1手性化合物拆分与鉴定

合集下载

手性化合物的拆分技术

手性化合物的拆分技术

手性化合物的拆分技术研究进展许多药物具有光学活性。

一般显示光学活性的药物分子,其立体结构必定是手性的,即具有不对称性。

手性是指其分子立体结构和它的镜像彼此不能重合。

互为镜像关系而又不能重合的一对分子结构称为对映体。

虽然对映异构体药物的理化性质基本相同,但由于药物分子所作用的受体或靶位是由氨基酸、核苷、膜等组成的手性蛋白质和核酸大分子等,后者对与之结合的药物分子的空间立体构型有一定的要求。

因此,对映异构体在动物体内往往呈现出药效学和药动学方面的差异。

鉴于此,美国食品药品监督管理局规定,今后研制具有不对称中心的药物,必须给出手性拆分结果,欧盟也提出了相应的要求。

因此,手性拆分已成为药理学研究和制药工业迫切需要解决的问题。

1.生成非对映体拆分此方法是利用外消旋混合物与手性试剂反应后生成有不同性质的非対映体,从而利用生成物的不同物理性质(溶解度、蒸汽压、结晶速率等)将其分离,再将分离后的物质分别还原成之前的対映体。

还可以使用拆分剂家族代替单一拆分剂进行拆分,所谓拆分剂家族是指有类似结构的2~3个手性剂拆分剂。

组合拆分提高了产品收率和纯度。

2.动力学拆分利用两个対映体和手性试剂发生反应的速度不一样,在混合物中添加不足量的手性试剂。

一个対映体与手性试剂结合,从而得到纯的反应慢的対映体。

可以分为经典动力学拆分和动态动力学拆分,动态动力学拆分是指将经典动力学拆分和底物消旋化相结合的拆分方法,理论产率可以达到100%。

底物消旋化分为化学消旋化和酶消旋化,由于酶消旋化具有操作条件温和、产率高、副反应少等优点而具有广泛的工业应用价值[4]。

3.液膜拆分将具有手性识别功能的物质溶解在溶剂中制备液膜,利用内外向间推动力(浓度差、pH 差等)使待分离物中的某种物质得到富集。

液膜分离方法又分为本体液膜、乳化液膜、支撑液膜3种类型。

4.固体膜拆分此方法是基于対映体间亲和力的差异,利用推动力(浓度差、压力差、电势差)进行分离。

根据膜是否具有选择性又分成了两类,但是不具有手性选择性的膜分离时还需要有辅助的手性选择环境。

手性化合物拆分方法之研究

手性化合物拆分方法之研究

2019年07月问题产生的原因具体有以下几种:开展运输操作时,受到运输本身影响导致的问题出现;低温条件导致原油资源凝固,引发管道堵塞的情况产生,进而导致浪费问题产生。

就上述问题而言,想要将其有效解决,可应用针对性较高的技术手段有效控制各环节运输操作实施时资源的流失率,具体而言,首先,可适当的减少原油资源的单次运输量,达到有效控制资源流失率的目的。

此类技术需要依靠变化管道运输量而实现,对推进原油资源的节约进程存在积极影响。

其次,经由增输改造技术及混合输送技术,对低温条件下由于原油凝固导致的管道堵塞问题加以有效解决。

其中,增输改造技术指的是经由相应技术手段的实施,使得原油的停输时间得到延长,以使得所运输原油资源的量得到保证;混合输送技术指的是经由相应技术手段的实施,有效降低原油的凝固点,以确保各环节运输操作实施时,原油资源不会出现凝固问题导致管道堵塞[4]。

2.2.2天然气天然气属清洁能源中的一种,对环境没有污染影响,随着社会的不断发展,全球范围内的各个国家对天然气具有的重视程度越来越高。

天然气具有较高的特殊性,一般需要通过线路运输。

管道运输是开展天然气线路运输的重要手段,所以,实施针对性及实效性较高的天然气管道运输技术研究操作十分具有必要性,经由有效创新管道运输技术的方式,促使运输过程中出现天然气资源浪费问题的可能性大幅度降低,有助于更好的推进天然气资源的节约进程。

现如今,研究出的高实效性天然气管道创新运输技术包括试压技术、干燥技术以及减阻技术等。

其中,试压技术指的是为了避免在开展各环节天然气运输操作时,基于压力太大导致管道线路出现损坏问题,在实际进行运输以前开展的试压操作。

现如今,应用在天然气运输过程的试压技术具体包括强度试压以及严密性试压等。

干燥技术指的是为了确保具体运输时天然气资源的质量,以保持天然气干燥为目的应用的技术手段,在现下的天然气运输工程中,此类技术发挥的作用较为重要。

减阻技术指的是经由在管道中铺设涂层的方式减少运输操作实施时的阻力,经由合理铺设涂层的方式既能够有效减少运输时天然气资源受到的阻力,且可以起到保护管道的作用,降低天然气腐蚀管道问题产生的几率,有助于提升运输实效性。

手性化合物酶法拆分

手性化合物酶法拆分

1、氨基酸
非天然氨 基酸化学合成法外消旋体酶法拆分
对映体
多数氨基酸不易用化学法拆分,而酶法拆分比较有效。
例如: D-苯基甘氨酸是制备抗菌素类药物的重要中间体, 它由化学合成法制备得到外消旋体,利用氨肽酶成功 地进行了拆分[1] 。
CH3 H 2N H OH
D, L-苯基甘氨酸 (PG) O (CH3C)2—O
参考文献
实例
Dunsmore等人[9]为此创 立了一种实用的去消旋过 程制备手性胺,使用一种 具有光学选择性的胺环氧 化酶和一个无选择性的化 学还原试剂(如氨水—硼 烷)。酶只氧化(S)—对映 体为亚胺,后者可以被还 原为外消旋胺.这样重复 操作,最终可以获得(R) —对映体,产率和对映体 过剩值都很高。
自然界里有很多手性化合物,因其所具有的特 殊性质和非凡功能,不仅在药物中,而且在农药, 香料,食品添加剂和昆虫信息素等领域均获得了广 泛的应用。 对于手性药物,其构型不 同它们的生理活性和毒性 也不同。
实例
手性问题的重要性!
图 1 对 映 体 的 不 同 生 理 活 性
沙利度胺(Thalidomide) --------天使还是魔鬼?
2、对映异构体
彼此成镜像关系,又不能重合的一对立体异构体互为对 映体。手性分子一定存在对映异构体。
3、外消旋体
一对对映体的等量混合物。它由旋光方向相反、旋光能 力相同的分子等量混合而成,其旋光性因这些分子间的 作用而相互抵消,因而是不旋光的。外消旋体通常用(±) 或 dl 表示。 当一个手性化合物进入生命体时, 它的两个对映异 构体通常会表现出不同的生物活性。(图1)
L-氨肽酶
D, L-PG H2SO4 / 加热 (外消旋化) L-PG

有机化学基础知识点手性化合物的分离与合成

有机化学基础知识点手性化合物的分离与合成

有机化学基础知识点手性化合物的分离与合成有机化学基础知识点:手性化合物的分离与合成手性化合物在有机化学领域中扮演着重要的角色,它们具有两种非对称的镜像异构体,即左旋和右旋。

手性化合物的分离与合成是有机化学中的一项重要技术和研究内容。

本文将探讨手性化合物的分离与合成的基础知识点。

一、手性化合物的分离方法1. 基于手性配体的手性柱层析法手性柱层析法是一种基于手性配体与目标分子之间的亲和性进行分离的方法。

通过选择适当的手性配体,可以实现对手性化合物的分离纯化。

例如,利用氨基酸衍生物作为手性配体,可以成功地分离出手性氨基酸和手性药物等。

2. 经典拆分结晶法经典拆分结晶法是一种通过晶体生长的方式分离手性化合物的方法。

通过合适的溶剂和配体选择,可以在晶体生长过程中实现手性化合物的拆分和纯化。

这种方法适用于一些具有较高拆分度的手性化合物。

3. 手性萃取法手性萃取法是一种利用手性选择性较大的手性萃取剂对手性化合物进行分离的方法。

通常通过控制温度、pH值和萃取剂浓度等条件,实现对手性化合物的选择性萃取。

手性萃取法在手性酮、手性醇以及手性药物等的分离中得到了广泛应用。

二、手性化合物的合成方法1. 左旋-右旋互换法左旋-右旋互换法是一种将一种手性化合物转化为其对映异构体的方法。

通常可通过二氧化硫气体的作用,将左旋手性化合物转化为右旋手性化合物,或者通过酸碱反应进行互换。

这种方法在手性药物和手性农药的合成中得到了广泛应用。

2. 手性催化剂的应用手性催化剂是一种能够选择性地促使手性化合物发生反应的催化剂。

通过催化剂的选择,可以实现手性化合物的不对称合成。

例如,手性金属配合物催化剂在不对称氢化和不对称还原反应中起到了关键作用。

3. 有机合成中的修饰法有机合成中的修饰法是一种通过对已有手性分子进行化学修饰,合成新的手性分子的方法。

通过对已有手性分子的保留或改变官能团,可以得到一系列具有不同手性的化合物。

这种方法在新药开发和杂环合成中得到了广泛应用。

酶法拆分手性化合物 -

酶法拆分手性化合物 -

酶法拆分的技术归纳及运用
1、动力学拆分
1858年,Pasteur发现用灰绿青青酶发酵消旋酒石酸铵 时,右旋对映体的代谢要比左旋体快,并以此进行分离得 到光学活性的非天然的左旋酒石酸铵。这是化学史上的第 一个动力学拆分的例子。
原理:外消旋混合物中的各组分和酶以不同速率进行反
应,因此通过选择酶的种类和控制反应进程可以使其中的 一种对映体转化成产物,而另一种对映异构体则不发生反 应,从而达到分离的目的。
酶法拆分的技术归纳及运用
4、非水溶剂下酶法拆分
酶催化水解反应是应用最广的一项技术, 它的缺点是溶 液较稀且存在酶的回收问题. Zaks等人研究了酶在有机介 质中的催化条件和特点, 从而改变了以往认为酶只催化水 溶液中反应的传统观念。 目前关于水解酶的研究较多, 而研究水解酶在有机溶剂 中的应用有一定的应用价值. 利用这种方法不仅能合成酯 和氨基化合物, 而且还能将不溶性的酶从反应混合物中过 滤出来而回收, 因而酶的酰基化比水解反应有效。
酶法拆分的技术归纳及运用
例如: 酰基化供体主要应用在醇、胺和酸的动力学拆分 上, VA( vinyl acetate)就是一种常用的酰基化试剂。
总结
过去的几年里, 酶已在许多手性化合物的拆分 中得到了应用, 但对于已知的2 000 多种酶的总体 而言, 这些酶中只有极少数(其中大部分是水解酶) 被用于手性化合物的拆分, 随着蛋白质工程和工业 微生物的不断发展, 相信在不久的将来, 更为廉价 的、稳定的、适用于多种基质和高度选择性的酶 的不断开发, 会使酶在手性化合物的拆分中的应用 变得更为广阔。
LOGO
酶法拆分手性化合物
内容提要
一 二 三 四 五 背景简介 手性化合物制备方法 酶法拆分手性化合物 酶法拆分的技术归纳及运用 总结

有机化学中的手性识别与拆分

有机化学中的手性识别与拆分

有机化学中的手性识别与拆分有机化学是研究有机物质的结构、性质和变化的学科。

手性识别与拆分是有机化学中一个重要的研究领域,它涉及到手性化合物的性质、合成和应用等方面。

本文将从手性的概念、手性识别的方法、手性拆分的策略等方面进行探讨。

手性是指分子或物质的非对称性质。

在有机化学中,手性分子由不对称的碳原子或其他原子组成,它们的镜像异构体无法通过旋转或平移重叠,因此具有不同的性质。

手性分子的存在对于生命体系、药物研究和有机合成等领域具有重要意义。

手性识别是指区分手性分子的方法和技术。

目前,常用的手性识别方法包括光学方法、核磁共振方法、质谱方法和色谱方法等。

其中,光学方法是最常用的手性识别方法之一。

光学活性物质对于不同偏振光的旋光度有不同的响应,通过测量旋光度可以确定手性分子的结构和组成。

核磁共振方法则是通过测量手性分子在磁场中的响应来识别手性。

质谱方法和色谱方法则是利用分子的质量差异或分子在柱上的分离来实现手性识别。

手性拆分是指将手性分子分离为其对映异构体的过程。

手性拆分的策略多种多样,常见的手性拆分方法包括晶体拆分、化学拆分和生物拆分等。

晶体拆分是通过晶体生长的方式将手性分子分离为不同的晶体,进而得到对映异构体。

化学拆分则是通过化学反应将手性分子转化为其他化合物,从而实现手性分子的拆分。

生物拆分则是利用生物体系中的酶或其他生物分子对手性分子进行选择性催化,从而实现手性分子的分离。

手性识别与拆分在药物研究和合成中具有重要的应用价值。

在药物研究中,手性药物的对映异构体往往具有不同的药理活性和毒性。

因此,通过手性识别和拆分可以选择性地合成和使用具有更好活性和安全性的手性药物。

在有机合成中,手性识别和拆分可以帮助合成化学家选择性地合成手性分子,从而提高合成效率和产率。

总之,手性识别与拆分是有机化学中的重要研究领域。

通过手性识别和拆分,我们可以更好地理解和利用手性分子的性质,为药物研究和有机合成等领域提供更多的选择和可能性。

手性化合物的拆分方法

手性化合物的拆分方法

手性化合物的拆分方法
手性化合物的拆分方法主要有对映体分离法和酶催化法两种。

对映体分离法是指通过物理或化学方法将手性化合物中的对映体分离开来。

常用的物理方法有晶体分离法和对映体选择性结晶法。

晶体分离法是指利用手性化合物结晶时的差异,通过适当的选择溶剂和结晶条件,使其中一个对映体结晶出来,而另一个对映体仍保持在溶液中。

对映体选择性结晶法则是利用对映体结晶时晶体生长速度的差异,通过选择合适的溶液浓度和温度,使其中一个对映体的晶体生长速度比另一个对映体快,从而实现对映体的分离。

酶催化法是利用手性化合物和酶之间的反应性差异进行对映体分离的方法。

酶催化法主要通过酶的手性选择性来实现对映体的分离,其中最常用的是立体选择性催化酶。

这种酶具有对手性底物具有高选择性催化作用的特点,通过调节反应条件和酶底物比例,可以将手性化合物中的对映体分离开来。

除了以上的方法,还有一些其他的手性化合物拆分方法,如手性色谱法、手性电泳法、手性转换法等。

这些方法则是通过物理、化学或生物学手段对手性化合物进行选择性的分离和转化,以实现对映体的分离。

手性拆分

手性拆分

手性拆分手性拆分(Chiral resolution),亦称光学拆分(Optical resolution)或外消旋体拆分,为立体化学上,用以分离外消旋化合物成为两个不同的镜像异构物的方法。

[1]为生产具有光学活性药物的重要工具。

与不对称合成法比较,手性拆分的缺点为尽有50%的产率。

有时在拆分的同时将不需要的对映异构体外消旋化,使其不断转化为需要的一个对映体,将拆分和外消旋化同时进行,从而使拆分的产率超过50%。

这种方法称为动态动力学拆分。

酮的烯醇化是常用的外消旋化反应。

拆分方法结晶拆分法晶种结晶法:也称优先结晶法。

是向热的饱和或过饱和的外消旋溶液中,加入一种纯光活性异构体的晶种,创造出不对称的环境。

冷却到一定的温度。

这时稍微过量的与晶种相同的异构体就会优先结晶出来。

滤去晶体后,在剩下的母液中再加入水和消旋体制成的热饱和溶液,再冷却到一定的温度。

这时另一个稍微过剩的异构体就会结晶出来。

理论上讲,如果原料能形成聚集体的外消旋体,那么将上述过程反复进行就可以将一对对映体转化为纯的光学异构体。

没有纯对映异构体晶种的情况下,有时用结构相似的手性化合物,甚至用非手性的化合物作晶种,也能成功进行拆分。

晶种结晶法是在路易·巴斯德的工作的基础上发现的。

文献上最早报道的应用是肾上腺素的拆分。

路易·巴士德首先发现酒石酸有右旋和左旋现象,并于1849年第一次进行手性拆分以分离两者。

直到1882年,他示范了借着引晶技术从过饱和的酒石酸钠铵溶液中生成d-晶体及l-晶体,相反的手性晶体将会排列成相反的形状。

直接结晶拆分法:也称自发结晶拆分法。

这是巴斯德最早发现的拆分方法。

是指外消旋体在平衡时结晶自发形成聚集体(conglomerate),两个对映体都自发析出等量的互为镜像的对映结晶。

对映结晶可以人工分开。

外消旋美沙酮可以通过这种方法拆分。

[2]以50g的dl-美沙酮为起始原料,溶于石油醚并浓缩,加入两个毫米大小d-和l-晶体,在40°C下搅拌125小时后便可得到两个大的d-和l-晶体,产率各为50%。

手性药物拆分技术及分析

手性药物拆分技术及分析

手性药物拆分技术及分析在药物研究和开发中,手性药物是一个非常重要的领域。

手性药物指的是分子结构中含有手性中心(手性碳原子)的化合物,左旋和右旋两种异构体具有不同的生物活性和体内代谢途径。

因此,正确地分析和分离手性药物对于药物研究和有效性的评估至关重要。

手性药物分析技术主要包括色谱法、光学活性法和核磁共振(NMR)法。

色谱法是一种常用的手性药物分析方法。

它基于手性药物的两种对映异构体在手性固定相上的不同吸附能力进行分离。

常见的色谱法包括高效液相色谱法(HPLC)和毛细管电泳法。

HPLC通常使用手性固定相柱,通过选择性地吸附左旋或右旋手性分子,实现对手性药物的分离。

毛细管电泳是一种高效的手性药物分析方法,基于对映异构体在电场中的迁移速率不同,通过毛细管中背景电解质的浓度和pH值调节来分离手性药物。

光学活性法是一种基于光学活性性质来分析和测定手性药物的方法。

光学活性手性药物由于具有旋光性,可以引起光的偏振方向发生旋转。

常用的光学活性法包括旋光仪法和圆二色光谱法。

旋光仪法是通过测定手性分子对光的旋转角度来判断手性药物的对映异构体的含量和比例。

圆二色光谱法则是测量手性分子对不同波长光的吸收性质,通过对波长的差异来判断手性药物的对映异构体。

核磁共振(NMR)是一种基于核磁共振现象来分析手性药物的方法。

NMR技术通过检测手性碳原子或核自旋的信号来确定手性药物的结构和对映异构体的比例。

通过对样品进行核磁共振实验后,通过解释谱图的峰位和峰形等信息,可以得到手性药物的分析结果。

此外,还有一些其他的手性药物分析方法,如质谱法、X射线衍射法和环光谱法等。

这些方法在手性药物分析中各有优劣,适用于不同类别和性质的手性药物。

总之,手性药物分析技术对于药物研究和评估的重要性不可忽视。

科学家们通过不断研究和发展新的手性分析技术,为新药开发和治疗提供了更可靠和准确的手性药物分析方法。

色谱法分离手性化合物

色谱法分离手性化合物

手性化合物的色谱法分离周丽华中师范大学化学学院2011级摘要:本文综述了手性化合物的四种拆分方法—薄层色谱法(TLC)、气相色谱法(GC)、高效液相色谱法(HPLC)、毛细管电色谱法(CEC),及每种方法的作用机理关键字:手性化合物色谱法分离Chromatographic Separation of Chiral Compounds Abstract: This paper reviewed four methods for separation of chiral compounds , such as TLC、GC、HPLC、CEC , introduced mechanism of each method.Key word : Chiral Compounds Chromatographic Separation1.引言手性是用来表达化合物分子结构不对称性的术语,被认为是三维物体的一个基本属性。

有很多化合物分子,构成它们的元素完全相同,但原子排列方式不同,彼此如同镜子内外世界的对应,也就是具有手性,它们就互称为“对映体”。

在自然界中,手性现象无处不在。

化合物分子含有某些不对称因素时,该化合物被称为手性化合物。

随着人类在生物工程和生命科学上的发展,科学家己经认识到,手性化合物例如手性药物异构体尽管其物理和化学性质几乎完全相同,只有旋光性不同,但他们在生物体内的生理活性和药理作用却存在很大的差别。

最经典的例子是thahdomide[l],也叫反应停。

其不同的构型却存在不同的生理效应:R构型具有良好的镇静作用而S构型却导致胎儿畸形。

在农药方面,手性问题也受到广泛的关注。

这主要是因为在外消旋体的农药中,其中一半可能是没有活性的,如果用于洒播在农田,既造成资源浪费,又污染环境。

但随着对环境安全、高效、安全的要求,含单一对映体的手性农药将会不断的发展。

鉴于有机分子的构型与其生物活性的的特殊关系,有必要对手性化合物的各个异构体分别进行考察,了解他们各自的生理活性,以便达到高效、安全、无污染的用药目的。

手性药物拆分技术及分析

手性药物拆分技术及分析

手性药物拆分技术及分析手性药物(chiral drugs)是指分子内部有一个或多个不对称碳原子的药物,即具有手性结构的药物。

手性药物由于具有左右旋异构体,使得其药理学效应、药效学性质、药代动力学以及安全性能等方面出现差异。

因此,手性药物的拆分技术及分析对于药物的研发、生产和应用具有重要意义。

手性药物的拆分技术主要有下述几种方法:晶体化学方法、酶法、化学拆分、色谱法和光学活性检测。

首先是晶体化学方法,该方法是利用手性药物晶体的对称性差异完成拆分。

通过晶体中的尖、刃、拱等特征差异,将手性药物分离为晶体异构体。

其次是酶法,手性药物的拆分可以通过酶的催化作用实现。

酶是具有高选择性、高催化效率和高效底物转化率的催化剂。

通过选择合适的酶,可以将手性药物转化为对应的手性异构体或原生态精细化靶化合物。

化学拆分是指通过特定的化学反应将手性药物分解为不对称碳原子具有相反手性的产物。

该方法较为常用,但对于存储稳定性较差的手性药物较不适宜。

色谱法是利用不同手性列进行手性分离,如手性HPLC(高效液相色谱)和手性毛细管电泳等。

这些方法主要是利用手性固定相对手性药物进行分离,可达到手性药物的拆分效果。

光学活性检测是通过光学活性的手性试剂或手性染料,以手性化合物的吸光性能差异检测手性药物的拆分效果。

根据手性分析原理,通过手性分析仪器对手性药物进行检测和分析。

手性药物的分析对于药物研发、生产和应用非常重要。

分析手性药物的关键是确保其纯度和药效学性质,并且有助于合理掌握手性药物在体内的吸收、分布、代谢和排泄的信息。

以下是手性药物分析的一些常用方法。

首先是纳米液相色谱法,该方法是将分离的手性药物样品通过微量泵输送到纳米柱中,在极小的流速和流体容量下进行分离。

该方法对于手性药物样品的需求量很小,因此可以减少手性药物样品的消耗。

其次是循环偏振负压电流法,该方法通过测量手性药物样品对光的旋光性质,直接反应其手性结构。

该方法准确、快速,适用于灵敏度高的手性药物分析。

手性化合物拆分方法

手性化合物拆分方法

手性化合物拆分方法
手性化合物的拆分方法通常有以下几种:
1. 光学拆分:利用手性催化剂或其他手性物质对手性化合物进行拆分。

光学活性的手性化合物经过光学反应与手性催化剂反应可以得到单一手性的产物。

2. 液体相转移拆分:将手性化合物溶解在不对其进行反应的溶剂中,然后加入具有手性结构的离子对或分子对,形成包合物。

通过改变反应条件或进行萃取操作,可以将手性化合物从包合物中分离出来。

3. 对映体选择性结晶:通过控制结晶条件和添加适当的对映配体或样品处理剂,使手性化合物在结晶过程中选择性地形成单一手性晶体。

4. 气相拆分:利用对映体的蒸汽压差异,通过适当的气-液平衡条件和温度条件,将手性化合物分离出来。

5. 手性液相色谱:利用手性稳定相或手性固定相,在手性固定相或手性稳定相的控制下对手性化合物进行分离和拆分。

6. 酶催化拆分:利用手性酶的选择性催化作用,将手性化合物转化为单一手性的产物。

以上方法中的选择取决于手性化合物的特性、拆分要求和可用的拆分试剂或设备。

手性拆分

手性拆分

手性拆分手性拆分(Chiral resolution),亦称光学拆分(Optical resolution)或外消旋体拆分,为立体化学上,用以分离外消旋化合物成为两个不同的镜像异构物的方法。

[1]为生产具有光学活性药物的重要工具。

与不对称合成法比较,手性拆分的缺点为尽有50%的产率。

有时在拆分的同时将不需要的对映异构体外消旋化,使其不断转化为需要的一个对映体,将拆分和外消旋化同时进行,从而使拆分的产率超过50%。

这种方法称为动态动力学拆分。

酮的烯醇化是常用的外消旋化反应。

拆分方法结晶拆分法晶种结晶法:也称优先结晶法。

是向热的饱和或过饱和的外消旋溶液中,加入一种纯光活性异构体的晶种,创造出不对称的环境。

冷却到一定的温度。

这时稍微过量的与晶种相同的异构体就会优先结晶出来。

滤去晶体后,在剩下的母液中再加入水和消旋体制成的热饱和溶液,再冷却到一定的温度。

这时另一个稍微过剩的异构体就会结晶出来。

理论上讲,如果原料能形成聚集体的外消旋体,那么将上述过程反复进行就可以将一对对映体转化为纯的光学异构体。

没有纯对映异构体晶种的情况下,有时用结构相似的手性化合物,甚至用非手性的化合物作晶种,也能成功进行拆分。

晶种结晶法是在路易·巴斯德的工作的基础上发现的。

文献上最早报道的应用是肾上腺素的拆分。

路易·巴士德首先发现酒石酸有右旋和左旋现象,并于1849年第一次进行手性拆分以分离两者。

直到1882年,他示范了借着引晶技术从过饱和的酒石酸钠铵溶液中生成d-晶体及l-晶体,相反的手性晶体将会排列成相反的形状。

直接结晶拆分法:也称自发结晶拆分法。

这是巴斯德最早发现的拆分方法。

是指外消旋体在平衡时结晶自发形成聚集体(conglomerate),两个对映体都自发析出等量的互为镜像的对映结晶。

对映结晶可以人工分开。

外消旋美沙酮可以通过这种方法拆分。

[2]以50g的dl-美沙酮为起始原料,溶于石油醚并浓缩,加入两个毫米大小d-和l-晶体,在40°C下搅拌125小时后便可得到两个大的d-和l-晶体,产率各为50%。

手性拆分

手性拆分

作者前言有次同事问我手性拆分的问题,当时按照教科书解释了一番(主要是针对消旋体性质问题:教科书上解释对映异构体的物理性质是一样的,如果重结晶的话会一起结晶出来)。

后来接触了更多的手性拆分问题,才知道自己是井底之蛙,只知其一,不知其二。

特别是前一段时间,我小组的一位同事通过普通的溶剂重结晶来提高ee值,当时觉得很奇怪,多看看这方面的实践文章才知道有一些其他理论来解释这个问题。

特和大家一起分享:直接结晶法来拆分手性化合物。

其他方法我慢慢再叙。

(手性药物的结晶拆分方法--直接结晶法---逆向结晶法在优先结晶法中,通过加入不溶的添加物即晶种形成晶核,加快或促进与之晶型或立体构型相同的对映异构体结晶的生长。

而逆向结晶法则是在外消旋体的饱和溶液中加入可溶性某一种构型的异构体[如(R)—异构体],添加的(R)—异构体就会吸附到外消旋体溶液中的同种构型异构体结晶体的表面,从而抑制了这种异构体结晶的继续生长,而外消旋体溶液中相反构型的(S)—异构体结晶速度就会加快,从而形成结晶析出。

例如在外消旋的酒石酸钠铵盐的水溶液中溶入少量的(S)—(—)—苹果酸钠铵或(S)—(—)—天冬酰胺时,可从溶液中结晶得到(R,R)—(十)—酒石酸钠铵。

逆向结晶中的添加物必须和溶液中的化合物在结构和构型上有相关之处。

这样所添加的物质才能嵌入生长晶体的晶格中,取代其正常的晶格组分并能阻止该晶体的生长。

逆向结晶是一种晶体生长的动力学现象,添加物的加入造成了结晶速度上的差别。

由于逆向结晶是晶体生长的动力学的现象,因此当结晶时间无限制的延长下之,最终得到的仍是外消旋的晶体。

从化合物的性质上来看,逆向结晶只能用于能形成聚集体的化合物。

在结晶法的拆分过程中,若能将优先结晶法中“加入某种单—对映异构体晶体可诱导相同构型结晶生长”的原理和逆向结晶中“加入另一个对映异构体溶液可抑制相同构型的对映异构体生长”的原理相结合,可使结晶拆分的效率大大提高手性药物的结晶拆分方法--直接结晶法---优先结晶法优先结晶方法(preferential crystallization)是在饱和或过饱和的外消旋体溶液中加入一个对映异构体的晶种,使该对映异构体稍稍过量因而造成不对称环境,结晶就会按非稍的过程进行,这样旋光性与该晶种相同的异构体就会从溶液中结晶出来。

用手性拆分方法获取单一手性化合物用手性拆分方法获取...

用手性拆分方法获取单一手性化合物用手性拆分方法获取...

手性拆分方法
1.机械拆分法 2.化学拆分法 3.生物化学拆分法 4.萃取拆分法 5.色谱拆分法 6.膜拆分法
机械拆分法
• •
一. 直 接 结晶机械分离法 二. 接 种 结晶拆分法
化学拆分法
• 一 .生 成 非对映异构体的拆分法 • 二.动力学拆分法
生 成 非对映异构体的拆分法
• 利用手性试剂作为拆分剂加入外消旋体混
用手性拆分方法获取单一手性化合物
04088038 王巍峰 04088042 杨清华
对于种类多、用途广并且分子结构差别较 大的精细化工产品〔如杀虫剂、杀菌剂、 植物生长调理剂和香料等),其分子的光学 异构体也表现出不同的性质。 如:R- (-)一薄荷醇有薄荷的香味,而S- (-) 一薄荷醇却发霉味;S-天冬酞胺是甜的,而 其对映体却是苦的;L-多巴可以治疗帕金森 症,而D-多巴有毒性作用。
OH
OH
O
(S)-tetradec-1-en-3-ol
• 用手性(salen)Co催化剂(
t-Bu
H N
H
N
M
O
O
Bu-t
Bu-t
t-Bu
M=Co(OAc)(H2O))催化外消旋末端环氧化合物 的水解动力学拆分反应(HKR),可以同时得到 有机合成中有重要应用价值的手性末端化氧化合 物和手性1,2-二醇。
H
COOH
H COOH
NH2
HO
NH2 HO
HO
HO
L-多巴
D-多巴
实现对映体分离的益处
• 制备高效、低毒、低副作用的各种药物、
农药、生长素等 • 只含单一对映体的各类合成物质大大减少 其对环境的污染作用 • 从经济角度看,提高了产品的光学纯度, 也即提高了其经济价值

手性药物的化学拆分_形成和分离非对映体拆分法

手性药物的化学拆分_形成和分离非对映体拆分法


,
肾上腺 泉 药 物 化 学 拆分过 程 示 意 图
, ,
称合 成 的 出 现 该领 域 的 研 究 进 展 十 分 迅 速 这 不 仅 有 助 于 药 物 相 互 作 用 机 理 阐 明 而 且 对
临 床 合理 用 药 具 有 指 导 性 意 义


网 阴
叶 秀林 立 体 化学
,





,

邻匀
,
一 酒 石酸作

拆分 剂 在 不 同溶 剂 中 进 行 拆 分 没 有 明 显 效果 用 文 献
,
报道 的

,

对 甲基 苯 甲
酞 酒 石 酸 在 甲 醇 溶 剂 中能 进 行 拆 分 可 是 该 拆 分 剂 的 推广 价值 不 大 近 年 来 随 着 科 学 技 术 的 进 步 许 多 其 它 拆 分 法 不 断涌 现 高 色谱拆 分 法 如 高 效 液 相 色谱 用 于 心 得 安 的 拆 分 由 于 手 性 药 物 相 互 作 用 已 引 起 人 们 的 广 泛 重 视 随 着 对 映 体拆 分 法 的 发展 以 及 不 对
,

下 面通过手性药物 肾
肾上 腺 素 的 拆 分
由于 肾上 腺 素分 子 结 构 中 含 有 碱 性




基 故可 以用 光 活性 酸

,

酒 石 酸来
拆分
肾 上 腺 素 药物 化 学 折 分过 程 示 意 图 请 见 下 页 图
讨论
形 成 和 分 离 非 对 映 体拆 分 法 是 一 种 经 典 有 效 的 化 学 方 法 它 需 要 设 备 不 多 操 作 简

1手性化合物拆分与鉴定

1手性化合物拆分与鉴定

手性物质提取分离手性药物的结晶拆分方法:手性化合物的拆分是给外消旋混合物制造一个不对称的环境,使两个对映异构体能够分离开来。

从方法学上来讲,可以分为结晶拆分法(物理拆分方法、化学拆分方法)、动力学拆分方法、生物拆分方法(相当部分是生物催化的动力学拆分)及色谱拆分方法。

--手性药物的拆分方法—1、结晶拆分法--直接结晶法---在光学活性溶剂中的结晶拆分--直接结晶法---外消旋体的不对称转化和结晶拆分--直接结晶法---逆向结晶法逆向结晶法则是在外消旋体的饱和溶液中加入可溶性某一种构型的异构体[如(R)—异构体],添加的(R)—异构体就会吸附到外消旋体溶液中的同种构型异构体结晶体的表面,从而抑制了这种异构体结晶的继续生长,而外消旋体溶液中相反构型的(S)—异构体结晶速度就会加快,从而形成结晶析出。

--直接结晶法---优先结晶法优先结晶方法(preferential crystallization)是在饱和或过饱和的外消旋体溶液中加入一个对映异构体的晶种,使该对映异构体稍稍过量因而造成不对称环境,结晶就会按非稍的过程进行,这样旋光性与该晶种相同的异构体就会从溶液中结晶出来。

--直接结晶法---自发结晶拆分法自发结晶拆分(spontaneous resolution)是指当外消旋体在结晶的过程中,自发的形成聚集体。

--通过形成非对映异构体的结晶法--非对映异构体的形成和拆分原理--通过形成非对映异构体的结晶法--用于碱拆分的拆分试剂(酸性拆分剂)2、动力学拆分化反应,分离方法直接。

的衍生化试剂具有良好的对热及水的稳定性。

局限性色谱柱价格昂贵,部分固定相还存在稳定性差,柱容量低,柱强度差等缺点,且根据不同手性药物的性质不同,选用的分析方法也不同。

系统平衡时间较长,添加剂消耗大,对于一些难分离的对映体效果差。

手性试剂需要有高的光学纯度,各对映体的衍生化速率及平衡常数应一致,要求衍生化反应迅速、彻底,否则影响定量结果。

有机分子的手性识别与拆分

有机分子的手性识别与拆分

有机分子的手性识别与拆分手性,作为一个物理学概念,意味着物体的镜像形式是不可重合的。

在有机化学领域,手性是指分子的结构与它的镜像完全不同,就像左右手一样。

尽管两个手在外形上非常相似,但无论如何也无法完全重合。

有机分子的手性识别与拆分是一项极其重要的研究领域,对于药物研发、催化剂设计和材料科学都具有重要意义。

手性分子在化学和生物学中普遍存在。

例如,大多数药物都是立体异构体,其中一种立体异构体具有治疗效果,而另一种则可能是毒性物质。

这就需要我们通过手性识别和拆分技术,能够有效地分离和获取目标手性分子。

此外,手性分子还存在于天然产物中,如植物油、氨基酸和糖类等。

对于这些天然产物的研究,了解其手性构型能够帮助我们更好地理解生命的本质。

手性识别是指通过某种方法,能够准确地分辨出手性分子中的手性构型。

常见的手性识别方法包括手性分析仪器、手性色谱技术和手性化合物的化学反应等。

其中,手性分析仪器如手性色谱质谱联用等,能够通过测量样品在手性分析仪器上的信号差异,来确定其手性构型。

手性识别的另一种方法是利用手性配体和手性催化剂。

手性配体是一类具有手性的有机化合物,能够与手性分子特异性地发生相互作用,从而达到分离手性分子的目的。

手性催化剂是一类具有手性的催化剂,可以选择性地催化手性分子之间的反应,从而使手性分子发生转化。

通过这些手性配体和手性催化剂,我们能够在实验室中有效地进行手性识别和拆分。

手性拆分即指将手性分子中的手性构型分离出来。

手性拆分的方法多样,可以利用化学反应、晶体学、肽酸衍生物、纳米技术等。

其中,化学反应方法是最常用的手性拆分方法之一。

通过对手性分子进行适宜的反应条件,使其中一个手性构型发生反应而另一个手性构型保持不变,从而实现手性分子的拆分。

此外,晶体学技术也是一种常用的手性拆分方法。

通过制备手性分子的单晶,通过晶体学的手段确定其手性构型,从而实现手性分子的拆分。

手性识别与拆分的研究不仅仅具有理论意义,更对应用性的领域有着重要作用。

有机化学基础知识点手性化合物的分离和鉴定

有机化学基础知识点手性化合物的分离和鉴定

有机化学基础知识点手性化合物的分离和鉴定手性化合物是有机化学中重要的研究对象,具有对光学活性和立体选择性等特性。

因此,对手性化合物的分离和鉴定具有重要的意义。

本文将介绍手性化合物的分离和鉴定的基本原理和常用方法。

一、手性化合物分离的原理和方法1. 手性分离的原理手性分离是指将混合物中的手性化合物分离为单一手性形式的过程。

这是由于手性化合物的分子具有非对称中心或轴对称性,存在光学异构体,其旋光性不同,因此可以通过物理性质的差异实现手性分离。

2. 手性分离的方法(1)晶体分离法:利用晶体的手性选择性分离手性化合物,常用的方法包括晶体生长法和再结晶法。

(2)液体分离法:根据手性化合物在固定相或流动相中的保留差异进行分离,如手性层析法、手性萃取法和手性色谱法等。

(3)胶体分离法:利用光学、电学、化学、热学等对手性分子的效应实现分离,如手性电泳法和手性微胶囊相变法。

二、手性化合物鉴定的原理和方法1. 光学旋光度的测定手性化合物是具有光学活性的,可以使平面偏振光的偏振方向发生旋转,这种旋转的角度称为光学旋光度。

通过测定光学旋光度可以确定手性化合物的相对构型和绝对构型。

2. 核磁共振波谱(NMR)的应用核磁共振波谱是一种常用的手性化合物鉴定方法,通过分析化合物的NMR谱图,可以确定手性中心的数量和相对位置,进而推测手性化合物的结构。

3. 圆二色谱(CD)的应用圆二色谱是一种测定手性化合物的方法,通过测定手性化合物对环形偏振光的吸收和散射来判断化合物的手性。

圆二色谱可以提供手性中心的绝对构型信息。

4. X射线晶体衍射法X射线晶体衍射法是一种精确测定化合物三维结构的方法,通过测定手性化合物晶体的衍射图案,可以得到化合物的空间构型和手性。

结论手性化合物分离和鉴定是有机化学中的重要内容,本文介绍了手性化合物分离的原理和方法,以及手性化合物鉴定的常用方法。

通过合理选择适用的方法,可以准确地分离和鉴定手性化合物。

这对于深入理解手性化合物的性质和反应机理,对于药物合成、光电材料和医药等领域的研究有着重要的意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

手性物质提取分离
手性药物的结晶拆分方法:
手性化合物的拆分是给外消旋混合物制造一个不对称的环境,使两个对映异构体能够分离开来。

从方法学上来讲,可以分为结晶拆分法(物理拆分方法、化学拆分方法)、动力学拆分方法、生物拆分方法(相当部分是生物催化的动力学拆分)及色谱拆分方法。

--手性药物的拆分方法—
1、结晶拆分法
--直接结晶法---在光学活性溶剂中的结晶拆分
--直接结晶法---外消旋体的不对称转化和结晶拆分
--直接结晶法---逆向结晶法逆向结晶法则是在外消旋体的饱和溶液中加入可溶性某一种构型的异构体[如(R)—异构体],添加的(R)—异构体就会吸附到外消旋体溶液中的同种构型异构体结晶体的表面,从而抑制了这种异构体结晶的继续生长,而外消旋体溶液中相反构型的(S)—异构体结晶速度就会加快,从而形成结晶析出。

--直接结晶法---优先结晶法优先结晶方法(preferential crystallization)是在饱和或过饱和的外消旋体溶液中加入一个对映异构体的晶种,使该对映异构体稍稍过量因而造成不对称环境,结晶就会按非稍的过程进行,这样旋光性与该晶种相同的异构体就会从溶液中结晶出来。

--直接结晶法---自发结晶拆分法自发结晶拆分(spontaneous resolution)是指当外消旋体在结晶的过程中,自发的形成聚集体。

--通过形成非对映异构体的结晶法--非对映异构体的形成和拆分原理
--通过形成非对映异构体的结晶法--用于碱拆分的拆分试剂(酸性拆分剂)
2、动力学拆分
化反应,分离方法直接。

的衍生化试剂具有良好的对热及水的稳定性。

局限性色谱柱价格昂
贵,部分固定
相还存在稳定
性差,柱容量
低,柱强度差
等缺点,且根
据不同手性药
物的性质不
同,选用的分
析方法也不
同。

系统平衡时间较长,添
加剂消耗大,对于一些
难分离的对映体效果
差。

手性试剂需要有高的
光学纯度,各对映体的
衍生化速率及平衡常
数应一致,要求衍生化
反应迅速、彻底,否则
影响定量结果。

衍生化
和色谱分析过程中应
不发生消旋化,外消旋
药物需要有可被衍生
化的基团,此外衍生化
法步骤较烦琐,衍生化
试剂绝大多数毒性相
当大,而且该方法难以
实现分析的自动化。

液相色谱手性固定相大体有四类,
1、Pirkle型固定相,它的母体结构是 3-二硝基苯甲酰,然后接上诸如苯基甘氨酸或亮氨酸这样的基团,3.5-二硝基苯甲酰是公认的作为接受π-π相互作用的重要基团
2、π-酸,π-碱活性手性固定相,这种类型的固定相已广泛用于分离胺,醇,硫醇,氨基酸,氨基醇等。

3、环糊精类(最常用),它分α、β、γ三类,以β型用得最广,由于它可采用反相系统,既可分离手性物质,又可分离非手性物质,因此,迅速在液相色谱中推广,成为应用最广的手性固定相之一。

PS.、环糊精(cycIodextrin,简称CD)是一种包含6 ~ 12 个葡萄糖单元的手性环状低聚糖,环糊精作为手性固定相分离手性化合物的原理:由于CD独特的结构,能够选择性地包结多种客体分子,形成具有不同自由能的包结配合物(in-elusion complexes。

作为固定相,其保留行为将呈现差别。

若客体分子是对映异构体,则将形成非对映的包结配合物(diastereomeric inclusion complexes,呈现对映体选择性,这是CD固定相分离手性化合物的主要依据。

不同的CD,其腔尺寸大小不同,因而对与其形成包结配合物的客体分子大小有选择性。

原则上讲,较大的腔尺寸适合于较大的客体分子。

目前,β-CD固定相用得最多,是由于其价格便宜,而且适合于许多中等大小的分子,特别是芳香族化合物的对映体分离。

4、高聚合手性固定相是目前流行的另一种商品固定相,主要包括蛋白质键合相和纤维素等,现阶段用得较多的蛋白质键合相是牛血清蛋白和α-酸糖蛋白。

------林炳承,手性分子的色谱分离,色谱
拆分新技术:模拟移动床色谱SMB,超临界流体色谱SFC,逆流提取技术CCC,包结拆分
---------《化学制药工艺学》P96-140
-----超临界流体色谱分离手性化合物
SFC分离手性化合物可分为直接法和间接法两种。

直接法包括使用手性固定相和手性流动相;
间接法则基于手性衍生作用,先把对映物转化为非对映物,然后用非手性固定相分离。

目前,手性固定相直接分离法是发展最快的领域,而间接法则相对使用较少。

超临界流体色谱的手性固定相是在HPLC 和GC 手性固定相的基础上发展起来的。

通常CSPs 按手性选择器的类型分为酰胺类、环糊精类和聚糖类等,除冠醚类和蛋白质类外,绝大多数CSPs都可直接用于SFC,而不需任何改进处理。

超临界流体色谱技术是一种非常重要的手性拆分方法,它较HPLC、GC 技术而言,有分离效率高、分离时间短、产品质量好等优点,因而在食品、药物、农药、香料和聚合物等的手性分离方面有良好的应用前景。

-----=毛细管电泳手性分离(CE):(应用各种手性选择剂)
手性分离中毛细管电泳具有以下优点: (1)很高的分离效率使具有较小分离选择系数的对映体也可以达到满意的分离度; (2)可供选择的分离模式多且变换简单, 手性选择试剂直接加入载体电解质中, 容易通过选用不同的手性选择试剂和改变背景电解质溶液的组成提高分离选择性; (3)手性选择剂的消耗量很少, 运行成本较低。

-------模拟移动床色谱(Simulated moving bed Chromatography,SMB)
在移动床色谱中,不仅流动相发生移动,固定相也要向相反方向移动,易洗脱的化合物(萃余液)随流动相移动,难洗脱的化合物(萃取液)随固定相移动。

整个固定相的分离能力被持续利用,明显地提高了系统产率。

SMB 可以节省90%的流动相并得到更高的产率。

-------逆流色谱(Countercurrent Chromatography,CCC)
它主要分为液滴逆流色谱(DCCC)、旋转腔逆流色谱(RLCCC)、离心分离逆向色谱(CPC)、高速逆流色谱(HSCCC)四大类。

适用于分离极性大的手性化合物及生物大分子。

---------薄层色谱(TLC)和快速柱色谱(Flash Chromatography)
薄层色谱是最简便的色谱技术之一,具有操作方便、设备简单、色谱参数易调整等特点。

主要分为手性固定相拆分和手性流动相拆分,用于定性分析。

快速柱色谱是基于通过泵产生压力(低压),加速流动相通过预填充柱子的洗脱速度的一种快速制备柱层析形式。


---------分子印迹法
氨基酸衍生物是目前作为分子印迹分离目标物质中较为活跃的一种。

---------李丽虹,刘岚,罗勇等,以分子印迹聚合物微固定相手性拆分1,12联222萘酚及其衍生[J].色谱,2006,24(6;574.)
手性物质结构鉴定
测定手性化合物绝对构型的方法主要有:单晶X-射线衍射法,核磁共振法和圆二色谱法等。

2、核磁共振法
由于对映异构物的核磁谱图完全一样,需要转变成非对映异构物才可以区别。

NMR检测手性化合物有三种方法:1.加手性位移试剂2.加手性溶剂3.加手性衍生试剂。

3、。

相关文档
最新文档