中,∠ABE=∠ADF,∠AEB=∠AFD,AB=AD,∴△ AEB≌△ AFD,∴四边形ABCD的面积=四边形AECF的面积,AE=AF. 又∵∠ E=∠AFC=90°,AC=AC,∴Rt△AEC≌Rt△AFC.∵∠ACD=60°,∠AFC=90°,∴∠ CAF=30°.∵AC=1,∴ CF=21,AF=23,15.解:(2) 如图①,连结DE.∵∠ A+∠ BED=180°,∠ BED>∠ BCD,∴∠ A+∠ BCD<180°.如图②,延长DC交⊙ O于点E,连结BE.∵∠ A+∠ E=180°,∠ BCD>∠E,∴∠ A+∠ BCD>180 (3) 答案不唯一,如80∴四边形ABCD的面积=2S△ ACF=12×21CF×AF=11。
人教版九年级数学上册 24.1.4.2 圆内接四边形 同步练习题(含答案)
人教版九年级数学上册第24章24.1.4.2 圆内接四边形同步练习题一、选择题1.如图,四边形ABCD内接于⊙O,若∠A=40°,则∠C=(D)A.110° B.120° C.135° D.140°2.如图,四边形ABCD内接于⊙O,若∠BAD=70°,则四边形ABCD的外角∠DCE的度数为(D)A.140° B.110° C.220° D.70°3.如图,四边形ABCD内接于⊙O,AB经过圆心,∠B=3∠BAC,则∠ADC等于(B) A.100° B.112.5° C.120° D.135°4.如图,四边形ABCD内接于⊙O,DA=DC,∠CBE=50°,则∠DAC的大小为(C) A.130° B.100° C.65° D.50°5.如图,四边形ABCD 是半圆的内接四边形,AB 是直径,DC ︵=CB ︵.若∠C =110°,则∠ABC 的度数等于(A)A .55°B .60°C .65°D .70°6.如图,四边形ABCD 内接于⊙O ,四边形ABCO 是平行四边形,则∠ADC =(C)A .45°B .50°C .60°D .75°7.如图,四边形ABCD 内接于⊙O ,F 是CD ︵上一点,且DF ︵=BC ︵,连接CF 并延长交AD 的延长线于点E ,连接AC.若∠ABC =105°,∠BAC =25°,则∠E 的度数为(B)A .45°B .50°C .55°D .60°8.如图,四边形ABCD 是菱形,⊙O 经过点A ,C ,D ,与BC 相交于点E ,连接AC ,AE.若∠D =80°,则∠EAC 的度数为(C)A .20°B .25°C .30°D .35°9.如图,四边形ABCD 内接于⊙O ,AE ⊥CB 交CB 的延长线于点E.若BA 平分∠DBE ,AD =5,CE=13,则AE=(D)A.3 B.3 2 C.4 3 D.2 310.如图,点O为线段BC的中点,点A,C,D到点O的距离相等.若∠ABC=40°,则∠ADC 的度数是(B)A.130° B.140° C.150° D.160°二、填空题11.如图,四边形ABCD为⊙O的内接四边形,已知∠C=∠D,则AB与CD的位置关系是AB ∥CD.12.已知⊙O的弦AB的长等于⊙O的半径,则此弦AB所对的圆周角的度数为30°或150°.如图,在⊙O的内接四边形ABCD中,点E在DC的延长线上.若∠A=50°,则∠BCE =50°.13.如图所示,圆内接四边形ABCD两组对边的延长线分别相交于点E,F,且∠A=56°,∠E=32°,则∠F=36°.三、解答题14.如图,四边形ABCD是⊙O的内接四边形,点E是BC延长线上的一点,且CD平分∠ECA.求证:DA=DB.证明:∵CD平分∠ECA,∴∠DCA=∠DCE.∵∠DCE+∠DCB=180°,∠DCB+∠BAD=180°,∴∠DCE=∠DAB.∵∠DCA=∠DBA,∴∠DBA=∠DAB.∴DA=DB.15.如图,四边形ABCD内接于⊙O,∠B=50°,∠ACD=25°,∠BAD=65°.求证:(1)AD=CD;(2)AB是⊙O的直径.证明:(1)∵四边形ABCD内接于⊙O,∴∠D=180°-∠B=130°.∵∠ACD=25°,∴∠DAC=180°-∠D-∠ACD=180°-130°-25°=25°.∴∠DAC=∠ACD.∴AD=CD.(2)∵∠BAC=∠BAD-∠DAC=65°-25°=40°,∠B=50°,∴∠ACB=180°-∠B-∠BAC=180°-50°-40°=90°.∴AB是⊙O的直径.16.如图,⊙C经过坐标原点,且与两坐标轴分别交于点A与点B,点A的坐标为(0,4),M 是圆上一点,∠BMO=120°.求⊙C的半径.解:∵四边形ABMO内接于⊙C,∴∠BAO+∠BMO=180°.∵∠BMO=120°,∴∠BAO=60°.在Rt△ABO中,AO=4,∠BAO=60°,∴AB=8.∵∠AOB=90°,∴AB为⊙C的直径.∴⊙C的半径为4.17.如图,AB是⊙O的直径,D,E为⊙O上位于AB异侧的两点,连接BD并延长至点C,使得CD=BD.连接AC交⊙O于点F,连接AE,DE,DF.(1)求证:∠E=∠C;(2)若∠E=55°,求∠BDF的度数.解:(1)证明:连接AD.∵AB是⊙O的直径,∴∠ADB=90°,即AD⊥BC.∵CD=BD,∴AD垂直平分BC.∴AB=AC.∴∠B=∠C.又∵∠B=∠E,∴∠E=∠C.(2)∵四边形AEDF是⊙O的内接四边形,∴∠AFD=180°-∠E.又∵∠CFD=180°-∠AFD,∴∠CFD=∠E=55°.∵∠E=∠C=55°,∴∠BDF=∠C+∠CFD=110°.。
(完整)圆内接四边形拔高练习题
圆内接四边形一.选择题1.如图,AB是半圆的直径,O是圆心,C是半圆外一点,CA、CB分别交半圆于点D,E 若△CDE的面积与四边形ABED的面积相等,则∠C等于()A.30°B.40°C.45°D.60°二.填空题2.如图,四边形ABCD中,AB=AC=AD,若∠CAD=76°,则∠CBD=_________度.3.如图,在圆内接四边形ABCD中,AB=AD,AC=1,∠ACD=60°,则四边形的面积为_________.三.解答题4.已知:⊙O的直径AB和弦CD,且AB⊥CD于E,F为DC延长线上一点,连接AF交⊙O于M.求证:∠AMD=∠FMC.5.如图1,已知△ABC,AB=AC,以边AB为直径的⊙O交BC于点D,交AC于点E,连接DE.(1)求证:DE=DC.(2)如图2,连接OE,将∠EDC绕点D逆时针旋转,使∠EDC的两边分别交OE的延长线于点F,AC的延长线于点G.试探究线段DF、DG的数量关系.6.设MN是圆O外一直线,过O作OA⊥MN于A,自A引圆的两条直线,交圆于B、C 及D、E,直线EB及CD分别交MN于P、Q.求证:AP=AQ.7.已知:如图1,四边形ABCD内接于⊙O,AC⊥BD于点P,OE⊥AB于点E,F为BC 延长线上一点.(1)求证:∠DCF=∠DAB;(2)求证:;(3)当图1中点P运动到圆外时,即AC、BD的延长线交于点P,且∠P=90°时(如图2所示),(2)中的结论是否成立?如果成立请给出你的证明,如果不成立请说明理由.8.如图,已知ABCD是圆O的内接四边形,AB=BD,BM⊥AC于M,求证:AM=DC+CM.9.如图,圆内接四边形ABCD的两组对边延长线分别交于E、F,∠AEB、∠AFD的平分线交于P点.求证:PE⊥PF.10.如图,P是等边△ABC外接圆上任意一点,求证:PA=PB+PC.。
3.6 圆内接四边形 浙教版数学九年级上册同步练习(含解析)
3.6 圆内接四边形基础过关全练知识点 圆内接四边形及其性质1.(2020浙江湖州中考)如图,已知四边形ABCD内接于☉O,∠ABC=70°,则∠ADC的度数是( )A.70°B.110°C.130°D.140°2.【易错题】(2022浙江温州鹿城二模)如图,点B在AC上,∠AOC=100°,则∠ABC等于( )A.50°B.80°C.100°D.130°3.(2021辽宁盘锦中考)如图,在平面直角坐标系xOy中,点A在x轴负半轴上,点B在y轴正半轴上,☉D经过A,B,O,C四点,∠ACO=120°,AB= 4,则圆心D的坐标是 .()4.【教材变式·P97课内练习T1】如图,AB是半圆O的直径,∠D=120°,则∠BAC= °.5.(2019浙江台州中考)如图,AC是圆内接四边形ABCD的一条对角线,点D关于AC的对称点E在边BC上,连结AE.若∠ABC=64°,则∠BAE 的度数为 .6.【易错题】【新独家原创】如图,小明把一副三角尺放到圆中,斜边AC重合,点A、B、C、D均在圆上,其中∠ACB=30°,∠CAD=45°,点P 是圆上任意一点(不与A、B、C、D重合),则∠APB的度数为 .7.如图,已知AD是△ABC的外角平分线,与△ABC的外接圆交于点D.()(1)求证:DB=DC;(2)过D分别作DP⊥AC于点P,DQ⊥BE于点Q,求证:△CDP≌△BDQ.能力提升全练8.【一题多解】(2023浙江温州龙港期中,6,★☆☆)已知在圆的内接四边形ABCD中,∠A∶∠B∶∠C=2∶3∶7,则∠D的度数为( )A.40°B.60°C.100°D.120°9.(2023浙江杭州萧山期中,7,★★☆)如图,点A、B、C、D、E都是☉O上的点,AC=AE,∠D=130°,则∠B的度数为( )A.130°B.128°C.115°D.116°10.【数学文化】(2020湖南株洲中考,18,★★☆)斛是中国古代的一种量器.据《汉书·律历志》记载:“斛底,方而圜(huán)其外,旁有庣(tiāo)焉.”意思是说:“斛的底面为正方形的四个顶点都在一个圆上,此圆外有一个同心圆.”如图所示,问题:现有一斛,其底面的外圆直径为五尺(即5尺),“庣旁”为五寸(即两同心圆的外圆与内圆的半径之差为0.5尺),则此斛底面的正方形的边长为 尺.11.【等面积法】(2023浙江杭州西湖期中,19,★★☆)如图,四边形ABCD内接于☉O,AC为☉O的直径,∠ADB=∠CDB.(1)试判断△ABC的形状,并给出证明;(2)若AB=2,AD=1,求CD、BD的长度.素养探究全练12.【推理能力】如图1,在☉O中,弦AD平分圆周角∠BAC,我们将圆中以A为公共点的三条弦BA,CA,DA构成的图形称为圆中“爪形A”.如图2,四边形ABCD内接于圆O,AB=BC,(1)证明:圆中存在“爪形D”;(2)若∠ADC=120°,求证:AD+CD=BD.答案全解全析基础过关全练1.B ∵四边形ABCD内接于☉O,∠ABC=70°,∴∠ADC=180°-∠ABC=180°-70°=110°.2.D 如图,在优弧AC(不与点A、C重合)上取点D,连结AD、CD,由圆周角定理得∠ADC=1∠AOC=50°,2∵四边形ABCD为圆内接四边形,∴∠ABC+∠ADC=180°,∴∠ABC=180°-50°=130°,故选D.3.答案 (-3,1)解析 ∵四边形ABOC为圆内接四边形,∴∠ABO+∠ACO=180°,∵∠ACO=120°,∴∠ABO=180°-120°=60°.∵∠AOB=90°,∴AB为☉D的直径,∴D为AB的中点,在Rt△ABO中,∵∠ABO=60°,∴∠OAB=30°,AB=2,∴OA=23,∴OB=12∴A(-23,0),B(0,2),∴点D的坐标为(-3,1).4.答案 30解析 ∵四边形ABCD为圆内接四边形,∴∠B+∠D=180°,∵∠D=120°,∴∠B=60°,∵AB是半圆O的直径,∴∠ACB=90°,∴∠BAC+∠B=90°,∴∠BAC=30°.5.答案 52°解析 由已知得,∠D=180°-∠ABC=116°,∵点D关于AC的对称点E在边BC上,∴∠D=∠AEC=116°,∴∠BAE=∠AEC-∠ABC=116°-64°=52°.6.答案 30°或150°解析 当点P在优弧BCA上时,∠APB=∠ACB=30°;当点P在劣弧AB上时,四边形ACBP为圆内接四边形,∴∠APB+∠ACB=180°,∴∠APB=180°-30°=150°.∴∠APB的度数为30°或150°.7.证明 (1)∵AD是△ABC的外角平分线,∴∠EAD=∠DAC,∵四边形ABCD为圆内接四边形,∴∠BAD+∠DCB=180°,∵∠EAD+∠BAD=180°,∴∠EAD=∠DCB,∵∠DAC=∠DBC,∴∠DCB=∠DBC,∴DB=DC.(2)∵AD平分∠EAC,DP⊥AC,DQ⊥BE,∴DQ=DP,在Rt△CDP与Rt△BDQ中,DC=DB, PD=QD,∴Rt△CDP≌Rt△BDQ(HL).能力提升全练8.D 解法一:∵四边形ABCD是圆内接四边形,∴∠A+∠C=180°,∠B+∠D=180°,∵∠A∶∠B∶∠C=2∶3∶7,∴∠A∶∠B∶∠C∶∠D=2∶3∶7∶6,∴∠D=180°×63+6=120°,故选D.解法二:∵四边形ABCD是圆内接四边形,∴∠A+∠C=180°,∠B+∠D=180°,∵∠A∶∠B∶∠C=2∶3∶7,设∠A=2x,∠B=3x,∠C=7x,∴2x+7x=180°,解得x=20°.∴∠B=60°,∴∠D=180°-∠B=120°,故选D.9.C 如图,连结AC、CE,∵点A、C、D、E都是☉O上的点,∴∠CAE+∠D=180°,∵∠D=130°,∴∠CAE=180°-130°=50°,∵AC=AE,×(180°-50°)=65°,∴∠ACE=∠AEC=12∵点A、B、C、E都是☉O上的点,∴∠AEC+∠B=180°,∴∠B=180°-65°=115°,故选C.10.答案 22解析 如图,∵四边形CDEF为正方形,∴∠D=90°,CD=DE,∴CE为直径,∠ECD=45°,由题意得AB=5尺,∴CE=5-0.5×2=4尺,∵CD2+DE2=CE2,CD=DE,∴2CD2=16,∴CD=22尺.11.解析 (1)△ABC是等腰直角三角形.证明:∵AC为☉O的直径,∴∠ADC=∠ABC=90°,∵∠ADB=∠CDB,∴AB =BC ,∴AB =BC ,又∵∠ABC =90°,∴△ABC 是等腰直角三角形.(2)在Rt △ABC 中,AB =BC =2,∴AC =2,在Rt △ADC 中,AD =1,AC =2,∴CD =AC 2―AD 2=3,过A 作AE ⊥BD 于E ,过C 作CF ⊥BD 于F,如图,则△ADE 和△CDF 均是等腰直角三角形,∴AE =22AD =22,CF =22CD =62,∵S 四边形ABCD =S △ACD +S △ABC =S △ABD +S △BCD ,∴12×1×3+12×2×2=12×22BD +12×62BD ,∴BD =2+62.素养探究全练12.证明 (1)∵AB =BC ,∴AB =BC ,∴∠ADB =∠CDB ,∴DB 平分圆周角∠ADC ,∴圆中存在“爪形D”.(2)如图,延长DC至点E,使得CE=AD,连结BE,∵∠A+∠DCB=180°,∠ECB+∠DCB=180°,∴∠A=∠ECB,∵CE=AD,AB=BC,∴△BAD≌△BCE(SAS),∴∠E=∠ADB,BD=BE,由(1)知,DB平分圆周角∠ADC,∠ADC=120°,∠ADC=60°,∴∠ADB=12∴∠E=∠ADB=60°,∴△BDE是等边三角形,∴DE=BD,∴AD+CD=BD.。
(完整)初中数学专题训练--圆--圆的内接四边形
例 圆内接四边形ABCD 中,∠A 、∠B 、∠C 的度数的比是3﹕2﹕7,求四边形各内角度数. 解:设∠A 、∠B 、∠C 的度数分别为3x 、2x 、7x .∵ABCD 是圆内接四边形.∴∠A +∠C=180°即3x+7x=180°,∴x=18°,∴∠A=3x=54°,∠B=2x=36°,∠C=7x=126°, 又∵∠B+∠D=180°,∴∠D=180°一36°=144°.说明:①巩固性质;②方程思想的应用.例 (2001厦门市,教材P101中17题)如图,已知AD 是△ABC 的外角∠EAC 的平分线,AD 与三角形ABC 的外接圆相交于D .求证:DB=DC .分析:要证DB=DC ,只要证∠BCD=∠CBD ,充分利用条件和圆周角的定理以及圆内接四边形的性质,即可解决.证明:∵AD 平分∠EAC ,∴∠EAD =∠DAC , ∵∠EAD 为圆内接四边形ABCD 的外角,∴∠BCD=∠EAD ,又∠CBD=∠DAC ,∴∠BCD=∠CBD ,∴DB=DC .说明:角相等的灵活转换,利用圆内接四边形的性质作桥梁.例 如图,△ABC 是等边三角形,D 是上任一点,求证:DB+DC=DA .分析:要证明一条线段等于两条线段的和,往往可以“截长”和“补短”法,本题两种方法都可以证明.证明: 延长DB 至点E ,使BE=DC ,连AE . 在△AEB 和△ADC 中,BE=DC .△ABC 是等边三角形.∴AB=AC .∵ 四边形ABDC 是⊙O 的内接四边形, ∴∠ABE=∠ACD .∴△AEB ≌△ADC . ∴∠AEB=∠ADC=∠ABC . ∵∠ADE=∠ACB ,又 ∵∠ABC=∠ACB =60°, ∴∠AEB=∠ADE=60°.∴△AED 是等边三角形,∴AD=DE=DB+BE . ∵BE=DC ,∴DB+DC=DA .说明:本例利用“截长”和“补短”法证明.培养学生“角相等的灵活转换”能力.在圆中,圆心角、圆周角、圆内接四边形的性质构成了角度相当转换的一个体系,应重视.典型例题四例 如图,ABCD 是⊙O 的内接四边形,CD AH ⊥,如果︒=∠30HAD ,那么=∠B ( )A .90°B .120°C .135°D .150°解:,90,30︒=∠︒=∠AHD HADABCD EAB C DEO︒=∠∴60D ,由圆内接四边形的对角和是180°,得︒=∠120B ,故选B. 说明:“圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角.”这个定理很重要,要正确运用.典型例题五例 如图,已知:⊙1O 与⊙2O 相交于点A 、B ,P 是⊙1O 上任意一点,P A 、PB 的延长线交⊙2O 于点C 、D ,⊙1O 的直径PE 的延长线交CD 于点M .求证:CD PM ⊥.分析:要证CD PM ⊥,即证︒=∠+∠90D DPM ,连结公共弦AB 及EB ,即得证.证明:连结AB 、EB ,在⊙中,PEB PAB ∠=∠.∵ABCD 为⊙2O 的内接四边形..,D PEB D PAB ∠=∠∠=∠∴∵PE 为⊙1O 的直径..90︒=∠PBE.90.90.90︒=∠∴︒=∠+∠︒=∠+∠∴DMP D DPM PEB DPM即CD PM ⊥.说明:连接AB 就构造出圆内接四边形性质定理的基本图形.典型例题六例 如图,AD 是ABC ∆外角EAC ∠的平分线,AD 与ABC ∆外接⊙O 交于点D ,N 为BC 延长线上一点,且DN CD CN ,=交⊙O 于点M .求证:(1)DC DB =;(2).2DN CM DC ⋅=分析:(1)由于DB 与DC 是同一三角形的两边,要证二者相等就应先证明它们的对角相等,这可由圆周角定理与圆内接四边形的基本性质得到:(2)欲证乘积式.2DN CM DC ⋅=,只须证比例式DC CM DN DC =,也即CNCMDN DC =,这只须要证明DCM ∆∽DNC ∆即可. 证明 (1)连结DC.∵AD 平分EAC ∠,∴.DBC DAC EAD ∠=∠=∠ 又ABCD 内接于⊙O , ∴.DCB EAD ∠=∠ 故.DCB DBC ∠=∠ .DC DB =∴(2).,180180NDC CDM DCN DCB DBC DMC ∠=∠∠=∠-︒=∠-︒=∠Θ ∴DMC ∆∽DCN ∆,故DNCMCN CM DN DC ==. ∴.2DN CM DC ⋅=说明:本题重在考查圆周角与圆内接四边形的基本性质和利用相似三角形证明比例线段的基本思维方法.本题曾是1996年南昌市中考试题.典型例题七例 如图,已知四边形ABCD 是圆内接四边形,EB 是⊙O 的直径,且AD EB ⊥,AD 与BC 的延长线相交于.F 求证:DCBCFD AB =. 证明 连结AC .∵ EB AD ⊥. ∴.∴ DAB ACB ∠=∠.∵ 四边形ABCD 是圆内接四边形,∴ .,ABC FDC DAB FCD ∠=∠∠=∠∴ FCD ACB ∠=∠. ∴ ABC ∆∽FDC ∆.∴DCBCFD AB =. 说明:本题考查圆内接四边形性质的应用,解题关键是辅助线构造ABC ∆,再证ABC ∆∽FDC ∆.易错点是不易想到证ACB FCD ∠=∠而使解题陷入困境或出现错误.典型例题八例 如图,已知四边形ABCD 内接于半圆O ,AB 是直径,DC AD =,分别延长BA ,CD 交于点E ,EC BF ⊥,交EC 的延长线于F ,若12,==BC AO EA ,求CF 的长.解 连结OD ,BD .∵DC AD =,的度数AOD ∠=.∴.//BC OD∴EBEOBC OD =. .24,16.8.3212,12,==∴=∴=∴===EB AB OD OD BCBOAO EA ΘABCD Θ内接于⊙O ,∴.EBC EDA ∠=∠又 E ∠公用,∴EDA ∆∽EBC ∆. ∴EBEDEC EA BC AD ==. 设y ED x DC AD ===,,则有yx y x +==82412. ∴24=x . ∴24=AD .AB Θ为⊙O 的直径,∴.90︒=∠=∠F ADB 又.FCB DAB ∠=∠ ∴Rt ADB ∆∽Rt .CFB ∆∴.BCABCF AD =即.121624=CF ∴.23=CF 说明 本题主要考查圆内接四边形的性质,解题关键是作出辅助线.典型例题九例 (海南省,2000) 如图,AB 是⊙O 的直径,弦(非直径)AB CD ⊥,P 是⊙O 上不同于D C ,的任一点.(1)当点P 在劣弧CD 上运动时,APC ∠与APD ∠的关系如何?请证明你的结论;(2)当点P 在优弧CD 上运动时,APC ∠与APD ∠的关系如何?请证明你的结论(不要讨论P 点与A 点重合的情形)分析:利用在同圆中,圆心角、弧、弦、弦心距之间的关系定理来解决.解 ∵弦AB CD ⊥,AB 是直径,∴∴(1).APD APC ∠=∠(2).180︒=∠+∠APD APC(如图中虚线所示).选择题1.在圆的内接四边形ABCD 中,A ∠和它的对角C ∠的度数的比为1:2,那么A ∠为( )A.30°B.60°C.90°C.120°2.四边形ABCD内接于圆,A∠、B∠、C∠、D∠的度数依次可以是()A.1:2:3:4 B.6:7:8:9 C.4:1:3:2 D.14:3:1:123.四边形ABCD内接于圆,A∠、B∠、C∠、D∠的度数比依次可以是()A.4:3:2:1B.1:3:2:4C.2:1:3:4D.2:3:1:44.如图,四边形ABCD内接于⊙O,︒=∠110BOD,那么BCD∠的度数为()A.︒125B.︒110C.︒55D.︒705. 如图,⊙1O与⊙2O交于A、B两点,且⊙2O过⊙1O的圆心1O,若︒=∠40M,则N∠等于()A.︒40B.︒80C.︒100D.︒706. 圆内接平行四边形一定是()(A)矩形(B)正方形(C)菱形(D)梯形7.已知AB、CD是⊙O的两条直径,则四边形ADBC一定是()A.矩形B.菱形C.正方形D.等腰梯形8、四边形ABCD内接于圆,则∠A、∠B、∠C、∠D的度数比可以是( )(A)1﹕2﹕3﹕4 (B)7﹕5﹕10﹕8(C)13﹕1﹕5﹕17 (D)1﹕3﹕2﹕49、若ABCD为圆内接四边形,AE⊥CD于E,∠ABC=130°,则∠DAE为()(A)50°(B)40°(C)30°(D)20°10、如图,圆内接四边形ABCD的一组对边AD、BC的延长线相交于P,对角线AC和BD相交于点Q,则图中共有相似的三角形( )(A)4对(B)3对(C)2对(D)1对11.如图,在ABC∆,AD是高,ABC∆的外接圆直径AE交BC边于点G,有下列四个结论:(1)CDBDAD⋅=2;(2)AEEGBE⋅=2;(3)ACABADAE⋅=⋅;(4)CGBGEGAG⋅=⋅.其中正确的结论的个数是()A.1个B.2个C.3个D.4个12.已知:如图,劣弧,那么DB∠+∠的度数是()ACDPQA .320°B .160°C .150°D .200° 13.钝角三角形的外心在( )A .三角形内B .三角形外C .三角形的边上D .上述三种情况都有可能 14.圆内接平行四边形的对角线( )A .互相垂直B .互相垂直平分C .相等D .相等且平分每组对角 15.如图,已知四边形ABCD 是⊙O 的内接四边形,且3,7,5====BE AC CD AB ,下列命题错误的是( )A .DCE ABE ∆≅∆B .︒=∠45BDAC .5.24=ABCD S 四边形 D .图中全等的三角形共有2对答案:1.B 2.D 3.C 4. A 5. D 6、A ;7.A 8、C ; 9、B ; 10、A. 11.B 12.B 13.B 14.D 15.D.填空题1. 已知ABCD 是圆内接四边形,若∠A 与∠C 的度数之比是1﹕2,则∠A 的度数是 度.2. 若A ,B ,C ,D 四点共圆,且∠ACD 为36°,则所对的圆心角的度数是 度.3. 圆内接四边形相邻三个内角的比是2﹕1﹕7,则这个四边形的最大角的度数为 度.4. 圆上四点A 、B 、C 、D ,分圆周为四段弧,且=4:3:2:1,则圆内接四边形ABCD 的最大角是_________5. 圆内接四边形ABCD 中,若EBC ∠是ABC ∠相邻的一个外角,且︒=∠105EBC ,︒=∠93C ,则______=∠D ,______=∠A ,若3:2:1::=∠∠∠C B A ,则______=∠D ,______=∠A6. 四边形ABCD 内接于圆,A ∠、C ∠的度数之比是4:5,B ∠比D ∠大︒30,则______=∠A ,______=∠D7. 圆内接梯形是________梯形,圆内接平行四边形是_________8.圆内接四边形ABCD 中,如果4:3:2::=∠∠∠C B A ,那么______=∠D 度. 9.在圆内接四边形ABCD 中,5:3:4::=∠∠∠C B A ,则______=∠D .10.如图,在圆内接四边形ABCD 中,α=︒=∠=ACBADADAB,30,,则四边形ABCD的面积为________.11.如图,把正三角形ABC的外接圆对折,使点A落在的中点A',若5=BC,则折痕在ABC∆内的部分DE长为_______.答案:1. 60°;2. 72°;3.160°;4. ︒126 5. ︒105,︒87,︒90,︒45;6. ︒100,︒757. 等腰,矩形.8.90 9.120°10.243a11.310.判断题1. 顶点在圆上的角叫做圆周角;()2. 相等的圆周角所对的弧相等;()3. 直角所对的弦是直径;()4. 在圆中,同一弦上的两个圆周角相等或互补;()5. 弓形含的圆周角为︒120,则弓形弧也为︒120;()6. 四边形的对角互补.()答案:1. ×2. ×3. ×4. √5. ×6. ×.解答题1、如图,已知:ABCD为圆内接四边形,(1)若DB∥CE,求证:AD﹕BC=CD﹕BE;(2)若AD﹕BC=CD﹕BE,求证:DB∥CE .2、已知:⊙O中,直径AB垂直弦CD于H,E是CD延长线上一点,AE交⊙O于F.求证:∠AFC=∠DFE.3.如图,已知四边形ABCD内接于圆,DC、AB的延长线相交于E,且DBACBE∠=∠,求证:BDECBEAD⋅=⋅BCDO4.如图,点A 、D 在⊙O 上,以点A 为圆心的⊙A 交⊙O 于B 、C 两点,AD 交⊙A 于点E ,交BC 于点F ,求证:AD AF AE ⋅=25.已知圆内接四边形,ABCD 中,4:5:2::=∠∠∠C B A ,求最小的角。
九年级下册圆形拔高习题(较难及难题)(含解析)(可编辑修改word版)
九年级下册圆形拔高习题(较难及难题)(含解析)(可编辑修改word版)九年级下册圆形拔高习题(中等及较难)一、选择题1、如图,Rt△ABC 中,AB⊥BC,AB=6,BC=4,P 是△ABC 内部的一个动点,且满足∠PAB=∠PBC,则线段 CP 长的最小值为( )A .B .2C .D .2、如图,⊙O 是△ABC 的外接圆,∠BOC=3∠AOB,若∠ACB=20°,则∠BAC 的度数是( )A .120°B .80°C .60°D .30°3、如图,AB 为⊙O的直径,点C 在⊙O上,若∠OCA=50°,AB=4,则的长为( )A . πB . πC . πD . π4、如图所示,AB 是⊙O的直径,点 C 为⊙O外一点,CA,CD 是⊙O的切线,A,D 为切点,连接 BD,AD.若∠ACD=30°,则∠DBA的大小是( )B .30°C .60°D .75°5、如图,圆 O 是Rt△ABC的外接圆,∠ACB=90°,∠A=25°,过点 C 作圆 O 的切线,交 AB 的延长线于点 D,则∠D的度数是 ( )A .25°B .40°C .50°D .65°6、如图,在⊙O中,AB 是直径,点 D 是⊙O上一点,点 C 是弧AD 的中点,弦CE⊥AB于点 E,过点 D 的切线交 EC 的延长线于点 G,连接 AD,分别交 CE、CB 于点 P、Q,连接 AC.给出下列结论:①∠BAD=∠ABC;②AD=CB;③点 P 是△ACQ的外心;④GP=GD;⑤CB∥GD.其中正确结论的序号是()A.①②④B.②③⑤C.③④D.②⑤7、一个直角三角形的斜边长为8,内切圆半径为1,则这个三角形的周长等于( )A .21B .20C .19D .188、如图,△ABC 是圆O 的内接三角形,且AB≠AC,∠ABC 和∠ACB 的平分线,分别交圆 O 于点 D ,E ,且 BD=CE ,则∠A 等于()B .60°C .45°D .30°9、如图,半径为 5 的⊙O 中,弦 AB ,CD 所对的圆心角分别是∠AOB,∠COD.已知AB=8,∠AOB+∠COD=180°,则弦CD 的弦心距等于()B .3D .4 A .C .10、如图,AB 是半圆 O 的直径,AC 为弦,OD⊥AC 于 D ,过点 O 作OE∥AC 交半圆 O 于点 E ,过点 E 作EF⊥AB 于 F ,若AC=4,则 OF 的长为( )D .411、如图,正方形 ABCD 的边长为 1,将长为 1 的线段 QR 的两端放在正方形相邻的两边上同时滑动.如果点Q 从点A 出发,按A→B→C→D→A 的方向滑动到A 停止,同时点R 从点B 出发,按B→C→D→A→B 的方向滑动到 B 停止,在这个过程中,线段 QR 的中点 M 所经过的路线围成的图形面积为()A. B.4-πC .πD .A .1B .C .2二、填空题12、如图,点 C 在以AB 为直径的半圆上,AB=4,∠CBA=30°,点D 在AO 上运动,点 E 与点D 关于AC 对称:DF⊥DE于点D,并交 EC 的延长线于点 F,下列结论:①CE=CF;②线段EF 的最小值为;③当 AD=1 时,EF 与半圆相切;④当点D 从点A 运动到点O 时,线段EF 扫过的面积是4.其中正确的序号是.13、如图,P 是等边三角形ABC 内一点,将线段AP 绕点A 顺时针旋转60°得到线段AQ,连接BQ.若PA=6,PB=8,PC=10,则四边形APBQ 的面积为.14、已知正三角形的面积是cm,则正三角形外接圆的半径是cm.15、如图,四边形ABCD 为⊙O的内接四边形,已知∠C=∠D,则AB 与CD 的位置关系是.16、如图,四边形 ABCD 内接于⊙O,AB 是直径,过 C 点的切线与 AB 的延长线交于 P 点,若∠P=40°,则∠D 的度数为.三、解答题17、如图,圆心角∠AOB=120°,弦AB=2 cm.(1)求⊙O的半径 r;(2)求劣弧的长(结果保留π).18、在△ABC 中,CE,BD 分别是边 AB,AC 上的高,F 是 BC 边上的中点.(1)指出图中的一个等腰三角形,并说明理由.(2)若∠A=x°,求∠EFD的度数(用含 x 的代数式表达).(3)猜想∠ABC和∠EDA的数量关系,并证明.19、如图,直线 AB 经过⊙O上的点 C,直线 AO 与⊙O交于点E 和点D,OB 与OD 交于点F,连接DF,DC.已知OA=OB,CA=CB,DE=10,DF=6.(1)求证:①直线 AB 是⊙O的切线;②∠FDC=∠EDC;(2)求CD 的长.20、如图,AB 是⊙O 的直径,点 C、D 在⊙O 上,∠A=2∠BCD,点 E 在 AB 的延长线上,∠AED=∠ABC(1)求证:DE 与⊙O相切;(2)若BF=2,DF= ,求⊙O的半径.21、如图,在△ABC中,∠C=90°,∠BAC的平分线交 BC 于点D,点O 在AB 上,以点 O 为圆心,OA 为半径的圆恰好经过点D,分别交 AC,AB 于点E,F.(1)试判断直线 BC 与⊙O的位置关系,并说明理由;(2)若BD=2 ,BF=2,求阴影部分的面积(结果保留π).22、如图1,在△ABC 中,点D 在边BC 上,∠ABC:∠ACB:∠ADB=1:2:3,⊙O 是△ABD 的外接圆.(1)求证:AC 是⊙O的切线(2)当BD 是⊙O的直径时(如图 2),求∠CAD的度数.23、如图,AB 为⊙O的直径,点E 在⊙O上,C 为的中点,过点C 作直线CD⊥AE于D,连接AC,BC.(1)试判断直线 CD 与⊙O的位置关系,并说明理由;(2)若AD=2,AC= ,求AB 的长。
圆的内接四边形(拔高训练)(有答案)
第3课时圆内接四边形重点:圆内接四边形对角互补。
习题精练1、下列关于圆内接四边形叙述正确的有()①在圆内部的四边形叫圆内接四边形;②圆内接四边形的对角相等;③圆内接四边形中不相邻的两个内角互补;④圆内接四边形的一个外角等于它的相邻内角的对角。
A、1个B、2个C、3个D、4个2、如图所示,四边形ABCD为⊙O的内接四边形,∠BCD=120°,则∠BOD的大小是()A、80°B、120°C、100°D、90°3、四边形ABCD内接于⊙O,则∠A:∠B:∠C:∠D的值可以是()A、1:2:3:4B、1:3:2:4C、1:4:2:3D、1:2:4:34、如图,四边形ABCD内接于⊙O,DA=DC,∠CBE=50°,则∠DAC的大小为()A、130°B、100°C、65°D、50°5、如图,A、B、C在⊙O上,∠AOB=22.5°,则∠ACB的度数是_________.6、如图,正方形ABCD 的四个顶点分别在⊙O 上,点P 为CD⌒ 上不同于点C 、D 的任意一点,则∠DPC 的度数是_________.7、如图,四边形ABCD 内接于⊙O ,∠DAE 是四边形ABCD 的一个外角,且AD 平分∠CAE 。
求证:DB=DC 。
拓展提升8、如图,四边形ABCD 为⊙O 的内接四边形,延长AB 与DC 相交于点G ,AO ⊥CD ,垂足为E ,连接BD ,∠GBC=50°,则∠DBC 的度数为( )A 、50°B 、60°C 、80°D 、90°第8题 第9题9、如图,在△ABC 中,∠ACB=90°,过B 、C 两点的⊙O 交AC 于点D ,交AB 于点E ,连接EO 并延长交⊙O 于点F ,连接BF ,CF ,若∠EDC=135°,22=CF ,则22BE AB +的值为( )A 、8B 、12C 、16D 、2010、如图,在⊙O 的内接五边形ABCDE 中,∠CAD=35°,则∠B+∠E=_______°.11、如图,AB ,CD 是⊙O 的弦,AB ⊥CD ,BE 是⊙O 的直径,若AC=3,则DE=________.12、如图,正方形ABCD 内接于⊙O ,在劣弧AB 上取一点E ,连接DE ,BE ,过点D 作DF//BE 交⊙O 于点F ,连接BF ,AF ,且AF 与DE 相交于点G ,求证:(1)四边形EBFD 是矩形;(2)DG=BE 。
九年级数学上册3.6圆内接四边形同步练习(新版)浙教版【含解析】
3.6 圆内接四边形一、选择题(共10小题;共50分)1. 下列四个图中,∠x是圆周角的是 ( )A. B.C. D.2. 如图所示,圆周角有 ( )A. 9个B. 10个C. 11个D. 12个3. 如图,AB是⊙O的直径,AB垂直于弦CD,∠BOC=70∘,则∠ABD= ( )A. 20∘B. 46∘C. 55∘D. \70°\)4. 如图,小华同学设计了一个圆直径的测量器,把标有刻度的尺子OA,OB在O点钉在一起,并使它们保持互相垂直.在测直径时,把O点靠在圆周上,读得刻度OE=4个单位,OF=3个单位,则圆的直径为 ( )A. 7个单位B. 6个单位C. 5个单位D. 4个单位5. 如图,四边形ABCD是⊙O的内接四边形,若∠BOD=88∘,则∠BCD的度数是 ( )A. 88∘B. 92∘C. 106∘D. 136∘6. 如图所示,AB是⊙O的直径,AD=DE,AE与BD交于点C,则图中与∠BCE相等的角有 ( ).A. 2个B. 3个C. 4个D. 5个7. 如图所示,小华同学设计了一个圆直径的测量器,标有刻度的尺子OA,OB在O点钉在一起,并使它们保持垂直,在测直径时,把O点靠在圆周上,读得刻度OE=8,OF=6,则圆的直径为 ( )A. 12B. 10C. 4D. 158. 如图,有一圆形展厅,在其圆形边缘上的点A处安装了一台监视器,它的监控角度是55∘,为了监控整个展厅,最少需在圆形边缘上安装这样的监视器 ( )A. 2台B. 3台C. 4台D. 5台9. 如图,△ABC内接于⊙O,∠OBC=40∘,则∠A的度数为 ( )A. 80∘B. 100∘C. 110∘D. 130∘10. 如图,已知AB是半径为1的圆O的一条弦,且AB=a<1,以AB为一边在圆O内作正△ABC,点D为圆O上不同于点A的一点,且DB=AB=a,DC的延长线交圆O于点E,则AE的长为 ( )A. √52a B. 1 C. √32D. a二、填空题(共10小题;共50分)11. 如图,AB为⊙O的直径,点C,D在⊙O上,∠BAC=50∘,则∠ADC=.12. 如图,点A,B,C是⊙O上的点,OA=AB,则∠C的度数为.13. 将量角器按如图所示的方式放置在三角形纸板上,使点C在半圆上.点A,B的读数分别为86∘,30∘,则∠ACB=.14. 如图,AB是⊙O的直径,点D在⊙O上,∠BOD=130∘,AC∥OD交⊙O于点C,连接BC,则∠B=度.15. 已知△ABC的边BC=4 cm,⊙O是其外接圆,且半径也为4 cm,则∠A的度数是.16. 如图,圆内接四边形ABCD中两组对边的延长线分别相交于点E,F,且∠A=55∘,∠E=30∘,则∠F=.17. 如图,OB是⊙O的半径,弦AB=OB,直径CD⊥AB.若点P是线段OD上的动点,连接PA,则∠PAB的度数可以是∘(写出一个即可).18. 如图,一块直角三角板ABC的斜边AB与量角器的直径恰好重合,点D对应的刻度是58∘,则∠ACD的度数为∘.19. 已知,如图:AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45∘.给出以下五个结论:① ∠EBC=22.5∘;② BD=DC;③ AE=2EC;④ 劣弧AE⏜是劣⏜的2倍;⑤ DE=DC.其中正确结论有.弧DE20. 如图,AB是⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45∘,给出下列五个结论:① ∠EBC=22.5∘;② BD=DC;③ AE=2EC;④劣弧AE是劣孤DE 的2倍;⑤ AE=BC.其中正确结论的序号是.三、解答题(共3小题;共39分)21. 已知:如图,在⊙O中,弦AB、CD交于点E,AD=CB.求证:AE=CE.22. 如图,∠DAE是⊙O的内接四边形ABCD的一个外角,且∠DAE=∠DAC.求证:DB=DC.23. 在平面直角坐标系xOy中,半径为1的⊙O与x轴负半轴交于点A,点M在⊙O上,将点M绕点A顺时针旋转60∘得到点Q.点N为x轴上一动点(N不与A重合),将点M绕点N顺时针旋转60∘得到点P.PQ与x轴所夹锐角为α.Ⅰ如图 1,若点M的横坐标为1,点N与点O重合,则α=∘;2Ⅱ若点M、点Q的位置如图 2 所示,请在x轴上任取一点N,画出直线PQ,并求α的度数;Ⅲ当直线PQ与⊙O相切时,点M的坐标为.答案第一部分1. C2. D3. C4. C5. D6. D7. B8. C9. D 10. B第二部分11. 40∘12. 30∘13. 28∘14. 4015. 30∘16. 40∘17. 65(答案不唯一)18. 6119. ①②④⑤20. ①②④第三部分21. 连接AC.∵AD=BC,⏜=BC⏜,∴AD∴∠ACD=∠CAB,∴AE=CE.22. ∵四边形ABCD是⊙O的内接四边形,∴∠BAD+∠BCD=180∘.∵∠BAD+∠DAE=180∘,∴∠BCD=∠DAE.∵∠DAE=∠DAC,又∠DAC=∠DBC,∴∠BCD=∠DBC,∴DB=DC.23. (1)60(2)连接MQ,MP.记MQ,PQ分别交x轴于E,F.∵将点M绕点A顺时针旋转60∘得到点Q,将点M绕点N顺时针旋转60∘得到点P,∴△MAQ和△MNP均为等边三角形.∴MA=MQ,MN=MP,∠AMQ=∠NMP=60∘.∴∠AMN=∠QMP.∴△MAN≌△MQP.∴∠MAN=∠MQP.∵∠AEM=∠QEF,∴∠QFE=∠AMQ=60∘.∴α=60∘.(3)(√32,12)或(−√32,−12)。
圆内接四边形练习一
圆内接四边形练习题一1、如图,AD 为ABC ∆外接圆的直径,AD BC ⊥,垂足为点F ,ABC ∠的平分线交AD 于点E ,连接BD ,CD . (1) 求证:BD CD =;(2) 请判断B ,E ,C 三点是否在以D 为圆心,以DB 为半径的圆上?并说明理由.2、如图(d ), 以B 点为原点,AB 所在的直线为x 轴,建立平面直角坐标系,∠DCA =∠CBA =60°,连结BD ,过C 点作CE ∥DB ,求证:四边形CDBE 为平行四边形;(2分)ABCEFD(第1题)3、(本小题10分)已知⊙O 的直径为10,点A 、点B 、点C 是在⊙O 上,∠CAB 的平分线交⊙O 于点D . (Ⅰ)如图①,若BC 为⊙O 的直径,AB =6,求AC 、BD 、CD 的长; (Ⅱ)如图②,若∠CAB =60°,求BD 的长.4、(10) 如图,正△ABC内接于⊙O,P 是劣弧BC 上任意一点,PA 与BC交于点E ,:求证 PA PB PC =+;图①图②D5、已知在O中,弦AB AC ⊥,且6AB AC ==,点D 在O上,连接AD 、BD 、CD , (1) 如图①, 若AD 经过圆心,求BD 、CD 的长; (2)如图② 若2BAD DAC ∠=∠,求BD 、CD 的长6、 如图,在Rt △ABC 中,∠ACB=90°,AC=5,CB=12,AD 是△ABC 的角平分线。
过A 、D 、C 三点的圆与斜边AB 交于点E ,连接DE 。
(1)求证:AC=AE(2)求△ACD 的外接圆的半径。
ABC DE7、已知O中,弦AB=AC ,点P 是BAC ∠所对弧上一动点,连接PB 、PA. ( 1 ) 如图①,把ABP ∆绕点A 逆时针旋转到ACQ ∆,求证 点P 、C 、Q 三点在同一直线上。
( 2 )如图②,若060BAC ∠=,探究 PA 、PB 、PC 之间的关系,并注明你的结论。
九年级数学圆的内接四边形同步练习含答案.docx
第 2 章2.4第对称图形——圆3 课时圆的内接四边形知识点圆内接四边形的性质1.如图 2- 4- 30 所示,四边形ABCD为⊙ O的内接四边形.若∠BCD= 110°,则∠ BAD 的度数为A . 140°()B. 110°C.90°D. 70°图2- 4-30图 2- 4-312.如图 2- 4- 31,四边形 ABCD 是圆内接四边形,E是BC延长线上一点.若∠ BAD= 105°,则∠ DCE 的大小是 ()A . 115°B. 105°C.100° D . 95°3.在圆内接四边形ABCD 中,若∠ A∶∠ B∶∠ C= 2∶3∶ 4,则∠ D 的度数是 ()A . 60°B. 90°C. 120°D. 30°4.如图 2- 4- 32,四边形 ABCD 内接于⊙ O.若四边形ABCO 是平行四边形,则∠ ADC 的大小为()A . 45°B. 50°C. 60°D. 75°图2- 4-32图2- 4-33.如图 2-4- 33,已知 AB 是⊙ O 的直径, C,D 是⊙ O 上两点,且∠ D= 130°,则∠BAC= ________° .6.如图 2- 4- 34,四边形 ABCD 内接于⊙ O.若∠ BOD =130°,则∠DCE= ________° .图2- 4-347.如图 2- 4- 35,四边形 ABCD 为圆的内接四边形,DA, CB 的延长线交于点P,∠ P=30°,∠ABC = 100°,则∠ C= ________° .图2- 4-35图2- 4-368.如图 2- 4- 36,△ ABC 为⊙ O 的内接等边三角形,D为⊙ O上一点,则∠ADB= ________° .9.如图 2- 4- 37,已知 A, B,C, D 是⊙ O 上的四点,延长 DC , AB 相交于点 E.若BC= BE.求证:△ ADE 是等腰三角形.图2- 4-3710.已知:如图 2-4- 38,四边形 ABCD 是圆的内接四边形,延长 AD , BC 相交于点E,F 是 BD 延长线上的点,且 DE 平分∠ CDF .求证: AB=AC.图2- 4-3811. [2016 ·淮安清河区二模 ]如图2-4-39,在⊙ O∠ CAD = 35°,∠ AED = 115°,则∠ B 的度数是 ()A. 50°B.75°C. 80° D .100°的内接五边形ABCDE中,图2- 4-39图2- 4-4012.如图 2- 4- 40,⊙ O 是钝角三角形∠ BCO = x°,则 y 与 x 之间的函数表达式为.ABC 的外接圆,连接 OC.已知∠ BAC =y°,______________( 不必写出自变量的取值范围)13.教材练习第 3 题变式如图2- 4-41,在⊙ O 中,点 A , B ,C 在⊙ O 上,且∠ACB = 110°,则∠α= ________.14.[ 2016 ·南京高淳区一模 ] 四边形 ABCD 为⊙ O 的内接四边形,已知∠ BOD = 100°,则∠ BCD 的度数为 ________.图2- 4-41图2- 4-4215. [2016 ·南京溧水区一模 ]如图 2- 4- 42,在⊙ O 的内接四边形ABCD 中,︵AD上,则∠ E= ________°.AB = AD ,∠ C= 110°.点 E 在16.如图 2- 4- 43, AD 为圆内接三角形ABC 的外角∠ EAC 的平分线,它与圆交于点D, F 为 BC 上的点.(1)求证: DB = DC;(2)请你再补充一个条件使直线DF 一定经过圆心,并说明理由.图2- 4-4317.如图 2- 4- 44,⊙ O 的内接四边形ABCD 两组对边的延长线分别相交于点E, F.(1)若∠ E=∠ F,求证:∠ ADC =∠ ABC ;(2)若∠ E=∠ F= 42°,求∠ A 的度数;(3)若∠ E=α,∠F=β,且α≠β,请你用含有α,β的代数式表示∠ A 的大小.图2- 4-44详解详析1. D [解析 ] ∵四边形 ABCD 为⊙ O 的内接四边形,∴∠BCD +∠ BAD = 180° (圆内接四边形的对角互补 ).又∵∠BCD = 110°,∴∠ BAD = 70°.故选 D.2. B [ 解析 ] ∵四边形ABCD 是圆内接四边形,∴∠ BAD +∠ BCD = 180°,而∠ BCD +∠ DCE = 180°,∴∠ DCE=∠ BAD.而∠ BAD = 105°,∴∠ DCE= 105° .故选 B.3. B[ 解析 ] ∵∠ A∶∠ B∶∠ C= 2∶ 3∶4,∴设∠ A = 2x,则∠ B= 3x,∠C= 4x.∵四边形ABCD 为圆内接四边形,∴∠ A+∠ C= 180°,即2x+ 4x= 180°,解得 x=30°,∴∠ B= 3x= 90°,∴∠ D= 180°-∠ B= 180° -90°= 90° .故选 B. 4. C5. 40 [ 解析 ] ∵AB 是⊙ O 的直径,∴∠ ACB = 90° .∵∠ B= 180° -∠ D= 50°,∴∠ BAC = 90° -∠ B =40° .6. 65[ 解析 ] ∵∠ BOD = 130°,1∴∠ A= 2∠ BOD = 65° .∵∠ A+∠ BCD = 180°,∠ DCE +∠ BCD = 180°,∴∠ DCE=∠ A = 65° .7. 70[ 解析 ] ∵∠ ABC = 100°,∠ P= 30°,∴∠ PAB =∠ ABC -∠ P= 70° .∵四边形ABCD 为圆的内接四边形,∴∠ C+∠ BAD = 180°.∵∠ BAD +∠ PAB = 180°,∴∠ C=∠ PAB =70° .8. 120.9.证明:∵ A, B,C, D 是⊙ O 上的四点,∴四边形ABCD 是⊙ O 的内接四边形,∴∠ A+∠ DCB = 180°.又∵∠ BCE+∠ DCB = 180°,∴∠ A=∠ BCE.∵BC = BE ,∴∠ BCE =∠ E,∴∠ A =∠ E,∴ AD = DE ,即△ ADE 是等腰三角形.10.证明:∵四边形ABCD 是圆内接四边形,∴∠ ABC +∠ ADC = 180° .∵∠ ADC +∠ CDE = 180°,∴∠ ABC =∠ CDE.∵∠ FDE =∠ ADB =∠ ACB ,∠ CDE =∠ FDE,∴∠ ABC =∠ ACB ,∴AB = AC.11. D [解析 ] ∵四边形ACDE 是圆内接四边形,∴∠ AED +∠ ACD = 180° .∵∠ AED = 115°,∴∠ ACD = 65°.∵∠ CAD = 35°,∴∠ ADC = 80°.∵四边形ABCD 是圆内接四边形,∴∠ B+∠ ADC = 180°,∴∠ B= 100°,故选 D.12. y= x+ 9013. 140°14. 130°或 50°15. 12516. (1) 证明:∵∠ DCB +∠ BAD = 180°,∠ BAD +∠ DAE = 180°,∴∠ DCB =∠ DAE.∵∠ DBC =∠ CAD ,∠ CAD =∠ DAE ,∴∠ DBC =∠ CAD =∠ DAE =∠ DCB ,∴DB = DC.(2)答案不唯一,如:若 F 为 BC 的中点,则 DF 经过圆心.理由:∵△ DBC 是等腰三角形, F 是 BC 的中点,∴DF 是底边 BC 的垂直平分线.∵圆内接三角形的圆心是三边垂直平分线的交点,∴DF 必过圆心.17. (1) 证明:∵∠ E=∠ F,∠ECD =∠ FCB ,∴∠ E+∠ ECD =∠ F+∠ FCB ,即∠ ADC =∠ ABC.(2)∵∠ A +∠ BCD = 180°,∠ ECD +∠ BCD =180°,∴∠ A=∠ ECD.∵∠ EDC=∠ A +∠ F,∠EDC +∠ E+∠ ECD = 180°,∴2∠ A +∠ E+∠ F=180° .又∵∠ E=∠ F= 42°,∴∠ A = 48° .(3)由 (2)中的结论可知 2∠ A +∠ E+∠ F= 180°,1∴ 2∠ A +α+β= 180°,解得∠ A = 90° -2( α+β).。
初中数学精品试题:圆内接四边形
3.6 圆内接四边形1.在圆内接四边形ABCD中,已知∠A=70°,则∠C等于( ).A.20°B.30°C.70°D.110°2.如图所示,四边形ABCD内接于⊙O,已知∠ADC=140°,则∠AOC的度数为( ).A.80°B.100°C.60°D.40°(第2题)(第3题)(第4题) 3.如图所示,四边形ABCD是⊙O的内接四边形,AD与BC的延长线交于点E,BA与CD的延长线交于点F,∠DCE=80°,∠F=25°,则∠E的度数为( ).A.55°B.50°C.45°D.40°4.如图所示,圆心角∠AOB=120°,P是上任意一点(不与点A,B重合),点C在线段AP的延长线上,则∠BPC等于( ).A.45°B.60°C.75°D.85°5.如图所示,△ABC内接于圆O,AB=AC,P是上一点,∠BAC=30°,则∠APB等于( ).A.105°B.110°C.115°D.120°(第5题)(第6题)(第7题)(第8题)6.如图所示,BC为半圆O的直径,A,D为半圆上两点,若A为半圆弧的中点,则∠ADC= .7.如图所示,⊙O是四边形ABCD的外接圆,CE∥AD交AB于点E,BE=BC,∠BCD=122°,则∠ADC= .8.如图所示,已知四边形ABCD内一点E,若EA=EB=EC=ED,∠BAD=70°,则∠BCD= .9.如图所示,四边形ABCD内接于⊙O,AD是⊙O的直径,C是的中点,AB和DC的延长线交于⊙O外一点E.求证:BC=EC.(第9题)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆内接四边形一.选择题
1.如图,若△ CDE AB 是半圆的直径,O 是圆心, C 是半圆外一点,CA 、 CB
的面积与四边形ABED 的面积相等,则∠ C 等于()
分别交半圆于点D, E
A .30°
B .40°C.45°D.60°
二.填空题
2.如图,四边形ABCD 中, AB=AC=AD ,若∠ CAD=76°,则∠ CBD= _________度.
3.如图,在圆内接四边形ABCD 中, AB=AD , AC=1 ,∠ ACD=60°,则四边形的面积为
_________.
三.解答题
4.已知:⊙ O 的直径⊙O 于 M .求证:∠
AB 和弦 CD ,且
AMD= ∠ FMC .
AB ⊥CD于 E,F 为 DC延长线上一点,连接AF交
5.如图 1,已知△ABC , AB=AC ,以边 AB 为直径的⊙ O 交 BC 于点 D ,交 AC 于点 E,连接DE.
(1)求证: DE=DC .
(2)如图 2,连接 OE ,将∠ EDC 绕点 D 逆时针旋转,使∠ EDC 的两边分别交 OE 的延长线于点 F, AC 的延长线于点 G.试探究线段 DF、DG 的数量关系.
6.设 MN 是圆 O 外一直线,过O 作 OA ⊥ MN 于 A ,自 A 引圆的两条直线,交圆于B 、 C
及D 、 E,直线 EB 及 CD 分别交 MN 于 P、Q.
求证: AP=AQ .
7.已知:如图 1,四边形 ABCD 内接于⊙ O, AC⊥ BD 于点 P, OE⊥ AB 于点 E, F 为 BC 延长线上一点.
(1)求证:∠ DCF= ∠ DAB ;
(2)求证:;
(3)当图 1 中点 P 运动到圆外时,即 AC 、 BD 的延长线交于点 P,且∠ P=90°时(如图 2 所示),( 2)中的结论是否成立?如果成立请给出你的证明,如果不成立请说明理由.
8.如图,已知 ABCD 是圆 O 的内接四边形, AB=BD ,BM ⊥AC 于 M ,求证: AM=DC+CM .9.如图,圆内接四边形ABCD
的两组对边延长线分别交于E、 F,∠ AEB 、∠ AFD的平分线交于 P 点.求证: PE⊥PF.
10.如图, P 是等边△ ABC 外接圆上任意一点,求证:PA=PB+PC .。