人教版初中数学锐角三角函数的知识点复习
第1章-锐角三角函数-知识梳理
![第1章-锐角三角函数-知识梳理](https://img.taocdn.com/s3/m/53d3aac5ee06eff9aff80702.png)
锐角三角函数一、基础知识1.定义:如图在△ABC 中,∠C 为直角,我们把锐角∠A 的对边与斜边的比叫做∠A 的正弦,记作sinA ;sinA= a sinA c = 把锐角∠A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ;cos b A c= 把锐角∠A 的对边与邻边的比叫做∠A 的正切,记作tanA 。
tan a A b =把锐角∠A 的邻边与对边的比叫做∠A 的余切,记作cosA 。
cos b A a =2、三角函数值 角度 三角函数0°30° 45° 60° 90° sinA 0 12 22 321 cosA 1 3222 12 0 tanA 0 33 1 3 不存在(2)锐角三角函数值的性质。
锐角三角函数的大小比较:在︒<<︒900A 时,随着A 的增大,正弦值越来越大,而余弦值越来越小.即:A sin 是增函数,A cos 减函数。
○1锐角三角函数值都是正数。
○2当角度在090间变化时:正弦、正切值随着角度的增大而增大;余弦、余切随着角度的增大而减小。
3、 同角、互余角的三角函数关系:1、同角三角函数关系:1cos sin 22=+A A .sin tan cos ∂∂=∂;cos cot sin ∂∂=∂;tan cot 1∂•∂=2、互余锐角的三角函数关系:)90cos(cos sin A B A -︒==,)90sin(sin cos A B A -︒==。
解直角三角形:由直角三角形中除直角以外的两个已知元素(其中至少有一条边),求出所有未知元素的过程,叫做解直角三角形。
直角三角形的可解条件及解直角三角形的基本类型已知条件解法 一条边和一个锐角 斜边c 和锐角AB=90°-A ,a=csinA ,b=ccosA ,s=c 2sinAcosA 直角边a 和锐角AB=90°-A ,b=acotA ,c sin a A =,21cot 2s a A = 两条边 两条直角边a和b 22c a b =+,由tan a A b=,求角A ,B=90°-A ,S=12ab 直角边a 和斜边c 22b c a =-,由sin a A c =,求 角A ,B=90°-A ,S=12a 22c a - 知识梳理:。
九年级数学专题复习锐角三角函数
![九年级数学专题复习锐角三角函数](https://img.taocdn.com/s3/m/29f44ab103d8ce2f01662335.png)
总复习锐角三角函数【考纲要求】1.理解锐角三角函数的定义、性质及应用,特殊角三角函数值的求法,运用锐角三角函数解决与直角三角形有关的实际问题.题型有选择题、填空题、解答题,多以中、低档题出现;2.命题的热点为根据题中给出的信息构建图形,建立数学模型,然后用解直角三角形的知识解决问题.【知识网络】【考点梳理】考点一、锐角三角函数的概念如图所示,在Rt△ABC中,∠C=90°,∠A所对的边BC记为a,叫做∠A的对边,也叫做∠B的邻边,∠B所对的边AC记为b,叫做∠B的对边,也是∠A的邻边,直角C所对的边AB记为c,叫做斜边.锐角A的对边与斜边的比叫做∠A的正弦,记作sinA,即sinA aAc∠==的对边斜边;锐角A的邻边与斜边的比叫做∠A的余弦,记作cosA,即cosA bAc∠==的邻边斜边;锐角A的对边与邻边的比叫做∠A的正切,记作tanA,即tanA aAA b∠==∠的对边的邻边.同理sinB bBc∠==的对边斜边;cosB aBc∠==的邻边斜边;tanB bBB a∠==∠的对边的邻边.要点进阶:ABCabc(1)正弦、余弦、正切函数是在直角三角形中定义的,反映了直角三角形边与角的关系,是两条线段的比值.角的度数确定时,其比值不变,角的度数变化时,比值也随之变化.(2)sinA,cosA,tanA分别是一个完整的数学符号,是一个整体,不能写成,,,不能理解成sin与∠A,cos与∠A,tan与∠A的乘积.书写时习惯上省略∠A的角的记号“∠”,但对三个大写字母表示成的角(如∠AEF),其正切应写成“tan∠AEF”,不能写成“tanAEF”;另外,、、常写成、、.(3)任何一个锐角都有相应的锐角三角函数值,不因这个角不在某个三角形中而不存在.(4)由锐角三角函数的定义知:当角度在0°<∠A<90°之间变化时,,,tanA>0.考点二、特殊角的三角函数值利用三角函数的定义,可求出0°、30°、45°、60°、90°角的各三角函数值,归纳如下:要点进阶:(1)通过该表可以方便地知道0°、30°、45°、60°、90°角的各三角函数值,它的另一个应用就是:如果知道了一个锐角的三角函数值,就可以求出这个锐角的度数,例如:若,则锐角.(2)仔细研究表中数值的规律会发现:sin0︒、、、、sin90︒的值依次为0、、、、1,而cos0︒、、、、cos90︒的值的顺序正好相反,、、的值依次增大,其变化规律可以总结为:当角度在0°<∠A<90°之间变化时,①正弦、正切值随锐角度数的增大(或减小)而增大(或减小)②余弦值随锐角度数的增大(或减小)而减小(或增大).考点三、锐角三角函数之间的关系如图所示,在Rt△ABC中,∠C=90°.(1)互余关系:,;(2)平方关系:;(3)倒数关系:或;(4)商数关系:.要点进阶:锐角三角函数之间的关系式可由锐角三角函数的意义推导得出,常应用在三角函数的计算中,计算时巧用这些关系式可使运算简便.考点四、解直角三角形在直角三角形中,由已知元素(直角除外)求未知元素的过程,叫做解直角三角形.在直角三角形中,除直角外,一共有5个元素,即三条边和两个锐角.设在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,则有:①三边之间的关系:a2+b2=c2(勾股定理).②锐角之间的关系:∠A+∠B=90°.③边角之间的关系:,,,,,.④,h为斜边上的高.要点进阶:(1)直角三角形中有一个元素为定值(直角为90°),是已知的值.(2)这里讲的直角三角形的边角关系指的是等式,没有包括其他关系(如不等关系).(3)对这些式子的理解和记忆要结合图形,可以更加清楚、直观地理解.考点五、解直角三角形的常见类型及解法已知条件解法步骤Rt△ABC两边两直角边(a,b)由求∠A,∠B=90°-∠A,斜边,一直角边(如c,a)由求∠A,∠B=90°-∠A,一边一直角边和一锐角锐角、邻边(如∠A,b)∠B=90°-∠A,一角,锐角、对边(如∠A,a)∠B=90°-∠A,,斜边、锐角(如c,∠A)∠B=90°-∠A,,要点进阶:1.在遇到解直角三角形的实际问题时,最好是先画出一个直角三角形的草图,按题意标明哪些元素是已知的,哪些元素是未知的,然后按先确定锐角、再确定它的对边和邻边的顺序进行计算.2.若题中无特殊说明,“解直角三角形”即要求出所有的未知元素,已知条件中至少有一个条件为边.考点六、解直角三角形的应用解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键.解这类问题的一般过程是:(1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型.(2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题.(3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形.(4)得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解.拓展:在用直角三角形知识解决实际问题时,经常会用到以下概念:(1)坡角:坡面与水平面的夹角叫做坡角,用字母表示.坡度(坡比):坡面的铅直高度h和水平距离的比叫做坡度,用字母表示,则,如图,坡度通常写成=∶的形式.(2)仰角、俯角:视线与水平线所成的角中,视线中水平线上方的叫做仰角,在水平线下方的叫做俯角,如图.(3)方位角:从某点的指北方向线按顺时针转到目标方向的水平角叫做方位角,如图①中,目标方向PA,PB,PC的方位角分别为是40°,135°,245°.(4)方向角:指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角,如图②中的目标方向线OA,OB,OC,OD的方向角分别表示北偏东30°,南偏东45°,南偏西80°,北偏西60°.特别如:东南方向指的是南偏东45°,东北方向指的是北偏东45°,西南方向指的是南偏西45°,西北方向指的是北偏西45°.要点进阶:1.解直角三角形实际是用三角知识,通过数值计算,去求出图形中的某些边的长或角的大小,最好画出它的示意图.2.非直接解直角三角形的问题,要观察图形特点,恰当引辅助线,使其转化为直角三角形或矩形来解.例如:3.解直角三角形的应用题时,首先弄清题意(关键弄清其中名词术语的意义),然后正确画出示意图,进而根据条件选择合适的方法求解.考点七、解直角三角形相关的知识如图所示,在Rt△ABC中,∠C=90°,(1)三边之间的关系:222a b c +=; (2)两锐角之间的关系:∠A+∠B =90°; (3)边与角之间的关系:sin cos a A B c ==,cos cos a A B c==,cos sin b A B c ==,1tan tan a A b B==. (4) 如图,若直角三角形ABC 中,CD ⊥AB 于点D ,设CD =h ,AD =q ,DB =p ,则由△CBD ∽△ABC ,得a 2=pc ;由△CAD ∽△BAC ,得b 2=qc ;由△ACD ∽△CBD ,得h 2=pq ;由△ACD ∽△ABC 或由△ABC 面积,得ab =ch .(5)如图所示,若CD 是直角三角形ABC 中斜边上的中线,则①CD =AD =BD =12AB ; ②点D 是Rt △ABC 的外心,外接圆半径R =12AB . (6)如图所示,若r 是直角三角形ABC 的内切圆半径,则2a b c abr a b c+-==++. 直角三角形的面积: ①如图所示,111sin 222ABC S ab ch ac B ===△.(h 为斜边上的高)②如图所示,1()2ABC S r a b c =++△.【典型例题】类型一、锐角三角函数的概念与性质例1.(1)如图所示,在△ABC中,若∠C=90°,∠B=50°,AB=10,则BC的长为( ).A.10·tan50° B.10·cos50° C.10·sin50° D.10 sin50°(2)如图所示,在△ABC中,∠C=90°,sinA=35,求cosA+tanB的值.(3)如图所示的半圆中,AD是直径,且AD=3,AC=2,则sinB的值等于________.举一反三:【变式】如图,已知△ABC的三个顶点均在格点上,则cosA的值为()A .B .C .D .类型二、特殊角的三角函数值 例2.解答下列各题: (1)化简求值:tan 60tan 45sin 45sin 30sin 60cos30cos 45--++°°°°°°°;(2)在△ABC 中,∠C =90°,化简12sin cos A A -.举一反三: 【变式】若3sin 22α=,cos sin βα=,(2α,β为锐角),求2tan()3β的值.例3.如图,在锐角△ABC 中,AB=15,BC=14,S △ABC =84,求: (1)tanC 的值;(2)sinA 的值.CBA举一反三:【变式】如图,AB 是江北岸滨江路一段,长为3千米,C 为南岸一渡口,为了解决两岸交通困难,拟在渡口C 处架桥.经测量得A 在C 北偏西30°方向,B 在C 的东北方向,从C 处连接两岸的最短的桥长为多少千米?(精确到0.1千米)类型三、解直角三角形及应用例4.如图所示,D 是AB 上一点,且CD ⊥AC 于C ,:2:3ACD CDB S S =△△,4cos 5DCB ∠=, AC+CD =18,求tanA 的值和AB 的长.例5.如图所示,山脚下有一棵树AB ,小华从点B 沿山坡向上走50 m 到达点D ,用高为1.5m 的测角仪CD 测得树顶的仰角为10°,已知山坡的坡角为15°,求树AB 的高(精确到0.1m).(参考数据:sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,sin15°≈0.26,cos15°≈0.97,tan15°≈0.27).举一反三:【变式】如图所示,正三角形ABC的边长为2,点D在BC的延长线上,CD=3.(1)动点P在AB上由A向B移动,设AP=t,△PCD的面积为y,求y与t之间的函数关系式及自变量t的取值范围;(2)在(1)的条件下,设PC=z,求z与t之间的函数关系式.例6.如图(1)所示,一架长4米的梯子AB斜靠在与地面OM垂直的墙ON上,梯子与地面的倾斜角α为60°.(1)求AO与BO的长.(2)若梯子顶端A沿NO下滑,同时底端B沿OM向右滑行.①如图(2)所示,设A点下滑到C点,B点向右滑行到D点,并且AC:BD=2:3,试计算梯子顶端A 沿NO下滑了多少米;②如图(3)所示,当A点下滑到A′点,B点向右滑行到B′点时,梯子AB的中点P也随之运动到P′点,若∠POP′=15°,试求AA′的长.【巩固练习】一、选择题1. 在△ABC 中,∠C =90°,cosA =35,则tan A 等于 ( )A .35 B .45 C .34 D .432.在Rt △ABC 中,∠C=90°,把∠A 的邻边与对边的比叫做∠A 的余切,记作cotA=ab.则下列关系式中不成立的是( )A .tanA•cotA=1B .sinA=tanA•cosAC .cosA=cotA•sinAD .tan 2A+cot 2A=1第2题 第3题3.如图,在四边形ABCD 中,E 、F 分別是AB 、AD 的中点,若EF=2,BC=5,CD=3,则tanC 等于( ) A .34 B .43 C .35 D .454.如图所示,直角三角形纸片的两直角边长分别为6、8,现将△ABC 如图那样折叠,使点A 与点B 重合,折痕为DE ,则tan ∠CBE 的值是( )A .247B .73C .724D .135.如图所示,已知∠α的终边OP ⊥AB ,直线AB 的方程为y =-33x +33,则cos α等于 ( ) A .12B .22C .32D .336.如图,一艘海轮位于灯塔P 的北偏东55°方向,距离灯塔2海里的点A 处,如果海轮沿正南方向航行到灯塔的正东方向,海轮航行的距离AB 长是( )A.2海里B.2sin55°海里C.2cos55°海里D.2tan55°海里二、填空题7.设θ为锐角,且x2+3x+2sinθ=0的两根之差为5.则θ=.8.如图,在矩形ABCD中,点E在AB边上,沿CE折叠矩形ABCD,使点B落在AD边上的点F处,若AB=4,BC=5,则tan∠AFE的值为 .9.已知△ABC的外接圆O的半径为3,AC=4,则sinB= .第8题第9题第11题10.当0°<α<90°时,求21sincosαα-的值为.11.如图,点E(0,4),O(0,0),C(5,0)在⊙A上,BE是⊙A上的一条弦.则t an∠OBE=.12.在△ABC中,AB=12,AC=13,cos∠B=,则BC边长为 .三、解答题13.如图,某仓储中心有一斜坡AB,其坡度为i=1:2,顶部A处的高AC为4m,B、C在同一水平地面上.(1)求斜坡AB的水平宽度BC;(2)矩形DEFG为长方体货柜的侧面图,其中DE=2.5m,EF=2m,将该货柜沿斜坡向上运送,当BF=3.5m 时,求点D离地面的高.(≈2.236,结果精确到0.1m)14. 为缓解“停车难”的问题,某单位拟建造地下停车库,建筑设计师提供了该地下停车库的设计示意图,如图所示.按规定,地下停车库坡道1:3上方要张贴限高标志,以便告知停车人车辆能否安全驶入,为标明限高,请你根据该图计算CE(精确到0.1 m)(sin18°≈0.3090,cos18°≈0.9511,tan18°≈0.3249)15.如图所示,某中学九年级一班数学课外活动小组利用周末开展课外实践活动,他们要在某公园人工湖旁的小山AB上,测量湖中两个小岛C、D间的距离.从山顶A处测得湖中小岛C的俯角为60°,测得湖中小岛D的俯角为45°.已知小山AB的高为180米,求小岛C、D间的距离.(计算过程和结果均不取近似值)16. 在△ABC中,AB=AC,CG⊥BA,交BA的延长线于点G.一等腰直角三角尺按如图①所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC边在一条直线上,另一条直角边恰好经过点B.(1)在图①中请你通过观察、测量BF与CG的长度,猜想并写出BF与CG满足的数量关系,然后证明你的猜想;(2)当三角尺沿AC方向平移到图②所示的位置时,一条直角边仍与AC边在同一直线上,另一条直角边交BC边于点D,过点D作DE⊥BA于点E.此时请你通过观察、测量DE、DF与CG的长度,猜想并写出DE+DF与CG之间满足的数量关系;然后证明你的猜想;(3)当三角尺在②的基础上沿AC方向继续平移到图③所示的位置(点F在线段AC上,且点F与点C 不重合)时,(2)中的猜想是否仍然成立?(不用说明理由)。
中考复习: 锐角三角函数
![中考复习: 锐角三角函数](https://img.taocdn.com/s3/m/e7629cd3bed5b9f3f80f1c4e.png)
中考复习:锐角三角函数知识梳理一、锐角三角函数(正弦、余弦、正切)1、定义:在Rt △ABC 中,∠C =90°,我们把锐角A的对边与斜边的比叫做∠A 的正弦(sinc ), 记作sin A ,即sin A aA c∠==的对边斜边。
把∠A 的邻边与斜边的比叫做∠A 的余弦(cosine ),记作cos A ,即;把∠A 的对边与邻边的比叫做∠A 的正切(tangent ),记作tan A ,即。
锐角A 的正弦、余弦、正切都叫做∠A 的锐角三角函数(trigonometric function of acute angle )。
当锐角A 的大小确定时,∠A 的对边与斜边的比(正弦)、∠A 的邻边与斜边的比(余弦)、∠A 的对边与邻边的比(正切)分别是确定的。
2、增减性:在0°到90°之间,正弦值、正切值随着角度的增大而增大,余弦随着角度的增大而减小。
3、取值范围:当∠A 为锐角时,三角函数的取值范围是:0<sin A <1,0<cos A <1,tan A >0。
4、互余两角的函数关系:如果两角互余,则其中一有的正弦等于另一角的余弦,即:若α是一个锐角,则sin α=cos (90°-α),cos α=sin (90°-α)。
5、正、余弦的平方关系:sin 2α+ cos 2α=1。
二、300、450、600的正弦值、余弦值和正切值如下表:三、解直角三角形bcos c A A ∠==的邻边斜边atan bA A A ∠=∠的对边=的邻边C ∠A 的邻边b∠A 的对边a在直角三角形中,由已知元素求未知元素的过程就是解直角三角形。
1、在Rt△ABC 中,∠C=90°,设三个内角A 、B 、C 所对的边分别为a 、b 、c (以下字母同),则解直角三角形的主要依据是:(1)边角之间的关系: sinA =cosB =a c , cosA =sinB =bc,tanA =cotB =a b ,cotA =tanB =b a。
初中锐角三角函数知识点总结
![初中锐角三角函数知识点总结](https://img.taocdn.com/s3/m/f996ab4033d4b14e852468b5.png)
锐角三角函数及其应用榆林第六中学 高启鹏一、锐角三角函数中考考点归纳考点一、锐角三角函数 1、锐角三角函数的定义如图,在 Rt △ ABC 中,/ C 为直角, 有(1) 图表记忆法三角\角 函数、304560si na1 c亡222 cosa爲匹J222tana乜31(2) 规律记忆法:30 °、45 °、60°角的正弦值的分母都是 2,分 子依次为1、. 2、3 ;30°、45°、60°角余弦值恰好是 60°、45°、 30°角的正弦值。
/ A 的正弦: sin A A 的对边a 斜边 c / A 的余弦: cos A A 的邻边b 斜边c / A 的正切: tan AA 的对边a A 的邻边b2、特殊角的三角函数值则/ A ABC 中的一锐角,则(3)口诀记忆法口诀是:“一、二、三,三、二、一,三、九、二十七,弦比二,切比三,分子根号不能删.”前三句中的1,2,3;3,2,1;3,9,27,分别是30°,45 °,60°角的正弦、余弦、正切值中分子根号内的值.弦比二、切比三是指正弦、余弦的分母为2,正切的分母为3.最后一句,讲的是各函数值中分子都加上根号,不能丢掉.如tan60 °二旦 ,3,tan45 =— 1 .这种方法有趣、简单、3 3易记.考点二、解直角三角形1、由直角三角形中的已知元素求出其他未知元素的过程,叫做解直角三角形。
2、解直角三角形的类型和解法如下表:考点二、锐角二角函数的实际应用(咼频考点)仰角、俯角、坡度(坡比)、坡角、方向角仰角、俯角在视线与水平线所成的锐角中,视线在水平线上方的角叫仰角,视线在水平线下方的角叫俯角。
坡度(坡比)、坡角坡面的铅直高度h和水平宽度1的比叫坡度(坡比),用字母i表示;坡面与水平线的夹角叫坡角,i tan Pl指北或指南的方向线与目标方向线所成的小于90°的锐角叫做方向角.注意:东北方向指北偏东45方向,东南方向指南偏方向角东45 方向,西北方向指北偏西45方向,西南方向指南偏西45°方向.我们一般画图的方位为上北下南,左西右东.二、锐角三角函数常见考法(一)、锐角三角函数以选择题的形式出现.例1、(2016?陕西)已知抛物线y二-x2-2x+3与x轴交于A B两点,将这条抛物线的顶点记为C,连接AG BC则tan / CAB的值为()A.丄B . ■- C •」D ■ 2【考点】抛物线与x轴的交点;锐角三角函数的定义.CD:【解析】先求出A B、C坐标,作CDL AB于D,根据tan / ACD=-即可计算.o【解答】解:令y=0,则-x —2x+3=0,解得x=—3或1,不妨设A (—3,0),B (1, 0),2 2• y二—x - 2x+3=—( x+1) +4,「•顶点C (- 1, 4),如图所示,作CDL AB于D.故答案为D.(二)、锐角三角函数以填空题的形式出现例2、(2016?陕西)请从以下两个小题中任选一个作答,若多选,则按第一题计分.A. —个多边形的一个外角为45°,则这个正多边形的边数是8 .B. 运用科学计算器计算:3.「sin73 ° 52’〜11.9 .(结果精确到0.1 )【考点】计算器一三角函数;近似数和有效数字;计算器一数的开方;多边形内角与外角.【解析】(1)根据多边形内角和为360°进行计算即可;(2)先分别求得3. 7和sin73 ° 52 '的近似值,再相乘求得计算结果.【解答】解:(1)v正多边形的外角和为360° 二这个正多边形的边数为:360°宁45° =8(2) 3 i sin73 °52’ 〜12.369 x0.961 〜11.9故答案为:8, 11.9例3、(2015?陕西)如图,有一滑梯 AB,其水平宽度AC 为5.3米,铅直高 度BC 为2.8米,则/ A 的度数约为 27.8(用科学计算器计算,结果精【考点】解直角三角形的应用-坡度坡角问题. 【解析】直接利用坡度的定义求得坡角的度数即可. 【解答】 解:T tan / A 」"1〜0.5283 ,AC 5. 3•••/ A=27.8°, 故答案为:27.8 ° .【点评】本题考查了坡度坡角的知识,解题时注意坡角的正切值 等于铅直高度与水平宽度的比值,难度不大.例4、(2014?陕西)用科学计算器计算:一 一;+3tan56 °〜10.02 (结果精确到0.01 ) 计算器一三角函数;计算器一数的开方.先用计算器求出tan56°的值,再计算加减运解:「丨〜5.5678 , tan56 °〜1.4826 , 则-1 +3tan56 °〜5.5678+3 X 1.4826 〜10.02故答案是:10.02 .【点评】 本题考查了计算器的使用,要注意此题是精确到【考点】 【分析】0.01.例5、(2014?陕西)如图,在正方形 ABC [中, AD=1将厶ABD绕点B 顺时针旋转45 °得到△ A BD ,此时A D 与CD 交于【考点】 旋转的性质【分析】 利用正方形和旋转的性质得出 A D=A E ,进而利用 勾股定理得出BD 的长,进而利用锐角三角函数关系得出 DE 的长 即可.【解答】 解:由题意可得出:/ BDC=45,/ DA E=90° , •••/ DEA =45°,••• A D=A E ,•••在正方形ABCD 中AD=1 • AB=A B=1, • BD=:':, • A D 二;:-1,•••在 Rt △ DA E 中,DE备=2-五故答案为:2-血.【点评】此题主要考查了正方形和旋转的性质以及勾股定理、2~41锐角三角函数关系等知识,得出 A D 的长是解题关键.(三) 、锐角三角函数定义以解答题的形式出现例6、( 12分)(2015?陕西)如图,在每一个四边形 ABC 冲,均有AD// BC ;CDL BC / ABC=60 , AD=8 BC=12(1) 如图①,点M 是四边形ABCDi AD 上的一点,则厶BMC 勺面积为 24「;; (2) 如图②,点N 是四边形ABCD* AD 上的任意一点,请你求出△ BNC 周长 的最小值;(3) 如图③,在四边形ABCD 勺边AD 上,是否存在一点P,使得cos / BPC 的 值最小?若存在,求出此时cos / BPC 勺值;若不存在,请说明理由.【考点】四边形综合题.. 【专题】综合题.【解析】(1)如图①,过A 作AE ! BC 可得出四边形AECF 为矩形,得到EC=ADBE 二B G EC 在直角三角形 ABE 中,求出AE 的长,即为三角形 BMC 勺高,求 出三角形BMC 面积即可;(2) 如图②,作点C 关于直线AD 的对称点C ,连接C N, C D, C B 交AD 于点 N ,连接 CN ,贝卩 BN+NC 二BN+NO BC =BN +CN ,可得出厶 BNC 周长的最小值BN C 的周长=BN +CN +BC 二BC+BC 求出即可;(3) 如图③所示,存在点P,使得cos /BPC 的值最小,作BC 的中垂线PQ 交BC 于点Q 交AD 于点P,连接BP CP 作厶BPC 的外接圆Q 圆O 与直线PQ 交于点N,则PB=PC 圆心0在PN 上,根据AD 与BC 平行,得到圆0与AD 相AD圈②图①ACc图③切,根据PQ=DC判断得到PQ大于BQ可得出圆心0在BC上方,在AD上任取一点P',连接P‘ B, P C, P‘ B交圆0于点M连接MC可得/ BPC= / BM OZ BP C,即/ BPC最小,cos/ BPC的值最小,连接0B求出即可.【解答】解:(1)如图①,过A作AE±BC二四边形AEC助矩形,••• EC=AD=8 BE二B G EC=12- 8=4,在Rt△ ABE中, / ABE=60 , BE=4•AB=2BE=8 AE=:・,二=4 二则S A BM千BC? AE=24 -;;故答案为:24. -;;(2)如图②,作点C关于直线AD的对称点C,连接C N, C D, C B交AD于点N,连接CN,贝卩BN+NC二BN+NO BC =BN +CN ,•△ BNC周长的最小值为△ BN C的周长=BN +CN +BC=BC +BCv AD// BC AE! BC / ABC=60 ,•过点A 作AE! BC 则CE=AD=8•BE=4 AE=B? tan60 ° 二酣1,•CC =2CD=2AE=8,v BC=12•BC=血/+防2=4阿,•△ BNC周长的最小值为4 1+12;(3)如图③所示,存在点P,使得cos/ BPC的值最小,作BC的中垂线PQ交BC于点Q交AD于点P,连接BP, CR作厶BPC的外接精品文档圆Q 圆0与直线PQ交于点N,贝S PB=PC圆心0在PN上,v AD// BC•••圆0与AD相切于点P,v PQ=DC=4>6,•PQ> BQ•/BPG 90°,圆心O在弦BC的上方,在AD上任取一点P',连接P‘ B, P‘ C, P‘ B交圆0于点M连接MC•••/ BPC y BM OZ BP C,•/ BPC最大,cos / BPC的值最小,连接0B 贝卩/ BON=/BPN/ BPCv 0B=0P=4 - 0Q在Rt△ B0C中,根据勾股定理得:0Q+62二(砸-0Q 2,解得:0Q二:;,2•0B二:,2•cos / BPC二co/ B0Q==l,P厂则此时cos/ BPC的值为一.【点评】此题属于四边形综合题,涉及的知识有:勾股定理,矩形的判定与性质,对称的性质,圆的切线的判定与性质,以及锐角三角函数定义,熟练掌握定理及性质是解本题的关键.例7、(10分)(2014年陕西省)已知抛物线C: y二-x2+bx+c经过A (- 3, 0)和B (0, 3)两点,将这条抛物线的顶点记为M它的对称轴与x轴的交点记为N.(1)求抛物线C的表达式;(2)求点M的坐标;(3)将抛物线C平移到C,抛物线C的顶点记为M',它的对称轴与x轴的交点记为N'.如果以点M N M、N为顶点的四边形是面积为16的平行四边形,那么应将抛物线C怎样平移?为什么?新课标xk b1. c om【考点】二次函数图象与几何变换;二次函数的性质;待定系数法求二次函数解析式;平行四边形的性质.菁优网版权所有【分析】(1)直接把A(- 3, 0)和B(0, 3)两点代入抛物线y二-x2+bx+c, 求出b, c 的值即可;(2)根据(1)中抛物线的解析式可得出其顶点坐标;(3)根据平行四边形的定义,可知有四种情形符合条件,如解答图所示.需要分类讨论.【解答】解: (1)V抛物线y二-x2+bx+c经过A (- 3, 0)和B (0, 3)两占J \\、’解得仁2,故此抛物线的解析式为:y二-x2- 2x+3;(2)v由(1)知抛物线的解析式为:y二-x2- 2x+3,•••当x=- 一= - = - 1 时,y=4, xKb 1.C omSa 2X ( -1) ,‘,• M(- 1, 4).(3J由题意,以点MN、M、N为顶点的平行四边形的边MN勺对边只能是M‘ N, •MN/ M N 且MN二M N.•MN NN =16,•NN =4.i )当M、N M、N为顶点的平行四边形是? MNN M时,将抛物线C向左或向右平移4个单位可得符合条件的抛物线C ;ii )当M N M、N为顶点的平行四边形是? MNMN时,将抛物线C先向左或向右平移4个单位,再向下平移8个单位,可得符合条件的抛物线C . •上述的四种平移,均可得到符合条件的抛物线C .【点评】本题考查了抛物线的平移变换、平行四边形的性质、待定系数法及二次函数的图象与性质等知识点.第(3)问需要分类讨论,避免漏解.例8、(12分)(2014?陕西)问题探究(1)如图①,在矩形ABCD K AB=3 BC=4如果BC边上存在点巳使厶APD 为等腰三角形,那么请画出满足条件的一个等腰三角形△ APD并求出此时BP 的长;(2)如图②,在△ ABC中,/ ABC=60 , BC=12 AD是BC边上的高,E、F分别为边AB AC的中点,当AD=6时,BC边上存在一点Q 使/ EQF=90,求此时BQ 的长;问题解决(3)有一山庄,它的平面图为如图③的五边形ABCDE山庄保卫人员想在线段CD 上选一点M安装监控装置,用来监视边AB现只要使/ AMB大约为60°, 就可以让监控装置的效果达到最佳,已知/ A二/ E=Z D=90°, AB=270m AE=400mED=285m CD=340m问在线段CD上是否存在点M 使/ AMB=60 ? 若存在,请求出符合条件的DM的长,若不存在,请说明理由.A D團①图②團③【考点】圆的综合题;全等三角形的判定与性质;等边三角形的性质;勾股定理;三角形中位线定理;矩形的性质;正方形的判定与性质;直线与圆的位置关系;特殊角的三角函数值.菁优网版权所有【专题】压轴题;存在型.【分析】(1)由于△ PAD是等腰三角形,底边不定,需三种情况讨论,运用三角形全等、矩形的性质、勾股定理等知识即可解决问题.(2)以EF为直径作。
锐角三角函数知识点
![锐角三角函数知识点](https://img.taocdn.com/s3/m/11d5abfd27fff705cc1755270722192e44365872.png)
锐角三角函数知识点锐角三角函数:一、基本概念:1、什么是锐角三角函数:锐角三角函数是一类特殊的函数,涉及到角度和角度对应的三角函数值,用于计算平面向量在多边形中和求解三角形的面积。
2、锐角三角函数的定义:锐角三角函数是基于角度θ,从而定义的三角函数值。
一般情况下,它用半圆线直叙指函数如下所示:sinθ,cosθ,tanθ,cotθ,secθ,cscθ。
3、锐角三角函数的基本关系:cosθ= sin (π/2-θ);sinθ= cos (π/2-θ);tanθ=cot (π/2-θ);cotθ=tan (π/2-θ);secθ=csc(π/2-θ);cscθ=sec (π/2-θ)。
二、圆周角:1、什么是圆周角:圆周角是指以圆等分线在a轴上的量度,即由圆心和两个点确定的弧的长度。
圆周角定义在一个圆的周围,与半径的长度有关,可以用角度μ来表示。
2、单位:圆周角的单位是弧度rad,又称为radian,表示当一个圆的半径为1时,圆周角的长度。
三、锐角的余弦定理:1、锐角余弦定理是用弦和角定义的三角形问题,可以求解共有三角形A、B、C三个锐角所对应边长a、b、c满足关系:a²=b²+c²-2bc cosA;b²=a²+c²-2ac cosB;c²=a²+b²-2ab cosC。
2、此外,锐角余弦定理也可以利用三角形所有边长求解A、B、C三个锐角所对应的角度值,记为A=cos-1[(b²+c²-a²)/2bc];B=cos-1[(a²+c²-b²)/2ac];C=cos-1[(a²+b²-c²)/2ab]。
四、锐角的正弦定理:1、锐角正弦定理是求解三角形的已知一边和两个对边角的问题,满足条件如下:a=b sinA/sinB;b=a sinB/sinA;c=a sinC/sinA,c=bsinC/sinB。
第二十八章 锐角三角函数(单元总结)-2021学年九年级数学下册(人教版)(解析版)
![第二十八章 锐角三角函数(单元总结)-2021学年九年级数学下册(人教版)(解析版)](https://img.taocdn.com/s3/m/fe513aca59eef8c75ebfb30d.png)
第二十八章 锐角三角函数单元总结【知识要点】 知识点一 锐角三角形锐角三角函数:如下图,在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B)【正弦和余弦注意事项】1.sinA 、cosA 是在直角三角形中定义的,∠A 是锐角(注意数形结合,构造直角三角形)。
2.sinA 、cosA 是一个比值(数值,无单位)。
3.sinA 、cosA 的大小只与∠A 的大小有关,而与直角三角形的边长无关。
0°、30°、45°、60°、90°特殊角的三角函数值(重要)正弦、余弦的增减性:当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。
正切的增减性:当0°<α<90°时,tan α随α的增大而增大,对边邻边C知识点二 解直角三角形一般地,直角三角形中,除直角外,共有五个元素,即三条边和两个锐角.由直角三角形中的已知元素,求出其余未知元素的过程,叫做解直角三角形. 直角三角形五元素之间的关系: 1. 勾股定理()2. ∠A+∠B=90°3. sin A==4. cos A= =5.tan A= =【考查题型】考查题型一 正弦典例1.(2020·陕西西安市·西北工业大学附属中学九年级期中)如图,在54⨯的正方形网格中,每个小正方形的边长都是1,ABC ∆的顶点都在这些小正方形的顶点上,则sin BAC ∠的值为( )A .43B .34C .35D .45【答案】D 【分析】过C 作CD AB ⊥于D ,首先根据勾股定理求出AC ,然后在Rt ACD ∆中即可求出sin BAC ∠的值.【详解】如图,过C 作CD AB ⊥于D ,则=90ADC ∠︒,∴AC =222234=+=+AC AD CD =5. ∴4sin 5CD BAC AC ∠==. 故选D . 【点睛】本题考查了勾股定理的运用以及锐角三角函数,正确作出辅助线是解题的关键.变式1-1.(2018·西城区·北京四中九年级期中)如图,在Rt ABC ∆中,90C =∠,10AB =,8AC =,则sin A 等于( )A .35B .45C .34D .43【答案】A 【解析】分析:先根据勾股定理求得BC=6,再由正弦函数的定义求解可得. 详解:在Rt △ABC 中,∵AB=10、AC=8, ∴2222=108=6AB AC --,∴sinA=63105BC AB ==. 故选:A .点睛:本题主要考查锐角三角函数的定义,解题的关键是掌握勾股定理及正弦函数的定义.变式1-2.(2019·山东淄博市·九年级期中)如图,在Rt△ABC中,∠C=90°,sin A=45,AC=6cm,则BC的长度为()A.6cm B.7cm C.8cm D.9cm 【答案】C【详解】已知sinA=45BCAB=,设BC=4x,AB=5x,又因AC2+BC2=AB2,即62+(4x)2=(5x)2,解得:x=2或x=﹣2(舍),所以BC=4x=8cm,故答案选C.考查题型二余弦典例2.(2020·福建省泉州市培元中学九年级期中)如图,△ABC的顶点都是正方形网格中的格点,则cos∠ABC等于()A 5B25C5D.23【答案】B【详解】由格点可得∠ABC所在的直角三角形的两条直角边为2,4,222425+=∴cos∠25525=.故选B .变式2-1.(2016·辽宁铁岭市·九年级期末)在ABC 中,C 90∠=,AB 6=,1cosA 3=,则AC 等于( ) A .18 B .2C .12D .118【答案】B 【分析】根据三角函数的定义,在直角三角形ABC 中,cosA =ACAB,即可求得AC 的长. 【详解】解:∵在△ABC 中,∠C =90°,∴cosA =ACAB , ∵cosA =13,AB =6,∴AC =123AB =,故答案选:B . 【点睛】本题考查了解直角三角形中三角函数的应用,解题的关键是要熟练掌握直角三角形中边角之间的关系.变式2-2.(2019·山东滨州市·九年级期末)如图,在平面直角坐标系中,点M 的坐标为M (5,2),那么cosα的值是( )A 5B .23C 25D 5【答案】D 【分析】如图,作MH⊥x轴于H.利用勾股定理求出OM,即可解决问题.【详解】解:如图,作MH⊥x轴于H.∵M(5,2),∴OH=5,MH=2,∴OM=22(5)2+=3,∴cosα=5 OHOM=,故选:D.【点睛】本题考查解直角三角形的应用,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.考查题型三正切典例3.(2020·广东深圳市·深圳中学八年级期中)如图,A、B、C是小正方形的顶点,且每个小正方形的边长为1,则tan∠BAC的值为()A.12B.1 C3D3【答案】B【分析】连接BC,由网格求出AB,BC,AC的长,利用勾股定理的逆定理得到△ABC为等腰直角三角形,即可求出所求. 【详解】 如图,连接BC ,由网格可得AB=BC=5,AC=10,即AB 2+BC 2=AC 2, ∴△ABC 为等腰直角三角形, ∴∠BAC=45°, 则tan ∠BAC=1, 故选B .【点睛】本题考查了锐角三角函数的定义,解直角三角形,以及勾股定理,熟练掌握勾股定理是解本题的关键.变式3-1.(2018·江苏苏州市·九年级期末)如图,在等腰Rt ABC ∆中,90C ∠=︒,6AC =,D 是AC 上一点,若1tan 5DBA ∠=,则AD 的长为( ).A .2B .3C .2D .1【答案】A 【解析】分析:本题考查等腰直角三角形的性质及解直角三角形.解题的关键是作辅助线,构造直角三角形,运用三角函数的定义建立关系式然后求解. 解析:如图,作DE ⊥AB 于E .∵tan ∠DBA==,∴BE=5DE .∵△ABC 为等腰直角三角形,∴∠A=45°,∴AE=DE .∴BE=5AE ,又∵AC=6,∴AB=6,∴AE+BE=AE+5AE=6,∴AE=,∴在等腰直角△ADE中,由勾股定理,得AD=,AE=2.故选A.变式3-2.(2020·河北唐山市·九年级期末)如图,有一斜坡AB,坡顶B离地面的高度BC为30m,斜坡的倾斜角是∠BAC,若2tan5BAC∠=,则此斜坡的水平距离AC为()A.75m B.50m C.30m D.12m 【答案】A【分析】根据BC的长度和tan BAC∠的值计算出AC的长度即可解答.【详解】解:因为2tan5BCBACAC=∠=,又BC=30,所以,3025AC=,解得:AC=75m,所以,故选A.【点睛】本题考查了正切三角函数,熟练掌握是解题的关键.考查题型四特殊角的三角函数值典例4.(2018·南昌市期末)点M(-sin60°,cos60°)关于x轴对称的点的坐标是( )A.(32,12) B.(-32,-12)C.(312) D.(-123【答案】B 【详解】∵点(-sin60°,cos60°)即为点(312),∴点(-sin60°,cos60°)关于y 3,12).变式4-1.(2019·山东淄博市·九年级期中)下列式子错误的是()A.cos40°=sin50°B.tan15°•tan75°=1C.sin225°+cos225°=1 D.sin60°=2sin30°【答案】D【详解】试题分析:选项A,sin40°=sin(90°﹣50°)=cos50°,式子正确;选项Btan15°•tan75°=tan15°•cot15°=1,式子正确;选项C,sin225°+cos225°=1正确;选项D,sin60°=3,sin30°=12,则sin60°=2sin30°错误.故答案选D.变式4-2.(2018·河北唐山市·九年级期末)如果△ABC中,sin A=cos B=22,则下列最确切的结论是()A.△ABC是直角三角形B.△ABC是等腰三角形C.△ABC是等腰直角三角形D.△ABC是锐角三角形【答案】C【解析】因为sin A=cos B 2,所以∠A=∠B=45°,所以△ABC是等腰直角三角形. 故选C.考查题型五同角的三角函数典例5.(2018·山东潍坊市·九年级期末)在Rt△ABC中,∠C =90°,sinA=45,则cosB的值等于( )A.35B.45C.34D5【答案】B 【解析】在Rt△ABC中,∠C=90°,∠A+∠B=90°,则cos B=sin A=45.故选B.点睛:本题考查了互余两角三角函数的关系.在直角三角形中,互为余角的两角的互余函数变式5-1.(2018·浙江台州市·九年级期末)在Rt △ABC 中,cosA= 12,那么sinA 的值是( )A .2B .2C .3D .12【答案】B 【分析】利用同角三角函数间的基本关系求出sinA 的值即可. 【详解】:∵Rt △ABC 中,cosA=12 ,∴ =2, 故选B . 【点睛】本题考查了同角三角函数的关系,以及特殊角的三角函数值,熟练掌握同角三角函数的关系是解题的关键.变式5-2.(2018·湖南岳阳市·九年级期末)在Rt ABC 中,C 90∠=,如果4cosA 5=,那么tanA 的值是( ) A .35B .53C .34D .43【答案】C 【分析】本题可以利用锐角三角函数的定义求解. 【详解】解:∵在Rt △ABC 中,∠C=90°,∴cosA=b c ,tanA=ab ,a 2+b 2=c 2. ∵cosA=45,设b=4x ,则c=5x ,a=3x .∴tanA=a b =3344x x =. 故选C.【点睛】利用锐角三角函数的定义,通过设参数的方法求三角函数值.考查题型六 解直角三角形典例6.(2020·东北师大附中明珠学校九年级期中)如图,两根竹竿AB 和AD 斜靠在墙CE 上,量得∠ABC=α,∠ADC=β,则竹竿AB 与AD 的长度之比为( )A .tan tan αβB .sin sin βαC .sin sin αβD .cos cos βα【答案】B【分析】在两个直角三角形中,分别求出AB 、AD 即可解决问题;【详解】在Rt △ABC 中,AB=AC sin α, 在Rt △ACD 中,AD=AC sin β, ∴AB :AD=AC sin α:AC sin β=sin sin βα, 故选B .【点睛】 本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是学会利用参数解决问题. 变式6-1.(2020·山东枣庄市·九年级期末)如图,在ABC ∆中,144CA CB cosC ==,=,则sinB 的值为( )A .10B .15C .6D .10 【答案】D【分析】过点A 作AD BC ⊥,垂足为D ,在Rt ACD ∆中可求出AD ,CD 的长,在Rt ABD ∆中,利用勾股定理可求出AB 的长,再利用正弦的定义可求出sinB 的值.【详解】解:过点A 作AD BC ⊥,垂足为D ,如图所示.在Rt ACD ∆中,1CD CA cosC ⋅==,2215AD AD CD ∴=-=;在Rt ABD ∆中,315BD CB CD AD =﹣=,=,22BD AD 26AB ∴=+=,AD 10sin AB B ∴==. 故选:D .【点睛】考查了解直角三角形以及勾股定理,通过解直角三角形及勾股定理,求出AD ,AB 的长是解题的关键.变式6-2.(2019·辽宁沈阳市·九年级期末)如图,甲乙两楼相距30米,乙楼高度为36米,自甲楼顶A 处看乙楼楼顶B 处仰角为30°,则甲楼高度为( )A.11米B.(36﹣153)米C.153米D.(36﹣103)米【答案】D【分析】分析题意可得:过点A作AE⊥BD,交BD于点E;可构造Rt△ABE,利用已知条件可求BE;而乙楼高AC=ED=BD﹣BE.【详解】解:过点A作AE⊥BD,交BD于点E,在Rt△ABE中,AE=30米,∠BAE=30°,∴BE=30×tan30°=103(米),∴AC=ED=BD﹣BE=(36﹣103)(米).∴甲楼高为(36﹣103)米.故选D.【点睛】此题主要考查三角函数的应用,解题的关键是熟知特殊角的三角函数值.考查题型七利用解直角三角形相关知识解决实际问题典例7.(2019·河南许昌市·九年级期末)如图,某消防队在一居民楼前进行演习,消防员利用云梯成功救出点B 处的求救者后,又发现点B 正上方点C 处还有一名求救者.在消防车上点A 处测得点B 和点C 的仰角分别是45°和65°,点A 距地面2.5米,点B 距地面10.5米.为救出点C 处的求救者,云梯需要继续上升的高度BC 约为多少米?(结果保留整数.参考数据:tan65°≈2.1,sin65°≈0.9,cos65°≈0.4,2≈1.4)【答案】云梯需要继续上升的高度BC 约为9米.【分析】过点A 作AM EF ⊥于点M ,AD BC ⊥于点D ,在Rt ABD ∆中,求得AD 的长;在Rt ACD ∆中,求得CD 的长,根据BC=CD-BD 即可求得BC 的长.【详解】过点A 作AM EF ⊥于点M ,AD BC ⊥于点D ,∵CN EF ⊥ ,∴90AMN MND ADN ∠=∠=∠=︒,∴四边形AMND 为矩形.∴ 2.5DN AM ==米.∴10.5 2.58BD BN DN =-=-=(米),由题意可知,45BAD ∠=︒,65CAD ∠=︒,∵AD BC ⊥,∴90ADB ∠=︒,在Rt ABD ∆中,tan BD BAD AD ∠=, ∴88tan tan45BD AD BAD ===∠︒(米). 在Rt ACD ∆中,tan CD CAD AD∠=, ∴tan 8tan658 2.116.8CD AD CAD =⋅∠=︒≈⨯=(米).∴16.888.89BC CD BD =-≈-=≈(米).答:云梯需要继续上升的高度BC 约为9米.【点睛】本题考查解直角三角形﹣仰角俯角问题,添加辅助线,构造直角三角形,建立直角三角形模型是解决问题的关键.变式7-1.(2018·江苏无锡市·九年级期末)如图,为了测量出楼房AC 的高度,从距离楼底C 处603米的点D (点D 与楼底C 在同一水平面上)出发,沿斜面坡度为i=1:3的斜坡DB 前进30米到达点B ,在点B 处测得楼顶A 的仰角为53°,求楼房AC 的高度(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈43,计算结果用根号表示,不取近似值).【答案】153+【分析】如图作BN ⊥CD 于N ,BM ⊥AC 于M ,先在RT △BDN 中求出线段BN ,在RT △ABM 中求出AM ,再证明四边形CMBN 是矩形,得CM=BN 即可解决问题.【详解】如图作BN ⊥CD 于N ,BM ⊥AC 于M .在RT △BDN 中,BD=30,BN :ND=13,∴BN=15,DN=153,∵∠C=∠CMB=∠CNB=90°,∴四边形CMBN是矩形,∴CM=BM=15,BM=CN=603153453-=,在RT△ABM中,tan∠ABM=43 AMBM=,∴AM=603,∴AC=AM+CM=15603+.【点睛】构造适当的直角三角形,并应用锐角的三角函数,正确理解坡比的概念.变式7-2.(2018·山西晋中市期末)“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.如图所示,底座上A,B两点间的距离为90cm.低杠上点C到直线AB的距离CE的长为155cm,高杠上点D到直线AB的距离DF的长为234cm,已知低杠的支架AC与直线AB的夹角∠CAE为82.4°,高杠的支架BD与直线AB的夹角∠DBF为80.3°.求高、低杠间的水平距离CH的长.(结果精确到1cm,参考数据sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)【答案】高、低杠间的水平距离CH 的长为151cm .【解析】分析:利用锐角三角函数,在Rt △ACE 和Rt △DBF 中,分别求出AE 、BF 的长.计算出EF .通过矩形CEFH 得到CH 的长.详解:在Rt △ACE 中,∵tan ∠CAE=CE AE, ∴AE=()15515521tan tan82.47.5CE cm CAE =≈≈∠︒ 在Rt △DBF 中,∵tan ∠DBF=DF BF, ∴BF=()23423440tan tan80.3 5.85DF cm DBF =≈=∠︒. ∵EF=EA+AB+BF≈21+90+40=151(cm )∵CE ⊥EF ,CH ⊥DF ,DF ⊥EF∴四边形CEFH 是矩形,∴CH=EF=151(cm ).答:高、低杠间的水平距离CH 的长为151cm .点睛:本题考查了锐角三角函数解直角三角形.题目难度不大,注意精确度.。
第28章+锐角三角函数知识点总结及思维导图+2023—2024学年人教版数学九年级下册
![第28章+锐角三角函数知识点总结及思维导图+2023—2024学年人教版数学九年级下册](https://img.taocdn.com/s3/m/822fc842a9114431b90d6c85ec3a87c240288a2d.png)
第28章锐角三角函数【思维导图】28.1锐角三角函数【知识点】1.Rt△ABC中,∠C=90°.(1)∠A的对边与斜边比,叫做∠A的正弦,记为sinA,即sinA=∠A的对边斜边=aa(2)∠A的邻边与斜边比,叫做∠A的余弦,记为cosA,即cosA=∠A的邻边斜边=aa(3)∠A的对边与邻边比,叫做∠A的正切,记为tanA,即tanA=∠A的对边∠A的邻边=aa∠A的正弦、余弦、正切统称为∠A的锐角三角函数.提示:sin A 不是sin与A的乘积,而是一个整体,cosA和tanA同理;锐角三角函数的三种表示方法:sin A,sin 56°,sin∠DEF.2.一个锐角的三角函数值是一个比值,它与三角形的大小无关,它没有单位.在Rt△ABC中,当锐角A的度数一定时,无论这个直角三角形大小如何,∠A的锐角三角函数值为定值.锐角三角函数锐角α30°45°60°sin α12√22√32cos α√32√2212tan α√331√3(1)正弦值、正切值随角度的增大而增大,余弦值随角度的增大而减小.(2)sin α=cos(90°-α)cos α=sin(90°-α)tan α·tan(90°-α)=1(3)锐角A 的正弦、余弦的取值范围分别为:0<sin A<1,0<cos A<1, (4)cos 2A+sin 2A=1 sin 2A+sin 2(90°-α)=1(5)tan A=sin A cos A4.锐角三角函数值是个常数值,它只与角的度数有关,将来离开了直角三角形也存在.5.若α=45°,则sin α=cos α; 若α<45°,则sin α<cos α; 若α>45°,则sin α>cos α;28.2解直角三角形及其应用 28.2.1 解直角三角形【知识点】1.在直角三角形中,由已知元素求出其余未知元素的过程就是解直角三角形.2.在直角三角形中,三边之间的关系是a 2+b 2=c 2(勾股定理); 两锐角之间的关系是∠A+∠B=90° 边角之间的关系有sinA=∠A 的对边斜边,cosA=∠A 的邻边斜边,tanA=∠A 的对边∠A 的邻边3.在直角三角形的六个元素中,除直角外的五个元素只要知道其中的两个元素,就可以求出其余三个元素,其中至少有一个是边.4.在Rt △ABC 中,∠C=90°,若已知∠A=α,AB=c ,较简便的方法是用正弦求出BC ,用余弦求出AC ,也可用勾股定理求出AC ,根据直角三角形的两锐角互余求出∠B.单元练习一、选择题1.已知∠α为锐角,且sin a=12,则∠α=( )A.30°B.45°C.60°D.90°2.sin 60°的相反数是( )A.-12B.−√33C.−√32D.−√223.如图,在∠ABC中,∠B=90°,BC=2AB,则cosA的值为( )A.52B.12C.255D.554.如图,在4×5 的正方形网格中,每个小正方形的边长都是1,∠ABC的顶点都在这些小正方形的顶点上,那么sin∠ACB 的值为( )A.3√55B.√175C. 35D. 455.在∠ABC中,∠A,∠B均为锐角,且|2sin A-1|与(cos a-√22)2互为相反数,则∠C的度数是( )A.45°B.75°C.105°D.120°6.如图,在∠ABC中,∠C=90°,AB=15,sinB=35,则AC的长为( )A.3 B.9 C.4 D.127.如图,在离铁塔150米的A处,用测倾仪测得塔顶的仰角为α,测倾仪的高A D为1.5米,则铁塔的高BC为( )A.(1.5+150tanα)米a.(1.5+150tan a)米C.(1.5+150sinα)米a.(1.5+150sin a)米8.在Rt∠ABC 中,∠C=90°,AB=2BC,则cos A 的值为 ( ) A.√32 B .12 C .√33 D .√229.如图,在∠ABC 中,CA =CB =4,cosC =14 ,则sinB 的值为( )A.102 B .153 C .64 D .10410.如图,电线杆CD 的高度为h ,两根拉线 AC 与BC 相互垂直,∠CAB=α,则拉线 BC 的长度为(点 A,D,B 在同一条直线上)( ) a .asin a a .acos a a .atan a D. h·cosα11.定义一种运算:cos(α+β)=cos αcos β-sin αsin β,cos(α-β)=cos αcos β+sin αsin β.例如:当α=60°,β=45°时,cos(60°-45°)=12×√22+√32×√22=√2+√64,则cos 75°的值为 ( )A.√6+√24 B .√6-√24C.√6-√22 D .√6+√2212.如图,由边长为1的小正方形构成的网格中,点A ,B ,C 都在格点上,以AB 为直径的圆经过点C ,D ,则cos∠ADC 的值为( )A .21313B .31313C .23D .53 二、填空题,则cos B=_______.13.在∠ABC中, aa=90°,tan a=√3314.已知α为锐角,当无意义时,cos α的值是_______.√3tan a-115.如图,在Rt∠ABC中,∠ACB=90°,CD∠AB,垂足为D,若AC= 5 ,BC =2,则sin∠ACD的值为_________.16.某物体沿着坡比为4:3的坡面上升了8米,那么在坡面上移动了_______米.17.如图,已知正方形ABCD和正方形BEFG,点G在AD上,GF与CD交于点,正方形ABCD的边长为8,则BH的长为_______.H,tan∠ABG=1218.如图,在平面直角坐标系中,点A的坐标为(3,0),点B为y轴正半轴上的一点,点C是第一象限内一点,且AC=2,设tan∠BOC=m,则m的取值范围是_________.三、解答题19.图1是一种三角车位锁,其主体部分是由两条长度相等的钢条组成.当位于顶端的小挂锁打开时,钢条可放入底盒中(底盒固定在地面下),此时汽车可以进入车位;当车位锁上锁后,钢条按图1的方式立在地面上,以阻止底盘高度低于车位锁高度的汽车进入车位.图2是其示意图,经测量,钢条AB=AC=50 cm,∠AB C=47°.(1)求车位锁的底盒BC的长;(2)若一辆汽车的底盘高度为30cm,当车位锁上锁时,问这辆汽车能否进入该车位? (参考数据:aaa47°≈0.73,aaa47°≈0.68,aaa47°≈1.07)20.某景区为给游客提供更好的游览体验,拟在如图∠所示的景区内修建观光索道.其设计示意图如图∠所示,以山脚A为起点,沿途修建AB、CD两段长度相等的观光索道,最终到达山顶D处,中途设计了一段与AF平行的观光平台BC,BC长为50 m.索道AB与AF的夹角为15°,CD与水平线的夹角为45°,A、B两处的水平距离AE为576 m,DF∠AF,垂足为点F.(图∠中所有点都在同一平面内,点A、E、F 在同一水平线上)(1)求索道AB的长(结果精确到1 m);(2)求AF的长(结果精确到1 m).(参考数据:sin 15°≈0.25,cos 15°≈0.96,tan 15°≈0.26,√2≈1.41)21.八年级二班学生到某劳动教育实践基地开展实践活动,当天,他们先从基地门口A处向正北方向走了450米,到达菜园B处锄草,再从B处沿正西方向到达果园C处采摘水果,再向南偏东37°方向走了300米,到达手工坊D处进行手工制作,最后从D处回到门口A处,手工坊在基地门口北偏西65°方向上,求菜园与果园之间的距离.(结果保留整数.参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)。
初三锐角三角函数复习讲义
![初三锐角三角函数复习讲义](https://img.taocdn.com/s3/m/b16f5bcfb8f67c1cfad6b8ae.png)
锐角三角函数:知识点一:锐角三角函数的定义: 一、 锐角三角函数定义:如图所示,在Rt △ABC 中,∠C=900, ∠A 、∠B 、∠C 的对边分别为a 、b 、c , 则∠A 的正弦可表示为:sinA ∠A 的余弦可表示为:cosA∠A 的正切可表示为:tanA ,它们称为∠A 的锐角三角函数①斜边)(sin =A =______,②斜边)(cos =A =______,③的邻边A A ∠=)(tan =______,【特别提醒:1、sinA 、cosA 、tanA 表示的是一个整体,是两条线段的比,没有单位,这些比值只与 有关,与直角三角形的 无关。
2、取值范围 <sinA< , <cosA< ,tanA> 例1. 锐角三角函数求值:在Rt △ABC 中,∠C =90°,若a =9,b =12,则c =______,sin A =______,cos A =______,tan A =______, sin B =______,cos B =______,tan B =______.典型例题:类型一:利用直角三角形求值1.已知:如图,Rt △TNM 中,∠TMN =90°,MR ⊥TN 于R 点,TN =4,MN =3.求:sin ∠TMR 、cos ∠TMR 、tan ∠TMR .2.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,⋅=∠43sin AOC 求:AB 及OC 的长.类型二. 利用角度转化求值:1.已知:如图,Rt △ABC 中,∠C =90°.D 是AC 边上一点,DE ⊥AB 于E 点.DE ∶AE =1∶2.求:sin B 、cos B 、tan B .2. 如图,直径为10的⊙A 经过点(05)C ,和点(00)O ,,与x 轴的正半轴交于点D ,B 是y 轴右侧圆弧上一点,则cos ∠OBC 的值为( ) A .12 B .32C .35D .455.如图,O ⊙是ABC △的外接圆,AD 是O ⊙的直径,若O ⊙的半径为32,2AC =,则sin B 的值是( )A .23 B .32 C .34 D .436. 如图4,沿AE 折叠矩形纸片ABCD ,使点D 落在BC 边的点F 处.已知8AB =,10BC =,AB=8,则tan EFC ∠的值为 ( )A.34 B.43C.35D.45A D ECB F7. 如图6,在等腰直角三角形ABC ∆中,90C ∠=︒,6AC =,D 为AC 上一点,若1tan 5DBA ∠= ,则AD 的长为( )A .2B .2C .1D .22D C B A Oyx第8题图类型三. 化斜三角形为直角三角形1. 如图,在△ABC 中,∠A=30°,∠B=45°,AC=23,求AB 的长.2.如图,在Rt △ABC 中,∠BAC=90°,点D 在BC 边上,且△ABD 是等边三角形.若AB=2,求△ABC 的周长.(结果保留根号)3. ABC 中,∠A =60°,AB =6 cm ,AC =4 cm ,则△ABC 的面积是 ( )A.23 cm 2B.43 cm 2C.63 cm 2D.12 cm 2类型四:利用网格构造直角三角形1.如图所示,△ABC 的顶点是正方形网格的格点,则sinA 的值为( ) A .12B .55 C .1010D .2552.如图,△ABC 的顶点都在方格纸的格点上,则sin A =_______. 3.如图,A 、B 、C 三点在正方形网络线的交点处,若将ABC ∆绕着点A 逆时针旋转得到''B AC ∆,则'tan B 的值为 ( )A.41 B. 31 C.21D. 14.正方形网格中,AOB ∠如图放置,则tan AOB ∠的值是( )A .55B.2 5 5 C.12D. 2 CB A ABO知识点二:特殊角的三角函数值当 时,正弦和正切值随着角度的增大而 余弦值随着角度的增大而例1.求下列各式的值.1.计算:︒-︒+︒30cos 245sin 60tan 22.计算:3-1+(2π-1)0-33tan30°-tan45°3.计算:030tan 2345sin 60cos 221⎪⎪⎭⎫ ⎝⎛︒-︒+︒+ 4.计算: tan 45sin 301cos 60︒+︒-︒例2.求适合下列条件的锐角α . (1)21cos =α (2)33tan =α (3)222sin =α (4)33)16cos(6=- α(5)已知α 为锐角,且3)30tan(0=+α,求αtan 的值(6)在ABC ∆中,0)22(sin 21cos 2=-+-B A ,B A ∠∠,都是锐角,求C ∠的度数.例3. 三角函数的增减性 1.已知∠A 为锐角,且sin A <21,那么∠A 的取值范围是 A. 0°< A < 30° B. 30°< A <60° C. 60°< A < 90° D. 30°< A < 90° 2. 已知A 为锐角,且030sin cos <A ,则 ( )A. 0°< A < 60°B. 30°< A < 60°C. 60°< A < 90°D. 30°< A < 90°锐角α30°45°60°sin αcos αtan α类型五:三角函数在几何中的应用1.已知:如图,在菱形ABCD 中,DE ⊥AB 于E ,BE =16cm ,⋅=1312sin A 求此菱形的周长.2.已知:如图,Rt △ABC 中,∠C =90°,3==BC AC ,作∠DAC =30°,AD 交CB 于D 点,求:(1)∠BAD ;(2)sin ∠BAD 、cos ∠BAD 和tan ∠BAD .3. 已知:如图△ABC 中,D 为BC 中点,且∠BAD =90°,31tan =∠B ,求:sin ∠CAD 、cos ∠CAD 、tan ∠CAD .4. 如图,在Rt △ABC 中,∠C=90°,53sin =B ,点D 在BC 边上,DC= AC = 6,求tan ∠BAD 的值.5.(本小题5分)如图,△ABC 中,∠A=30°,3tan 2B =,43AC =.求AB 的长.DCBAACB知识点三:解直角三角形:1.在解直角三角形的过程中,一般要用的主要关系如下(如图所示): 在Rt △ABC 中,∠C =90°,AC =b ,BC =a ,AB =c ,①三边之间的等量关系:________________________________.②两锐角之间的关系:__________________________________. ③边与角之间的关系:==B A cos sin ______;==B A sin cos _______;==BA tan 1tan _____;==B A tan tan 1______.④直角三角形中成比例的线段(如图所示).在Rt △ABC 中,∠C =90°,CD ⊥AB 于D .CD 2=_________;AC 2=_________; BC 2=_________;AC ·BC =_________.例1.在Rt △ABC 中,∠C =90°.(1)已知:32=a ,2=b ,求∠A 、∠B ,c ; (2)已知:32sin =A ,6=c ,求a 、b ;(3).已知:△ABC 中,∠A =30°,∠B =60°,AC =10cm .求AB 及BC 的长.类型六:解直角三角形的实际应用 仰角与俯角1.如图,从热气球C 处测得地面A 、B 两点的俯角分别是30°、45°,如果此时热气球C 处的高度CD 为100米,点A 、D 、B 在同一直线上,则AB 两点的距离是( ) A . 200米 B . 200米 C . 220米 D . 100()米 2. 在一次数学活动课上,海桂学校初三数学老师带领学生去测万泉河河宽,如图13所示,某学生在河东岸点A 处观测到河对岸水边有一点C ,测得C 在A 北偏西31︒的方向上,沿河岸向北前行20米到达B 处,测得C 在B 北偏西45︒的方向上,请你根据以上数据,帮助该同学计算出这条河的宽度.(参考数值:tan31°≈53,sin31°≈21)图13ABCD 45° 30°3 .如图,小聪用一块有一个锐角为30︒的直角三角板测量树高,已知小聪和树都与地面垂直,且相距33米,小聪身高AB 为1.7米,求这棵树的高度.A BCD E4.一数学兴趣小组为测量河对岸树AB 的高,在河岸边选择一点C ,从C 处测得树梢A 的仰角为45°,沿BC 方向后退10米到点D ,再次测得点A 的仰角为30°.求树高.(结果精确到0.1米.参考数据:2 1.414≈,3 1.732≈)5.超速行驶是引发交通事故的主要原因之一.上周末,小明和三位同学尝试用自己所学的知识检测车速.如图,观测点设在A 处,离益阳大道的距离(AC )为30米.这时,一辆小轿车由西向东匀速行驶,测得此车从B 处行驶到C 处所用的时间为8秒,∠BAC=75°. (1)求B 、C 两点的距离;(2)请判断此车是否超过了益阳大道60千米/小时的限制速度?(计算时距离精确到1米,参考数据:sin75°≈0.9659,cos75°≈0.2588,tan75°≈3.732,3≈1.732,60千米/小时≈16.7米/秒)坡度与坡角1.如图,某水库堤坝横断面迎水坡AB 的坡比是1:3,堤坝高BC=50m ,则应水坡面AB 的长度是( )A .100mB .1003mC .150mD .503m2.数学活动课上,老师和学生一起去测量学校升旗台上旗杆AB 的高度.如图,老师测得升旗台前斜坡FC 的坡比为i =1:10,学生小明站在离升旗台水平距离为35m (即CE =35m )处的C 点,测得旗杆顶端B 的仰角为α,已知tan α=37,升旗台高AF =1m ,小明身高CD =1.6m ,请帮小明计算出旗杆AB 的高度.3.如图,有两条公路OM ,ON 相交成30°角,沿公路OM 方向离O 点80米处有一所学校A ,当重型运输卡车P 沿道路ON 方向行驶时,在以P 为圆心、50米长为半径的圆形区域内部会受到卡车噪声的影响,且卡车P 与学校A 的距离越近噪声影响越大,若已知重型运输卡车P 沿道路ON 方向行驶的速度为18千米/时. (1)求对学校A 的噪声影响最大时,卡车P 与学校A 的距离;(2)求卡车P 沿道路ON 方向行驶一次给学校A 带来噪影响的时间.30°80米OMNAP4.如图是某儿童乐园为小朋友设计的滑梯平面图.已知BC =4米,AB =6米,中间平台宽度DE =1米,EN 、DM 、CB 为三根垂直于AB 的支柱,垂足分别为N 、M 、B ,∠EAB =31°,αABD CEF i FC =1:10DF ⊥BC 于F ,∠CDF =45°.求DM 和BC 的水平距离BM 的长度.(结果精确到0.1米,参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)5.如图,某幼儿园为了加强安全管理,决定将园内的滑滑板的倾角由45º降为30º,已知原滑滑板AB 的长为5米,点D 、B 、C 在同一水平地面上.(1)改善后滑滑板会加长多少?(精确到0.01)(2)若滑滑板的正前方能有3米长的空地就能保证安全,原滑滑板的前方有6米长的空地,像这样改造是否可行?说明理由。
锐角三角函数全章复习
![锐角三角函数全章复习](https://img.taocdn.com/s3/m/4efffcf6941ea76e58fa0411.png)
B
D
C
专题二、锐角三角函数的性质
1.锐角三角函数的增减性: (1)当角度在00~900之间变化时, 正弦和正切值随角度的增大而增大; 余弦随角度的增大而减小。 (2)当∠A为锐角时, 0<sinA<1;0<cosA<1; tanA>0 2.互余两角的三角函数之间关系 ∠A为锐角时,sinA=cos(900-∠A) cosA=sin(900-∠A)
• 例4.若∠A为锐角,且 cosA≤0.5,则∠A的范围是( ) A.00<∠A≤600 B.600≤∠A<900 C.00<∠A≤300 D.300≤∠A<900
• 例5.当锐角A>450时,下列不等式 中不成立的是 ( )
2 A. sin A 2 2 B. cos A 2 C. t an A 1 D. t an A 1
• 例6.下列不正确的是(
A. sin 48 37 cos 41 21
0 / 0 / 2
)
B.RtABC中,C=90 ,则sin A sin B 1
0 2
C.RtABC中,C=90 ,则AB=ACsinB
0
1 D.RtABC中,C=90 ,则 sinB cosB tanB
0
专题三、解直角三角形及其应用
1.定义; 2.直角三角形边角关系; 3.解直角三角形的应用 (1)在测量距离方面的应用; (2)在工程建筑、航空、航海等 方面的应用.
• 例7.在△ABC中,
BC 1 3, B 60 ,
0
∠C=450,求AB的长
A
B
C
• 例8.A、B之间有条河,原来从A到B需 过桥CD:A→D→C→B。 A 现建桥EF,可沿直线AB 从A到B.已知 D ∠A=450, C ∠B=300,BC= E 11km,CD∥AB, F 则现在从A到B比 原来少走多少路程?
九年级数学《锐角三角函数》知识点总结归纳
![九年级数学《锐角三角函数》知识点总结归纳](https://img.taocdn.com/s3/m/f0f6e1647275a417866fb84ae45c3b3566ecdd58.png)
一、三角函数的定义1. 正弦函数sinx:对于任意实数x,将x的终边与x轴正方向的夹角的终点的纵坐标就是sinx。
2. 余弦函数cosx:对于任意实数x,将x的终边与x轴正方向的夹角的终点的横坐标就是cosx。
3. 正切函数tanx:对于任意实数x,将sinx除以cosx就是tanx。
4. 余切函数cotx:对于任意实数x,将cosx除以sinx就是cotx。
5. 正割函数secx:对于任意实数x,将1除以cosx就是secx。
6. 余割函数cscx:对于任意实数x,将1除以sinx就是cscx。
二、三角函数的性质1. 基本关系式:sin^2x + cos^2x = 12. 周期性:sin(x+2kπ) = sinx,cos(x+2kπ) = cosx,其中k为任意整数。
3. 奇偶性:奇函数有sinx、tanx和cotx,偶函数有cosx、secx和cscx。
4. 正函数和负函数:在单位圆上,sinx和cscx为正函数,cosx和secx为负函数。
5. 三角函数的范围:sinx、cosx和tanx的范围是[-1,1],cotx、secx和cscx的范围是(-∞,∞)。
三、特殊角的三角函数值1.0°、30°、45°、60°和90°的三角函数值。
2.30°、45°、60°和90°的三角函数值的推导。
四、角度的度量转换1.度和弧度之间的转换:π弧度=180°,1°=π/180弧度。
2.角度的换算:1°=60',1'=60''。
五、倍角、半角和三倍角公式1. 倍角公式:sin2x = 2sinxcosx,cos2x = cos^2x - sin^2x,tan2x = 2tanx / (1 - tan^2x)。
2. 半角公式:sin(x/2) = ±√[(1-cosx)/2],cos(x/2) =±√[(1+cosx)/2],tan(x/2) = ±√[(1-cosx) / (1+cosx)]。
人教版数学九下课件锐角三角函数小结与复习
![人教版数学九下课件锐角三角函数小结与复习](https://img.taocdn.com/s3/m/66d1d3f3710abb68a98271fe910ef12d2af9a9b2.png)
(2) 利用计算器求锐角的度数 方法①: 第一步:按计算器 2nd F sin cos tan 键,
第二步:输入函数值
屏幕显示答案 (按实际需要进行精确)
还可以利用 2nd F °'″ 键,进一步得到角的 度数.
方法②: 第一步:按计算器 2nd F °'″ 键, 第二步:输入锐角函数值 屏幕显示答案 (按实际需要选取精确值).
(3)∠A的正切:tanA= ∠A的邻边 = b .
2. 特殊角的三角函数
1
2
3
sin30°= 2 ,sin45°= 2 ,sin60°= 2 ;
3
2
1
cos30°= 2 ,cos45°= 2 ,cos60°= 2 ;
3 tan30°= 3 ,tan45°= 1 ,tan60°= 3 .
3. 解直角合三作角探形 (1) 在究Rt△ABC中,∠C=90°,a,b,c分别是∠A, ∠B,∠C的对边.
程求出CD.
BD C
解:设CD=x,在Rt△ACD中,cos∠ADC = 3 ,
5
x 3, AD 5 x.
AD 5
3
A
AD BC,BC 5 x. 3
又 BC-CD=BD,
5 x x 4, 3
BD
C
解得x =6,∴CD=6.
(2) sinB的值.
解:BC=BD+CD=4+6=10=AD, 在Rt△ACD中,
(3) 互余两角的三角函数间的关系
sinα = cos(90°-α) , cosα = __s_in_(_9_0_°__-__α_)_, sin2α + cos2α = 1 . tanα ·tan(90°-α) =_1__.
初三数学下《锐角三角函数》全章复习与巩固--知识讲解(提高)+巩固练习
![初三数学下《锐角三角函数》全章复习与巩固--知识讲解(提高)+巩固练习](https://img.taocdn.com/s3/m/329488396f1aff00bfd51e6d.png)
《锐角三角函数》全章复习与巩固--知识讲解(提高)【学习目标】1.了解锐角三角函数的概念,能够正确使用sinA 、cos A、tanA表示直角三角形中两边的比;记忆30°、45°、60°的正弦、余弦和正切的函数值,并会由一个特殊角的三角函数值求出这个角的度数;2.能够正确地使用计算器,由已知锐角的度数求出它的三角函数值,由已知三角函数值求出相应的锐角的度数;3.理解直角三角形中边与边的关系,角与角的关系和边与角的关系,会运用勾股定理、直角三角形的两个锐角互余、以及锐角三角函数解直角三角形,并会用解直角三角形的有关知识解决简单的实际问题;4.通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,通过解直角三角形的学习,体会数学在解决实际问题中的作用.【知识网络】【要点梳理】要点一、锐角三角函数1.正弦、余弦、正切的定义如图:在Rt△ABC中,∠C=90°,如果锐角A确定:锐角A的对边与斜边的比叫做∠A的正弦,记作sinA,即sinA aAc∠==的对边斜边;锐角A的邻边与斜边的比叫做∠A的余弦,记作cosA,即cosA bAc∠==的邻边斜边;锐角A的对边与邻边的比叫做∠A的正切,记作tanA,即tanA a AA b∠==∠的对边的邻边.要点诠释:(1)正弦、余弦、正切是在一个直角三角形中定义的,其本质是两条线段的比值,它只是一个数值,其大小只与锐角的大小有关,而与所在直角三角形的大小无关.(2)sinA、cosA、tanA是一个整体符号,即表示∠A是个三角函数值,书写时习惯上省略符号“∠”,但不能写成sin·A,对于用三个大写字母表示一个角时,其三角函数中符号“∠”不能省略,应写成sin ∠BAC,而不能写出sinBAC.(3)sin2A表示(sinA)2,而不能写成sinA2.(4)三角函数有时还可以表示成等.2.锐角三角函数的定义锐角A的正弦、余弦、正切统称为∠A的锐角三角函数.要点诠释:1. 函数值的取值范围对于锐角A的每一个确定的值,sinA有唯一确定的值与它对应,所以sinA是∠A的函数.同样,cosA、tanA也是∠A的函数,其中∠A是自变量,sinA、cosA、tanA分别是对应的函数.其中自变量∠A的取值范围是0°<∠A<90°,函数值的取值范围是0<sinA<1,0<cosA<1,tanA>0.2.锐角三角函数之间的关系:余角三角函数关系:“正余互化公式”如∠A+∠B=90°,那么:sinA=cosB; cosA=sinB;同角三角函数关系:sin2A+cos2A=1;tanA=3.30°、45°、60°角的三角函数值∠A 30°45°60°sinAcosAtanA 130°、45°、60°角的三角函数值和解30°、60°直角三角形和解45°直角三角形为本章重中之重,是几何计算题的基本工具,三边的比借助锐角三角函数值记熟练.要点二、解直角三角形在直角三角形中,除直角外的5个元素(3条边和2个锐角),只要知道其中的2个元素(至少有一个是边),就可以求出其余的3个未知元素,这叫作解直角三角形.解直角三角形的依据是直角三角形中各元素之间的一些相等关系,如图:角角关系:两锐角互余,即∠A+∠B=90°;边边关系:勾股定理,即;边角关系:锐角三角函数,即要点诠释:解直角三角形,可能出现的情况归纳起来只有下列两种情形:(1)已知两条边(一直角边和一斜边;两直角边);(2)已知一条边和一个锐角(一直角边和一锐角;斜边和一锐角).这两种情形的共同之处:有一条边.因此,直角三角形可解的条件是:至少已知一条边.要点三、解直角三角形的应用解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键.1.解这类问题的一般过程(1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型.(2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题.(3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形.(4)得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解.2.常见应用问题(1)仰角与俯角:(2)坡度:;坡角:.(3)方位角:要点诠释:1.解直角三角形的常见类型及解法已知条件解法步骤Rt△ABC 两边两直角边(a,b)由求∠A,∠B=90°-∠A,斜边,一直角边(如c,a)由求∠A,∠B=90°-∠A,一边一角一直角边和一锐角锐角、邻边(如∠A,b)∠B=90°-∠A,,锐角、对边(如∠A,a)∠B=90°-∠A,,斜边、锐角(如c,∠A)∠B=90°-∠A,,2.用解直角三角形的知识解决实际问题的基本方法是:把实际问题抽象成数学问题(解直角三角形),就是要舍去实际事物的具体内容,把事物及它们的联系转化为图形(点、线、角等)以及图形之间的大小或位置关系.借助生活常识以及课本中一些概念(如俯角、仰角、倾斜角、坡度、坡角等)的意义,也有助于把实际问题抽象为数学问题.当需要求解的三角形不是直角三角形时,应恰当地作高,化斜三角形为直角三角形再求解.3.锐角三角函数的应用用相似三角形边的比的计算具有一般性,适用于所有形状的三角形,而三角函数的计算是在直角三角形中解决问题,所以在直角三角形中先考虑三角函数,可以使过程简洁。
【人教版】九年级下册数学《锐角三角函数》全章知识点复习及同步习题
![【人教版】九年级下册数学《锐角三角函数》全章知识点复习及同步习题](https://img.taocdn.com/s3/m/a4b2fa915acfa1c7ab00ccee.png)
c ,则有: s in A = a = cos B , cos A = = sin B , tan A = ,这就是锐角三角函数所以 cos B = sin(90 - B) = sin A = .在 Rt△BCD 中, cos B = ,所以 = ., cos A = , =(sin 2A 、cos 2A 分别表示 sin A 、cos A 2 2锐角三角函数我们知道,在 Rt△ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为 a 、b 、b ac c b的定义.根据锐角三角函数的定义,再结合直角三角形的性质,我们可以探索出锐角三角函数之间的三个特殊关系.一、余角关系由上面的定义我们已得到 sin A =cos B ,cos A =sin B ,而在直角三角形中,∠A+∠B =90°,即∠B =90°-∠A .因此有:sin A =cos (90°-A ),cos A =sin (90°-A ).应用这些关系式,可以很轻松地进行三角函数之间的转换.例1 如图,在 Rt△ABC 中,∠C =90°,CD ⊥AB 于 D ,已知 sin A ==2,求 BC 的长.解:由于∠A +∠B =90°,12BD 2 1BC BC 2所以 BC =4.二、平方关系a b 由定义知 sin A = c c1 2 ,BD所以 sin 2 A + cos 2 A = a 2 b 2 a 2 + b 2+ c c c 2的平方).又由勾股定理,知 a 2+b 2=c 2,所以 sin 2A +cos 2A = c 2 c 2=1.应用此关系式我们可以进行有关锐角三角函数平方的计算.例 2 计算:sin256°+sin245°+sin234°.=⎪⎪ + 1 = 由定义中 sin A = a, cos A = ,得 = c = ⨯ = = tan A .所以原式 = = =- .5 12 5 12所以 sin B = = .应选(B).5解:由余角关系知 sin56°=cos(90°-56°)=cos34°.所以原式=sin245°+(sin234°+cos234°)⎛ 2 ⎫2 ⎝ 2 ⎭3 2 .三、相除关系b c casin A a c a cos A b c b bc利用这个关系式可以使一些化简求值运算过程变得简单.例 3 已知 α 为锐角,tan α =2,求 3sin α + cos α 4cos α - 5sin α的值.解:因为 tan α = sin α cos α= 2 ,所以 sin α =2cos α ,6cos α + cos α 6 + 1 74cos α - 10cos α 4 - 10 6求三角函数值的方法较多,且方法灵活.是中考中常见的题型.我们可以根据已知条件结合图形选用灵活的求解方法.四、设参数法例 4 如图 △1,在 ABC 中,∠C =90°,如果 t a n A =(A)(B) (C) (D)13 13 12 55 12 ,那么 sin B 等于( )分析:本题主要考查锐角三角函数的定义及直角三角形的有关性质.因为 tan A = a 5 =b 12,所以可设 a =5k ,b =12k (k >0),根据勾股定理得 c =13k ,图 1b 12c 13五、等线段代换法例 5如图 2,小明将一张矩形的纸片 ABC D 沿 C E 折叠,B 点恰好落在 A D 边上,设此点为 F ,若 BA :BC =4:,则 c os∠DCF 的值是______.分析:根据折叠的性质可知 E △B C ≌ EF C ,所以 C F=CB ,又 C D=AB ,AB :BC =4:5, 所以 C D :C F=4:5,图 2=.113911,即=,所以C E=,在Rt△A E C中,tan∠CA E==3=.所以tanα=.C3445所以DB==,所以tanα=,选(A).在Rt D△C F中,c os∠D C F=DC4 CF5六、等角代换法例6如图3,C D是平面镜,光线从A点出发经C D上点E反射后照射到B点,若入射角为α(入射角等于反射角),AC⊥C D,B D⊥C D,垂足分别为C、D,且AC=3,B D=6,C D=11,则tanα的值为()B(A)(B)(C)(D)311119A分析:根据已知条件可得∠α=∠CA E,所以只需求出tan∠CA E.α根据条件可知△A C E∽B DE,所以AC CE3CE=BD ED611-CEC E图3D11311CE11AC39119七、等比代换法例7如图4,在Rt△ABC中,ACB=90,D⊥AB于点D,BC=3,AC=4,设BC D=α,tanα的值为()(A)(B)(C)(D)435分析:由三角形函数的定义知tanα=DB DC,由Rt△C D△B∽Rt ACB,BC33DC AC44图4( :锐角三角函数测试1.比较大小:sin41°________sin42°. 2.比较大小:cot30°_________cot22°. 3.比较大小:sin25°___________cos25°. 4.比较大小:tan52°___________cot52°. 5.比较大小:tan48°____________cot41°. 6.比较大小:sin36°____________cos55°.7、下列命题①sin α 表示角α 与符号 sin 的乘积;② 在△ABC 中,若∠C=90°,则 c=α sinA 成立;③任何锐角的正弦和余弦值都是介于 0 和 1 之间实数.其正确的为()A 、②③B.①②③C.②D. ③8、若 △R t ABC 的各边都扩大 4 倍得到 △R t A ′B ′C ′,那么锐角 A 和锐角 A ′正切值的关系为()A.tanA ′=4tanA B.4tanA ′=tanAC.tanA ′=tanAD.不确定.9(新疆中考题) 1)如图(1)、 2),锐角的正弦值和余弦值都随着锐角的确定而确定, 变化而变化.试探索随着锐角度数的增大.它的正弦值和余弦值变化的规律.(2)根据你探索到的规律,试比较 18°,34°,50°,62°,88°,这些锐角的正弦值的 大小和余弦值的大小。
公开课-锐角三角函数复习
![公开课-锐角三角函数复习](https://img.taocdn.com/s3/m/6d9cf11fbf1e650e52ea551810a6f524ccbfcbaf.png)
D
A
⑴正弦
1.锐角三角函数的定义 ⑵余弦
锐
⑶正切
角 2.30°、45°、60°特殊角的三角函数值
三
⑴定义
角
①三边间关系
函
3.解直角三角形
⑵解直角三角形的依据 ②锐角间关系
③边角间关系
数
⑶解直角三角形在实际问题中
的应用
达标检测
1.如图所示,边长为1的小正方形构成的 网上格,中则,∠A半E径D的为正1的切⊙值O等的于圆﹍心﹍12O﹍在。格点
(3)边角的关系:sin A a cos A b tan A a
c
c
b
归纳:只要知道其中的2个元素(至少有一个是边),
就可以求出其余3个未知元素.
四.解直角三角形的应用
1.仰角和俯角
在进行测量时, 从下向上看,视线与水平线的夹角叫做仰角; 从上往下看,视线与水平线的夹角叫做俯角.
视线
铅 直
仰角
3
例3.在Rt △ ABC中,∠C=90°,∠ A=30°,a=5, 求b、c的大小.
解: ∠B=90°- ∠ A=90°-30°=60°,
B
∵tanB=b/a,
∴b=a·tanB=5·tan60°= 5 3
5
∵ sinA=a/c,
30°
A
C
∴ c=a/sinA=5/sin30=5/(1/2)=10.
1
2
3
2
2
2
3
2
1
2
2
2
3
1
3
3
锐角的三角函数值有 何变化规律呢?
三.解直角三角形
1.什么叫解直角三角形?
由直角三角形中,除直角外的已知元素,求出所 有未知元素的过程,叫做解直角三角形.
人教版初三数学:锐角三角函数—知识讲解
![人教版初三数学:锐角三角函数—知识讲解](https://img.taocdn.com/s3/m/f299289458fafab068dc0284.png)
锐角三角函数—知识讲解【学习目标】1.结合图形理解记忆锐角三角函数定义;2.会推算30°、45°、60°角的三角函数值,并熟练准确的记住特殊角的三角函数值; 3.理解并能熟练运用“同角三角函数的关系”及“锐角三角函数值随角度变化的规律”.【要点梳理】要点一、锐角三角函数的概念如图所示,在Rt △ABC 中,∠C =90°,∠A 所对的边BC 记为a ,叫做∠A 的对边,也叫做∠B 的邻边,∠B 所对的边AC 记为b ,叫做∠B 的对边,也是∠A 的邻边,直角C 所对的边AB 记为c ,叫做斜边.锐角A 的对边与斜边的比叫做∠A 的正弦,记作sinA ,即sin A aA c ∠==的对边斜边;锐角A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即cos A bA c ∠==的邻边斜边;锐角A 的对边与邻边的比叫做∠A 的正切,记作tanA ,即tan A aA A b∠==∠的对边的邻边.同理sin B b B c ∠==的对边斜边;cos B aB c∠==的邻边斜边;tan B b B B a ∠==∠的对边的邻边.要点诠释:(1)正弦、余弦、正切函数是在直角三角形中定义的,反映了直角三角形边与角的关系,是两条线段的比值.角的度数确定时,其比值不变,角的度数变化时,比值也随之变化. (2)sinA ,cosA ,tanA 分别是一个完整的数学符号,是一个整体,不能写成,,,不能理解成sin 与∠A ,cos 与∠A ,tan 与∠A 的乘积.书写时习惯上省略∠A 的角的记号“∠”,但对三个大写字母表示成的角(如∠AEF),其正切应写成“tan ∠AEF ”,不能写成 “tanAEF ”;另外,、、常写成、、.(3)任何一个锐角都有相应的锐角三角函数值,不因这个角不在某个三角形中而不存在. (4)由锐角三角函数的定义知:当角度在0°<∠A<90°间变化时,,,tanA >0.B Ca b c要点二、特殊角的三角函数值利用三角函数的定义,可求出30°、45°、60°角的各三角函数值,归纳如下:锐角30°45° 160°要点诠释:(1)通过该表可以方便地知道30°、45°、60°角的各三角函数值,它的另一个应用就是:如果知道了一个锐角的三角函数值,就可以求出这个锐角的度数,例如:若,则锐角.(2)仔细研究表中数值的规律会发现:、、的值依次为、、,而、、的值的顺序正好相反,、、的值依次增大,其变化规律可以总结为:①正弦、正切值随锐角度数的增大(或减小)而增大(或减小);②余弦值随锐角度数的增大(或减小)而减小(或增大).要点三、锐角三角函数之间的关系如图所示,在Rt△ABC中,∠C=90°.(1)互余关系:,;(2)平方关系:;(3)倒数关系:或;(4)商数关系:.要点诠释:锐角三角函数之间的关系式可由锐角三角函数的意义推导得出,常应用在三角函数的计算中,计算时巧用这些关系式可使运算简便.【典型例题】类型一、锐角三角函数值的求解策略1.(2016•安顺)如图,在网格中,小正方形的边长均为1,点A ,B ,C 都在格点上,则∠ABC 的正切值是( )A .2B .C .D .【思路点拨】根据勾股定理,可得AC 、AB 的长,根据正切函数的定义,可得答案. 【答案】D . 【解析】 解:如图:,由勾股定理,得AC=,AB=2,BC=,∴△ABC 为直角三角形, ∴tan ∠B==,故选:D .【总结升华】本题考查了锐角三角函数的定义,先求出AC 、AB 的长,再求正切函数. 举一反三:【高清课程名称:锐角三角函数 高清ID 号: 395948 关联的位置名称(播放点名称):例1(1)-(2)】【变式】在Rt ΔABC 中,∠C =90°,若a =3,b =4,则c = ,sinA = , cosA = ,sinB = , cosB = .Ca bc【答案】c= 5 ,sinA=35,cosA=45,sinB=45,cosB=35.类型二、特殊角的三角函数值的计算2.求下列各式的值:(1)(2015•茂名校级一模)6tan230°﹣sin60°﹣2sin45°;(2)(2015•乐陵市模拟)sin60°﹣4cos230°+sin45°•tan60°;(3)(2015•宝山区一模)+tan60°﹣.【答案与解析】解:(1)原式==122-.(2)原式=×﹣4×()2+×=﹣3+=63-;(3)原式=+﹣=2+﹣=3﹣2+2322【总结升华】熟记特殊角的三角函数值或借助两个三角板推算三角函数值,先代入特殊角的三角函数值,再进行化简.举一反三:【高清课程名称:锐角三角函数高清ID号:395948关联的位置名称(播放点名称):例1(3)-(4)】【变式】在RtΔABC中,∠C=90°,若∠A=45°,则∠B=,sinA=,cosA=,sinB=,cosB=.【答案】∠B=45°,sinA=22,cosA=22,sinB=22,cosB=22.类型三、锐角三角函数之间的关系3.(2015•河北模拟)已知△ABC中的∠A与∠B满足(1﹣tanA)2+|sinB﹣|=0(1)试判断△ABC的形状.(2)求(1+sinA)2﹣2﹣(3+tanC)0的值.【答案与解析】解:(1)∵|1﹣tanA)2+|sinB﹣|=0,∴tanA=1,sinB=,∴∠A=45°,∠B=60°,∠C=180°﹣45°﹣60°=75°,∴△ABC是锐角三角形;(2)∵∠A=45°,∠B=60°,∠C=180°﹣45°﹣60°=75°,∴原式=(1+)2﹣2﹣1=.【总结升华】本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.类型四、锐角三角函数的拓展探究与应用4.如图所示,AB是⊙O的直径,且AB=10,CD是⊙O的弦,AD与BC相交于点P,若弦CD=6,试求cos∠APC的值.【答案与解析】连结AC,∵ AB是⊙O的直径,∴∠ACP=90°,又∵∠B=∠D,∠PAB=∠PCD,∴△PCD∽△PAB,∴PC CDPA AB=. 又∵ CD =6,AB =10, ∴ 在Rt △PAC 中,63cos 105PC CD APC PA AB ∠====.【总结升华】直角三角形中,锐角的三角函数等于两边的比值,当这个比值无法直接求解,可结合相似三角形的性质,利用对应线段成比例转换,间接地求出这个比值.锐角的三角函数是针对直角三角形而言的,故可连结AC ,由AB 是⊙O 的直径得∠ACB =90°,cos PC APC PA ∠=,PC 、PA 均为未知,而已知CD =6,AB =10,可考虑利用△PCD ∽△PAB 得PC CDPA AB=.5.通过学习三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.类似的,可以在等腰三角形中建立边角之间的联系.我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图1①,在△ABC 中,AB =AC ,顶角A 的正对记作sadA ,这时sadA BCAB==底边腰.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解下列问题:(1)sad60°=________.(2)对于0<A <180°,∠A 的正对值sadA 的取值范围是_______.(3)如图1②,已知sinA =35,其中∠A 为锐角,试求sadA 的值.【答案与解析】(1)1; (2)0<sadA <2;(3)如图2所示,延长AC 到D ,使AD =AB ,连接BD .设AD =AB =5a ,由3sin 5BC A AB ==得BC =3a , ∴ 22(5)(3)4AC a a a =-=,∴ CD =5a-4a =a ,22(3)10BD a a a =+=,∴ 10sadA 5BD AD ==. 【总结升华】(1)将60°角放在等腰三角形中,底边和腰相等,故sadA =1;(2)在图①中设想AB =AC的长固定,并固定AB 让AC 绕点A 旋转,当∠A 接近0°时,BC 接近0,则sadA 接近0但永远不会等于0,故sadA >0,当∠A 接近180°时,BC 接近2AB ,则sadA 接近2但小于2,故sadA <2;(3)将∠A 放到等腰三角形中,如图2所示,根据定义可求解.附录资料:弧长和扇形面积、圆锥的侧面展开图—知识讲解(基础)【学习目标】1.通过复习圆的周长、圆的面积公式,探索n °的圆心角所对的弧长和扇形面积的计算公式,并应用这些公式解决问题;2.了解圆锥母线的概念,理解圆锥侧面积计算公式,理解圆锥全面积的计算方法,会应用公式解决问题;3. 能准确计算组合图形的面积.【要点梳理】要点一、弧长公式 半径为R 的圆中360°的圆心角所对的弧长(圆的周长)公式: n °的圆心角所对的圆的弧长公式:(弧是圆的一部分)要点诠释:(1)对于弧长公式,关键是要理解1°的圆心角所对的弧长是圆周长的,即;(2)公式中的n表示1°圆心角的倍数,故n和180都不带单位,R 为弧所在圆的半径;(3)弧长公式所涉及的三个量:弧长、圆心角度数、弧所在圆的半径,知道其中的两个量就可以求出第三个量.要点二、扇形面积公式 1.扇形的定义由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形. 2.扇形面积公式 半径为R 的圆中360°的圆心角所对的扇形面积(圆面积)公式: n °的圆心角所对的扇形面积公式:要点诠释:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积S 、扇形半径R 、扇形的圆心角,知道其中的两个量就可以求出第三个量. (3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;(4)扇形两个面积公式之间的联系:.要点三、圆锥的侧面积和全面积连接圆锥顶点和底面圆上任意一点的线段叫做圆锥的母线.圆锥的母线长为,底面半径为r ,侧面展开图中的扇形圆心角为n °,则圆锥的侧面积2360l S rl ππ=扇n =, 圆锥的全面积.要点诠释:扇形的半径就是圆锥的母线,扇形的弧长就是圆锥底面圆的周长.因此,要求圆锥的侧面积就是求展开图扇形面积,全面积是由侧面积和底面圆的面积组成的.【典型例题】类型一、弧长和扇形的有关计算1.如图(1),AB 切⊙O 于点B ,OA=23,AB=3,弦BC∥OA,则劣弧BC 的弧长为( ). A .33π B .32πC .πD .32π图(1) 【答案】A.【解析】连结OB 、OC ,如图(2)则0OBA ∠︒=9,OB=3,0A ∠︒=3,0AOB ∠︒=6, 由弦BC ∥OA 得60OBC AOB ∠∠=︒=, 所以△OBC 为等边三角形,0BOC ∠︒=6.CBAO则劣弧BC的弧长为6033=1803ππ,故选A. 图(2)【总结升华】主要考查弧长公式:.举一反三:【变式】制作弯形管道时,需要先按中心线计算“展直长度”再下料,•试计算如图所示的管道的展直长度,即的长(结果精确到0.1mm)【答案】R=40mm,n=110∴的长==≈76.8(mm)因此,管道的展直长度约为76.8mm.【高清ID号:359387 高清课程名称:弧长扇形圆柱圆锥关联的位置名称(播放点名称):经典例题1-2】2.如图,⊙O的半径等于1,弦AB和半径OC互相平分于点M.求扇形OACB的面积(结果保留π)【答案与解析】∵弦AB和半径OC互相平分,∴OC⊥AB,OM=MC=OC=OA.∴∠B=∠A=30°,∴∠AOB=120°∴S扇形=.【总结升华】运用了垂径定理的推论,考查扇形面积计算公式.举一反三:【高清ID号:359387 高清课程名称:弧长扇形圆柱圆锥关联的位置名称(播放点名称):经典例题1-2】【变式】如图(1),在△ABC 中,BC=4,以点A 为圆心,2为半径的⊙A 与BC 相切于点D ,交AB 于E ,交AC 于F ,点P 是⊙A 上的一点,且∠EPF=40°,则图中阴影部分的面积是( ).A .449-π B .849-πC .489-πD .889-π图(1)【答案】连结AD ,则AD ⊥BC ,△ABC 的面积是:BC•AD=×4×2=4, ∠A=2∠EPF=80°.则扇形EAF 的面积是:28028=.3609ππ⨯故阴影部分的面积=△ABC 的面积-扇形EAF 的面积=84-9π. 图(2) 故选B .类型二、圆锥面积的计算3.(2014秋•广东期末)如图,一个圆锥的高为cm ,侧面展开图是半圆,求:(1)圆锥的底面半径r 与母线R 之比; (2)圆锥的全面积.【思路点拨】(1)设出圆锥的底面半径及圆锥的母线长,利用底面周长等于圆锥的弧长得到圆锥的母线与底面的半径之比即可;(2)首先求得圆锥的底面半径和圆锥的母线长,然后利用圆锥的侧面积的计算方法求得其侧面积即可.A EB DC F P【答案与解析】解:(1)由题意可知∴,R=2r(3分)r:R=r:2r=1:2;(2)在Rt△AOC中,∵R2=r2+h2∴,4r2=r2+27r2=9,r=±3∵r>0∴r=3,R=6.∴S侧=πRr=18π(cm2)(cm2)∴S全=S侧+S底=18π+9π=27π(cm2).【总结升华】本题考查了圆锥的计算,解题的关键是牢记有关的公式.类型三、组合图形面积的计算4.(2015•槐荫区三模)如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,∠CDB=30°,CD=2,求图中阴影部分的面积.【答案与解析】解:∵AB是⊙O的直径,弦CD⊥AB,∴CE=.∵∠CDB=30°,∴∠COE=60°,在Rt△OEC中,OC==2,∵CE=DE,∠COE=∠DBE=60°∴Rt△COE≌Rt△DBE,∴S阴影=S扇形OBC=π×OC2=π×4=π.【总结升华】本题考查了垂径定理,扇形的面积等,解此题的关键是求出扇形和三角形的面积.。
锐角三角函数的知识点
![锐角三角函数的知识点](https://img.taocdn.com/s3/m/b5ce4015964bcf84b9d57b94.png)
锐角三角函数的知识点
一、锐角三角函数:(∠A 为锐角)
1.三角函数的定义:∠A 在直角三角形中
⑴正弦:sinA=
斜边的对边A ∠; ⑵余弦:cosA=斜边的邻边
A ∠;
⑶正切:tanA=
的邻边的对边A ∠∠A ; ⑷余切:cotA=的对边
的邻边
A A ∠∠.
2.取值范围:⑴ 1>sinA (cosA )>0;⑵ tanA (cotA )>0.
3.互余两角的三角函数关系:⑴sin α= cos (900
-α)
⑵cos α= sin (900
-α)
⑶tan α=cot (900
-α)
⑷cot α= tan (900
-α) 4.特殊角的三角函数值:
5.增减性:(0
0<α<0
90)
⑴ sin α(tan α)随着α的增大而增大;
⑵ cos α(cot α)随着α的增大而减小.
6.同角三角函数关系:
⑴ 平方关系:sin 2α+ cos 2
α=1. ⑵ 倒数关系:tan αcot α=1. ⑶ 商数关系:tan α=
ααcos sin ;cot α=α
α
sin cos .
二、解直角三角形:
1.定义:在直角三角形中,由已知元素求出所有未知元素的过程叫做解这个直角三角形.
2.解直角三角形的基本工具:⑴三边关系;⑵两锐角的关系;⑶边与角的关系.
三、应用举例:
1. 俯角、仰角的概念:
2. 坡度(即坡比):i=h ︰l
坡角为α,则tan
视线
俯角仰角水平线视线铅
垂
线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10.如图,在扇形 OAB 中, AOB 120 ,点 P 是弧 AB 上的一个动点(不与点 A 、 B 重合), C 、 D 分别是弦 AP , BP 的中点.若 CD 3 3 ,则扇形 AOB 的面积为( )
A.12
B. 2
C. 4
D. 24
【答案】A
【解析】
【分析】
如图,作 OH⊥AB 于 H.利用三角形中位线定理求出 AB 的长,解直角三角形求出 OB 即可
解决问题.
【详解】
解:如图作 OH⊥AB 于 H.
∵C、D 分别是弦 AP、BP 的中点. ∴CD 是△APB 的中位线,
∴AB=2CD= 6 3 ,
A.2+ 3
【答案】A 【解析】 【分析】 【详解】
B.2 3
C.3+ 3
设 AC=x,在 Rt△ABC 中,∠ABC=30°,即可得 AB=2x,BC= 3 x,
所以 BD=BA=2x,即可得 CD= 3 x+2x=( 3 +2)x,
在 Rt△ACD 中,tan∠DAC= CD ( 3 2)x 3 2 ,
A.asinα+asinβ
B.acosα+acosβ
C.atanα+atanβ
D.
a tan
a tan
【答案】C 【解析】
【分析】
在 Rt△ABD 和 Rt△ABC 中,由三角函数得出 BC=atanα,BD=atanβ,得出 CD=BC+BD=
atanα+atanβ 即可.
【详解】
在 Rt△ABD 和 Rt△ABC 中,AB=a,tanα= BC ,tanβ= BD ,
7.某游乐场新推出了一个“极速飞车”的项目.项目有两条斜坡轨道以满足不同的难度需 求,游客可以乘坐垂直升降电梯 AB 自由上下选择项目难度.其中斜坡轨道 BC 的坡度(或 坡比)为 i=1:2,BC=12 米,CD=8 米,∠D=36°,(其中点 A、B、C、D 均在同一 平面内)则垂直升降电梯 AB 的高度约为( )米.(精确到 0.1 米,参考数据: tan36°≈0.73,cos36°≈0.81,sin36°≈0.59)
【答案】A 【解析】 设 MN=xm, 在 Rt△BMN 中,∵∠MBN=45∘, ∴BN=MN=x,
在 Rt△AMN 中,tan∠MAN= MN , AN
∴tan30∘= x =3√3, 16 x
解得:x=8( 3 +1), 则建筑物 MN 的高度等于 8( 3 +1)m;
故选 A. 点睛:本题是解直角三角形的应用,考查了仰角和俯角的问题,要明确哪个角是仰角,哪 个角是俯角,知道仰角是向上看的视线与水平线的夹角,俯角是向下看的视线与水平线的 夹角,并与三角函数相结合求边的长.
定理,熟练掌握相关知识点正确计算是本题的解题关键.
12.已知圆锥的底面半径为 5cm,侧面积为 60πcm2,设圆锥的母线与高的夹角为 θ,则 sinθ 的值为( )
A. 3 13
【答案】C 【解析】 【分析】
B. 5 13
C. 5 12
D. 12 13
先求出圆锥底面周长可得到圆锥侧面展开图扇形的弧长,再利用扇形面积公式 S 1 lr 可 2
考点:1.垂径定理;2.圆周角定理;3.勾股定理;4.锐角三角函数定义.
3.同学们参加综合实践活动时,看到木工师傅用“三弧法”在板材边角处作直角,其作法 是:如图: (1)作线段 AB,分别以点 A,B 为圆心,AB 长为半径作弧,两弧交于点 C; (2)以点 C 为圆心,仍以 AB 长为半径作弧交 AC 的延长线于点 D; (3)连接 BD,BC. 根据以上作图过程及所作图形,下列结论中错误的是( )
由作法得 CA=CB=CD=AB,故 B 正确;
∴点 B 在以 AD 为直径的圆上,
∴∠ABD=90°,故 A 正确;
∴点 C 是△ABD 的外心,
在 Rt△ABC 中,sin∠D= AB = 1 , AD 2
∴∠D=30°,∠A=60°,
∴sinA= 3 ,故 C 正确;cosD= 3 ,故 D 错误,
6.如图,从点 A 看一山坡上的电线杆 PQ ,观测点 P 的仰角是 45,向前走 6m 到达 B 点, 测得顶端点 P 和杆底端点 Q 的仰角分别是 60 和 30 ,则该电线杆 PQ 的高度( )
A. 6 2 3
B. 6 3
C.10 3
D.8 3
【答案】A
【解析】
【分析】
延长 PQ 交直线 AB 于点 E,设 PE=x 米,在直角△APE 和直角△BPE 中,根据三角函数利用 x
AB
AB
∴BC=atanα,BD=atanβ,
∴CD=BC+BD=atanα+atanβ, 故选 C.
【点睛】
本题考查了解直角三角形﹣仰角俯角问题;由三角函数得出 BC 和 BD 是解题的关键.
2.如图,△ABC 内接于半径为 5 的⊙O,圆心 O 到弦 BC 的距离等于 3,则∠A 的正切值等 于( )
∵OH⊥AB,
∴BH=AH= 3 3 ,
∵OA=OB,∠AOB=120°, ∴∠AOH=∠BOH=60°,
在 Rt△AOH 中,sin∠AOH= AH , AO
AH ∴AO= sin AOH
3
3 3
6,
2
∴扇形 AOB 的面积为: 120 62 12 , 360
故选:A.
【点睛】 本题考查扇形面积公式,三角形的中位线定理,解直角三角形等知识,解题的关键是学会 添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.
A. 1 2
B. 2
C.1
D. 2
【答案】C
【解析】
【分析】
证明△ABC 是等腰直角三角形即可解决问题.
【详解】
解:∵AB=AC,
∴∠B=∠C,
∵∠A=2∠B,
∴∠B=∠C=45°,∠A=90°,
∴在 Rt△ABC 中,BC= AC = sin B
2 AC,
∴sin∠B•sadA= AC BC 1, BC AC
A.5.6
B.6.9
C.11.4
D.13.9
【答案】C
【解析】
【分析】
根据勾股定理,可得 CE,BE 的长,根据正切函数,可得 AE 的长,再根据线段的和差,可
得答案.
【详解】
解:如图,延长 DC、AB 交于点 E,
,
由斜坡轨道 BC 的坡度(或坡比)为 i=1:2,得 BE:CE=1:2. 设 BE=xm,CE=2xm. 在 Rt△BCE 中,由勾股定理,得 BE2+CE2=BC2, 即 x2+(2x)2=(12 )2, 解得 x=12, BE=12m,CE=24m, DE=DC+CE=8+24=32m, 由 tan36°≈0.73,得
11.如图,河堤横断面迎水坡 AB 的坡比是 ()
,堤高 BC=10m,则坡面 AB 的长度是
A.15m
B.
【答案】C
【解析】
【分析】
【详解】Βιβλιοθήκη C.20mD.解:∵Rt△ABC 中,BC=10m,tanA=
,
∴AC= = =
m.
∴AB=
m.
故选 C.
【点睛】
本题考查解直角三角形的应用(坡度坡角问题),锐角三角函数,特殊角的三角函数值及勾股
∵AB=AE-BE=6 米,
则 x- 3 x=6, 3
解得:x=9+3 3 .
则 BE=3 3 +3.
在直角△BEQ 中,QE= 3 BE= 3 (3 3 +3)=3+ 3 .
3
3
∴PQ=PE-QE=9+3 3 -(3+ 3 )=6+2 3 .
答:电线杆 PQ 的高度是(6+2 3 )米.
故选:A. 【点睛】 本题考查解直角三角形的实际应用,解答关键是根据题意构造直角三角形解决问题.
∴∠BAC=∠ACD,
∵cosα= 3 , AB 3 , 5 AC 5
∴AC= 5 4 20 .
3
3
故选:C.
【点睛】
本题考查了矩形的性质,勾股定理,锐角三角函数的定义,同角的余角相等的性质,熟记
各性质并求出 BC 是解题的关键.
9.在半径为1的 O 中,弦 AB 、 AC 的长度分别是 3 , 2 ,则 BAC 为( )度.
表示出 AE 和 BE,列出方程求得 x 的值,再在直角△BQE 中利用三角函数求得 QE 的长,则
问题求解.
【详解】
解:延长 PQ 交直线 AB 于点 E,设 PE=x.
在直角△APE 中,∠A=45°,
AE=PE=x; ∵∠PBE=60° ∴∠BPE=30°
在直角△BPE 中,BE= 3 PE= 3 x, 33
A. 3 5
【答案】C 【解析】
B. 4 5
C. 3 4
D. 4 3
试题分析:如答图,过点 O 作 OD⊥BC,垂足为 D,连接 OB,OC, ∵OB=5,OD=3,∴根据勾股定理得 BD=4.
∵∠A= 1 ∠BOC,∴∠A=∠BOD. 2
∴tanA=tan∠BOD= BD 4 . OD 3
故选 D.
5
A.3
B. 16
C. 20
D. 16
3
3
5
【答案】C
【解析】
【分析】
根据同角的余角相等求出∠ADE=∠ACD,再根据两直线平行,内错角相等可得∠BAC=∠
ACD,然后求出 AC.