电化学阻抗图谱及应用讲义

合集下载

(完整版)电化学曲线极化曲线阻抗谱分析

(完整版)电化学曲线极化曲线阻抗谱分析

(完整版)电化学曲线极化曲线阻抗谱分析电化学曲线极化曲线阻抗谱分析⼀、极化曲线1.绘制原理铁在酸溶液中,将不断被溶解,同时产⽣H2,即:Fe + 2H+ = Fe2+ + H2 (a)当电极不与外电路接通时,其净电流I总为零。

在稳定状态下,铁溶解的阳极电流I(Fe)和H+还原出H2的阴极电流I(H),它们在数值上相等但符号相反,即:(1)I(Fe)的⼤⼩反映Fe在H+中的溶解速率,⽽维持I(Fe),I(H)相等时的电势称为Fe/H+体系的⾃腐蚀电势εcor。

图1是Fe在H+中的阳极极化和阴极极化曲线图。

图2 铜合⾦在海⽔中典型极化曲线当对电极进⾏阳极极化(即加更⼤正电势)时,反应(c)被抑制,反应(b)加快。

此时,电化学过程以Fe的溶解为主要倾向。

通过测定对应的极化电势和极化电流,就可得到Fe/H+体系的阳极极化曲线rba。

当对电极进⾏阴极极化,即加更负的电势时,反应(b)被抑制,电化学过程以反应(c)为主要倾向。

同理,可获得阴极极化曲线rdc。

2.图形分析(1)斜率斜率越⼩,反应阻⼒越⼩,腐蚀速率越⼤,越易腐蚀。

斜率越⼤,反应阻⼒越⼤,腐蚀速率越⼩,越耐腐蚀。

(2)同⼀曲线上各各段形状变化如图2,在section2中,电流随电位升⾼的升⾼反⽽减⼩。

这是因为此次发⽣了钝化现象,产⽣了致密的氧化膜,阻碍了离⼦的扩散,导致腐蚀电流下降。

(3)曲线随时间的变动以7天和0天两曲线为例,对于Y轴,七天后曲线下移(负移),⾃腐蚀电位降低,说明更容易腐蚀。

对于X轴,七天后曲线正移,腐蚀电流增⼤,亦说明更容易腐蚀。

⼆、阻抗谱1.测量原理它是基于测量对体系施加⼩幅度微扰时的电化学响应,在每个测量的频率点的原始数据中,都包含了施加信号电压(或电流)对测得的信号电流(或电压)的相位移及阻抗的幅模值。

从这些数据中可以计算出电化学响应的实部和虚部。

阻抗中涉及的参数有阻抗幅模(| Z |)、阻抗实部(Z,)、阻抗虚部(Z,,)、相位移(θ)、频率(ω)等变量,同时还可以计算出导纳(Y)和电容(C)的实部和虚部,因⽽阻抗谱可以通过多种⽅式表⽰。

电化学阻抗谱课件

电化学阻抗谱课件
电化学阻抗谱
电 化 学 阻 抗 谱 (Electrochemical Impedance Spectroscopy,简写为 EIS),早期的电化 学文献中称为交流阻抗(AC Impedance)。 阻抗测量原本是电学中研究线性电路网 络频率响应特性的一种方法,引用到研 究电极过程,成了电化学研究中的一种 实验方法。
电化学阻抗谱
数据处理的途径
阻抗谱的数据处理有两种不同的途径: • 依据已知等效电路模型或数学模型的数据
处理途径 • 从阻纳数据求等效电路的数据处理途径
电化学阻抗谱
阻纳数据的非线性最小二乘法拟合原理
• 一般数据的非线性拟合的最小二乘法 若且G已是知变函量数X和的m具个体参表量达C式1,:C2,…,Cm的非线性函数,
5. 若在右括号后紧接着有 一个左括号与之相邻, 则在右括号中的复合元 件的级别与后面左括号 的复合元件的级别相同。 这两个复合元件是并联 还是串联,决定于这两 个复合元件的CDC是放 在奇数级还是偶数级的 括号中。
电化学阻抗谱
计算等效电路阻纳
根据上述5条规则,可以写出等效电路的电路 描述码(CDC),就可以计算出整个电路的阻 纳。
电化学阻抗谱
拟合过程主要思想如下 :
假设我们能够对于各参量分别初步确定一个近似 值C0k , k = 1, 2, …, m,把它们作为拟合过程的初 始值。令初始值与真值之间的差值 C0k – Ck = k, k = 1, 2, …, m, 于是根据泰勒展开定理可将Gi 围绕C0k , k = 1, 2, …, m 展开,我们假定各初始值C0k与其真值非常 接近,亦即,k非常小 (k = 1, 2, …, m), 因此可 以忽略式中 k 的高次项而将Gi近似地表达为 :
G=G( X,C1,C2,…,Cm ) 个就C2测,是在量…控要值,制根(C变据mn量的这>X数mn的值)个数,:测值使g量为1得,X值将g12,,来这X…些估2,,参定…g量mn,的。X个n估非时参定线,量值性测C代拟到1 入合,n 非线性函数式后计算得到的曲线(拟合曲线)与实 验有测随量机数误据差符,合不得能最从好测。量由值于直测接量计值算g出i (im=个1,参2,…量,,n) 而只能得到它们的最佳估计值。

电化学阻抗谱的解析与应用

电化学阻抗谱的解析与应用

电化学阻抗谱解析与应用交流阻抗发式电化学测试技术中一类十分重要的方法,是研究电极过程动力学和表面现象的重要手段。

特别是近年来,由于频率响应分析仪的快速发展,交流阻抗的测试精度越来越高,超低频信号阻抗谱也具有良好的重现性,再加上计算机技术的进步,对阻抗谱解析的自动化程度越来越高,这就使我们能更好的理解电极表面双电层结构,活化钝化膜转换,孔蚀的诱发、发展、终止以及活性物质的吸脱附过程。

1. 阻抗谱中的基本元件交流阻抗谱的解析一般是通过等效电路来进行的,其中基本的元件包括:纯电阻R ,纯电容C ,阻抗值为1/j ωC ,纯电感L ,其阻抗值为j ωL 。

实际测量中,将某一频率为ω的微扰正弦波信号施加到电解池,这是可把双电层看成一个电容,把电极本身、溶液及电极反应所引起的阻力均视为电阻,则等效电路如图1所示。

Element Freedom Value Error Error %Rs Free(+)2000N/A N/ACab Free(+)1E-7N/A N/A Cd Fixed(X)0N/A N/A Zf Fixed(X)0N/A N/A Rt Fixed(X)0N/A N/A Cd'Fixed(X)0N/A N/AZf'Fixed(X)0N/A N/ARb Free(+)10000N/A N/A Data File:Circuit Model File:C:\Sai_Demo\ZModels\12861 Dummy Cell.mdl Mode: Run Fitting / All Data Points (1 - 1)Maximum Iterations:100Optimization Iterations:0Type of Fitting: Complex Type of Weighting: Data-Modulus 图1. 用大面积惰性电极为辅助电极时电解池的等效电路图中A 、B 分别表示电解池的研究电极和辅助电极两端,Ra 、Rb 分别表示电极材料本身的电阻,Cab 表示研究电极与辅助电极之间的电容,Cd 与Cd ’表示研究电极和辅助电极的双电层电容,Zf 与Zf ’表示研究电极与辅助电极的交流阻抗。

电化学阻抗图谱及应用讲义

电化学阻抗图谱及应用讲义
曹楚南,张鉴清,电化学阻抗谱导论,科学出版社,2002
Seminar I
两个容抗弧的阻抗谱的两种等效电路模型
R(Q1R1)(Q2R2) R(Q1(R1(Q2R2)))
1 Z=Rs + Q + 1 1 R
1
1 +Q+ 1 2 R
1
1 R1+
2
Z = Rs +
Q1+
1 1 Q2&05
Seminar I
电路描述码(CDC)
电路描述码 (Circuit Description Code, 简写 为CDC)。规则如下5条: (1)RLC或CLR (2)(RLC)
(3)奇数级括号表示并联组成的复合元件,偶数级 括号表示串联组成的复合元件。
曹楚南,张鉴清,电化学阻抗谱导论,科学出版社,2002
Seminar I
EIS测量的前提条件
因果性条件: 测定的响应信号是由输入的扰动信号引起的; 线性条件: 对体系的扰动与体系的响应成线性关系; 稳定性条件: 电极体系在测量过程中是稳定的,当扰动停止后, 体系将回复到原先的状态; 有限性条件: 在整个频率范围内所测定的阻抗或导纳值是有限的.
曹楚南,电化学阻抗谱导论,科学出版社,2002 马厚义,山东大学学报,Vol.35, No.1,2000
Seminar I
电路描述码CDC
(4)对于复杂的电路,分解成2个或2个以 上互相串联或并联的“盒”. (5)若在右括号后紧接着有一个左括号与 之相邻,则前后两括号中的复合元件级别 相同。这两个括号中的复合元件是并联还 是串联,决定于二者是放在奇数级还是偶 数级的括号中。 例如:R(QR(RL)(RL))
Seminar I

电化学阻抗谱原理应用及谱图分析

电化学阻抗谱原理应用及谱图分析

电化学阻抗谱原理应用及谱图分析电化学阻抗谱原理应用及谱图分析电化学阻抗谱(Electrochemical Impedance Spectroscopy,EIS)是一种测量电化学系统的电化学行为的方法,它通过测量系统对于正弦电压或电流的响应,来研究电化学反应过程中的阻抗变化。

EIS广泛应用于材料科学、化学工程、电池研究、腐蚀研究和生物医学等领域。

EIS的原理是利用正弦电压或电流去激励待测电化学系统,并测量响应信号的振幅和相位,然后将这些数据在频率域或时间域中进行分析,从而得到电化学系统的等效电路模型,如电阻、电容、电感等等,这些参数可以反映出系统的结构、特性和电化学反应的动力学信息。

EIS的主要作用是在电化学反应的过程中研究电荷传递、离子传输、质量传递等复杂的反应机理,可以通过建立电化学反应动力学模型,分析电极表面化学反应动力学参数,优化电极材料和电解液配方,提高电化学反应效率。

以下是两个例子,说明EIS的应用及注意事项:锂离子电池的研究:EIS广泛应用于电池的研究和开发中,通过测量电池的电化学阻抗谱来评估电池的性能和寿命。

例如,在锂离子电池中,电解质的性质和电极材料的表面形貌对电池性能有很大影响。

利用EIS可以评估电池的内部电阻、扩散系数等参数,进而优化电池设计和材料配方。

注意事项是,需要确保电池在测量时处于稳态,并控制好测量温度和电压等参数。

金属腐蚀的研究:EIS也被广泛应用于金属腐蚀的研究中,通过测量金属表面的电化学阻抗谱,可以评估金属表面的保护膜的质量和稳定性,了解金属腐蚀的机制,同时也可以评估防腐涂层的性能。

注意事项是,需要确保测量条件稳定,避免干扰,同时应选择合适的电解液和电极材料。

电化学阻抗谱(EIS)的谱图是通过测量电化学系统对于正弦电压或电流的响应所得到的。

谱图提供了电化学系统的等效电路模型,这些参数可以反映出系统的结构、特性和电化学反应的动力学信息。

在谱图的分析过程中,需要注意以下几点:峰的位置和形状:电化学阻抗谱中的峰代表电化学体系中不同的特征和反应机理。

电化学阻抗ppt课件

电化学阻抗ppt课件

1.2 电化学阻抗谱基础知识:
复数 电化学阻抗为向量(即矢量), 因此常写成复数形式。复数由实部和虚部组成。 电化学阻抗Z的复数形式为: Z=Z‘ +jZ” 其中,Z’ 为阻抗Z的实部,Z‘’为其虚部,j为虚数单位,j= 1 复数的模 '2 Z ''2 复数的大小称为复数的模,电化学阻抗的模IzI表示为:IZI= Z 复数的辐角(即相位角) 复数矢量与实轴的夹角 φ称为复数的辐角, 电化学阻抗的相位角 φ表示 为:φ= arctan
电化学阻抗
1、电化学阻抗概念及相关知识介绍
2、电工学中简单电路的交流阻抗谱图 3、电化学中的交流阻抗谱图 4、电化学阻抗谱的应用
1.电化学阻抗概念及相关知识介绍
1.1 电化学阻抗法:
电化学阻抗法是电化学测量的重要方法之一。 以小振幅的正弦波电势(或电流)为扰动信号,使电极系统产生近似线性关系 的响应,测量电极系统在很宽频率范围的阻抗谱,以此来研究电极系统的方 法就是电化学阻抗谱(EIS),又称交流阻抗法(AC Impedance)。 特点: (1)由于使用小幅度(一般小于10 mV)对称交流电对电极进行极化,当频率足 够高时,每半周期持续时间很短,不会引起严重的浓差极化及表面状态变化。 在电极上交替进行着阴极过程与阳极过程,同样不会引起极化的积累性发展, 避免对体系产生过大的影响。 (2)由于可以在很宽频率范围内测量得到阻抗谱, 因而与其它常规的电化学方 法相比,能得到更多电极过程动力学信息和电极界面结构信息。
θ
Z’ 交流阻抗Z的复平面表示
θ
Y’
交流导纳Y的复平面表示
阻抗的大小: 阻抗Z是电路元件对电流的阻碍作用和移相作用的反映。 对于纯电阻电路,其阻抗就是电阻 R:ZR=R 对于纯电感电路,其阻抗为:ZL=jXL=jωL 对于纯电容电路,其阻抗为:Zc=-jXc=-j/ωC 复阻抗的串联: 当电路中有多个元件串联时,总的复阻抗等于各串联复阻抗的和。例如一个 电阻 、一个电感L和一个电容C串联时,总复阻抗z为:

《电化学阻抗谱知识点滴基础篇》PPT课件讲义

《电化学阻抗谱知识点滴基础篇》PPT课件讲义
电化学阻抗谱知识点滴基础篇
(Suitable for teaching courseware and reports)
§1 概述 §2 交流信号微扰下电解池体系的等效电路及其简化 §3 电化学极化下的交流阻抗 §4 浓差极化时的交流阻抗 §5 一些常见的电极过程的阻抗谱及等效电路 §6 交流阻抗测量技术 §7 交流阻抗测量实验注意事项 §8 阻抗谱的分析思路
高频率、大面积 RL
用来求溶液电导率。(交频信号下测量电导率的基础)
③ 在①的前提下,实现Zf研→∞
RL→0
RL
Cd研
加入电解质,仪器清除
Cd研
§3 电化学极化下的交流阻抗
3.1 交流电路中的线性元件
电化学阻抗谱(EIS)的测试中,需要在直流电位下叠加交流微扰信号, 测定交流信号所引起的电极响应信号。
先看一下交流电路中线性元件电阻、电容、电感的阻抗。
假设正旋波交流电的电压可表示为: u(t)U0sin t (3-1)
① 纯电阻的阻抗(电阻)
u(t)施加到电阻R上产生的电流
i(t)u(t)U 0s RR
in tI0sin t
(3-2)
如此,
ZR
U0 I0
R
ui 0
显然,电压、电流的位相一致,其交流阻抗ZR就是它的电阻值R。
1.3.3 浓差极化不会积累性发展,但可通过交流阻抗将极化测量出来
① 控制幅度小(电化学极化小); ② 交替进行的阴、阳极过程,消除了极化的积累。
1.3.4 Rr、Cd和RL是线性的,符合欧姆 阻抗与导纳
对于一个稳定的线性系统M,如以一个角频率为 的正弦波电信号(电压或 电流)X为激励信号(在电化学术语中亦称作扰动信号)输入该系统,则相应 地从该系统输出一个角频率也是 的正弦波电信号(电流或电压)Y,Y即是 响应信号。Y与X之间的关系可以用下式来表示:

电化学阻抗谱EIS原理、应用及谱图分析

电化学阻抗谱EIS原理、应用及谱图分析

1972 TEXT
1990
2007
介电性能
生物体系 阳极溶解
腐蚀
混合导体 非均匀表面
电桥 机械发生器
电桥 电子发生器
脉冲法
模拟阻抗测定
示波器
恒电位仪
拉普拉斯变换 (AC+DC)
数字阻抗测定 电桥 机械发生器
局部电化学 阻抗谱
R--C
电子等效 电路
Nyquist图 Bode图
校正Bode图
分析电极过程动 力学、双电层和 扩散等,研究电 极材料、固体电 解质、导电高分 子以及腐蚀防护 机理等。
3. EIS是一种频率域测量方法,可测定的频率范围很宽, 因而比常规电化学方法得到更多的动力学信息和电极 界面结构信息。
11
1. 因果性条件(causality):输出的响应信号只是由输入的扰
EIS 动信号引起的的。 测 2. 线性条件(linearity): 输出的响应信号与输入的扰动信号
量 之间存在线性关系。电化学系统的电流与电势之间是动力
Z'
(3)虚数单位乘方
j = −1 j2 = −1 j3 = − j
(4)共轭复数
Z = Z '+ jZ '' Z = Z '− jZ ''
2 复数表示法 (1)坐标表示法 (2)三角表示法
Z = Z '2 + Z ''2 = Z ' = Z ''
cos sin
Z = Z '+ jZ '' = Z cos + j Z sin
的相位角随的变化。
6
G
X

电化学阻抗谱-原理及应用

电化学阻抗谱-原理及应用

电化学阻抗谱-原理及应用简答题:1 已知一复杂电化学系统的电路描述码为R(Q(W(RC))),请画出其等效电路图。

答:2 简述电极上的法拉第反应过程包括哪些主要步骤?答:电化学反应是复相化学反应,其一般形式为O + ne = R式中O为化合物的氧化态,R为其对应的还原态,e为电子,n为氧化还原反应转移的电子数。

整个反应过程也是复杂,有很多步骤组成:1)O从溶液本体迁移到电极/溶液界面;2)O在电极表面上吸附;3)在电极上得到电子,还原成R4)R从电极表面解吸5)R从电极/溶液界面迁移到溶液本体步骤2到4称为活化过程,步骤1和5称为传质过程.这个过程称为法拉第过程.论述题3: 阻抗谱分析技术在太阳能电池领域中的应用(以染料敏化太阳能电池为例)染料敏化太阳能电池是一种将光能转化为电能的装置,主要包括以下几部分:光阳极(TiO2、ZnO、SnO2等),染料,电解液,对电极等[1]。

染料敏化太阳能电池光电转化效率降低的主要原因是电子和空穴的复合,表现在电化学参数中为界面电阻的增大。

Hauch[2]等人使用交流阻抗研究电池的电阻,通过简单的等效电路模型分析电阻RCT。

另外一些研究小组采用交流阻抗对电池中的载流子的传输机理进行研究,但他们的结果并不十分一致。

各个研究小组采用各种电化学和光学测试对光电极的反应机理进行研究,指出电子从染料注入到阳极材料的导带的过程是一个“超快”过程[3],交流阻抗还是分析发生在对电极和阳极之间物理-化学过程的强大工具。

下面将对交流阻抗的原理,等效电路模型及其在染料敏化太阳能电池中的应用做了一个简单的介绍。

1 交流阻抗简介交流阻抗方法是一种以小振幅的正弦波电位(或电流)为扰动信号的电化学测量方法。

由于以小振幅的电信号对体系扰动,一方面可避免对体系产生大的影响,另一方面也使得扰动与体系的响应之间近似呈线性关系,这就使测量结果的数学处理变得简单。

交流阻抗法就是以不同频率的小幅值正弦波扰动信号作用于电极系统,由电极系统的响应与扰动信号之间的关系得到的电极阻抗,推测电极的等效电路,进而可以分析电极系统所包含的动力学过程及其机理,由等效电路中有关元件的参数值估算电极系统的动力学参数,如电极双电层电容、电荷转移过程的反应电阻、扩散传质过程参数等。

电化学阻抗谱ppt课件

电化学阻抗谱ppt课件
第6章 电化学阻抗谱 Electrochemical
Impedance Spectroscopy
引言
• 定义
以小振幅的正弦波电势(或电流)为扰动信 号,使电极系统产生近似线性关系的响应, 测量电极系统在很宽频率范围的阻抗谱,以 此来研究电极系统的方法就是电化学阻抗法 (AC Impedance),现称为电化学阻抗谱。
主要内容与学习要求
• 6.1 有关复数和电工学知识 • 6.2 电解池的等效电路 • 6.3 理想极化电极的EIS • 6.4 溶液电阻可以忽略时电化学极化的EIS • 6.5 溶液电阻不能忽略的电化学极化电极的EIS • 6.6 电化学极化和浓差极化同时存在的电极的EIS • 6.7 阻抗谱中的半圆旋转现象 • 6.8 阻抗实验注意点和阻抗谱分析思路 • 6.9 电化学阻抗谱的应用
6.1 有关复数和电工学知识-电工学
V I t
Z () 1 j 1 jC C
6.1 有关复数和电工学知识-电工学
2 复阻抗的概念
复阻抗Z是电路元件对电流的阻碍作用和移相作用的反映。
(1)复阻抗的串联
Z
ZR
ZL
ZC
RL
jL
j
1
C
R j(L 1 ) C
(2)复阻抗的并联
1 1 1 1 1 1 1 1 j( 1 C) Z ZR ZL ZC R jL j 1 R L
引言
• 稳定性条件
稳定
不稳定
可逆反应容易满足稳定性条件。
不可逆电极过程,只要电极表面的变化不是很快,当 扰动幅度小,作用时间短,扰动停止后,系统也能够 恢复到离原先状态不远的状态。
电化学阻抗谱导论-曹楚南
导言 第1章 阻纳导论
第2章 电化学阻抗谱与等效电路

电化学阻抗图谱

电化学阻抗图谱

电化学阻抗图谱
电化学阻抗图谱(ElectrochemicalImpedanceSpectroscopy,简
称EIS)是一种新兴的电化学技术,它是对电子领域中的阻抗分析-
电路分析技术的一种应用。

它可以用来研究电池的老化机理,以及可再生能源材料的物理化学性质,帮助我们提高电池的性能和耐久性。

电化学阻抗图谱是通过测量电池在不同频率下的阻抗来描述电
池性能。

这个技术可以用来检查电池的老化状况,以及设计新的电池类型。

阻抗图谱曲线可以反映每个不同的频率下电池的阻抗,这可以帮助我们更好地理解电池的结构,以及影响电池性能的因素。

电化学阻抗图谱的应用非常广泛,可以被用于检测电池的老化机理、电池的容量变化、电池内部的变化、结构变化、化学反应对电池性能的影响等。

它也可以被用于分析电池电解液中溶质的分布情况和它们之间的相互关系,以及电池容量的影响。

此外,电化学阻抗图谱还可以被用于优化电池的性能。

它可以用来探索电池的最优话题,比如温度、电压、电极面积和厚度等,帮助我们设计出更高效率、更环保、更安全的电池。

总之,电化学阻抗图谱是未来电池研究和设计的重要工具,它将为电池研究和设计提供更准确、更可靠的方法和指导。

此外,它还可以帮助我们更好地理解电池的结构,从而更快更好地提高电池的性能,提高电池的使用寿命,并有效保护环境。

- 1 -。

电化学基本原理与应用电化学阻抗谱

电化学基本原理与应用电化学阻抗谱
10
11.2.3 EIS的特点
1. 由于采用小幅度的正弦电势信号对系统进行微扰,电极上交 替出现阳极和阴极过程,二者作用相反,因此,即使扰动信 号长时间作用于电极,也不会导致极化现象的积累性发展和 电极表面状态的积累性变化。因此EIS法是一种“准稳态方法 ”。
2. 由于电势和电流间存在线性关系,测量过程中电极处于准 稳态,使得测量结果的数学处理简化。
23
11.4 电荷传递和扩散过程混合控制的EIS
平板电极上的反应: 电极过程由电荷传递过程和扩散过程共同控制,电化学极化和浓差 极化同时存在时,则电化学系统的等效电路可简单表示为:
Cd R
Warburg阻抗
ZW
Rct
ZW
Warburg系数
24
电路的阻抗: 实部:
虚部: (1)低频极限。当足够低时,实部和虚部简化为:
奈奎斯特图(复平面图)
Nyquist plot
波特图
Bode plot
log|Z| / deg
高频区
低频区
8
11.2.2 EIS测量的前提条件
1. 因果性条件(causality):输出的响应信号只是由输入的扰动 信号引起的的。
2. 线性条件(linearity): 输出的响应信号与输入的扰动信号之
Q 常相角元件
36
等效电路
(A)一个时间常数
判断电容。阻 抗等结构元件
Rct 或Rp
Cdl
Rs
Nyquist图
相位图
大致表征几个
时间常数
37
(B)两个时间常数
电荷转移阻抗
双电层电容
界面阻抗
界面 电容
两个时间常数
38
Zw

电化学原理与应用-电化学阻抗谱20141

电化学原理与应用-电化学阻抗谱20141

• ,ZReR • 0,ZReR+Rct
P
R Rct / 2

R

Rct 2
1 2Cd2 Rc2t 2
Cd

1
Rct
22
注意:
在固体电极的EIS测量中发现,曲线总是或多或少的 偏离半圆轨迹,而表现为一段圆弧,被称为容抗弧, 这种现象被称为“弥散效应”,原因一般认为同电极 表面的不均匀性、电极表面的吸附层及溶液导电性差 有关,它反映了电极双电层偏离理想电容的性质。
Y=G()X
5
Y/X=G()
如果X为角频率为的正弦波电流信号,则Y即为角频率也 为的正弦电势信号,此时,传输函数G()也是频率的函 数,称为频响函数,这个频响函数就称之为系统M的阻抗 (impedance), 用Z表示。
如果X为角频率为的正弦波电势信号,则Y即为角频率也 为的正弦电流信号,此时,频响函数G()就称之为系统 M的导纳(admittance), 用Y表示。
18
Nyquist 图上为半径为R/2的半圆。
19
11.3 电荷传递过程控制的EIS
如果电极过程由电荷传递过程(电化学反应步骤)控 制,扩散过程引起的阻抗可以忽略,则电化学系统的 等效电路可简化为:
Cd R
Rct
Z
等效电路的阻抗:
R

1
jCd
1 Rct
20
Z=
j
实部: 虚部:
Z ZRe jZ Im
3. EIS是一种频率域测量方法,可测定的频率范围很宽, 因而比常规电化学方法得到更多的动力学信息和电极 界面结构信息。
11
正弦波的基本性质
• 正弦波交流电电压随时间作正弦波变化的表示式:

电化学阻抗谱知识点滴(讲义)(基础篇)

电化学阻抗谱知识点滴(讲义)(基础篇)
A. 交流信号作用下,电解池等效电路不唯一
假若两等效电路都能代表电解池,则两等效电路等价。
B. 合理的等效电路
① 等效电路只是电极过程的“净结果”,只有能反映出电极过程净结果的 等效电路才是合理的; ② 相同电压下,流经电解池的电流与流经电解池对应等效电路的电流具有 完全相同的幅值和相位,则该等效电路建立合理(等效电路是否合理的叛 据); ③ 等效电路不是唯一的。
复到原先的状态;
4. 有限性条件:在整个频率范围内所测定的阻抗或导纳值是有限的。
实用文档
1.6 电路描述码/CDC
电路描述码(Circuit Description Code, CDC):在偶数组数的括号 (包括没有括号的情况)内,各个元件或复合元件相互串联;在奇数组数 的括号内,各个元件或复合元件相互并联,如下图中的电路和电路描述码。
② 法拉第阻抗
Zw
Zfቤተ መጻሕፍቲ ባይዱ
Rr
a. Zf Rr Zw 混合控制;
b. Rr Zw ,Zf Rr ,纯电荷传递控制/电化学极化控制; c. Rr Zw , Zf Zw ,纯扩散控制/浓差极化控制。
实用文档
2.1 几种典型阻抗的等效电路
③ 界面阻抗
Cd Zf
实用文档
2.2 电解池等效电路及其简化
对电解池体系施加正弦电压(或电流)微扰信号,使研究电极的电位
(或电流)按小幅度( 10mV )正弦波规律变化,同时测量交流微
扰信号引起的极化电流(或极化电位)的变化,通过比较测定的电位 (或电流)的振幅、相位与微扰信号之间的差异求出电极的交流阻抗, 进而获得与电极过程相关的电化学参数。
实用文档
1.2 电化学阻抗谱方法的特点概述
1.1 电化学阻抗谱测量法

电化学阻抗谱知识点滴讲义基础篇演示文稿

电化学阻抗谱知识点滴讲义基础篇演示文稿
复到原先的状态;
4. 有限性条件:在整个频率范围内所测定的阻抗或导纳值是有限的。
1.6 电路描述码/CDC
电路描述码(Circuit Description Code, CDC):在偶数组数的括号(包括 没有括号的情况)内,各个元件或复合元件相互串联;在奇数组数的括号 内,各个元件或复合元件相互并联,如下图中的电路和电路描述码。
Zf辅
界面
Cd研
RL
Zf研
R研
Cd研、辅
注:在有集流体的金属电极中,R辅→0,R研→0
假若两等效电路都能代表电解池,则两等效电路等价。
B. 合理的等效电路
① 等效电路只是电极过程的“净结果”,只有能反映出电极过程净结果的 等效电路才是合理的; ② 相同电压下,流经电解池的电流与流经电解池对应等效电路的电流具有 完全相同的幅值和相位,则该等效电路建立合理(等效电路是否合理的叛 据); ③ 等效电路不是唯一的。
② 法拉第阻抗
Zw
Zf
Rr
a. Zf Rr Zw 混合控制;
b. Rr Zw ,Zf Rr ,纯电荷传递控制/电化学极化控制; c. Rr Zw , Zf Zw ,纯扩散控制/浓差极化控制。
2.1 几种典型阻抗的等效电路
③ 界面阻抗
Cd Zf
2.2 电解池等效电路及其简化



界面
Cd辅
R辅
1.8 重点讲述的内容
① 交流微扰信号作用下电解池的等效电路及其简化; ② 不同控制步骤下的阻抗谱图分析; ③ 几种典型电极过程的阻抗谱图分析; ④ 李沙育图形测定原理与实验; ⑤ 其它阻抗测试技术简介。
§2 交流信号下电解池体系的等效电路及其简化

电化学阻抗谱的应用及其解析方法(精)

电化学阻抗谱的应用及其解析方法(精)

电化学阻抗谱的应用及其解析方法交流阻抗发式电化学测试技术中一类十分重要的方法,是研究电极过程动力学和表面现象的重要手段。

特别是近年来,由于频率响应分析仪的快速发展,交流阻抗的测试精度越来越高,超低频信号阻抗谱也具有良好的重现性,再加上计算机技术的进步,对阻抗谱解析的自动化程度越来越高,这就使我们能更好的理解电极表面双电层结构,活化钝化膜转换,孔蚀的诱发、发展、终止以及活性物质的吸脱附过程。

1. 阻抗谱中的基本元件交流阻抗谱的解析一般是通过等效电路来进行的,其中基本的元件包括:纯电阻R ,纯电容C ,阻抗值为1/j ωC ,纯电感L ,其阻抗值为j ωL 。

实际测量中,将某一频率为ω的微扰正弦波信号施加到电解池,这是可把双电层看成一个电容,把电极本身、溶液及电极反应所引起的阻力均视为电阻,则等效电路如图1所示。

Element Freedom Value Error Error %Rs Free(+2000N/A N/ACab Free(+1E-7N/A N/A Cd Fixed(X0N/A N/A Zf Fixed(X0N/A N/ARt Fixed(X0N/A N/ACd'Fixed(X0N/A N/AZf'Fixed(X0N/A N/ARb Free(+10000N/A N/A Data File:Circuit Model File:C:\Sai_Demo\ZModels\12861 Dummy Cell.mdlMode:Type of Weighting:Data-Modulus图1.用大面积惰性电极为辅助电极时电解池的等效电路图中AB 分别表示电解池的研究电极和辅助电极两端,Ra,Rb 分别表示电极材料本身的电阻,Cab 表示研究电极与辅助电极之间的电容,Cd 与Cd ’表示研究电极和辅助电极的双电层电容,Zf 与Zf ’表示研究电极与辅助电极的交流阻抗。

通常称为电解阻抗或法拉第阻抗,其数值决定于电极动力学参数及测量信号的频率,Rl 表示辅助电极与工作电极之间的溶液电阻。

最新最全的电化学阻抗谱(EIS)

最新最全的电化学阻抗谱(EIS)

一、基本知识1. 概念电化学阻抗谱(Electrochemical Impedance Spectroscopy,简写为 EIS)又叫交流阻抗谱,在电化学工作站测试中叫做交流阻抗(AC Impedance)。

阻抗测量原本是电学中研究线性电路网络频率响应特性的一种方法,引用到研究电极过程,成了电化学研究中的一种实验方法,在三电极系统下,测量工作电极的阻抗。

常见的电化学阻抗谱有两种:一种叫做奈奎斯特图(Nyquist plot),一种叫作波特图(Bode plot);还有一种相位图;奈奎斯特图和波特图:是论文中经常出现的图;相位图:在电化学测试过程中会出现,类似电极反应过程中阻抗变化图,常用于分析等效电路的构成,判断阻抗、电容等元件。

2. 基本理论当电极系统受到一个正弦波形电压(电流)的交流讯号的扰动时,会产生一个相应的电流(电压)响应讯号,由这些讯号可以得到电极的阻抗或导纳。

一系列频率的正弦波讯号产生的阻抗频谱,称为电化学阻抗谱。

注释:将电化学系统抽象作一个电路模型,这个等效电路就是由电阻(R)、电感(L)、电容(C)等基本元件按照串联或并联等不同方式组合而成,利用EIS可以测定等效电路的构成以及各个元件的大小,利用这些元件的电化学含义,来分析电化学系统的构成和电极反应过程的性质等。

3. 等效电路等效电路图示例:等效电路元件符合——名称——导纳——电阻R ——电阻—— 1/R —— RC ——电容—— jwC —— 1/jwC L ——电感—— 1/jwL —— jwLW ——无限扩散阻抗——Y_{o}\sqrt{(jw)} —— 1/Y_{o}\sqrt{(jw)}O ——有限扩散阻抗——Y_{o}\sqrt{(jw)}Coth(B\sqrt{(jw)}) ——Tanh(B\sqrt{(jw)})/Y_{o}\sqrt{(jw)}Q ——常相角元件—— Y_{o}(jw)^{a} ——1/Y_{o}(jw)^{a}物理参数溶液电阻 (R_{s}) :工作电极和对电极之间的电解质之间的阻抗;电荷转移电阻 (R_{ct}) :电化学反应动力学控制;双电层电容 (C_{dl}) :工作电极于电解质之间电容;极化电阻 (R_{p}) :当电位远离开路电位时,导致电极表面电流产生,电流受到反应动力学和反应物扩散的控制;扩散阻抗 (Z_{w}) :反应物从溶液本体扩散到电极反应界面的阻抗;界面电容 (C) :通常每一个界面之间都会存在一个电容;常相角元件(CPE) (Q) 、无限扩散阻抗 (W)、有限扩散阻抗 (O)、电感 (L) 等...PS:R_{p}\approx R_{ct}+Z_{w} ,但 R_{p}\ne R_{ct}+Z_{w} ;极化电阻通过极化曲线也可以得到(腐蚀电位出切线的斜率)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Seminar I
Ni电极的等效电路图
等效电路图
物理意义: Rs:从参比电极到工作电极的溶液电阻 CPE:与双电层电容关联的常相位角元件 Rt:电极的电荷转移电阻 Wo:固相扩散的沃伯格阻抗
H.Chen,JQ Zhang, J Solid State Electrochem,2005 9:421-428
Seminar I
拟合结果
Rt(电荷转移电阻)拟合结果
结论: 1.同一放电深度,电荷转移电阻Rt值随着Zn含量的增加, 先减小后增大,(0%DOD除外); 2.同一Zn含量的样品,Rt值随着DOD的增大而增大,归 因于NiOOH的还原和镍电极的电化学极化。
H.Chen,JQ Zhang, J Solid State Electrochem,2005 9:421-428
张鉴清,电化学阻抗谱,讲义,2005
Seminar I
数据处理的目的与途径
数据处理的目的: 1.根据测量得到的EIS谱图, 确定EIS的等效电路或数 学模型; 2.根据已建立的合理的数学模型或等效电路,确定数 学模型中有关参数或等效电路中有关元件的参数值. 数据处理的途径: 1.依据已知等效电路模型或数学模型的数据处理途径 2.从阻纳数据求等效电路的数据处理途径
Seminar I
电化学阻抗谱及其应用
2005.11
Seminar I
电化学阻抗谱方法(EIS)
黑箱动态系统研究方法
对于一个稳定的线性系统M,如以一个角频率为ω的正弦波 电信号X(电压或电流)输入该系统,相应的从该系统输出一 个角频率为ω的正弦波电信号Y(电流或电压),此时电极系 统的频响函数G就是电化学阻抗。 在一系列不同角频率下测得的一组这种频响函数值就是电 极系统的电化学阻抗谱。 若在频响函数中只讨论阻抗与导纳,则G总称为阻纳。 一般表达式为: G (ω ) = G '(ω ) + jG ''(ω )
Seminar I
参考文献
1.曹楚南,张鉴清,电化学阻抗谱导论,科学出版社, 2002 2.张鉴清,电化学阻抗谱,讲义,2005 3.马厚义,电化学阻抗谱测试中的稳定性和线性问题,山东 大学学报,Vol.35, No.1,2000 4.H.Chen,J.Q.Zhang, J Solid State Electrochem,2005 9:421-428 5.赵新生,直接甲醇燃料电池膜电极的电化学研究,博士论 文,第三章
Seminar I
阻纳的复平面(Nyquist)图
R 2 R 2 2 (Z '− ) + Z ' ' = ( ) 2 2 1 Y = + jω C R
复合元件(RC)的阻抗复平面图
(RC)的导纳复平面图
张鉴清,电化学阻抗谱,讲义,2005
Seminar I
阻抗波特(Bode)图
复合元件(RC)阻抗波特图
Seminar I
电路描述码(CDC)
电路描述码 (Circuit Description Code, 简写 为CDC)。规则如下5条: (1)RLC或CLR (2)(RLC)
(3)奇数级括号表示并联组成的复合元件,偶数级 括号表示串联组成的复合元件。
曹楚南,张鉴清,电化学阻抗谱导论,科学出版社,2002
曹楚南,张鉴清,电化学阻抗谱导论,科学出版社,2002
Seminar I
电化学阻抗谱的特点
1.一种以小振幅的正弦波电位(或电流)为扰 动信号的电化学测量方法: (1)避免对体系产生大的影响 (2)使扰动与体系的响应之间近似呈线性关系 2.一种频率域的测量方法:
以测量得到的频率范围很宽的阻抗谱来研究电 极系统,速度快的子过程出现在高频区,速度慢的子 过程出现在低频区,可判断出含几个子过程,讨论动 力学特征。
Seminar I
计算等效电路阻纳
出发点是下面三条: (1)串联元件,计算阻抗,各元件阻抗相加; 并联元件,计算导纳,各元件导纳相加。 (2)阻抗和导纳之间互相变换的公式: Gi-1 = Gi’/(Gi’2 + Gi”2 ) - j Gi”/(Gi’2 + Gi”2 ) (3)逐级阻纳的计算公式是: Gi-1 = G*i-1 + G-1i
曹楚南,张鉴清,电化学阻抗谱导论,科学出版社,20高级开始。最高级为3级,是奇数,应 计算其导纳: G3 = 1 /R4 +jωC5 2.计算第2级复合元件的阻抗 -1 G2 = Zw3 + G3 3.计算第1级复合元件的导纳 -1 G1 = YQ2 + G2 4.计算第0级即整个电路的阻抗 -1 0 = R1 + G1 G
Seminar I
EIS测量的前提条件
因果性条件: 测定的响应信号是由输入的扰动信号引起的; 线性条件: 对体系的扰动与体系的响应成线性关系; 稳定性条件: 电极体系在测量过程中是稳定的,当扰动停止后, 体系将回复到原先的状态; 有限性条件: 在整个频率范围内所测定的阻抗或导纳值是有限的.
曹楚南,电化学阻抗谱导论,科学出版社,2002 马厚义,山东大学学报,Vol.35, No.1,2000
曹楚南,张鉴清,电化学阻抗谱导论,科学出版社,2002
Seminar I
复合元件的CDC示例
按规则(1)将这一等效电路表示为: R CE-1 按规则(2),CE-1可以表示为 (Q CE-2). 因此整个电路可进一步表示为: R(Q CE-2) 将复合元件CE-2表示成: (Q(W CE-3)) 整个等效电路就表示成: R(Q(W CE-3)) 将简单的复合元件CE-3表示出来。应 表示为(RC),于是电路可以用如下的 CDC表示:R(Q(W(RC)))
1 Q 2 + R1
2
1 1 Q1+ R
1
张鉴清,电化学阻抗谱,讲义,2005
Seminar I
含锌Ni(OH)2碱性电池的EIS谱图
0%的DOD(放电深度)时不同Zn含量的Zn-Ni(OH)2碱性充电电池的EIS谱图 H.Chen,JQ Zhang, J Solid State Electrochem,2005 9:421-428
Seminar I
Seminar I
Seminar I
Seminar I
Seminar I
Seminar I
Seminar I
Seminar I
Seminar I
近似简化处理
R(Q1R1)(Q2R2) R(Q1(R1(Q2R2)))
高频端的近似: 低频端的近似:
Z = Rs +
Z=
Seminar I
电路描述码CDC
(4)对于复杂的电路,分解成2个或2个以 上互相串联或并联的“盒”. (5)若在右括号后紧接着有一个左括号与 之相邻,则前后两括号中的复合元件级别 相同。这两个括号中的复合元件是并联还 是串联,决定于二者是放在奇数级还是偶 数级的括号中。 例如:R(QR(RL)(RL))
Seminar I
谢谢大家!
曹楚南,张鉴清,电化学阻抗谱导论,科学出版社,2002
Seminar I
两个容抗弧的阻抗谱的两种等效电路模型
R(Q1R1)(Q2R2) R(Q1(R1(Q2R2)))
1 Z=Rs + Q + 1 1 R
1
1 +Q+ 1 2 R
1
1 R1+
2
Z = Rs +
Q1+
1 1 Q2+ R 2
张鉴清,电化学阻抗谱,讲义,2005
相关文档
最新文档