高中文科数学专题复习资料(学生)

合集下载

高三文数一轮复习资料推荐

高三文数一轮复习资料推荐

高三文数一轮复习资料推荐高三文数一轮复习资料推荐高三是每个学生都要经历的重要阶段,而文科和数学是高考中最重要的两门科目。

为了帮助高三学生顺利备考,提高他们的学习效果,选择一套合适的复习资料是至关重要的。

在这篇文章中,我将推荐一些适合高三文数一轮复习的资料,希望能对广大高三学生有所帮助。

一、文科复习资料推荐1. 《高中语文一轮复习指南》这本书是由教育部门编写的一本高中语文复习指南,内容涵盖了高中语文的各个知识点和考点。

它详细介绍了各种文学作品的背景知识、文学常识以及文学鉴赏方法等,对于提高学生的语文素养和阅读能力非常有帮助。

2. 《高中历史一轮复习资料》历史是文科中的一门重要科目,也是考试中的重要分值科目。

这本资料详细介绍了中国历史的各个时期、重要事件和人物,同时还提供了大量的历史题目和解析,可以帮助学生更好地理解和记忆历史知识。

3. 《高中政治一轮复习资料》虽然在文章要求中提到了不涉及政治,但是政治作为高考的一门重要科目,还是有必要进行一定的复习。

这本资料详细介绍了中国政治制度、政治理论和重要政治事件,同时还提供了大量的政治题目和解析,可以帮助学生更好地理解和记忆政治知识。

二、数学复习资料推荐1. 《高中数学一轮复习指南》这本书是由教育部门编写的一本高中数学复习指南,内容涵盖了高中数学的各个知识点和考点。

它详细介绍了各种数学概念、公式和解题方法,同时还提供了大量的数学题目和解析,可以帮助学生更好地理解和掌握数学知识。

2. 《高中数学习题集》这本习题集是由一些知名的数学教育机构编写的,题目难度适中,覆盖了高中数学的各个知识点。

它提供了大量的习题和解析,可以帮助学生巩固和提高数学的解题能力。

3. 《高中数学考点速记手册》这本手册主要针对高中数学的重要考点进行总结和归纳,通过简洁明了的语言和图表,帮助学生快速记忆和理解数学知识。

它是一个非常实用的工具,可以帮助学生在复习过程中更加高效地掌握数学知识。

以上是我对高三文数一轮复习资料的推荐,希望对广大高三学生有所帮助。

2020年高考数学一轮复习高分点拨专题2.9 零点定理(文理科通用)(学生版)

2020年高考数学一轮复习高分点拨专题2.9 零点定理(文理科通用)(学生版)

第九讲 零点定理1.函数的零点 (1)函数零点的定义对于函数y =f (x )(x ∈D ),把使f (x )=0的实数x 叫做函数y =f (x )(x ∈D )的零点. (2)三个等价关系方程f (x )=0有实数根⇔函数y =f (x )的图象与x 轴有交点⇔函数y =f (x )有零点. (3)函数零点的判定(零点存在性定理)如果函数y =f (x )在区间[a ,b ]上的图象是连续不断的一条曲线,并且有f (a )·f (b )<0,那么,函数y =f (x )在区间(a ,b )内有零点,即存在c ∈(a ,b ),使得f (c )=0,这个 c 也就是方程f (x )=0的根. 2.二次函数y =ax 2+bx +c (a >0)的图象与零点的关系(x ,0),(x ,0)(x ,0) 无交点 3设x 1,x 2是一元二次方程ax 2+bx +c =0(a ,b ,c ∈R ,且a >0)的两实数根,则x 1,x 2的分布情况与一元二次方程的系数之间的关系如下表:(m ,n ,p 为常数,且m <n <p )二、二分法 (1)二分法及步骤对于在区间[,]a b 上连续不断,且满足0)()(<⋅b f a f 的函数()y f x =,通过不断地把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到函数零点近似值的方法叫做二分法。

(2)给定精确度ε,用二分法求函数的零点近似值的步骤如下: 第一步:确定区间[,]a b ,验证0)()(<⋅b f a f ,给定精确度ε。

第二步:求区间(,)a b 的中点1x 。

第三步:计算1()f x :①若1()f x =0,则1x 就是函数的零点;②若1()()0f a f x <g ,则令1b x =(此时零点01(,)x a x ∈)③若1()()0f x f b <g ,则令1a x =(此时零点01(,)x x b ∈)第四步:判断是否达到精确度ε即若a b ε-<,则得到零点值a 或b ,否则重复第二至第四步。

高三文科数学第一轮复习资料

高三文科数学第一轮复习资料

第一章集合与常用逻辑用语第一节集合☆☆☆2017考纲考题考情☆☆☆自|主|排|查1.集合的含义与表示方法(1)集合的含义:研究对象叫做元素,一些元素组成的总体叫做集合。

集合中元素的性质:确定性、无序性、互异性。

(2)元素与集合的关系:①属于,记为∈;②不属于,记为∉。

(3)集合的表示方法:列举法、描述法和图示法。

(4)常用数集的记号:自然数集N,正整数集N*或N+,整数集Z,有理数集Q,实数集R。

2.集合间的基本关系A B或B A3.集合的基本运算1.认清集合元素的属性(是点集、数集或其他情形)和化简集合是正确求解集合问题的两个先决条件。

2.易忘空集的特殊性,在写集合的子集时不要忘了空集和它本身。

3.运用数轴图示法易忽视端点是实心还是空心。

4.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性\”而导致解题错误。

5.记住以下结论(1)若集合A中有n个元素,则其子集的个数为2n,真子集的个数为2n-1。

(2)A∪B=A⇔B⊆A;A∩B=A⇔A⊆B。

小|题|快|练一、走进教材1.(必修1P12B组T4改编)满足{0,1}⊆A{0,1,2,3}的集合A的个数为()A.1 B.2C.3 D.4【解析】由题意得A可为{0,1},{0,1,2},{0,1,3}。

故选C。

【答案】 C2.(必修1P12B组T1改编)已知集合A={0,1,2},集合B满足A∪B ={0,1,2},则集合B有________个。

【解析】由题意知B⊆A,则集合B有8个。

【答案】8二、双基查验1.已知集合M={-1,0,1},N={0,1,2},则M∪N=()A.{-1,0,1} B.{-1,0,1,2}C.{-1,0,2} D.{0,1}【解析】M∪N表示属于M或属于N的元素构成的集合,故M∪N={-1,0,1,2}。

故选B。

【答案】 B2.设集合M={x|x≥0,x∈R},N={x|x2<1,x∈R},则M∩N=() A.[0,1]B.[0,1)C.(0,1] D.(0,1)【解析】∵x2<1,∴-1<x<1。

2020届高三文理科数学一轮复习《三角函数的图像与性质》专题汇编(学生版)

2020届高三文理科数学一轮复习《三角函数的图像与性质》专题汇编(学生版)

《三角函数的图像与性质》专题一、相关知识点1.用五点法作正弦函数和余弦函数的简图正弦函数y =sin x ,x ∈[0,2π]图像五个关键点:(0,0),⎝⎛⎭⎫π2,1,(π,0),⎝⎛⎭⎫3π2,-1,(2π,0). 余弦函数y =cos x ,x ∈[0,2π]图像五个关键点:(0,1),⎝⎛⎭⎫π2,0,(π,-1),⎝⎛⎭⎫3π2,0,(2π,1). 2.正弦函数、余弦函数、正切函数的图像与性质(1)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是14个周期.(2)正切曲线相邻两对称中心之间的距离是半个周期. 4.奇偶性相关结论(1)若f (x )=A sin(ωx +φ)(A ,ω≠0),则①f (x )为偶函数的充要条件是φ=π2+k π(k ∈Z);②f (x )为奇函数的充要条件是φ=k π(k ∈Z).(2)若f (x )=A cos(ωx +φ)(A >0,ω>0),则①f (x )为奇函数的充要条件:φ=k π+π2,k ∈Z ;②f (x )为偶函数的充要条件:φ=k π,k ∈Z.题型一 三角函数的定义域1.函数y =log 2(sin x )的定义域为________.2.函数y =2sin x -3的定义域为( )A .⎣⎡⎦⎤π3,2π3B .⎣⎡⎦⎤2k π+π3,2k π+2π3(k ∈Z) C .⎝⎛⎭⎫2k π+π3,2k π+2π3(k ∈Z) D .⎣⎡⎦⎤k π+π3,k π+2π3(k ∈Z)3.y =2sin x -2的定义域为________________________.4.函数y =tan 2x 的定义域是( )A .⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠k π+π4,k ∈Z B .⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠k π2+π8,k ∈Z C .⎩⎨⎧⎭⎬⎫x ⎪⎪ x ≠k π+π8,k ∈Z D .⎩⎨⎧⎭⎬⎫x ⎪⎪ x ≠k π2+π4,k ∈Z5.x ∈[0,2π],y =tan x +-cos x 的定义域为( )A.⎣⎡⎭⎫0,π2B.⎝⎛⎦⎤π2,πC.⎣⎡⎭⎫π,3π2D.⎝⎛⎦⎤3π2,2π题型二 三角函数的值域(最值)三角函数值域的不同求法(1)利用sin x 和cos x 的值域直接求(2)把所给的三角函数式变换成y =A sin(ωx +φ)的形式求值域(3)把sin x 或cos x 看作一个整体,转换成二次函数求值域 (4)利用sin x ±cos x 和sin x cos x 的关系转换成二次函数求值域1.函数f (x )=4-2cos 13x 的最小值是________,取得最小值时,x 的取值集合为________.2.函数f (x )=2cos x +sin x 的最大值为________.3.已知函数f (x )=2cos 2x -sin 2x +2,则( )A .f (x )的最小正周期为π,最大值为3B .f (x )的最小正周期为π,最大值为4C .f (x )的最小正周期为2π,最大值为3D .f (x )的最小正周期为2π,最大值为44.函数f (x )=3sin ⎝⎛⎭⎫2x -π6在区间⎣⎡⎦⎤0,π2上的值域为( ) A .⎣⎡⎦⎤-32,32 B .⎣⎡⎦⎤-32,3 C .⎣⎡⎦⎤-332,332 D .⎣⎡⎦⎤-332,35.函数y =2cos ⎝⎛⎭⎫2x +π3,x ∈⎝⎛⎭⎫-π6,π6的值域为________.6.函数y =2sin ⎝⎛⎭⎫πx 6-π3(0≤x ≤9)的最大值与最小值之和为( )A .2-3B .0C .-1D .-1- 37.已知f (x )=sin 2x -3cos 2x ,若对任意实数x ∈⎝⎛⎦⎤0,π4,都有|f (x )|<m ,则实数m 的取值范围是________.8.函数f (x )=sin 2x +3cos x -34⎝⎛⎭⎫x ∈⎣⎡⎦⎤0,π2的最大值是________.9.函数f (x )=cos 2x +6cos π2-x 的最大值为10.函数y =sin x +cos x +sin x cos x 的值域为_______11.函数y =sin x -cos x +sin x cos x ,x ∈[0,π]的值域为________.12.函数y =tan ⎝⎛⎭⎫π2-x ⎝⎛⎭⎫x ∈⎣⎡⎦⎤-π4,π4,且x ≠0的值域为________.题型三 三角函数的单调性类型一 求三角函数的单调区间 1.f (x )=|tan x |;2.y =|cos x |的一个单调递增区间是( )A.⎣⎡⎦⎤-π2,π2 B .[0,π] C.⎣⎡⎦⎤π,3π2 D.⎣⎡⎦⎤3π2,2π3.函数f (x )=tan ⎝⎛⎭⎫2x -π3的递增区间是________.4.已知函数f (x )=2sin ⎝⎛⎭⎫π4-2x ,则函数f (x )的单调递减区间为( )A.⎣⎡⎦⎤3π8+2k π,7π8+2k π(k ∈Z)B.⎣⎡⎦⎤-π8+2k π,3π8+2k π(k ∈Z) C.⎣⎡⎦⎤3π8+k π,7π8+k π(k ∈Z) D.⎣⎡⎦⎤-π8+k π,3π8+k π(k ∈Z) 5.函数f (x )=sin ⎝⎛⎭⎫-2x +π3的减区间为________.6.函数y =cos ⎝⎛⎭⎫π4-2x 的单调递减区间为________.7.函数 f (x )=cos ⎝⎛⎭⎫2x -π6在x ∈⎣⎡⎦⎤-π2,π2上的单调性递增区间为 ; 递减区间为8.函数y =sin ⎝⎛⎭⎫12x +π3,x ∈[-2π,2π]的递增区间是( )A .⎣⎡⎦⎤-2π,-5π3 B .⎣⎡⎦⎤-2π,-5π3和⎣⎡⎦⎤π3,2π C .⎣⎡⎦⎤-5π3,π3 D .⎣⎡⎦⎤π3,2π9.已知函数f (x )=4sin ⎝⎛⎭⎫2x -π3,x ∈[-π,0],则f (x )的单调递增区间是________.10.若锐角φ满足sin φ-cos φ=22,则函数f (x )=sin 2(x +φ)的单调递增区间为( ) A.⎣⎡⎦⎤2k π-5π12,2k π+π12(k ∈Z) B.⎣⎡⎦⎤k π-5π12,k π+π12(k ∈Z) C.⎣⎡⎦⎤2k π+π12,2k π+7π12(k ∈Z) D.⎣⎡⎦⎤k π+π12,k π+7π12(k ∈Z)11.比较大小:sin ⎝⎛⎭⎫-π18________sin ⎝⎛⎭⎫-π10.12.已知f (x )=2sin ⎝⎛⎭⎫2x +π4. (1)求f (x )的单调递增区间;(2)当x ∈⎣⎡⎦⎤π4,3π4时,求函数f (x )的最大值和最小值.13.已知函数f (x )=sin ⎝⎛⎭⎫2x -π6.讨论函数f (x )在区间⎣⎡⎦⎤-π12,π2上的单调性并求出其值域.类型二 已知单调性求参数值或范围 已知单调区间求参数范围的3种方法 1.函数f (x )=sin ωx (ω>0)在区间⎣⎡⎦⎤0,π3上单调递增,在区间⎣⎡⎦⎤π3,π2上单调递减,则ω等于2.若f (x )=cos 2x +a cos ( π2+x )在区间⎝⎛⎭⎫π6,π2上是增函数,则实数a 的取值范围为________.3.已知ω>0,函数f (x )=sin ⎝⎛⎭⎫ωx +π4的一个递减区间为⎣⎡⎦⎤π8,5π8,则ω=________.4.若函数f (x )=sin ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π上是减函数,则ω的取值范围是 .5.已知函数f (x )=sin ⎝⎛⎭⎫ωx -π3(ω>0),若函数f (x )在区间⎝⎛⎭⎫π,3π2上为减函数,则实数ω的取值范围是________.6.已知函数f (x )=sin ⎝⎛⎭⎫ωx +π4(ω>0),f ⎝⎛⎭⎫π6=f ⎝⎛⎭⎫π3,且f (x )在⎝⎛⎭⎫π2,π上单调递减,则ω=________.7.若函数f (x )=2sin ωx (0<ω<1)在区间⎣⎡⎦⎤0,π3上的最大值为1,则ω=________.8.若函数f (x )=cos x -sin x 在[0,a ]是减函数,则a 的最大值是________.题型四 三角函数的周期性三角函数周期的求解方法1.已知函数f (x )=cos ⎝⎭⎫ωx +π4(ω>0)的最小正周期为π,则ω=________. 2.函数f (x )=cos ⎝⎛⎭⎫πx +π3的最小正周期为________ 3.函数f (x )=sin ⎝⎛⎭⎫2x +π3的最小正周期为________ 4.函数 + 的最小正周期为______.5.在函数:①y =cos|2x |,②y =|cos x |,③y =cos2x +π6,④y =tan ⎝⎛⎭⎫2x -π4中,最小正周期为π的所有函数为( )A .②④B .①③④C .①②③D .①③6.函数f (x )=tan x1+tan 2x 的最小正周期为________题型五 三角函数的奇偶性与三角函数奇偶性相关的结论:三角函数中,判断奇偶性的前提是定义域关于原点对称,奇函数一般可化为y =A sin ωx 或y =A tan ωx 的形式,而偶函数一般可化为y =A cos ωx +b 的形式.常见的结论有:(1)若y =A sin(ωx +φ)为偶函数,则有φ=k π+π2(k ∈Z);若为奇函数,则有φ=k π(k ∈Z).(2)若y =A cos(ωx +φ)为偶函数,则有φ=k π(k ∈Z);若为奇函数,则有φ=k π+π2(k ∈Z).(3)若y =A tan(ωx +φ)为奇函数,则有φ=k π(k ∈Z). 1.函数y =1-2sin 2( x -3π4)是( )A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为π2的奇函数D .最小正周期为π2的偶函数2.若函数 是偶函数,则 等于______ 3.若函数是偶函数,则 ________.4.若 是定义在 上的偶函数,其中,则 _____5.将函数 向右平移个单位,得到一个偶函数的图象,则 最小值为__6.若函数f (x )=sin x +φ3(φ∈[0,2π])是偶函数,则φ=________.7.函数f (x )=3sin ⎝⎛⎭⎫2x -π3+φ,φ∈(0,π)满足f (|x |)=f (x ),则φ的值为( ) A.π6 B.π3 C.5π6 D.2π3题型五 三角函数的对称性(1) 求形如y =A sin(ωx +φ)或y =A cos(ωx +φ)函数的图象对称轴或对称中心时,都是把“ωx +φ”看作一个整体,然后根据三角函数图象的对称轴或对称中心列方程进行求解. (2) 在判断对称轴或对称中心时,用以下结论可快速解题:设y =f (x )=A sin(ωx +φ),g (x )=A cos(ωx +φ),x =x 0是对称轴方程⇔f (x 0)=±A ,g (x 0)=±A ; (x 0,0)是对称中心⇔f (x 0)=0,g (x 0)=0.(3)函数y =A sin(ωx +φ)的对称轴为x =k πω-φω+π2ω,对称中心为⎝⎛⎭⎫k πω-φω,0;函数y =A cos(ωx +φ)的对称轴为x =k πω-φω,对称中心为⎝⎛⎭⎫k πω-φω+π2ω,0;函数y =A tan(ωx +φ)的对称中心为⎝⎛⎭⎫k π2ω-φω,0.上述k ∈Z 1.下列函数的最小正周期为π且图像关于直线x =π3对称的是( )A .y =2sin ⎝⎛⎭⎫2x +π3B .y =2sin ⎝⎛⎭⎫2x -π6 C .y =2sin ⎝⎛⎭⎫x 2+π3 D .y =2sin ⎝⎛⎭⎫2x -π32.函数y =sin ⎝⎛⎭⎫x -π4的图象的一个对称中心是( ) A .(-π,0) B.⎝⎛⎭⎫-3π4,0 C.⎝⎛⎭⎫3π2,0 D.⎝⎛⎭⎫π2,03.函数f (x )=sin ⎝⎛⎭⎫2x -π6-cos 2x 的图象的一条对称轴的方程可以是( ) A .x =-π6 B .x =11π12 C .x =-2π3 D .x =7π123.已知函数y =sin(2x +φ)( -π2<φ<π2 )的图象关于直线x =π3对称,则φ的值为4.函数f (x )=2sin(ωx +φ)(ω>0)对任意x 都有f ( π6+x )=f ⎝⎛⎭⎫π6-x ,则f ⎝⎛⎭⎫π6的值为( ) A .2或0 B .-2或2 C .0 D .-2或05.函数f (x )=sin x -cos x 的图像( )A .关于直线x =π4对称B .关于直线x =-π4对称C .关于直线x =π2对称D .关于直线x =-π2对称6.如果函数y =3cos(2x +φ)的图像关于点⎝⎛⎭⎫4π3,0中心对称,那么|φ|的最小值为( )A .π6B .π4C .π3D .π27.函数f (x )=sin ⎝⎛⎭⎫2x +π3-13在区间(0,π)内的所有零点之和为( )A.π6B.π3C.7π6D.4π38.已知函数y =sin(2x +φ)在x =π6处取得最大值,则函数y =cos(2x +φ)的图象( ) A .关于点⎝⎛⎭⎫π6,0对称B .关于点⎝⎛⎭⎫π3,0对称C .关于直线x =π6对称 D .关于直线x =π3对称9.(理科)已知函数f (x )=2sin ⎝⎛⎭⎫ωx +π3的图象的一个对称中心为⎝⎛⎭⎫π3,0,其中ω为常数,且ω∈(1,3).若对任意的实数x ,总有f (x 1)≤f (x )≤f (x 2),则|x 1-x 2|的最小值是( )A .1 B.π2C .2D .π10.(理科)设函数f (x )=3sin ωx +cos ωx (ω>0),其图象的一条对称轴在区间⎝⎛⎭⎫π6,π3内,且f (x )的最小正周期大于π,则ω的取值范围为( )A.⎝⎛⎭⎫12,1 B .(0,2) C .(1,2) D .[1,2)题型六 三角函数的性质综合运用1.下列函数中,周期为π,且在⎣⎡⎦⎤π4,π2上单调递增的奇函数是( )A .y =sin ⎝⎛⎭⎫2x +3π2B .y =cos ⎝⎛⎭⎫2x -π2C .y =cos ⎝⎛⎭⎫2x +π2D .y =sin ⎝⎛⎭⎫π2-x2.下列四个函数中,以π为最小正周期,且在区间⎝⎛⎭⎫π2,π上为减函数的是( )A .y =sin 2xB .y =2|cos x |C .y =cos x 2D .y =tan(-x )3.设函数f (x )=cos ⎝⎛⎭⎫x +π3,则下列结论错误的是( ) A .f (x )的一个周期为-2π B .y =f (x )的图像关于直线x =8π3对称 C .f (x +π)的一个零点为x =π6D .f (x )在⎝⎛⎭⎫π2,π单调递减4.将函数f (x )=sin ⎝⎛⎭⎫2x +π3的图象向右平移π6个单位长度,得到函数g (x )的图象,则下列说法不正确的是( )A .g (x )的最小正周期为πB .g ⎝⎛⎭⎫π6=32C .x =π6是g (x )图象的一条对称轴 D .g (x )为奇函数5.定义在R 上的函数f (x )既是偶函数又是周期函数,若f (x )的最小正周期是π,且当x ∈⎣⎡⎦⎤0,π2时,f (x )=sin x ,则f ⎝⎛⎭⎫5π3的值为( )A .-12 B.12 C.716 D.326.已知f (x )=2sin ⎝⎛⎭⎫2x +π4. (1)求函数f (x )图像的对称轴方程;(2)求f (x )的递增区间;(3)当x ∈⎣⎡⎦⎤π4,3π4时,求函数f (x )的最大值和最小值.7.已知函数f (x )=2cos 2⎝⎛⎭⎫x -π6+2sin ⎝⎛⎭⎫x -π4sin ⎝⎛⎭⎫x +π4. (1)求函数f (x )的最小正周期和图象的对称中心;(2)求f (x )在区间⎣⎡⎦⎤0,π2上的最大值和最小值.8.已知函数f (x )=a ( 2cos 2x 2+sin x )+b . (1)若a =-1,求函数f (x )的单调递增区间;(2)当x ∈[0,π]时,函数f (x )的值域是[5,8],求a ,b 的值.9.已知函数f (x )=cos ⎝⎛⎭⎫2x -π3+sin 2x -cos 2x + 2. (1)求函数f (x )的最小正周期和单调递增区间;(2)若存在x ∈⎣⎡⎦⎤π12,π3满足[f (x )]2-22f (x )-m >0,求实数m 的取值范围.。

高考文科数学数列专题复习(附答案及解析)

高考文科数学数列专题复习(附答案及解析)

高考文科数学数列专题复习数列常用公式数列的通项公式与前n 项的和的关系a n s , n 11s s ,n 2n n 1( 数列{a n} 的前n 项的和为s n a1 a2 a n ).等差数列的通项公式*a a1 (n 1)d dn a1 d(n N ) ;n等差数列其前n 项和公式为n(a a ) n(n 1)1 ns na1 d n2 2 d 12n (a d)n .12 2等比数列的通项公式an 1 1 n *a a1q q (n N )nq;等比数列前n 项的和公式为na (1 q )1s 1 qn , q 1或sna a q1 n1 q,q 1na ,q 1 1 na ,q 1 1一、选择题1.( 广东卷) 已知等比数列{a n} 的公比为正数,且a3 ·a9 =2 2a ,a2 =1,则a1 =5A. 12B.22C. 2D.22.(安徽卷)已知为等差数列,,则等于A. -1B. 1C. 3D.7 3(. 江西卷)公差不为零的等差数列{a n} 的前n项和为S n .若a4 是a3与a7 的等比中项, S8 32, 则S等于10A. 18B. 24C. 60D. 904(湖南卷)设S n 是等差数列a n 的前n 项和,已知a2 3,a6 11,则S7 等于【】第1页/ 共8页A .13 B.35 C.49 D.633.(辽宁卷)已知a为等差数列,且a7 -2 a4 =-1, a3 =0, 则公差d=n(A)-2 (B)-12 (C)12(D)24.(四川卷)等差数列{a n }的公差不为零,首项a1 =1,a2 是a1 和a5 的等比中项,则数列的前10 项之和是A. 90B. 100C. 145D. 1905.(湖北卷)设x R, 记不超过x 的最大整数为[ x ], 令{x }= x -[ x ],则{ 52 1} ,[ 521],521A.是等差数列但不是等比数列B.是等比数列但不是等差数列C.既是等差数列又是等比数列D.既不是等差数列也不是等比数列6.(湖北卷)古希腊人常用小石子在沙滩上摆成各种性状来研究数,例如:他们研究过图1 中的1,3,6,10,⋯,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16⋯这样的数成为正方形数。

2020届高三文理科数学一轮复习《基本不等式》专题汇编(学生版)

2020届高三文理科数学一轮复习《基本不等式》专题汇编(学生版)

《基本不等式》专题一、相关知识点1.基本不等式:ab ≤a +b2(1)基本不等式成立的条件:a >0,b >0.(2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R); (2)a +b ≥2ab (a >0,b >0).(3)b a +ab ≥2(a ,b 同号且不为零); (4)ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R);(5)⎝⎛⎭⎫a +b 22≤a 2+b 22(a ,b ∈R).2(a 2+b 2)≥(a +b )2(a ,b ∈R).(6)a 2+b 22≥(a +b )24≥ab (a ,b ∈R).(7)a 2+b 22≥a +b 2≥ab ≥21a +1b(a >0,b >0). 以上不等式等号成立的条件均为a =b . 3.算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b2,几何平均数为ab ,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数. 4.利用基本不等式求最值问题 已知x >0,y >0,则:(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小) (2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p 24.(简记:和定积最大)5.重要不等式链 若a ≥b >0,则a ≥a 2+b 22≥a +b 2≥ab ≥2aba +b≥b . 题型一 基本不等式的判断1.若a ,b ∈R ,则下列恒成立的不等式是( )A.|a +b |2≥|ab | B .b a +ab ≥2 C.a 2+b 22≥⎝⎛⎭⎫a +b 22 D .(a +b )⎝⎛⎭⎫1a +1b ≥4 2.若a ,b ∈R ,且ab >0,则下列不等式中,恒成立的是( )A .a 2+b 2>2abB .a +b ≥2abC .1a +1b >2abD .b a +ab ≥23.下列命题中正确的是( )A .函数y =x +1x 的最小值为2 B .函数y =x 2+3x 2+2的最小值为2C .函数y =2-3x -4x (x >0)的最小值为2-4 3D .函数y =2-3x -4x(x >0)的最大值为2-4 34.若a >b >1,P =lg a ·lg b ,Q =12(lg a +lg b ),R =lg ⎝⎛⎭⎫a +b 2,则( )A .R <P <QB .Q <P <RC .P <Q <RD .P <R <Q题型二 利用基本不等式求最值类型一 直接法或配凑法利用基本不等式求最值1.若实数x ,y 满足xy =1,则x 2+2y 2的最小值为________.2.已知a >0,b >0,且2a +b =4,则1ab 的最小值为3.已知0<x <1,则x (3-3x )取得最大值时x 的值为4.已知x <0,则函数y =4x +x 的最大值是5.函数f (x )=xx +1的最大值为6.若x >1,则x +4x -1的最小值为________.7.设0<x <2,则函数y =x (4-2x )的最大值为________.8.若x ,y 均为正数,则3x y +12yx +13的最小值是9.已知a ,b ∈R ,且a -3b +6=0,则2a +18b 的最小值为________.10.已知x <54,则f (x )=4x -2+14x -5的最大值为________.11.设x >0,则函数y =x +22x +1-32的最小值为12.已知x ,y 为正实数,则4x x +3y +3yx的最小值为13.函数y =x 2+2x -1(x >1)的最小值为________.14.已知a >0,b >0,a ,b 的等比中项是1,且m =b +1a ,n =a +1b ,则m +n 的最小值是15.已知x ,y 都为正实数,且x +y +1x +1y =5,则x +y 的最大值是16.已知a >b >0,则2a +4a +b +1a -b的最小值为17.已知正数a ,b 满足2a 2+b 2=3,则a b 2+1的最大值为________.类型二 常数代换法利用基本不等式求最值1.已知a >0,b >0,a +b =1,则1a +1b 的最小值为________.2.已知a >0,b >0,a +2b =3,则2a +1b 的最小值为________.3.已知正实数x ,y 满足2x +y =2,则2x +1y 的最小值为________.4.已知正项等比数列{a n }的公比为2,若a m a n =4a 22,则2m +12n 的最小值为5.已知向量a =(3,-2),b =(x ,y -1),且a ∥b ,若x ,y 均为正数,则3x +2y 的最小值是6.已知x >0,y >0,且4x +y =xy ,则x +y 的最小值为7.若直线x a +yb =1(a >0,b >0)过点(1,2),则2a +b 的最小值为________.8.已知a >0,b >0,函数f (x )=a log 2x +b 的图像经过点⎝⎛⎭⎫4,12,则1a +2b 的最小值为________.9.已知函数y =log a (x +3)-1(a >0且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny +1=0上,其中mn >0,则1m +1n 的最小值为10.已知x >0,y >0,lg 2x +lg 8y =lg 2,则1x +13y 的最小值是11.已知直线l :ax +by -ab =0(a >0,b >0)经过点(2,3),则a +b 的最小值为________.12.已知x ,y 均为正实数,且1x +2+1y +2=16,则x +y 的最小值为13.若a ,b ,c 都是正数,且a +b +c =2,则4a +1+1b +c 的最小值是14.已知正数x ,y 满足x +2y =3,则y x +1y 的最小值为________.15.设a >0,b >1,若a +b =2,则3a +1b -1的最小值为________.16.已知x >0,y >0,且2x +8y -xy =0,求:(1)xy 的最小值;(2)x +y 的最小值.类型三 通过消元法利用基本(均值)不等式求最值1.若正实数m ,n 满足2m +n +6=mn ,则mn 的最小值是________.2.已知正实数x ,y 满足xy +2x +y =4,则x +y 的最小值为________.3.设x ,y 均为正数,且xy +x -y -10=0,则x +y 的最小值是________.4.已知x >0,y >0,且2x +4y +xy =1,则x +2y 的最小值是________.类型四:利用基本不等式求参数值或取值范围1.若对于任意的x >0,不等式xx 2+3x +1≤a 恒成立,则实数a 的取值范围为2.已知函数y =x +mx -2(x >2)的最小值为6,则正数m 的值为________.3.若对x >0,y >0,x +2y =1,有2x +1y ≥m 恒成立,则m 的最大值是________.4.已知a >0,b >0,若不等式3a +1b ≥ma +3b恒成立,则m 的最大值为5.正数a ,b 满足1a +9b =1,若不等式a +b ≥-x 2+4x +18-m 对任意实数x 恒成立,则实数m 的取值范围是________.6.已知不等式(x +y )⎝⎛⎭⎫1x +a y ≥9对任意的正实数x ,y 恒成立,则正实数a 的最小值为7.已知函数f (x )=3x 2+ax +26x +1,若存在x ∈N +使得f (x )≤2成立,则实数a 的取值范围为___题型三 基本不等式的综合问题类型一 基本不等式的实际应用问题1.要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是( )A .80元B .120元C .160元D .240元2.某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x =__________吨.3.某学校为了支持生物课程基地研究植物生长,计划利用学校空地建造一间室内面积为900 m 2的矩形温室,在温室内划出三块全等的矩形区域,分别种植三种植物,相邻矩形区域之间间隔1 m ,三块矩形区域的前、后与内墙各保留1 m 宽的通道,左、右两块矩形区域分别与相邻的左右内墙保留3 m 宽的通道,如图.设矩形温室的室内长为x (单位:m),三块种植植物的矩形区域的总面积为S (单位:m 2). (1)求S 关于x 的函数关系式;(2)求S 的最大值.类型二 基本不等式与函数的交汇问题1.已知A ,B 是函数y =2x 的图象上不同的两点,若点A ,B 到直线y =12的距离相等,则点A ,B 的横坐标之和的取值范围是( )A .(-∞,-1)B .(-∞,-2)C .(-∞,-3)D .(-∞,-4)类型三 基本不等式与数列的交汇问题1.已知a >0,b >0,并且1a ,12,1b 成等差数列,则a +9b 的最小值为2.已知正项等比数列{a n }的前n 项和为S n ,且S 8-2S 4=5,则a 9+a 10+a 11+a 12的最小值为3.设等差数列{a n }的公差是d ,其前n 项和是S n (n ∈N +),若a 1=d =1,则S n +8a n 的最小值是______.类型四 基本不等式与解析几何的交汇问题1. 已知直线ax +by +c -1=0(b ,c >0)经过圆x 2+y 2-2y -5=0的圆心,则4b +1c的最小值是2.当双曲线M :x 2m -y 2m 2+4=1的离心率最小时,M 的渐近线方程为3.两圆x 2+y 2-2my +m 2-1=0和x 2+y 2-4nx +4n 2-9=0恰有一条公切线,若m ∈R ,n4m2+1n2的最小值为∈R,且mn≠0,则。

高考数学复习资料(推荐5篇)

高考数学复习资料(推荐5篇)

高考数学复习资料(推荐5篇)1.高考数学复习资料第1篇三、一元函数积分学(一)不定积分知识范围(1)不定积分原函数与不定积分的定义原函数存在定理不定积分的性质(2)基本积分公式(3)换元积分法第一换元法(凑微分法) 第二换元法(4)分部积分法(5)一些简单有理函数的积分要求(1)理解原函数与不定积分的概念及其关系,掌握不定积分的性质,了解原函数存在定理。

(2)熟练掌握不定积分的基本公式。

(3)熟练掌握不定积分第一换元法,掌握第二换元法(限于三角代换与简单的根式代换)。

(4)熟练掌握不定积分的分部积分法。

(5)会求简单有理函数的不定积分。

(二)定积分知识范围(1)定积分的概念定积分的定义及其几何意义可积条件(2)定积分的性质(3)定积分的计算变上限积分牛顿—莱布尼茨(Newton-Leibniz)公式换元积分法分部积分法(4)无穷区间的广义积分(5)定积分的应用平面图形的面积旋转体体积物体沿直线运动时变力所作的功要求(1)理解定积分的概念及其几何意义,了解函数可积的条件。

(2)掌握定积分的基本性质。

(3)理解变上限积分是变上限的函数,掌握对变上限定积分求导数的方法。

(4)熟练掌握牛顿—莱布尼茨公式。

(5)掌握定积分的换元积分法与分部积分法。

(6)理解无穷区间的广义积分的概念,掌握其计算方法。

(7)掌握直角坐标系下用定积分计算平面图形的面积以及平面图形绕坐标轴旋转所生成的旋转体体积。

会用定积分求沿直线运动时变力所作的功。

四、向量代数与空间解析几何(一)向量代数知识范围(1)向量的概念向量的定义向量的模单位向量向量在坐标轴上的投影向量的坐标表示法向量的方向余弦(2)向量的线性运算向量的加法向量的减法向量的数乘(3)向量的数量积二向量的夹角二向量垂直的充分必要条件(4)二向量的向量积二向量平行的充分必要条件要求(1)理解向量的概念,掌握向量的坐标表示法,会求单位向量、方向余弦、向量在坐标轴上的投影。

(2)熟练掌握向量的线性运算、向量的数量积与向量积的计算方法。

不等式性质与基本不等式(重点)-备战2023年高考数学一轮复习考点微专题(全国通用)(学生版)

不等式性质与基本不等式(重点)-备战2023年高考数学一轮复习考点微专题(全国通用)(学生版)

考向22 不等式性质与基本不等式1.(2022年甲卷理科第12题)12.已知3132a =,1cos 4b =,14sin 4c =,则 A .c b a >> B .b a c >>C .a b c >>D .a c b >>【答案】A【解析】构造函数21()1cos 2h x x x =--,0,2x π⎡⎤∈⎢⎥⎣⎦,则()()sin g x h x x x '==-+,()1cos 0g x x '=-+所以()(0)0g x g =,因此,()h x 在0,2π⎡⎤⎢⎥⎣⎦上递减,所以1()(0)04h a b h =-<=,即a b <. 另一方面,114sintan 4411cos 44c b ==,显然0,2x π⎛⎫∈ ⎪⎝⎭时,tan x x >, 所以114sintan 44111cos 44c b ==>,即b c <.因此c b a >>. 2.(2022年甲卷文科第12题)12.已知910m =,1011m a =-,89m b =-,则 ( )A .0a b >>B .0a b >>C .0b a >>D .0b a >> 【答案】A【解析】由910m =,可得9log 10(11.5)m =∈ ,.根据a ,b 的形式构造函数()1m f x x x =-- (1x >), 则1()1m f x mx -'=-,令()0f x '=,解得110mx m -=,由9log 10(11.5)m =∈ ,知0(0)x ∈ 1,. ()f x 在(1) +∞,上单调递增,所以(10)(8)f f >,即a b >,又因为9log 10(9)9100f =-=,所以0a b >>,答案选A .3.(2022年新高考1卷第7题)设0.10.1e =a ,19b =,ln0.9c =-,则A .a b c <<B .c b a <<C .c a b <<D .a c b <<【答案】C【解析】令e =x a x ,1xb x=-,ln(1)c x =--, ① ln ln ln [ln ln(1)]-=+---a b x x x x , ln(1),(0.0.1]y x x x =+-∈;1'1011x y x x-=-=<--, 所以0y ,所以ln ln 0-a b ,所以b a > ②e ln(1),(0,0.1]-=+-∈x a c x x x ,1(1)(1)e 1'e e 11+--=+-=--x xxx x y x x x, 令()(1)(1)1x k x x x e =+--,所以2'()(12)e 0=-->x k x x x , 所以()(0)0k x k >>,所以'0y >,所以0a c ->,所以a c >.4.(2022年新高考2卷第12题)对任意22,,1x y x y xy +-=,则A .1x y +≤B .2x y +≥-C .222x y +≤ D .221x y +≥【答案】BC【解析】由221x y xy +-=得2212y x y ⎫⎛⎫-+=⎪ ⎪⎪⎝⎭⎝⎭令cos sin cos 23sin ??23y x x y y θθθθθ⎧⎧-==+⎪⎪⎪⎪⇒⎨⎪==⎪⎪⎩⎩故[]cos 2sin 2,26x y πθθθ⎛⎫+=+=+∈- ⎪⎝⎭,故A 错,B 对;2222cos sin 33x y θθθ⎛⎫⎛⎫+=++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭()14242 2cos 2sin 2,2,333333θθθϕ⎡⎤=-+=-+∈⎢⎥⎣⎦(其中tan 3ϕ=), 故C 对,D 错.5. (2022年北京卷第11题)函数1()f x x =+_________.【答案】()(],00,1-∞⋃ 【解析】因为()1f x x =100x x -≥⎧⎨≠⎩,解得1x ≤且0x ≠, 故函数的定义域为()(],00,1-∞⋃;故答案为:()(],00,1-∞⋃6.(2022年乙卷理科第14题)已知1x x =和2x x =分别是函数)10(2)(2≠>-=a a ex a x f x 且的极小值点和极大值点,若21x x <,则a 的取值范围是___________ 【答案】⎪⎭⎫ ⎝⎛e 1,0【解析】()()ex a a x f x-=ln 2'至少要有两个零点1x x =和2x x =,我们对其求导,()()e a a x f x 2ln 22''-=,(1)若1>a ,则()x f''在R 上单调递增,此时若()00''=x f ,则()x f '在()0,x ∞-上单调递减,在()+∞,0x 上单调递增,此时若有1x x =和2x x =分别是函数)10(2)(2≠>-=a a ex a x f x 且的极小值点和极大值点,则21x x >,不符合题意。

高考文科数学复习专题-极坐标与参数方程

高考文科数学复习专题-极坐标与参数方程

1.曲线的极坐标方程.(1)极坐标系:一般地,在平面上取一个定点O,自点O引一条射线Ox,同时确定一个长度单位和计算角度的正方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系.其中,点O 称为极点,射线Ox称为极轴.(2)极坐标(ρ,θ)的含义:设M是平面上任一点,ρ表示OM的长度,θ表示以射线Ox为始边,射线OM为终边所成的角.那么,有序数对(ρ,θ)称为点M的极坐标.明显,每一个有序实数对(ρ,θ),确定一个点的位置.其中ρ称为点M的极径,θ称为点M的极角.极坐标系和直角坐标系的最大区分在于:在直角坐标系中,平面上的点与有序数对之间的对应关系是一一对应的,而在极坐标系中,对于给定的有序数对(ρ,θ),可以确定平面上的一点,但是平面内的一点的极坐标却不是唯一的.(3)曲线的极坐标方程:一般地,在极坐标系中,假如平面曲线C上的随意一点的极坐标满意方程f(ρ,θ)=0,并且坐标适合方程f(ρ,θ)=0的点都在曲线C上,那么方程f(ρ,θ)=0叫做曲线C的极坐标方程.2.直线的极坐标方程.(1)过极点且与极轴成φ0角的直线方程是θ=φ0和θ=π-φ0,如下图所示.(2)与极轴垂直且与极轴交于点(a,0)的直线的极坐标方程是ρcos θ=a,如下图所示.(3)与极轴平行且在x轴的上方,与x轴的距离为a的直线的极坐标方程为ρsin θ=a,如下图所示.3.圆的极坐标方程.(1)以极点为圆心,半径为r的圆的方程为ρ=r,如图1所示.(2)圆心在极轴上且过极点,半径为r的圆的方程为ρ=2rcos_θ,如图2所示.(3)圆心在过极点且与极轴成π2的射线上,过极点且半径为r的圆的方程为ρ2rsin_θ,如图3所示.4.极坐标与直角坐标的互化.若极点在原点且极轴为x 轴的正半轴,则平面内随意一点M 的极坐标M(ρ,θ)化为平面直角坐标M(x ,y)的公式如下:⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ或者ρ=x 2+y 2,tan θ=y x ,其中要结合点所在的象限确定角θ的值.1.曲线的参数方程的定义.在平面直角坐标系中,假如曲线上随意一点的坐标x ,y 都是某个变数t 的函数,即⎩⎪⎨⎪⎧x =f (t ),y =g (t ),并且对于t 的每一个允许值,由方程组所确定的点M(x ,y)都在这条曲线上,那么方程组就叫做这条曲线的参数方程,联系x ,y 之间关系的变数t 叫做参变数,简称参数.2.常见曲线的参数方程.(1)过定点P(x 0,y 0),倾斜角为α的直线:⎩⎪⎨⎪⎧x =x 0+tcos α,y =y 0+tsin α(t 为参数), 其中参数t 是以定点P(x 0,y 0)为起点,点M(x ,y)为终点的有向线段PM 的数量,又称为点P 与点M 间的有向距离.依据t 的几何意义,有以下结论:①设A ,B 是直线上随意两点,它们对应的参数分别为t A 和t B ,则|AB|=|t B -t A |=(t B +t A )2-4t A ·t B ;②线段AB 的中点所对应的参数值等于t A +t B2.(2)中心在P(x 0,y 0),半径等于r 的圆:⎩⎪⎨⎪⎧x =x 0+rcos θ,y =y 0+rsin θ(θ为参数) (3)中心在原点,焦点在x 轴(或y 轴)上的椭圆:⎩⎪⎨⎪⎧x =acos θ,y =bsin θ(θ为参数)⎝ ⎛⎭⎪⎫或⎩⎪⎨⎪⎧x =bcos θ,y =asin θ. 中心在点P(x 0,y 0),焦点在平行于x 轴的直线上的椭圆的参数方程为⎩⎪⎨⎪⎧x =x 0+acos α,y =y 0+bsin α(α为参数).(4)中心在原点,焦点在x 轴(或y 轴)上的双曲线:⎩⎪⎨⎪⎧x =asec θ,y =btan θ(θ为参数)⎝ ⎛⎭⎪⎫或⎩⎪⎨⎪⎧x =btan θ,y =asec θ. (5)顶点在原点,焦点在x 轴的正半轴上的抛物线:⎩⎪⎨⎪⎧x =2p ,y =2p(t 为参数,p>0). 注:sec θ=1cos θ.3.参数方程化为一般方程.由参数方程化为一般方程就是要消去参数,消参数时经常采纳代入消元法、加减消元法、乘除消元法、三角代换法,消参数时要留意参数的取值范围对x ,y 的限制.1.已知点A 的极坐标为⎝⎛⎭⎪⎫4,5π3,则点A 的直角坐标是(2,-23).2.把点P 的直角坐标(6,-2)化为极坐标,结果为⎝ ⎛⎭⎪⎫22,-π6.3.曲线的极坐标方程ρ=4sin θ化为直角坐标方程为x 2+(y -2)2=4.4.以极坐标系中的点⎝ ⎛⎭⎪⎫1,π6为圆心、1为半径的圆的极坐标方程是ρ=2cos ⎝⎛⎭⎪⎫θ-π6.5.在平面直角坐标系xOy 中,若直线l :⎩⎪⎨⎪⎧x =t ,y =t -a (t 为参数)过椭圆C :⎩⎪⎨⎪⎧x =3cos θ,y =2sin θ(θ为参数)的右顶点,则常数a 的值为3.解析:由直线l :⎩⎪⎨⎪⎧x =t ,y =t -a ,得y =x -a.由椭圆C :⎩⎪⎨⎪⎧x =3cos θ,y =2sin θ,得x 29=y24=1.所以椭圆C 的右顶点为(3,0).因为直线l 过椭圆的右顶点,所以0=3-a ,即a =3.一、选择题1.在平面直角坐标系xOy 中,点P 的直角坐标为(1,-3).若以原点O 为极点,x 轴正半轴为极轴建立极坐标系,则点P 的极坐标可以是(C )A.⎝ ⎛⎭⎪⎫1,-π3B.⎝ ⎛⎭⎪⎫2,4π3C.⎝ ⎛⎭⎪⎫2,-π3D.⎝⎛⎭⎪⎫2,-4π3 2.若圆的方程为⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ(θ为参数),直线的方程为⎩⎪⎨⎪⎧x =t +1,y =t -1(t 为参数),则直线与圆的位置关系是(B )A .相离B .相交C .相切D .不能确定3.以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,已知直线l 的参数方程是⎩⎪⎨⎪⎧x =t +1,y =t -3(t 为参数),圆C 的极坐标方程是ρ=4cosθ,则直线l 被圆C 截得的弦长为(D )A.14 B .214 C. 2 D .2 2解析:由题意可得直线和圆的方程分别为x -y -4=0,x 2+y 2=4x ,所以圆心C(2,0),半径r =2,圆心(2,0)到直线l 的距离d =2,由半径,圆心距,半弦长构成直角三角形,解得弦长为2 2.4.已知动直线l 平分圆C :(x -2)2+(y -1)2=1,则直线l 与圆O :⎩⎪⎨⎪⎧x =3cos θ,y =3sin θ(θ为参数)的位置关系是(A )A .相交B .相切C .相离D .过圆心解析:动直线l 平分圆C :(x -2)2+(y -1)2=1,即圆心(2,1)在直线l 上,又圆O :⎩⎪⎨⎪⎧x =3cos θ,y =3sin θ的一般方程为x 2+y 2=9且22+12<9,故点(2,1)在圆O 内,则直线l 与圆O 的位置关系是相交.二、填空题5.在平面直角坐标系xOy 中,已知曲线C 的参数方程是⎩⎪⎨⎪⎧y =sin θ-2,x =cos θ(θ是参数),若以O 为极点,x 轴的正半轴为极轴,则曲线C 的极坐标方程可写为ρ2+4ρsin_θ+3=0.解析:在平面直角坐标系xOy 中,⎩⎪⎨⎪⎧y =sin θ-2,x =cos θ(θ是参数),∴⎩⎪⎨⎪⎧y +2=sin θ,x =cos θ.依据sin 2θ+cos 2θ=1,可得x 2+(y +2)2=1,即x 2+y 2+4y +3=0.∴曲线C 的极坐标方程为ρ2+4ρsin θ+3=0.6.在平面直角坐标系中圆C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =2+2sin θ(θ为参数),以原点O 为极点,以x 轴的正半轴为极轴建立极坐标系,则圆C 的圆心的极坐标为⎝⎛⎭⎪⎫2,π2.三、解答题7.求极点到直线2ρ=1sin ⎝⎛⎭⎪⎫θ+π4(ρ∈R)的距离.解析:由2ρ=1sin ⎝ ⎛⎭⎪⎫θ+π4⇒ρsin θ+ρcos θ=1⇒x +y =1,故d =|0+0-1|12+12=22. 8.极坐标系中,A 为曲线ρ2+2ρcos θ-3=0上的动点,B 为直线ρcos θ+ρsin θ-7=0上的动点,求|AB|的最小值.9.(2015·大连模拟)曲线C 1的参数方程为⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数),将曲线C 1上全部点的横坐标伸长为原来的2倍,纵坐标伸长为原来的3倍,得到曲线C 2.以平面直角坐标系xOy 的原点O 为极点,x 轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l :ρ(cos θ-2sin θ)=6.(1)求曲线C 2和直线l 的一般方程;(2)P 为曲线C 2上随意一点,求点P 到直线l 的距离的最值.解析:(1)由题意可得C 2的参数方程为⎩⎨⎧x =2cos θ,y =3sin θ(θ为参数),即C 2:x 24+y23=1,直线l :ρ(cos θ-2sin θ)=6化为直角坐标方程为x -2y -6=0.(2)设点P(2cos θ,3sin θ),由点到直线的距离公式得点P 到直线l 的距离为 d =|2cos θ-23sin θ-6|5=⎪⎪⎪⎪⎪⎪6+4⎝ ⎛⎭⎪⎫32sin θ-12cos θ5=⎪⎪⎪⎪⎪⎪6+4sin ⎝⎛⎭⎪⎫θ-π65=55⎣⎢⎡⎦⎥⎤6+4sin ⎝⎛⎭⎪⎫θ-π6. 所以255≤d ≤25,故点P 到直线l 的距离的最大值为25,最小值为255.10.已知在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =1+4cos θ,y =2+4sin θ(θ为参数),直线l经过定点P(3,5),倾斜角为π3.(1)写出直线l 的参数方程和曲线C 的标准方程.(2)设直线l 与曲线C 相交于A ,B 两点,求|PA|·|PB|的值.解析:(1)由曲线C 的参数方程⎩⎪⎨⎪⎧x =1+4cos θ,y =2+4sin θ(θ为参数),得一般方程为(x -1)2+(y -2)2=16,即x 2+y 2-2x -4y =11=0.直线l 经过定点P(3,5),倾斜角为π3,直线的参数方程为⎩⎪⎨⎪⎧x =3+12t ,y =5+32t (t 是参数).(2)将直线的参数方程代入x 2+y 2-2x -4y -11=0,整理,得t 2+(2+33)t -3=0,设方程的两根分别为t 1,t 2,则t 1t 2=-3,因为直线l 与曲线C 相交于A ,B 两点,所以|PA|·|PB|=|t 1t 2|=3.。

高考文科数学知识点

高考文科数学知识点

高考文科数学知识点【导语】在高考复习进程中,文科的学生要怎样做好数学知识点的复习准备呢?下面是作者收集整理的高考文科数学知识点以供大家学习。

高考文科数学知识点:导数一、综述导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。

在高中阶段对于导数的学习,主要是以下几个方面:1.导数的常规问题:(1)刻画函数(比初等方法精确细微);(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);(3)运用问题(初等方法常常技能性要求较高,而导数方法显得简便)等关于次多项式的导数问题属于较难类型。

2.关于函数特点,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。

3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引发注意。

二、知识整合1.导数概念的知道。

2.利用导数判别可导函数的极值的方法及求一些实际问题的值与最小值。

复合函数的求导法则是微积分中的重点与难点内容。

课本中先通过实例,引出复合函数的求导法则,接下来对法则进行了证明。

3.要能正确求导,必须做到以下两点:(1)熟练掌控各基本初等函数的求导公式以及和、差、积、商的求导法则,复合函数的求导法则。

(2)对于一个复合函数,一定要理清中间的复合关系,弄清各分解函数中应对哪个变量求导。

高考文科数学知识点:不等式不等式这部分知识,渗透在中学数学各个分支中,有着十分广泛的运用。

因此不等式运用问题体现了一定的综合性、灵活多样性,对数学各部分知识融会贯通,起到了很好的增进作用。

在解决问题时,要根据题设与结论的结构特点、内在联系、挑选适当的解决方案,终究归结为不等式的求解或证明。

不等式的运用范畴十分广泛,它始终贯串在全部中学数学当中。

诸如集合问题,方程(组)的解的讨论,函数单调性的研究,函数定义域的肯定,三角、数列、复数、立体几何、解析几何中的值、最小值问题,无一不与不等式有着密切的联系,许多问题,终究都可归结为不等式的求解或证明。

高二数学文科复数试题及复习资料

高二数学文科复数试题及复习资料

高二数学文科试题(复数3)一、选择题1.设,,,a b c R ∈则复数()()a bi c di ++为实数的充要条件是( )(A )0ad bc -= (B )0ac bd -= (C )0ac bd += (D )0ad bc +=2 )A .iB .i -C iD i3.若复数z 满足方程022=+z ,则3z 的值为( ) A.22± B. 22- C. i 22- D. i 22±4.对于任意的两个实数对()和(),规定()=()当且仅当a ==d;运算“⊗”为:),(),(),(ad bc bd ac d c b a +-=⊗,运算“⊕”为:),(),(),(d b c a d c b a ++=⊕,设R q p ∈,,若)0,5(),()2,1(=⊗q p 则=⊕),()2,1(q p ( )A. )0,4(B. )0,2(C.)2,0(D.)4,0(-5.复数10(1)1i i+-等于( ) A .1i + B 。

1i -- C 。

1i - D 。

1i -+6.= ( )(A )i (B )-i (C )i (D )-i7.i 是虚数单位,=+ii 1( ) A .i 2121+ B .i 2121+- C .i 2121- D .i 2121-- 8.如果复数2()(1)m i mi ++是实数,则实数m =( )A .1B .1-C .9.已知复数z 3i )z =3i ,则z =( )A .32B. 34C. 32D.34 10.在复平面内,复数1i i +对应的点位于 ( ) A.第一象限B.第二象限C.第三象限D.第四象限 二、填空题11.已知11m ni i=-+,m n i 其中,是实数,是虚数单位,m ni +=则 12.在复平面内,若复数z 满足|1|||z z i +=-,则z 所对应的点的集合构成的图形是 。

13. 设x 、y 为实数,且ii y i x 315211-=-+-,则x y . 14.若复数z 同时满足z --z =2i ,-z =iz (i 为虚数单位),则z = .15.已知z =则501001z z ++的值为 16.非空集合G 关于运算⊕满足:(1)对任意,a b G ∈,都有a b G ⊕∈;(2)存在e G ∈,使得对一切a G ∈,都有a e e a a ⊕=⊕=,则称G 关于运算⊕为“融洽集”;现给出下列集合和运算:其中G 关于运算⊕为“融洽集”;(写出所有“融洽集”的序号)18.已知复数z 满足2||=z ,2z 的虚部为 2 ,(I )求z ;()设z ,2z ,2z z -在复平面对应的点分别为A ,B ,C ,求ABC ∆的面积.高二文科数学试题(复数)答案二、填空题11、2 12、直线 13、4 14、-115、i 16、①③三、解答题17、[解法一] i 2i 21i 34,i 34)i 21(-=++=∴+=+w w , ……4分 i 3|i |i25+=-+-=∴z . ……8分 若实系数一元二次方程有虚根i 3+=z,则必有共轭虚根i 3-=z .∴ 所求的一个一元二次方程可以是01062=+-x x . ……10分[解法二] 设i b a w +=R)(∈b a 、得 ⎩⎨⎧-==-,23,24a b b a ∴ ⎩⎨⎧-==,1,2b a i 2-=∴w , ……4分以下解法同[解法一].18、解:(I )设(,)Z x yi x y R =+∈由题意得2222()2Z x y x y xyi =-=-+21(2)xy =∴=⎪⎩ 故()20,x y x y -=∴=将其代入(2)得2221x x =∴=±故11x y =⎧⎨=⎩或11x y =-⎧⎨=-⎩故1Z i =+或1Z i =-- ……6分 ()当1Z i =+时,222,1Z i Z Z i =-=-所以(1,1),(0,2),(1,1)A B C -12,1212ABC AC S ∆∴==⨯⨯= 当1Z i =--时,222,13Z i Z Z i =-=--, 11212ABC S ∆=⨯⨯= ……10分。

2020届高三文理科数学一轮复习《平面向量基本定理及坐标表示》专题汇编(学生版)

2020届高三文理科数学一轮复习《平面向量基本定理及坐标表示》专题汇编(学生版)

《平面向量基本定理及坐标表示》专题一、相关知识点1.平面向量基本定理(1)定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,存在唯一一对实数λ1,λ2,使a =λ1e 1+λ2e 2.(2)基底:不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. 2.平面向量的坐标表示在平面直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量i ,j 作为基底,该平面内的任一向量a 可表示成a =xi +yj ,把有序数对(x ,y )叫做向量a 的坐标,记作a =(x ,y ). 3.平面向量的坐标运算(1)向量加法、减法、数乘及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21.(2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),|AB →|=(x 2-x 1)2+(y 2-y 1)2. 4.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.a ,b 共线⇔x 1y 2-x 2y 1=0. 5.常用结论(1)若a 与b 不共线,且λa +μb =0,则λ=μ=0.(2)设a =(x 1,y 1),b =(x 2,y 2),如果x 2≠0,y 2≠0,则a ∥b ⇔x 1x 2=y 1y 2.(3)已知P 为线段AB 的中点,若A (x 1,y 1),B (x 2,y 2),则P 点坐标为⎝⎛⎭⎫x 1+x 22,y 1+y 22;已知△ABC 的顶点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),则△ABC 的重心G 的坐标为⎝⎛⎭⎫x 1+x 2+x 33,y 1+y 2+y 33题型一 平面向量基本定理及其应用1.设e 1,e 2是平面内一组基底,若λ1e 1+λ2e 2=0,则λ1+λ2=________. 2.下列各组向量中,可以作为基底的是( )A .e 1=(0,0),e 2=(1,2)B .e 1=(-1,2),e 2=(5,7)C .e 1=(3,5),e 2=(6,10)D .e 1=(2,-3),e 2=⎝⎛⎭⎫12,-343.在下列向量组中,可以把向量a =(3,2)表示出来的是( )A .e 1=(0,0),e 2=(1,2)B .e 1=(-1,2),e 2=(5,-2)C .e 1=(3,5),e 2=(6,10)D .e 1=(2,-3),e 2=(-2,3)4.已知向量e 1,e 2不共线,实数x ,y 满足(3x -4y )e 1+(2x -3y )e 2=6e 1+3e 2,则2x -y =_______.5.在平行四边形ABCD 中,E 为DC 边的中点,且AB →=a ,AD →=b ,则BE →等于( )A .b -12aB .b +12aC .a +12bD .a -12b6.在△ABC 中,P ,Q 分别是AB ,BC 的三等分点,且AP =13AB ,BQ =13BC ,若AB →=a ,AC →=b ,则PQ →=( )A .13a +13bB .-13a +13bC .13a -13bD .-13a -13b7.如图,在△ABC 中,BE 是边AC 的中线,O 是边BE 的中点,若AB →=a ,AC →=b ,则AO →=( )A .12a +12bB .12a +13bC .14a +12bD .12a +14b8.在平行四边形ABCD 中,AC 与BD 交于点O ,F 是线段DC 上的点.若DC =3DF ,设AC ―→=a ,BD ―→=b ,则AF ―→=( )A.14a +12bB.23a +13bC.12a +14bD.13a +23b9.在直角梯形ABCD 中,AB =2AD =2DC ,E 为BC 边上一点,BC ―→=3EC ―→,F 为AE 的中点,则BF ―→=( )A.23AB ―→-13AD ―→B.13AB ―→-23AD ―→ C .-23AB ―→+13AD ―→ D .-13AB ―→+23AD ―→10.在梯形ABCD 中,AB ∥CD ,AB =2CD ,M ,N 分别为CD ,BC 的中点.若AB ―→=λAM ―→+μAN ―→,则λ+μ等于( )A.15B.25C.35D.4511.在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点,若AC →=λAE →+μAF →,其中λ,μ∈R ,则λ+μ=_______.12.在△ABC 中,点P 是AB 上一点,且CP ―→=23CA ―→+13CB ―→,Q 是BC 的中点,AQ 与CP 的交点为M ,又CM―→=t CP ―→,则实数t 的值为________.13.在△ABC 所在平面上有三点P ,Q ,R ,满足PA ―→+PB ―→+PC ―→=AB ―→,QA ―→+QB ―→+QC ―→=BC ―→,RA ―→+RB ―→+RC ―→=CA ―→,则△PQR 的面积与△ABC 的面积之比是( )A .1∶2B .1∶3C .1∶4D .1∶514.已知G 是△ABC 的重心,过点G 作直线MN 与AB ,AC 分别交于点M ,N ,且AM ―→=x AB ―→,AN ―→=y AC ―→(x ,y >0),则3x +y 的最小值是( )A.83B.72C.52D.43+23315.在△ABC 中,点D 满足BD →=34BC →,当点E 在射线AD (不含点A )上移动时,若AE →=λAB →+μAC →,则λ+1μ的最小值为________.16.如图,已知△OCB 中,点C 是以A 为中点的点B 的对称点,D 是将OB →分为2∶1的一个内分点,DC 和OA 交于点E ,设OA →=a ,OB →=b .(1)用a 和b 表示向量OC →、DC →;(2)若OE →=λOA →,求实数λ的值.题型二 平面向量的坐标运算1.若a =(2,3),b =(-1,4),则2a -b =________.2.如果向量a =(1,2),b =(4,3),那么a -2b =3.已知平面向量a =(2,-1),b =(1,3),那么|a +b |等于4.已知▱ABCD 的顶点A (-1,-2),B (3,-1),C (5,6),则顶点D 的坐标为________.5.已知点A (0,1),B (3,2),向量AC →=(-4,-3),则向量BC →=6.若向量a =(1,1),b =(-1,1),c =(4,2),则c 等于( )A .3a +bB .3a -bC .-a +3bD .a +3b7.已知a =(1,2),b =(-1,1),c =2a -b ,则|c |=8.已知A (1,4),B (-3,2),向量BC ―→=(2,4),D 为AC 的中点,则BD ―→=________.9.已知在平行四边形ABCD 中,AD ―→=(3,7),AB ―→=(-2,3),对角线AC 与BD 交于点O ,则CO ―→的坐标为( )A.⎝⎛⎭⎫-12,5B.⎝⎛⎭⎫12,5C.⎝⎛⎭⎫-12,-5D.⎝⎛⎭⎫12,-510.已知点 A (1,3),B (4,-1),则与AB →同方向的单位向量是( )A .⎝⎛⎭⎫35,-45B .⎝⎛⎭⎫45,-35C .⎝⎛⎭⎫-35,45D .⎝⎛⎭⎫-45,3511.在平面直角坐标系xOy 中,已知A (1,0),B (0,1),C 为坐标平面内第一象限内一点且∠AOC =π4,|OC ―→|=2,若OC ―→=λOA ―→+μOB ―→,则λ+μ=12.已知a =(5,-2),b =(-4,-3),若a -2b +3c =0,则c 等于13.已知向量a =(2,1),b =(1,-2).若ma +nb =(9,-8)(m ,n ∈R),则m -n 的值为________.14.平面直角坐标系xOy 中,已知A (1,0),B (0,1),C (-1,c ),(c >0),且|OC →|=2,若OC →=λOA →+μOB →,则实数λ+μ的值为________.题型三 平面向量共线的坐标表示1.已知向量a =(1,-1),则下列向量中与向量a 平行且同向的是( )A .b =(2,-2)B .b =(-2,2)C .b =(-1,2)D .b =(2,-1)2.已知向量a =(1,2),b =(-2,3),若m a -n b 与2a +b 共线(其中n ∈R ,且n ≠0),则mn =________.3.已知向量a =(m ,4),b =(3,-2),且a ∥b ,则m =________.4.已知向量a =(1,2),b =(2,-2),c =(1,λ).若c ∥(2a +b ),则λ=________.5.设向量a =(x,1),b =(4,x ),若a ,b 方向相反,则实数x 的值为________.6.已知A (-2,-3),B (2,1),C (1,4),D (-7,t ),若AB →与CD →共线,则t =________.7已知向量a =(1,2),a -b =(4,5),c =(x,3),若(2a +b )∥c ,则x =________.8.已知向量OA ―→=(k ,12),OB ―→=(4,5),OC ―→=(-k ,10),且A ,B ,C 三点共线,则k 的值是9.若三点A (1,-5),B (a ,-2),C (-2,-1)共线,则实数a 的值为____.10.向量a =⎝⎛⎭⎫13,tan α,b =(cos α,1),且a ∥b ,则cos 2α=11.已知向量a =(1-sin θ,1),b =⎝⎛⎭⎫12,1+sin θ,若a ∥b ,则锐角θ=12.已知点A (2,3),B (4,5),C (7,10),若AP ―→=AB ―→+λAC ―→(λ∈R),且点P 在直线x -2y =0上,则λ=13.已知平面向量a =(1,m ),b =(-3,1)且(2a +b )∥b ,则实数m 的值为14.已知向量a =(1,2),b =(x,1),u =a +2b ,v =2a -b ,且u ∥v ,则实数x 的值为________.15.已知平面直角坐标系内的两个向量a =(m ,3m -4),b =(1,2),且平面内的任意向量c 都可以唯一地表示成c =λa +μb (λ,μ为实数),则m 的取值范围是( )A .(-∞,4)B .(4,+∞)C .(-∞,4)∪(4,+∞)D .(-∞,+∞)16.已知向量OA →=(1,-3),OB →=(2,-1),OC →=(k +1,k -2),若A ,B ,C 三点能构成三角形,则实数k 应满足的条件是________.17.已知a =(1,0),b =(2,1).(1)当k 为何值时,ka -b 与a +2b 共线?(2)若AB →=2a +3b ,BC →=a +mb 且A ,B ,C 三点共线,求m 的值.18.平面内给定三个向量a =(3,2),b =(-1,2),c =(4,1).(1)求满足a =mb +nc 的实数m ,n ;(2)若(a +kc )∥(2b -a ),求实数k .19.平面内给定三个向量a =(3,2),b =(-1,2),c =(4,1).(1)若(a +kc )∥(2b -a ),求实数k ;(2)若d 满足(d -c )∥(a +b ),且|d -c |=5,求d 的坐标.。

人教版高考文科数学一轮复习资料选修-不等式的证明

人教版高考文科数学一轮复习资料选修-不等式的证明

第2讲 不等式的证明一、知识梳理 1.基本不等式定理1:设a ,b ∈R ,则a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. 定理2:如果a ,b 为正数,则a +b2≥ab ,当且仅当a =b 时,等号成立.定理3:如果a ,b ,c 为正数,则a +b +c 3≥3abc ,当且仅当a =b =c 时,等号成立.定理4:(一般形式的算术—几何平均不等式)如果a 1,a 2,…,a n 为n 个正数,则a 1+a 2+…+a n n≥ na 1a 2…a n ,当且仅当a 1=a 2=…=a n 时,等号成立.2.不等式的证明方法证明不等式常用的方法有比较法、综合法、分析法、反证法、放缩法、数学归纳法等. 常用结论基本不等式及其推广1.a 2≥0(a ∈R ).2.(a -b )2≥0(a ,b ∈R ),其变形有a 2+b 2≥2ab ,⎝⎛⎭⎫a +b 22≥ab ,a 2+b 2≥12(a +b )2.3.若a ,b 为正实数,则a +b 2≥ab .特别地,b a +ab ≥2.4.a 2+b 2+c 2≥ab +bc +ca . 二、教材衍化 求证:3+7<2+ 6. 证明:3+7<2+6 ⇐(3+7)2<(2+6)2 ⇐10+221<10+46⇐21<26⇐21<24.故原不等式成立.一、思考辨析判断正误(正确的打“√”,错误的打“×”) (1)比较法最终要判断式子的符号得出结论.( )(2)综合法是从原因推导到结果的思维方法,它是从已知条件出发,经过逐步推理,最后达到待证的结论.()(3)使用反证法时,“反设”不能作为推理的条件应用.( ) 答案:(1)× (2)√ (3)× 二、易错纠偏常见误区不等式放缩不当致错.已知三个互不相等的正数a ,b ,c 满足abc =1.试证明: a +b +c <1a +1b +1c.证明:因为a ,b ,c >0,且互不相等,abc =1,所以a +b +c =1bc+1ac+1ab<1b +1c 2+1a +1c 2+1a +1b 2=1a +1b +1c ,即a +b +c <1a +1b +1c.用综合法、分析法证明不等式(师生共研)(2019·高考全国卷Ⅰ)已知a ,b ,c 为正数,且满足abc =1.证明: (1)1a +1b +1c ≤a 2+b 2+c 2; (2)(a +b )3+(b +c )3+(c +a )3≥24.证明:(1)因为a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ac ,又abc =1,故有a 2+b 2+c 2≥ab +bc +ca =ab +bc +ca abc =1a +1b +1c.当且仅当a =b =c =1时,等号成立.所以1a +1b +1c≤a 2+b 2+c 2.(2)因为a ,b ,c 为正数且abc =1,故有(a +b )3+(b +c )3+(c +a )3≥33(a +b )3(b +c )3(a +c )3 =3(a +b )(b +c )(a +c ) ≥3×(2ab )×(2bc )×(2ac )=24.当且仅当a =b =c =1时,等号成立. 所以(a +b )3+(b +c )3+(c +a )3≥24.用综合法证明不等式是“由因导果”,用分析法证明不等式是“执果索因”,它们是两种思路截然相反的证明方法.综合法往往是分析法的逆过程,表述简单、条理清楚,所以在实际应用时,往往用分析法找思路,用综合法写步骤,由此可见,分析法与综合法相互转化,互相渗透,互为前提.充分利用这一辩证关系,可以增加解题思路,开阔视野.1.若a ,b ∈R ,ab >0,a 2+b 2=1.求证:a 3b +b 3a≥1. 证明:a 3b +b 3a =a 4+b 4ab =(a 2+b 2)2-2a 2b 2ab =1ab -2ab .因为a 2+b 2=1≥2ab ,当且仅当a =b 时等号成立, 所以0<ab ≤12.令h (t )=1t -2t ,0<t ≤12,则h (t )在(0,12]上递减,所以h (t )≥h (12)=1.所以当0<ab ≤12时,1ab -2ab ≥1.所以a 3b +b 3a≥1.2.(一题多解)(2020·宿州市质量检测)已知不等式|2x +1|+|2x -1|<4的解集为M . (1)求集合M ;(2)设实数a ∈M ,b ∉M ,证明:|ab |+1≤|a |+|b |.解:(1)当x <-12时,不等式化为-2x -1+1-2x <4,即x >-1,所以-1<x <-12;当-12≤x ≤12时,不等式化为2x +1-2x +1<4,即2<4, 所以-12≤x ≤12;当x >12时,不等式化为2x +1+2x -1<4,即x <1,所以12<x <1.综上可知,M ={x |-1<x <1}.(2)法一:因为a ∈M ,b ∉M ,所以|a |<1,|b |≥1. 而|ab |+1-(|a |+|b |) =|ab |+1-|a |-|b | =(|a |-1)(|b |-1)≤0, 所以|ab |+1≤|a |+|b |. 法二:要证|ab |+1≤|a |+|b |, 只需证|a ||b |+1-|a |-|b |≤0, 只需证(|a |-1)(|b |-1)≤0,因为a ∈M ,b ∉M ,所以|a |<1,|b |≥1, 所以(|a |-1)(|b |-1)≤0成立. 所以|ab |+1≤|a |+|b |成立.放缩法证明不等式(师生共研)若a ,b ∈R ,求证:|a +b |1+|a +b |≤|a |1+|a |+|b |1+|b |.【证明】 当|a +b |=0时,不等式显然成立. 当|a +b |≠0时, 由0<|a +b |≤|a |+|b |⇒1|a +b |≥1|a |+|b |, 所以|a +b |1+|a +b |=11|a +b |+1≤11+1|a |+|b |=|a |+|b |1+|a |+|b |=|a |1+|a |+|b |+|b |1+|a |+|b |≤|a |1+|a |+|b |1+|b |.在不等式的证明中,“放”和“缩”是常用的推证技巧.常见的放缩变换有: (1)变换分式的分子和分母,如1k 2<1k (k -1),1k 2>1k (k +1),1k <2k +k -1,1k >2k +k +1上面不等式中k ∈N +,k >1.(2)利用函数的单调性.(3)真分数性质“若0<a <b ,m >0,则a b <a +mb +m ”.[注意] 在用放缩法证明不等式时,“放”和“缩”均需把握一个度.设n 是正整数,求证:12≤1n +1+1n +2+…+12n<1.证明: 由2n ≥n +k >n (k =1,2,…,n ),得12n ≤1n +k <1n .当k =1时,12n ≤1n +1<1n ;当k =2时,12n ≤1n +2<1n ;…当k =n 时,12n ≤1n +n <1n,所以12=n 2n ≤1n +1+1n +2+…+12n <n n =1.所以原不等式成立.反证法证明不等式(师生共研)设0<a ,b ,c <1,求证:(1-a )b ,(1-b )c ,(1-c )a 不可能同时大于14.【证明】 设(1-a )b >14,(1-b )c >14,(1-c )a >14,三式相乘得(1-a )b ·(1-b )c ·(1-c )a >164,①又因为0<a ,b ,c <1,所以0<(1-a )a ≤⎣⎡⎦⎤(1-a )+a 22=14. 同理:(1-b )b ≤14,(1-c )c ≤14,以上三式相乘得(1-a )a ·(1-b )b ·(1-c )c ≤164,与①矛盾.所以(1-a )b ,(1-b )c ,(1-c )a 不可能同时大于14.利用反证法证明问题的一般步骤(1)否定原结论.(2)从假设出发,导出矛盾. (3)证明原命题正确.已知a +b +c >0,ab +bc +ca >0,abc >0,求证:a ,b ,c >0.证明:①设a <0,因为abc >0, 所以bc <0.又由a +b +c >0,则b +c >-a >0,所以ab +bc +ca =a (b +c )+bc <0,与题设矛盾. ②若a =0,则与abc >0矛盾, 所以必有a >0. 同理可证:b >0,c >0. 综上可证a ,b ,c >0.[基础题组练]1.设a >0,b >0,若3是3a 与3b 的等比中项,求证:1a +1b ≥4.证明:由3是3a 与3b 的等比中项得 3a ·3b =3,即a +b =1,要证原不等式成立,只需证a +b a +a +b b ≥4成立,即证b a +a b ≥2成立,因为a >0,b >0, 所以b a +ab≥2b a ·ab=2, (当且仅当b a =a b ,即a =b =12时,“=”成立),所以1a +1b≥4.2.求证:112+122+132+…+1n 2<2.证明:因为1n 2<1n (n -1)=1n -1-1n,所以112+122+132+…+1n 2<1+11×2+12×3+13×4+…+1(n -1)×n=1+⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1n -1-1n =2-1n <2. 3.(2020·蚌埠一模)已知函数f (x )=|x |+|x -3|. (1)解关于x 的不等式f (x )-5≥x ;(2)设m ,n ∈{y |y =f (x )},试比较mn +4与2(m +n )的大小.解:(1)f (x )=|x |+|x -3|=⎩⎪⎨⎪⎧3-2x ,x <0,3,0≤x ≤3,2x -3,x >3.f (x )-5≥x ,即⎩⎪⎨⎪⎧x <0,3-2x ≥x +5或⎩⎪⎨⎪⎧0≤x ≤3,3≥x +5或⎩⎪⎨⎪⎧x >3,2x -3≥x +5,解得x ≤-23或x ∈∅或x ≥8.所以不等式的解集为⎝⎛⎦⎤-∞,-23∪[8,+∞). (2)由(1)易知f (x )≥3,所以m ≥3,n ≥3.由于2(m +n )-(mn +4)=2m -mn +2n -4=(m -2)(2-n ). 且m ≥3,n ≥3,所以m -2>0,2-n <0, 即(m -2)(2-n )<0, 所以2(m +n )<mn +4.4.(2020·开封市定位考试)已知函数f (x )=|x -1|+|x -m |(m >1),若f (x )>4的解集是{x |x <0或x >4}.(1)求m 的值;(2)若正实数a ,b ,c 满足1a +12b +13c =m3,求证:a +2b +3c ≥9.解:(1)因为m >1,所以f (x )=⎩⎪⎨⎪⎧-2x +m +1,x <1m -1,1≤x ≤m 2x -m -1,x >m ,作出函数f (x )的图象如图所示,由f (x )>4的解集及函数f (x )的图象得⎩⎪⎨⎪⎧-2×0+m +1=42×4-m -1=4,得m =3.(2)由(1)知m =3,从而1a +12b +13c=1,a +2b +3c =(1a +12b +13c )(a +2b +3c )=3+(a 2b +2b a )+(a 3c +3c a )+(2b 3c +3c2b )≥9,当且仅当a =3,b =32,c =1时“=”成立.5.(2020·原创冲刺卷)已知定义在R 上的函数f (x )=|x +1|+|x -2|+(x -1)2的最小值为s .(1)试求s 的值;(2)若a ,b ,c ∈R +,且a +b +c =s ,求证:a 2+b 2+c 2≥3.解:(1)f (x )=|x +1|+|x -2|+(x -1)2≥|x +1|+|2-x |≥|(x +1)+(2-x )|=3,即f (x )≥3. 当且仅当x =1,且(x +1)(2-x )≥0,即x =1时,等号成立,所以f (x )的最小值为3,所以s =3.(2)证明:由(1)知a +b +c =3.故a 2+b 2+c 2=(a 2+12)+(b 2+12)+(c 2+12)-3 ≥2a +2b +2c -3=2(a +b +c )-3=3(当且仅当a =b =c =1时,等号成立). 6.设不等式-2<|x -1|-|x +2|<0的解集为M ,a ,b ∈M . (1)证明:⎪⎪⎪⎪13a +16b <14; (2)比较|1-4ab |与2|a -b |的大小.解:(1)证明:记f (x )=|x -1|-|x +2|=⎩⎪⎨⎪⎧3,x ≤-2,-2x -1,-2<x ≤1,-3,x >1,由-2<-2x -1<0解得-12<x <12,即M =⎝⎛⎭⎫-12,12,所以⎪⎪⎪⎪13a +16b ≤13|a |+16|b |<13×12+16×12=14. (2)由(1)得a 2<14,b 2<14,因为|1-4ab |2-4|a -b |2=(1-8ab +16a 2b 2)-4(a 2-2ab +b 2) =(4a 2-1)(4b 2-1)>0,故|1-4ab |2>4|a -b |2,即|1-4ab |>2|a -b |.[综合题组练]1.(2020·江西八所重点中学联考)已知不等式|ax -1|≤|x +3|的解集为{x |x ≥-1}. (1)求实数a 的值;(2)求12-at +4+t 的最大值.解:(1)|ax -1|≤|x +3|的解集为{x |x ≥-1},即(1-a 2)x 2+(2a +6)x +8≥0的解集为{x |x ≥-1}.当1-a 2≠0时,不符合题意, 舍去.当1-a 2=0,即a =±1时,x =-1为方程(2a +6)x +8=0的一解,经检验a =-1不符合题意,舍去, a =1符合题意. 综上,a =1.(2)(12-t +4+t )2=16+2(12-t )(4+t )=16+2-t 2+8t +48,当t =82=4时,(12-t +4+t )2有最大值,为32.又12-t +4+t ≥0,所以12-t +4+t 的最大值为4 2. 2.(2019·高考全国卷Ⅲ)设x ,y ,z ∈R ,且x +y +z =1. (1)求(x -1)2+(y +1)2+(z +1)2的最小值;(2)若(x -2)2+(y -1)2+(z -a )2≥13成立,证明:a ≤-3或a ≥-1.解:(1)由于[(x -1)+(y +1)+(z +1)]2=(x -1)2+(y +1)2+(z +1)2+2[(x -1)(y +1)+(y +1)(z +1)+(z +1)(x -1)] ≤3[(x -1)2+(y +1)2+(z +1)2],故由已知得(x -1)2+(y +1)2+(z +1)2≥43,当且仅当x =53,y =-13,z =-13时等号成立.所以(x -1)2+(y +1)2+(z +1)2的最小值为43.(2)证明:由于[(x -2)+(y -1)+(z -a )]2=(x -2)2+(y -1)2+(z -a )2+2[(x -2)(y -1)+(y -1)(z -a )+(z -a )(x -2)] ≤3[(x -2)2+(y -1)2+(z -a )2], 故由已知得(x -2)2+(y -1)2+(z -a )2≥(2+a )23,当且仅当x =4-a 3,y =1-a 3,z =2a -23时等号成立.因此(x -2)2+(y -1)2+(z -a )2的最小值为(2+a )23. 由题设知(2+a )23≥13,解得a ≤-3或a ≥-1.。

最新高二数学_圆锥曲线(文科月考复习)优秀名师资料

最新高二数学_圆锥曲线(文科月考复习)优秀名师资料

高二数学_圆锥曲线(文科月考复习) 圆锥曲线一、椭圆项目内容定义图形标准方程统一形式范围顶点与长短轴的长几焦点焦距何性离心率质焦点三角椭圆上一点与椭圆的两个焦点组成的三角形,其周长为,解题中常用余22ac,形弦定理和勾股定理来进行相关的计算焦点弦三椭圆的一焦点与过另一焦点的弦组成的三角形,其周长为。

4a角形1. 求适合下列条件的椭圆的标准方程(1)两个焦点的坐标分别是(,4,0),(4,0),椭圆上一点P到两焦点距离之和等于 10 ;35(2)两个焦点的坐标分别是(0,,2)、(0,2),并且椭圆经过点 ; (,,)22(3)长轴长是短轴长的3倍,并且椭圆经过点A(-3,) 33(4)离心率为,且经过点(2,0)的椭圆的标准方程是 ( 25(5)离心率为,一条准线方程为,中心在原点的椭圆方程是 ( x,33A(6)设B(0,,5),C(0,5),的周长为36,则的顶点的轨迹方程是 ( ,ABC,ABC 22(7)椭圆方程为,则焦点坐标为,顶点坐标为,长轴长为,3x,2y,1 短轴长为,离心率为,准线方程为 ( (8)已知椭圆短轴上的两个三等份点与两个焦点构成一个正方形,则椭圆的离心率为22xy(9已知方程表示焦点在轴上的椭圆,则的取值范围是________,若该,,1ymmm,,12方程表示双曲线,则的取值范围是_______( m22xy1(10)若椭圆的离心率为,则为,,1m2m4二、双曲线项目内容定义图形标准方程统一形式范围顶点与实虚轴的长焦点焦距渐近线方几程何性离心率质对称性焦点三角双曲线上一点与双曲线的两个焦点组成的三角形,解题中常用余弦定理和勾股形定理来进行相关的计算焦点弦三双曲线的一焦点与过另一焦点的弦组成的三角形。

角形(1) 中心在原点,一个顶点是(0,6),且离心率是1.5,则标准方程是22(2) 与双曲线x,2y,2有公共渐近线,且过点M(2,,2)的标准方程为22xy(3) 以椭圆的焦点为顶点,且以椭圆的顶点为焦点的双曲线方程是,,185(4) 已知点,动点到与的距离之差是6,则点的轨迹PPFF(,5,0),F(5,0)F1221是,其轨迹方程是 (2x2(5) 双曲线方程为,则焦点坐标为,顶点坐标为,实轴y,,14长为,虚轴长为,离心率为,准线方程为,渐进线方程为(6) 已知双曲线的对称轴为坐标轴,一条渐近线为,则双曲线的离心率为2x,y,02x2(7) 已知双曲线的两焦点F、F,点P在双曲线上且满足,则?,,y1,,FPF6012124FPF的面积为__________ 122222yyxx3(8) 椭圆 ()离心率为,则双曲线的离心率为,,1,,1a,b,022222abab2y2(9) 过双曲线,=1的右焦点F作直线交双曲线于A, B两点,若|AB|=4,则这样的xl2直线有条22(10) “ab<0”是“方程表示双曲线”的条件 ax,by,cP(11) 已知双曲线的中心在原点,两个焦点分别为和,点在双曲线上FF,(50),(50),,12且,且的面积为1,则双曲线的方程为________________PFPF,?PFF121222xy(12) 双曲线的两条渐近线互相垂直,则双曲线的离心率为 ,,122ab22xyP(13) 设是双曲线上一点,双曲线的一条渐近线方程为,分别320xy,,FF,,,1122a9是双曲线的左、右焦点,若PF,3,则PF的值为 12(14)三、抛物线项目内容定义图形标准方程几范围何开口性方向质顶点坐标焦点坐标准线方程对称轴离心率通径长焦半径(1) 已知抛物线顶点在原点,对称轴是x轴,抛物线上的点到焦点的距离为5,A(,3,n)求抛物线的方程和n的值((2) 焦点在直线上的抛物线标准方程是 x,2y,4,02(3) 若抛物线上一点的横坐标为,9,它到焦点的距离为10,则My,,2px(p,0) 抛物线方程是,点的坐标是 M12(4) 抛物线的准线方程是,焦点坐标是 y,,x82(5) 已知抛物线C:的焦点为F,过点F的直线l与C相交于A、B( y,4x16(1) 若,求直线l的方程((2) 求的最小值( AB,AB32(6) 抛物线上一点A的纵坐标为4,则点A与抛物线焦点的距离为 xy,4 2(7) 过抛物线的焦点作直线交抛物线于点两点,若PxyQxy,,,yx,4,,,,1122,则PQ中点M到抛物线准线的距离为 xx,,6122(8) 过抛物线y=4x的焦点作直线交抛物线于A(x,y),B(x,y)两点,如果x+x=6,112212那么|AB|=22(9) 如果方程y=kx+3表示倾斜角为钝角的直线,那么方程kx+3y=1表示的曲线是(10) 已知抛物线顶点在原点,焦点在x轴上,又知此抛物线上一点A(4,m)到焦点的距离为6. (1)求此抛物线的方程; (2)若此抛物线方程与直线相y,kx,2交于不同的两点A、B,且AB中点横坐标为2,求k的值。

高三数学复习(文科)立体几何知识点、方法总结

高三数学复习(文科)立体几何知识点、方法总结

立体几何知识点整理(文科)一.直线和平面的三种位置关系:1. 线面平行符号表示:2. 线面相交符号表示:3. 线在面内符号表示:二.平行关系:1.线线平行:方法一:用线面平行实现。

mlmll////⇒⎪⎭⎪⎬⎫=⋂⊂βαβα方法二:用面面平行实现。

mlml////⇒⎪⎭⎪⎬⎫=⋂=⋂βγαγβα方法三:用线面垂直实现。

若αα⊥⊥ml,,则ml//。

方法四:用向量方法:若向量l和向量m共线且l、m不重合,则ml//。

2.线面平行:方法一:用线线平行实现。

ααα////llmml⇒⎪⎭⎪⎬⎫⊄⊂方法二:用面面平行实现。

αββα////ll⇒⎭⎬⎫⊂方法三:用平面法向量实现。

若n为平面α的一个法向量,ln⊥且α⊄l,则α//l。

3.面面平行:方法一:用线线平行实现。

βααβ//',','//'//⇒⎪⎪⎭⎪⎪⎬⎫⊂⊂且相交且相交mlmlmmll方法二:用线面平行实现。

βαβαα//,////⇒⎪⎭⎪⎬⎫⊂且相交mlml三.垂直关系:1. 线面垂直:方法一:用线线垂直实现。

αα⊥⇒⎪⎪⎭⎪⎪⎬⎫⊂=⋂⊥⊥lABACAABACABlACl,方法二:用面面垂直实现。

llαββαβα⊥⇒⎪⎭⎪⎬⎫⊂⊥=⋂⊥l l m l m ,2. 面面垂直:方法一:用线面垂直实现。

βαβα⊥⇒⎭⎬⎫⊂⊥l l方法二:计算所成二面角为直角。

3. 线线垂直:方法一:用线面垂直实现。

m l m l ⊥⇒⎭⎬⎫⊂⊥αα方法二:三垂线定理及其逆定理。

PO l OA l PA l αα⊥⎫⎪⊥⇒⊥⎬⎪⊂⎭方法三:用向量方法:若向量l 和向量m 的数量积为0,则m l ⊥。

三.夹角问题。

(一) 异面直线所成的角: (1) 范围:]90,0(︒︒ (2)求法: 方法一:定义法。

步骤1:平移,使它们相交,找到夹角。

步骤2:解三角形求出角。

(常用到余弦定理)余弦定理:abcb a 2cos 222-+=θ(计算结果可能是其补角)方法二:向量法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年暑假高中文科数学专题训练(学生版)第一部分 三角函数类【专题1---三角函数部分】1.已知函数()log (1)30,1a y x a a =-+>≠的图像恒过点P ,若角α的终边经过点P ,则2sin sin 2αα-的值等于 .2.已知tan()3πα-+=,求22sin()3cos()322sin ()4cos ()cos(2)2sin()22ππααππααπαπα--+++--+---+-+;3.设2sin 24,sin 853cos85,2(sin 47sin 66sin 24sin 43)a b c ==-=-,则( )A.a b c >>B.b c a >>C.c b a >>D.b a c >>4.已知1sin cos 2αα=+,且(0,)2πα∈,则cos 2sin()4απα-的值为 ; 5.若02πα<<,02πβ-<<,1cos()43πα+=,cos()423πβ-=,则cos()2βα+=( )AB .CD .6.已知函数()cos ,f x x x x R =-∈,若()1f x ≥,则x 的取值范围为( )A .|,3x k x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎭⎩B .|22,3x k x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎭⎩C .5|,66x k x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎭⎩D .5|22,66x k x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎭⎩7.已知ABC ∆中,4,30a b A ==∠=,则B ∠等于( ) A .30B .30或150C .60D .60或1208.已知函数11()(sin cos )|sin cos |22f x x x x x =+--,则()f x 的值域是( )(A)[1,1]- (B) [2- (C) [1,2- (D)[1,2-- 9.若函数())sin(3)f x x a x a =---是奇函数,则a 等于( )A .()k k Z π∈B .()6k k Z ππ+∈ C .()3k k Z ππ+∈ D. ()3k k Z ππ-∈10.已知函数)0,)(4sin()(>∈+=w R x wx x f π的最小正周期为π,将)(x f y =的图像向左平移||ϕ个单位长度,所得图像关于y 轴对称,则ϕ的一个值是( )A .2π B .38π C .4π D .8π11.关于3sin(2)4y x π=+有以下命题,其中正确命题是( )①若12()()0f x f x ==,则12x x -是π的整数倍;②函数解析式可改为3cos(2)4y x π=-;③函数图象关于8x π=-对称;④函数图象关于点(,0)8π-对称.A.②③B.②④C.①③D.③④12.定义在R 上的偶函数()f x 满足(1)()f x f x +=-,且在[-3,-2]上是减函数, ,αβ是锐角三角形的两个A.(sin )(cos )f f αβ>B.(sin )(cos )f f αβ<C.(sin )(sin )f f αβ>D.(cos )(cos )f f αβ> 13.已知sin cos 2αα-=,α∈(0,π),则tan α= ( )(A) -1 (B) 22-(C) 2 (D) 1 14.若22sin cos x x >,则x 的取值范围是( ) A.3|22,44x k x k k Z ππππ⎧⎫-<<+∈⎨⎬⎭⎩ B. 3|22,44x k x k k Z ππππ⎧⎫+<<+∈⎨⎬⎭⎩C. |,44x k x k k Z ππππ⎧⎫-<<+∈⎨⎬⎭⎩D. 3|,44x k x k k Z ππππ⎧⎫+<<+∈⎨⎬⎭⎩15.已知函数sin()y A x n ωϕ=++的最大值为4,最小值为0,最小正周期为2π,直线3x π=是其图像的一条对称轴,若0,0,02A πωϕ>><<,则函数的解析式 .16.求函数44sin 23sin cos cos y x x x x =+-的最小正周期和最小值,并写出该函数在[0,]π上的单调递增区间.17.函数2()6cos3sin 3(0)2xf x x ωωω=+->在一个周期内的图象如图所示,A 为图象的最高点,B 、C 为图象与x 轴的交点,且ABC ∆为正三角形.(1)求ω的值及函数()f x 的值域; (2)若83()5f x =,且102(,)33x ∈-,求0(1)f x +的值.18.已知函数2()23cos 2cos 1()f x x x x x R =+-∈,求()f x 的值域。

19.已知向量()2sin a x x =,()sin ,2sin b x x =,函数()f x a b =⋅ (1)求)(x f 的单调递增区间; (2)若不等式]2,0[)(π∈≥x m x f 对都成立,求实数m 的最大值.20.已知函数2()2cos sin()sin cos 3f x x x x x x π=+-+.①求函数()f x 的最小正周期;②求()f x 的最小值及取得最小值时相应的x 的值.21.已知函数()sin(),f x A x x R ωϕ=+∈(其中0,0,02A πωϕ>><<)的图象与x 轴的交点中,相邻两个交点之间的距离为2π,且图象上一个最低点为2(,2)3M π-. (1)求()f x 的解析式; (2)当[,]122x ππ∈,求()f x 的值域.22.已知曲线()sin()(0,0)f x A x A ωϕω=+>>上的一个最高点的坐标为(2π,由此点到相邻最低点间的曲线与x 轴交于点3(,0)2π,若,22ππϕ⎛⎫∈- ⎪⎝⎭. (1)试求这条曲线的函数表达式;(2)写出(1)中函数的单调区间.23.已知函数2()sin(2)216f x x cos x π=-+-.(1)求函数()f x 的单调增区间;(2)在ABC ∆中,,,a b c 分别是,,A B C 角的对边,且11,2,()2a b c f A =+==,求ABC ∆的面积.24.平面直角坐标系内有点(1,cos ),(cos ,1),[,]44P x Q x x ππ∈-.(1)求向量OP 和OQ 的夹角θ的余弦值;(2)令()cos f x θ=,求()f x 的最小值.【专题1----解三角形部分】1. 设ABC ∆的内角,,A B C 所对的边分别为,,a b c ,若cos cos sin b C c B a A +=, 则△ABC 的形状为( ) (A) 直角三角形 (B) 锐角三角形 (C) 钝角三角形 (D) 不确定2.在ABC ∆中,内角,,A B C 的对边分别为,,a b c .已知cos 2cos 2cos A C c aB b--=.1)求sin sin CA的值; 2)若1cos ,24B b ==,ABC ∆的面积S .3.在ABC ∆中,角,,A B C 所对应的边为,,a b c .1)若sin()2cos 6A A π+= 求A 的值; 2)若1cos ,33A b c ==,求sin C 的值.4.ABC ∆中,,,a b c 分别是角,,A B C 的对边, S 为ABC ∆的面积,且24sin sin ()cos 21342BB B π++=+. 1)求角B 的度数;2)若4,53a S ==,求b 的值。

5.设锐角ABC ∆的内角,,A B C 的对边分别为,,a b c , 2sin a b A =. 1)求B 的大小; 2)求cos sin A C +的取值范围.6.已知,,A B C 是ABC ∆的三个内角,向量(1,3)m =-,(cos ,sin )n A A =,且1m n ⋅=. 1)求角A ; 2)若221sin 23cos sin BB B+=--,求tan C .7.一艘缉私巡逻艇在小岛A 南偏西38︒方向,距小岛3海里的B 处,发现海里/小时,问巡逻艇需用多大的速度朝什么方向行驶,恰好用0.5小时在C 处截住该走私船? (参考数据5333sin 38,sin 22==)第二部分 函数类【专题1----函数部分】1.已知集合{}1|3||4|9,46,(0,)A x x x B x x t t t⎧⎫=++-≤==+-∈+∞⎨⎬⎩⎭,则集AB = .2. 若函数()12f x x x a =+++的最小值为3,则实数a 的值为( ) A.5或8 B.1-或5 C.1-或4- D.4-或83.若关于x 的不等式|2|3ax -<的解集为51{|}33x x -<<,则a = . 4.已知2(1)lg f x x+=,求()y f x =.5.若函数()f x 满足22()log ||fx x =+2()log f x x=+()f x 的解析式是( )A. 2log xB. 2log x -C. 2x- D. 2x -6. 设函数()f x 在(0,)+∞内可导,且()xxf e x e =+,则(1)f '= .7.已知(3)4,1()log ,1aa x a x f x x x --<⎧=⎨≥⎩是R 上的增函数,那么a 的取值范围是 ;8.对,a b R ∈,记()min{,},()a ab a b b a b <⎧=⎨≥⎩函数1()min{,|1|2}2f x x x =--+的最大值为 .9.函数log (3)1(0,1)a y x a a =+->≠的图象恒过定点A , 若点A 在直线10mx ny ++=上, 其中0mn >,则12m n+的最小值为 . 10.若函数1()log (3)a f x a ax -=+-在(0,3)上单调递增,则a ∈ .11.已知函数2log (23)a y x x =+-,当2x =时, 0y >,则此函数的单调递减区间是( )A. (,3)-∞-B. (1,)+∞C. (,1)-∞-D. (1,)-+∞12.若函数2()2f x x ax =-+与函数()1ag x x =+在区间[]1,2上单调递减,则a 的取值范围是( ) A.(1,0)(0,1)- B.(1,0)(0,1]- C.(0,1) D.(0,1]A .a <b <cB .c <a <bC . b <a <cD . b <c <a14.若奇函数()3sin f x x c =+的定义域是[],a b ,则a b c +-= .15.设()f x 为定义在R 上的奇函数,当0x ≥时,()22xf x x b =++(b 为常数),则(1)f -=( ) A . -3 B . -1 C . 1 D . 316.设函数()()()x xf x x e ae x R -=+∈是偶函数,则实数a = ;17.已知函数222,0()0,0,0x x x f x x x mx x ⎧-+>⎪==⎨⎪+<⎩是奇函数.1)求实数m 的值;2)若函数()y f x =的区间[]1,2a --上单调递增,求实数a 的取值范围.18.求函数2()24,[2,5]f x x mx x =-++∈的最大值()g m 与最小值()h m .19. 定义在R 上的函数()f x 满足()()()2f x y f x f y xy +=++(x y ∈R ,),(1)2f =,则(2)f -等于( ) A .2 B .3 C .6 D .9 20.已知2()3f x x ax a =++-,若当[2,2]x ∈-时, ()0f x ≥恒成立,求a 的取值范围.21.函数ln cos ()22y x x ππ=-<<的图象是( )22.函数x xx xe e y e e --+=-的图像大致为( )xxA . B. C . D .23.已知函数()()22log 1,02,0x x f x x x x ⎧+>=⎨--≤⎩,若函数()()g x f x m =-有三个零点,则实数m 的取值范围 是 . 【专题2----导函数部分】1.设函数()1sin f x x x =-在x x =处取得极值, 则200(1)(1cos 2)x x ++的值为( )A. -1B. 0C. 1D.22.直线1y kx =+与3y x ax b =++曲线相切于(1,3)A , 则b 的值为( ) A. 3 B. -3 C. 5 D. -5 3.如图,函数的图像在P 点处的切线方程是8y x =-+, 若点P 的横坐标是5,则(5)'(5)f f +=( )A. 12B. 1C. 2D.4.设函数()cos(3)(0)f x x ϕϕπ=+<<,若()()f x f x '+为奇函数,则ϕ= ;5.对正整数n ,设曲线)1(x x y n -=在2x =处的切线与y 轴交点的纵坐标为n a ,则数列1n a n ⎧⎫⎨⎬+⎩⎭的前n 项 和的公式是 .6.已知函数()2112,33f x x f x f ⎛⎫⎛⎫''=+-- ⎪ ⎪⎝⎭⎝⎭则的值是 .7.如果函数2()2ln f x x x =-在定义域的一个子区间(1,1)k k -+上不是单调函数,则实数k 的取值范围是( )A. 32k >B. 12k <-C. 1322k -<<D. 312k ≤<8.若21()ln(2)2f x x b x =-++在(1,)-+∞上是减函数,则b 的取值范围是( ) A.[-1,+∞) B.(-1,+∞) C.(-∞,-1] D.(-∞,-1) 9.已知0a >,函数3()f x x ax =-在[1,)+∞上是单调增函数,则a 的最大值是( ) A.0 B.1 C.2 D.310.已知函数322()3(1)1(0)f x kx k x k k =+--+>的单调减区间是(0,4),则k 的值是 ; 11.已知函数()f x 在R 上可导,且2'()2(2)f x x x f =+⋅,则(1)f -与(1)f 的大小关系为( ) A .(1)(1)f f -= B .(1)(1)f f -> C .(1)(1)f f -<D .不确定12. 曲线25+=-xey 在点)3,0(处的切线方程为 .13.已知函数()f x 在R 上满足2(1)2(1)31f x f x x x +=--++,则曲线()y f x =在点(1,(1))f 处的切线方程是( )A .20x y --=B .0x y -=C .320x y +-=D .320x y --= 14.函数322(),f x x ax bx a =+++在1=x 时有极值10,那么b a ,的值分别为_ __. 15.设函数321()32a f x x x bx c =-++,其中0a >,曲线x y f =()在点(0,(0))P f 处的切线方程为1y =,则b = , c = ;16. 如图,修建一条公路需要一段环湖弯曲路段与两条直道为某三次函数图像的一部分,则该函数的解析式为( )(A )x x x y --=2311 (B )x x x y 31123-+= 5 xy=-x+8(C )x x y -=341 (D )x x x y 2214123-+=17.已知c bx ax x f ++=24)(的图象经过点(0,1),且在1x =处的切线方程是2y x =-.1)求)(x f y =的解析式; 2)求)(x f y =的单调递增区间.18.已知函数()()ln ,f x g x a x a R ==∈.若曲线()y f x =与曲线()y g x =相交,且在交点处有相同的切线,求a 的值及该切线的方程. 19.设函数21()ln 2f x x ax bx =--。

相关文档
最新文档