半导体中的杂质和缺陷
半导体物理第2章 半导体中杂质和缺陷能级
它们电离后将成为带正电(电离施主)或带负 电(电离受主)的离子,并同时向导带提供电 子或向价带提供空穴。
第2章 半导体中杂质和缺陷能级
2.1硅、锗晶体中的杂质能级
实际晶体与理想晶体的区别
原子并非在格点上固定不动,在平衡位置附近振动 并不纯净,杂质的存在 缺陷
点缺陷(空位,间隙原子) 线缺陷(位错) 面缺陷(层错,晶粒间界)
2.1.1替位式杂质、间隙式杂质
替位式杂质:取代晶格原子
杂质原子的大小与晶体原子相似 III、V族元素在硅、锗中均为替位式杂质
明之,并用能带图表征出p型半导体。 2-4、掺杂半导体与本征半导体之间有何差异?试举例说明掺杂对半导体
的导电性能的影响。 2-5、两性杂质和其它杂质有何异同? 2-6、深能级杂质和浅能级杂质对半导体有何影响? 2-7、何谓杂质补偿?杂质补偿的意义何在?
2-1 解:浅能级杂质是指其杂质电离能远小于本征
Au( 1 s 2 2 s 2 2 p 6 3 s 2 3 p 6 3 d 1 0 4 s 2 4 p 6 4 d 1 0 4 f1 4 5 s 2 5 p 6 5 d 1 0 6 s 1 )在Ge中的作用
2.3缺陷、位错能级
2.3.1点缺陷
热缺陷(由温度决定)
弗伦克耳缺陷
成对出现的间隙原子和空位
受主能级
被受主杂质束缚的空穴的能量状态,记为EA。受主电离能量 为ΔEA
p型半导体
依靠价带空穴导电的半导体。
P型半导体
杂质半导体的简化表示法
浅能级杂质
电离能小的杂质称为浅能级杂质。 所谓浅能级,是指施主能级靠近导带底,受主能级靠
近价带顶。 室温下,掺杂浓度不很高的情况下,浅能级杂质几乎
第二章半导体中的杂质和缺陷
Ec EA3
EA2
EA1
ED
Ev
EA3=EC-0.04eV
§2.1.6 深能级杂质
三个基本特点:
一、是不容易电离,对载流子浓度影响不大; 二、一般会产生多重能级,甚至既产生施主能级也产生
受主能级。 三、能起到复合中心作用,使少数载流子寿命降低(在
第五章详细讨论)。 四、深能级杂质电离后为带电中心,对载流子起散射作
ED
Ev
§2.1.6 深能级杂质
2,Au获得一个电子---受主 Au0 +e= Au-
Ec
EA1= EV + 0.15eV
EA1
ED
Ev
§2.1.6 深能级杂质
3,Au获得第二个电子 Au- +e= Au--
Ec
EA2
EA1
ED
Ev
EA2=EC-0.2eV
§2.1.6 深能级杂质
4,Au获得第三个电子 Au-- +e= Au---
第二章 半导体中杂质和缺陷能级
实际材料中 总是有杂质、缺陷,使周期场破坏,在杂质或
缺陷周围引起局部性的量子态——对应的能级常 常处在禁带中,对半导体的性质起着决定性的影 响。
杂质能级位于禁带之中
Ec
杂质能级
Ev
杂质和缺陷 原子的周期性势场受到破坏
在禁带中引入能级 决定半导体的物理和化学性质
§2.1.2 施主杂质 施主能级
Si、Ge中Ⅴ族杂质的电离能△ED(eV)
晶
杂
质
体
P
As
Sb
Si 0.044 0.049
0.039
Ge 0.0126 0.0127 0.0096
§2.1.3 受主杂质 受主能级
第二章半导体中杂质和缺陷能级
n=时,氢原子电离: E=0 氢原子的电离能:
信息科学与工程技术学院
E0 E E1 13.6eV
* mn 0.12m0 半导体物理学
半导体中杂质和缺陷能级
2.1 硅、锗晶体中的杂质能级
• 晶体内杂质原子束缚的电子: m0mn*, mp*; 0 r0 * 4 * * mn E 0 mn 施主杂质的电离能:E mn q 13.6 D 2 2 2 2 m0 r 8 r 0 h m0 r2 Si:
信息科学与工程技术学院
半导体物理学
半导体中杂质和缺陷能级
间隙式杂质、替位式杂质
(a) 间隙式扩散(interstitial) (b) 替位式扩散(substitutional)
间隙式杂质: O, Fe, Ni, Zn, Mg
杂质原子比较小
信息科学与工程技术学院
替位式杂质 P,B,As, Al, Ga, Sb, Ge
• 2.1.2 施主杂质、施主能级
+
信息科学与工程技术学院
半导体物理学
半导体中杂质和缺陷能级
2.1 硅、锗晶体中的杂质能级
• 2.1.2 施主杂质、施主能级
多余的电子束缚在正电中心,但这种束缚很弱 很小的能量就可使电子摆脱束缚,成为在晶格中 导电的自由电子,而Ⅴ族原子形成一个不能移动 的正电中心。 硅、锗中的Ⅴ族杂质,能够施放电子而在导带 中产生电子并形成正电中心,称为施主杂质或N 型杂质,掺有N型杂质的半导体叫N型半导体。施 主杂质未电离时是中性的,电离后成为正电中心。
信息科学与工和缺陷能级
总结
受主杂质
信息科学与工程技术学院
施主杂质
半导体物理学
半导体中杂质和缺陷能级
半导体中的杂质能级和缺陷能级
杂质补偿作用:从对半导体载流子贡献的角度来说,两者 有相互的抵消的作用,称之为杂质补偿作用。
9
有效杂质浓度高度补偿
n
在杂质全部电离,且忽略本征激发的条件 下,载流子浓度的计算
N D − N A 为有效杂质浓度,(n型半导体)
ND > N A : n = ND − NA;
p = NA − ND ; N A > ND :
7
修正后的计算公式
施主杂质电离能:
* 4 * mn q mn E0 ∆ED = 2 2 2 = 2 8ε r ε 0 h m0 ε r
4 m* q p
(2-2)
受主杂质电离能:
m* p E0 ∆E A = 2 2 2 = 2 8ε r ε 0 h m0 ε r
(2-3)
类似的,我们也可以计算杂质的基态轨道半径
12
金在锗中的杂质能级
Ec EA3 EA2 EA1 ED Ev 0.04 0.20
0.15 0.04
金原子最外层有一个价电子,比锗少三个价电子。 • 在锗中的中性金原子 Au 0 ,有可能分别接受一,二, 三个电子而成为 Au − , Au = , Au ≡ ,起受主作用,引入 EA1、EA2、EA3 等三个受主能级。 • 中性金原子也可能给出它的最外层电子而成为 Au+, 起施主作用,引入一个施主能级ED。
ε 0ε r h m = ε r ∗ a0 a= ∗ 2 π mn e mn
2
8
杂质补偿作用
Ec ED Ec
Ev (a)
a.
(b)
EA Ev
N D > N A 施主杂质的电子首先跃迁到受主能
b.
级,剩余的才向导带跃迁; N A > N D 受主杂质上的空位首先接受来自施主 杂质的电子,剩余的向价带释放空穴。
半导体中杂质分类与缺陷能级
决定半导体的物理和化学性质
2.1 硅、锗晶体中的杂质能级
2.1.1 替位式杂质 间隙式杂质
Si和Ge都具有金钢石结构,一个原胞含有8个原子。
原胞内8个原子的体积与立方原胞体积之比为34%,原胞 内存在66%的空隙。
金钢石晶体结构中的四面体间隙位置 内部4个原子构成T空隙
金钢石晶体结构中的六角形间隙位置 3个邻位面心+3个内部原子构成H空隙
称电子为多数载流子,简称多子,空穴为少数 载流子,简称少子。
2.1 硅、锗晶体中的杂质能级
2.1.3 受主杂质 受主能级
Si
+
Si
Si
Si
B-
Si
Si
Si
Si
受 主 掺 杂(掺硼)
硼原子接受一个电子后, 成为带负电的硼离子, 称为负电中心(B- ) 。 带负电的硼离子和带正 电的空穴间有静电引力 作用,这个空穴受到硼 离子的束缚,在硼离子 附近运动。
2.1 硅、锗晶体中的杂质能级
Si Si Si Si Si
n杂质原子进入半导体硅后,只 可能以两种方式存在。
Si Si Si Si Si Si Si Si P Si Si Si Si Si Si
n一种方式是杂质原子位于晶格 原子间的间隙位置,常称为间隙 式杂质;间隙杂质原子一般较 小,如离子锂(Li+)。 Si:r=0.117nm
多余 价电子
+4 +4
磷原子
+5 +4
Ⅴ族元素有5个价电子,其中的四个价电子与周围的 四个硅原子形成共价键,还剩余一个电子,同时Ⅴ 族原子所在处也多余一个正电荷,称为正离子中心, 所以,一个Ⅴ族原子取代一个硅原子,其效果是形 成一个正电中心和一个多余的电子。
半导体中的杂质和缺陷
不含任何杂质
实际应用中的
极其微量的杂质和缺陷, 能够对半导体材料的物理性质 和化学性质产生决定性的影响
在硅晶体中,若以105个硅原子中掺入一个杂质原子的比例掺入硼(B)原子,则硅晶体的导电率在室温下将增加103倍。 用于生产一般硅平面器件的硅单晶,位错密度要求控制在103cm-2以下,若位错密度过高,则不可能生产出性能良好的器件。(缺陷的一种)
添加标题
实验测得,Ⅴ族元素原子在硅、锗中的电离能很小,在硅中电离能约为0.04~0.05eV,在锗中电离能约为0.01eV,比硅、锗的禁带宽度小得多。
2.1.2 施主杂质、施主能级3
2.1.2 施主杂质、施主能级4
2.1.3 受主杂质、受主能级1
硅中掺入硼(B)为例,研究Ⅲ族元素杂质的作用。当一个硼原子占据了硅原子的位置,如图所示,硼原子有三个价电子,当它和周围的四个硅原子形成共价键时,还缺少一个电子,必须从别处的硅原子中夺取一个价电子,于是在硅晶体的共价键中产生了一个空穴。硼原子成为一个带有一个负电荷的硼离子(B-),称为负电中心硼离子。其效果相当于形成了一个负电中心和一个多余的空穴。
利用杂质补偿的作用,就可以根据需要用扩散或离子注入等方法来改变半导体中某一区域的导电类型,以制备各种器件。
若控制不当,会出现ND≈NA的现象,这时,施主电子刚好填充受主能级,虽然晶体中杂质可以很多,但不能向导带和价带提供电子和空穴,(杂质的高度补偿)。这种材料容易被误认为是高纯度的半导体,实际上却含有很多杂质,性能很差。
2.1.3 受主杂质、受主能级2
02
单击此处添加小标题
03
单击此处添加小标题
单击此处添加小标题
01
2.1.3 受主杂质、受主能级3
第二章半导体中杂质和缺陷能级
四.杂质浅能级电离能的简单计算
五. 杂质补偿作用
在同一块半导体材料中如果同时存在有两种类 型的杂质,则该半导体的导电类型主要取决于掺杂 浓度高的杂质。例如:若 Si 中的 P 浓度高于 B 浓度, 则该块 Si 材料是 n 型半导体。但是,与同样掺 P 浓 度的单一掺杂情况比较,由于有受主的存在,被激 发到导带的电子数将会减少(因为此时有一部分施 主能级上的电子将会落入受主能级),这种现象称 为杂质补偿。如果掺杂情况相反,则该块材料为 p 型半导体。
个价电子因受共价键束缚,它的电离能仅略小于禁带宽度 Eg,所以
施主能级ED很接近Ev。
中性Au0为与周围四个Ge原子形成共价键,还可以依次由价带再接受
三个电子,分别形成EA1,EA2,EA3三个受主能级。价带激发一个电
子给Au0,使之成为单重电受主离化态Au-,电离能为EA1-Ev ;从价带
= 再激发一个电子给 Au- 使之成为二重电受主离化态 Au,所需能量为
§2.2 III-V族化合物中的杂质能级
等电子陷阱:在某些化合物半导体中,例如磷化 镓中掺入V族元素氮或铋,氮或铋将取代磷并在禁带 中产生能级。这个能级称为等离子陷阱。这种效应称 为等离子杂质效应。 等离子杂质:所谓等离子杂质是与基质晶体原子具 有同数量价电子的杂质原子,它们替代了格点上的同 族原子后,基本上仍是电中性的。但是由于原子序数 不同,这些原子的共价半径和电负性有差别,因而它 们能俘获某种载流子而成为带电中心。这个带电中心 就称为等离子陷阱。
元素 P 在 Si 中成为替位式杂质且电离时,能够 释放电子而产生导电电子并形成正电中心,称它们 为施主杂质或n型杂质
2.施主能级
由于共价键是一种很强的化学键,结合非常牢固,共价 键上的电子是几乎不可能在晶体中运动的。但P 原子的那个 “多余”的价电子被离子实 P+ 束缚得相当微弱,这个电子 在不大的外场力作用下就可以脱离 P+ 的束缚而在 Si晶体中 自由运动。 从能带的角度来看,处于共价键上的电子就是处在价带 中的电子,而那个“多余”的电子并不处在价带中,它只要 得到一个很小的能量(只要室温就足够了)就会被激发到导 带,成为导带中的传导电子。这就相当于在Si禁带中,在距 导带底下方很近的地方有一个能级,在未激发的情况下(例 如0K时),那个“多余”电子就处在这个能级上,杂质此时 是电中性的。但是稍稍给它一点能量,那个“多余”的电子 就将跃迁到导带。杂质 P 原子也因这个价电子的离开而带正 电,此时就称施主杂质电离了。因掺入施主杂质而在禁带中 引入的这个能级称为施主能级。
半导体材料中的缺陷与杂质控制技术
半导体材料中的缺陷与杂质控制技术半导体材料是现代电子器件制造中的关键材料之一。
为了保证半导体器件的性能和可靠性,需对半导体材料中的缺陷和杂质进行控制。
本文将重点讨论半导体材料中的缺陷与杂质控制技术。
一、半导体材料的缺陷类型半导体材料中常见的缺陷类型包括点缺陷、线缺陷和面缺陷。
点缺陷指的是材料中的单个原子或多个原子的缺失或占据,如空位和间隙原子;线缺陷是由材料中原子排列的缺陷引起的,如位错和脆性晶粒界;面缺陷则是材料表面或晶界处的缺陷,如二维氧化物缺陷和界面能带不平整。
二、缺陷对半导体性能的影响缺陷对半导体器件的性能和可靠性具有重要影响。
例如,点缺陷会降低半导体的载流子浓度,并影响电子迁移率和电阻;线缺陷会导致晶格畸变、局部应变和电子复合增加,降低载流子迁移率和器件寿命;面缺陷则会导致界面态和能带弯曲,进一步影响器件的电学性能。
三、缺陷与杂质控制技术为了控制半导体材料中的缺陷与杂质,需要实施一系列控制技术。
以下是几种常用的控制技术:1. 生长技术半导体晶体的生长是控制材料缺陷和杂质的重要方法。
例如,通过外延生长技术可以在晶体中控制点缺陷和线缺陷的形成;通过气相沉积技术可以控制杂质的浓度和分布。
2. 退火技术退火技术可以通过热处理来消除或减少材料中的缺陷和杂质。
例如,热退火可以使点缺陷移动和缩减;退火还可以使线缺陷部分消失或接近消失。
3. 加工工艺加工工艺可以通过控制材料的加工条件和方法来减少缺陷的形成。
例如,减小晶圆加工过程中的机械应力和温度梯度,可以减少缺陷的产生。
4. 杂质掺杂技术杂质掺杂技术可以通过控制材料中的杂质浓度和种类来改变材料的性能和控制缺陷。
例如,控制掺杂过程中的杂质浓度和扩散温度,可以有效控制杂质的分布和缺陷的形成。
5. 表面修饰技术表面修饰技术可以通过改变材料表面的能带结构来控制缺陷和杂质。
例如,通过表面处理或修饰来改变半导体材料的表面状态和化学反应性,可以减少表面缺陷和界面态的形成。
半导体物理半导体中的杂质和缺陷
§1-5 典型半导体的能带结构
一、能带结构的基本内容及其表征
1、能带结构的基本内容 • 1)导带极小值和价带极大值的位置,特别是导带
3、碲化汞的能带结构 碲化汞的导带极小值与价带极大值基本重叠,禁 带宽度在室温下约为-0.15eV,因而是半金属。
五、宽禁带化合物半导体的能带结构
1、SiC的能带结构 SiC各同质异型体间禁带宽度不相同,完全六方型的2HSiC最宽,为3.3eV;随着立方结构成分的增加,禁带逐 渐变窄,4H-SiC为3.28eV,15R-SiC为3.02eV,6H-SiC 为2.86 eV,完全立方结构的3C-SiC为2.33eV。 •皆为间接禁带
2)等电子络合物的陷阱效应
镓
氧
磷
锌
4、深能级的补偿作用
浅能级杂质间的补偿
深能级杂质的补偿
导带
• • •• • • • • • • • • ED
导带
• •• •• • •• •• •• ••
•• •
EDEA
• • • • • EA
价带
价带
同样有补偿作用,但效果弱一点。
三、缺陷的施、受主作用及其能级
1)价带 中心略偏,轻重空穴带二度简并
2)导带底的位置 随着平均原子序数的变化而变化,以GaAs为界,…
3)禁带宽度
随着平均原子序数的变化而变化,…
4)电子有效质量 随着平均原子序数的变化而变化,…
5)空穴有效质量 重空穴在各III-V族化合物间差别不大
半导体中的杂质和缺陷
例如:Si 在室温下,本征载流子 浓度为 1010/cm3,掺入 P:
P 的浓度/Si 原子的浓度=10-6
Si 的原子浓度为 1022~1023/cm3
施主 P 向导带提供的载流子 =1016~1017/cm3>>本征载流子浓度
●+
○-
●+
○-
●+
○原子得到电子后:
○-
●+
○-
●+
○-
○-
●+
○-
●+
○-
●+
○-
●+
○-
●+
○-
●+
○-
●+
○-
●+
产 生 负 电 中 心, 起 受 主 作 用
负离子空位 正离子填隙
正离子空位 负离子填隙
产生正电中心,起施主作用 产生负电中心,起受主作用
§2-2 半导体中的深能级杂质
在 Ge 中掺 Au:
B 获得一个电子
+
变成负离子,成
B--
为负电中心,周
围产生带正电的
空穴。
受主杂质:束缚在杂质能级上的空穴被激发到
价带Ev成为价带空穴,该杂质电离后成为负电中 心(负离子)。这种杂质称为受主杂质。
受主杂质具有得到电子的性质, 向价带提供空穴。
价带空穴 电离受主 B-
受主能级 EA
电离的结果:价带中的空穴数增加了, 这即是掺受主的意义所在。
1. Ⅲ-Ⅴ族化合物半导体中的杂质和缺陷
(1)杂质
理想的 GaAs 晶格为
= Ga- = As+ = Ga- =
第二章半导体中杂质和缺陷能级
2.3.1 点缺陷
2.3.1 点缺陷
2.3.2 位错
汇报完毕!谢谢!
• Si中几种Ⅴ族施主电离能如下:
• Si中几种Ⅲ族受主电离能如下:
杂质基态的玻尔半径〔Bohr):
aB m0*shq22 s(m m0*)a0 0.52s(m m0*)
a0是氢原子基态的径 玻尔半
2.1.5 杂质的补偿作用
当同一块半导体中同时存在施主杂质和受主杂质时, 这种两种不同类型的杂质有互相抵偿的作用,称为杂 质补偿作用。
19
2.1.6 深能级杂质
深能级杂质的作用 1. ΔED,ΔEA 较大,杂质电离作用较弱,对载流子〔导电电 子和空穴〕浓度影响较小; 2. 对载流子的复合作用较大〔复合中心〕,降低非平衡载流 子的寿命。
2.2 III-V族化合物中的杂质能级
2.2.1 GaAs中的杂质
等电子杂质 (等电子陷阱〕
补偿后半导体中的净杂质浓度为有效杂质浓度,只 有有效的杂质浓度才能有效地提供载流子浓度。
空间角度的理解:施主周围有多余的价电子,受主 周围缺少价电子,施主多余的价电子正好填充受主周 围空缺的价键电子,使价键饱和,使系统能量降低, 稳定状态。
16
2.1.5 杂质的补偿作用 能带角度的理解:
n= N D - N AN D
• 在Si、Ge元素半导体和Ⅲ-Ⅴ族化合物半导体等最重要的 半导体材料中发现: 参加多一个价电子的元素,如在Si 、 Ge中参加P、As、Sb,或在Ⅲ-Ⅴ族化合物中参加Ⅵ族元素, 这些掺入的杂质将成为施主;
• 参加少一个价电子的元素,如在Si 、Ge中参加Al 、Ga、 In,或在Ⅲ-Ⅴ族化合物中参加Ⅱ族元素,这些掺入的杂 质将成为受主;
A-间隙式杂质原子:原子半径比较小
半导体中的杂质和缺陷能级
→若间隙原子运动到样品表面形成新的原子层,则样品体内只有空位存在→→称为Schottky缺 陷。 样品中Schottky缺陷与Frenkel缺陷同时存在。但是Schottky缺陷的浓度远高于Frenkel缺陷。
图1
图2
Ga偏多,As空位 As偏多,Ga空位 二元化合物半导体 A B 替位原子缺陷
A取代B B取代A 位错 刃型位错
浅能级杂质
ps 300K下,Si和Ge中的Ⅲ、Ⅴ族杂质几乎全部离化。
杂质的补偿作用 当半导体中既掺入施主又掺入受主,则施主杂质和受主杂质具有相互抵消的作用。 (PN的形成)
N_D(施主杂质浓度) >> N_A(受主杂质浓度)
N_A >> N_D
深能级杂质 1. 非Ⅲ和Ⅴ族元素,在Si和Ge的禁带中,往往引入施主能级E_D距离导带底E_C很远,受主能 级E_A距离价带顶E_V很远,这样的杂质能级称为深能级,能够引入这种能级的杂质称为深 能级杂质。 2. 深能级杂质可以产生多次电离,每一次电离相应的有一个能级,所以这些杂质在Si和Ge的禁 带中往往引入若干个能级,并且有的杂质既引入施主能级又引入受主能级。 3. 深能级杂质主要是替位式杂质。 4. 如Ge中掺金(Au)。受库伦斥力的作用,接受电子越多越困难。深能级杂质引入的能级不是 全部同时存在,如Ge中掺金,只能处于一种荷电状态,对应一种能级或最多存在两种能级。 5. 深能级杂质通常杂质含量较少,且电离能比较大(离化困难——不容易提供电子与空穴), 所以深能级杂质对半导体的导电能力、导电类型影响远远弱于浅能级杂质。但是复合作用 强。
5. 等电子陷阱俘获某种载流子成为带电中心,这一带电中心由于库仑力的作用,又可以俘获另 一种带相反电荷的载流子,称为束缚激子。吧
半导体中杂质和缺陷能级
33
2.4Ⅲ-Ⅴ族化合物中德尔杂质能级
(1)等电子杂质
特征:a、与本征元素同族但不同原子序数
例:GaP中掺入Ⅴ族的N或Bi
b、以替位形式存在于晶体中,基本上
是电中性的。
精选ppt课件
34
(2)等电子陷阱
等电子杂质(如N)占据本征原子位置
(如GaAsP中的P位置)后,即
N
NP
存在着由核心力引起的短程作用力,它们
精选ppt课件
22
(C)NA≈ND时
杂质的高度补偿
精选ppt课件
23
※ 就实际而言:半导体的最重要的性质之一,
就是能够利用施主和受主杂质两种杂质进行参杂,
并利用杂质的补偿作用,根据人们的需要改变半
导体中某一区域的导电类型,以制成各种器件。
精选ppt课件
24
2.1.6
深能级杂质
Ec
(1)浅能级杂质
•
ni (Ge)
≌2.4×1013cm-3
•
≌1.5×1010cm-3
•
ni (Si)
ni (GaAs)
6cm-3
≌1.6×10
ni——本征载流子浓度
精选ppt课件
19
(3)n型半导体与p型半导体
当半导体中掺入一定量的浅施主或浅受主
时,因其离化能△ED或 △EA很小(~RT下的
kT=0.026eV),所以它们基本上都处于离化态。
精选ppt课件
36
(4)两性杂质
• 举例:GaAs中掺Si(Ⅳ族)
• Ga:Ⅲ族
As:Ⅴ族
施主
Si Ga
SiAs
两性杂质
受主
两性杂质:在化合物半导体中,某种杂质在其
半导体中的杂质和缺陷
实际半导体: 1、总是有杂质、缺陷,使周期场破坏,在
杂质或缺陷周围引起局部性的量子态—— 对应的能级常常处在禁带中,对半导体的 性质起着决定性的影响。 2、杂质电离提供载流子。
杂质半导体
主要内容
§2-1 元素半导体中的杂质能级
1. 浅能级杂质能级和杂质电离; 2. 浅能级杂质电离能的计算; 3. 杂质补偿作用 4. 深能级杂质的特点和作用
也产生受主能级。
0.35eV
EA ED
能起到复合中心作用,
Ev
使少数载流子寿命降
低。
Au doped Silicon
§2-2 化合物半导体中的杂质能级
Ⅲ-Ⅴ族化合物半导体中的杂质
理想的GaAs晶格
价键结构: 含有离子键成分的 共价键结构
Ga-
As+
Ga
As
Ga
As
Ga
As
Ga
受主杂质
施主杂质
Ge 0.012 0.012 0.009
6
7
6
含有施主杂质的半导体,其导电的载流子主要 是电子——N型半导体,或电子型半导体
2. ⅢA族替位杂质——受主杂质
在Si中掺入B
+
B获得一个电子变成 负离子,成为负电中
心,周围产生带正电 的空穴。
B--
EA
B具有得到电子的性质,这类杂质称为受主杂质。 受主杂质向价带提供空穴。 受主浓度:NA
替代III族元素
替代Ⅴ族元素
两性杂质
III、Ⅴ族元素
等电子杂质——同族原子取代
●等电子杂质
等电子杂质是与基质晶体原子具有同数量 价电子的杂质原子.替代了同族原子后, 基本仍是电中性的。但是由于共价半径和 电负性不同,它们能俘获某种载流子而成 为带电中心。带电中心称为等电子陷阱。
半导体中杂质和缺陷能级
ND>>NA NA>>ND
NA~~ND
2.1 硅、锗晶体中的杂质能级
1、当 ND>>NA 因为受主能级低于施主能级,所以施主杂质的电子
首先跃迁到NA个受主能级上,还有ND-NA个电子在 施主能级上,杂质全部电离时,跃迁到导带中的导
电电子的浓度为n= ND-NA。即则有效施主浓度为
受主杂质的电离能 E A8m r2P *q 0 2h 42m m P * 0E r2 01.6 3m m 0P *r2
2.1 硅、锗晶体中的杂质能级
氢原子半径: 施主杂质半径:
r0
42 0
q 2 m0
n2
r
42 0 r
q 2 mn*
n2
m0 r
mn*
r0
基态下(n=1),氢原子的轨道半径: r10.05n3m
2.1 硅、锗晶体中的杂质能级
带有分立的施主能级 的能带图
施主能级电离能带图
2.1 硅、锗晶体中的杂质能级
被施主杂质束缚的电子的能量状态称为施主能级ED。 施主能级位于离导带低很近的禁带中 杂质原子间的相互作用可忽略,某一种杂质的施主能级
是一些具有相同能量的孤立能级。
表2-1 硅、锗晶体中Ⅴ族杂质的电离能(eV)
半导体中杂质和缺陷能 级
2.1 硅、锗晶体中的杂质能级
Si Si Si Si Si Si Si Si Si Si Si Si Si P Si Si Si Si Si Si
杂质原子进入半导体硅后,只 可能以两种方式存在。
一种方式是杂质原子位于晶格 原子间的间隙位置,常称为间 隙式杂质;间隙式杂质原子一 般较小,如离子锂(Li+)。
另一种方式是杂质原子取代晶格原子而位于晶格格点处,常称为替位 式杂质。替位式杂质原子通常与被取代的晶格原子大小比较接近而且电子壳层
半导体物理(朱俊)第二章 半导体中的杂质和能级缺陷
例2:Au(Ⅰ族)在Si中
EC EA ED EV
两个深杂质 能级,真正 对少子寿命 起控制作用 的是最靠近 禁带中部的 受主能级 0.54eV。
其它两个可能的受主能级目前还没有测量到。
6.Si、Ge 元素半导体中的缺陷
(空位、自间隙原子)
(1)空位 (1) 空位
●受主杂质- Ⅱ族元素
Ⅱ族元素(Zn、Be、Mg、Cd、Hg) 在GaAs中通常都取代Ⅲ族元素Ga原子 的晶格位置,由于Ⅱ族原子比Ⅲ族原子 少一个价电子,因此Ⅱ族元素杂质在 GaAs中通常起受主作用,均为 浅受主 。
常用掺Zn或Cd以获得Ⅲ-Ⅴ族化合物p型半导体
● 两性杂质- Ⅳ族元素
Ⅳ 族 元 素 杂 质 ( Si、Ge、Sn、Pb) 在 GaAs中的作用比较复杂,可以取代Ⅲ族的 Ga,也可以取代Ⅴ族的As,甚至可以同时 取代两者,因此Ⅳ族杂质不仅可以起施主作 用和受主作用,还可以起中性杂质作用。 例如,在掺Si浓度小于1×1018cm-3时,Si全 部取代Ga位而起施主作用,这时掺Si浓度和 电子浓度一致;而在掺Si浓度大于1018cm-3 时,部分Si原子开始取代As 位,出现补偿 作用,使电子浓度逐渐偏低。
硅、锗在T=0K 时的Eg为1.170eV和0.7437eV
浅施主杂质电离能的计算(类氢原子模型):
(1):氢原子中的电子的运动轨道半 径为: 2
εrεo h 2 rH = n 2 moπ q
+
n=1 为基态电子的运动轨迹
Si 中受正电中心 P 束缚的电子的运动轨道半 径,考虑正负电荷处在介电常数不同的介质 中以及晶格周期性势场的影响:
原因:杂质原子的电子壳层结构、杂质原子的大 小以及杂质在半导体晶格中的位置等原因,而导 致杂质的多能级结构。
第二章 半导体中的杂质和缺陷能级
第二章 半导体中杂质和缺陷能级 引言 1.实际半导体和理想半导体的区别 理想半导体 实际半导体 原子不是静止在具有严格周期性的晶格的格点上,而在其平衡位置附近振动 原子静止在具有严格周期性的晶格的格点上 半导体不是纯净的,含有若干杂质半导体是纯净的,不含杂质 晶格结构不是完整的,含若干缺陷晶格结构是完整的,不含缺陷 2.杂质的种类根据杂质能级在禁带中的位置将杂质分为两种浅能级杂质:能级接近导电底Ec 或价带顶Ev ;深能级杂质:能级远离导带底Ec 或价带顶Ev ;3.缺陷的种类点缺陷,如空位、间隙原子;线缺陷,如位错;面缺陷,如层错、多晶体中的晶粒间界等§2.1硅、锗晶体中的杂质能级一、杂质与杂质能级杂质:半导体中存在的与本体元素不同的其它元素。
杂质出现在半导体中时,产生的附加势场使严格的周期性势场遭到破坏。
单位体积中的杂质原子数称为杂质浓度。
杂质能级:杂质在禁带中引入的能级。
二、替位式杂质、间隙式杂质杂质原子进入半导体后,有两种方式存在:1.间隙式杂质:杂质原子位于晶格原子间的间隙位置,形成该种杂质时,要求其杂质原子比晶格原子小;2.替位式杂质:杂质原子取代晶格原子而位于晶格点处,形成该种杂质时,要求其原子的大小与被取代的晶格原子的大小比较接近,而且二者的价电子壳层结构也比较接近。
三、施主杂质、施主能级(举例Si 中掺P)如图所示,一个磷原子占据了硅原子的位置。
磷原子有5个价电子,其中4个价电子与周围的4个硅原子形成共价键,还剩余一个价电子。
同时,磷原子所在处也多余一个正电荷+q ,称这个正电荷为正电中心磷离子(P +)。
所以磷原子替代硅原子后,其效果是形成一个正电中心P +和一个多余的价电子。
这个多余的价电子就束缚在正电中心P +的周围。
但是,这种束缚作用比共价键的束缚作用弱得多,只要有很少间隙式杂质替位式杂质硅中的施主杂质的能量就可以使它挣脱束缚,成为导电电子在晶格中自由运动,这是磷原子就成为少了一个价电子的磷离子(P +),它是一个不能移动的正电中心。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(5) Au三: Au二 + e
Au三
△EA3=
EC EA3 EA2
EA1 EV
7、等电子陷阱
(1)等电子杂质 特征:a、与本征元素同族但不同原子序数 b、以替位形式存在于晶体中,基本 上是电中性的。 条件:电负性、共价半径相差较大 同族元素原子序数越小,电负性越大,共价半 径越小。 等电子杂质电负性大于基质晶体原子的电负时, 取代后将成为负电中心;反之,将成为正电中心。 原子的电负性是描述化合物分子中组成原子吸引电 子倾向强弱的物理量,显然与原子的电离能、亲合 能及价态有关
等电子杂质(如N)占据本征原子位置 (如GaP中的P位置)后,即
N
NP
N 的共价半径为 0.07nm,电负性为3.0; P 的共价半径为 0.11nm,电负性为2.1 所以氮取代磷后能俘获电子成为负电中心,它们可以 吸引一个导带电子而变成负离子,这就是电子陷阱, 相反如果成为正电中心即可吸引一个价带空穴而变成 正离子这就是空穴陷阱。
(4)四族元素,两性杂质
举例:GaAs 中 掺 Si(Ⅳ族) Ga:Ⅲ族 As:Ⅴ族
Si Ga 两性杂质 SiAs
施主 受主
两性杂质:在化合物半导体中,某种杂质在 其中既可以作施主又可以作受 主,这 种杂质称为两性杂质。
(5)六族元素,常取代五族元素,施主杂质
(6)过渡族元素除钒产生施主能级,其余均产生 受主能级
(1)Au+; (2) Au0 ; (3) Au一 ; (4) Au二 ; (5) Au三。
(1)Au+: Au0 – e
Au+
EC Eg
ED
△E D
EV (2) Au0 电中性态
(3) Au一: Au0 + e EC
Au一
EA1
△EA
EV
(4) Au二:Au一 + e
Au二
EC △EA2= EA2 EA1 EV
1、N在GaP中:NP 2、C在Si中:CSi 3、O在ZnTe中: 其存在形式可以是 (1)替位式 (2)复合体,如 Zn-O 8、束缚激子
即等电子陷阱俘获一种符号的载流子后,又 因带电中心的库仑作用又俘获另一种带电符号的载 流子,这就是束缚激子。
9、两性杂质
举例:GaAs 中 掺 Si(Ⅳ族) Ga:Ⅲ族 As:Ⅴ族
杂质能级位于禁带之中
Ec 杂质能级 Ev
§2.1 Si、Ge晶体中的杂质能级
间隙式杂质:杂质原子 位于晶格原子的间隙位 置 间隙式杂质原子一般比 较小 替位式杂质:杂质原子 取代晶格原子位于晶格 点处 替位式杂质 原子的大 小与被取代的晶格原子 的大小比较相近,价电 子壳层结构相近。
杂质浓度:单位体积中的 杂质原子数
反结构缺陷
2 线缺陷
位错存在不饱和键,可以俘获电子成为负电 中心,起受主作用,也可以失去不成价的电子, 成为正电中心,起施主作用。位错既可能成为施 主,也可成为受主。
半导体是 p 型的
EA
有效的受主浓度 NA*= NA – ND
(C) NA≌ND时
杂质的高度补偿
本征激发的导带电子
Ec ED
EA Ev
本征激发的价带空穴
6、深能级杂质
ED EA
Ec
(1)浅能级杂质
△ED《Eg △EA《Eg
Ev
Ec Ev
△ED
ED
EA
△EA
(2)深能级杂质
△E D≮Eg △EA≮Eg
(2)二族元素,受主能级
(3)三、五族元素,一般是电中性杂质,另一种等电 子杂质效应
等电子杂质: 特征:a、与本征元素同族但不同原子序数 b、以替位形式存在于晶体中,基本 上是电中性的。 条件:电负性、共价半径相差较大 同族元素原子序数越小,电负性越大,共价半 径越小。 等电子杂质电负性大于基质晶体原子的电负时, 取代后将成为负电中心;反之,将成为正电中心。
n ND N A ND
EA
半导体是 n 型的
有效的施主浓度 ND*= ND - NA
(B)NA>ND时 p型半导体 因 EA 在 ED 之下, ED上的束缚电子首 先填充EA上的空位, 即施主与受主先相互 “抵消”,剩余的束缚 空穴再电离到价带上。
ED
p N A ND N A
§2.2 缺 陷 能 级
1、 点 缺 陷:
空位 间隙原子
弗伦克尔缺陷和肖特基缺陷
(1)Si中的点缺陷:
空位 受主作用
间隙原子 施主作用
(2)化合物
砷化镓中的砷空位和镓空位均表现出受主作用 二六族化合物,离子型较强,正离子空位是受 主,负离子空位是施主,正离子间隙原子为施 主,负离子间隙原子为受主。
第二章半导体中杂质和缺陷能级
杂质:半导体中存在的与本体元素不同的其它元素
缺陷: 晶格中的原子周期性排列被破坏 a. 点缺陷:空位、间隙原子 b. 线缺陷:位错 c. 面缺陷:层错
杂质和缺陷对半导体的物理性能和化学性能会 产生决定性的影响。
杂质和缺陷出现在半导体中时,
产生的附加势场使严格的周期
性势场遭到破坏。
深能级的特点:
施主能级离导带较远,受主能级离价带较远。
一种杂质可以引入若干能级,因为会产生多次电离, 有的杂质既能引入施主能级,又能引入受主能级。
杂质能级是与杂质原子的壳层结构、杂质原子的大 小、杂质在晶格中的位置等等因素有关,目前没有 完善的理论加以说明。Βιβλιοθήκη 例1:Au(Ⅰ族)在Ge中
Au在Ge中共有五种可能的状态:
(2)等电子陷阱
等电子杂质(如N)占据本征原子位置 (如GaP中的P位置)后,即
N
NP
N 的共价半径为 0.07nm,电负性为3.0; P 的共价半径为 0.11nm,电负性为2.1 所以氮取代磷后能俘获电子成为负电中心,它们可以 吸引一个导带电子而变成负离子,这就是电子陷阱, 相反如果成为正电中心即可吸引一个价带空穴而变成 正离子这就是空穴陷阱。
Si Ga 两性杂质 SiAs
施主 受主
两性杂质:在化合物半导体中,某种杂质在 其中既可以作施主又可以作受 主,这 种杂质称为两性杂质。
§2.2 Ⅲ-Ⅴ族化合物中的杂质能级
铝、镓、铟和磷、砷、锑组成的九种化合物
化学计量比:1:1
晶体结构:闪锌矿结构
替位式杂质 间隙式杂质
(1)一族元素,引入受主能级
施主杂质和施主能级:
施主杂质:能够施放电子而产生导电电子并形成 正电中心
受主杂质和受主能级:Si中掺硼B
受主杂质:能够接受电子而产生导电空穴并形成 负电中心
5、杂质的补偿作用
(A) ND > NA 时
n型半导体
ED
杂质的补偿:既掺有施主又掺 有受主 补偿半导体
因 EA 在 ED 之下, ED上的束缚 电子首先填充EA上的空位,即 施主与受主先相互“抵消”,剩 余的束缚电子再电离到导带上。