矩阵特征值问题的解法
矩阵的特征值问题求解

矩阵特征值问题求解矩阵在数学和工程领域有着广泛的应用,而研究矩阵的特征值是其中一个重要的问题。
矩阵的特征值对于矩阵的性质和行为具有重要的影响,因此求解矩阵的特征值是一项非常重要的任务。
什么是特征值和特征向量在矩阵理论中,矩阵A的特征值(eigenvalue)是一个数λ,满足方程$A\\mathbf{v} = \\lambda\\mathbf{v}$的向量$\\mathbf{v}$存在且不为零。
其中,$\\mathbf{v}$被称为对应于特征值$\\lambda$的特征向量(eigenvector)。
特征值和特征向量的求解是矩阵理论和线性代数中的重要问题之一。
特征值问题的求解方法1. 特征值分解我们可以通过特征值分解的方法求解矩阵的特征值。
给定一个方阵A,我们可以将其表示为$A=Q\\Lambda Q^{-1}$的形式,其中Q是由A的特征向量所组成的矩阵,Λ是由A的特征值所组成的对角矩阵。
2. 特征多项式特征值问题的另一种求解方法是通过矩阵的特征多项式。
特征多项式是关于矩阵A的一个多项式,它的根就是矩阵A的特征值。
通过求解特征多项式的根,我们可以得到矩阵的特征值。
3. 幂法幂法是一种常用的求解特征值问题的迭代方法。
通过不断的迭代计算$A\\mathbf{v}^{(k)}$,其中$\\mathbf{v}^{(k)}$是第k次迭代得到的特征向量,我们可以逐渐逼近矩阵的特征值和特征向量。
应用和意义矩阵的特征值问题求解在计算机图形学、信号处理、物理学等领域都有着重要的应用和意义。
通过求解矩阵的特征值,我们可以分析矩阵的性质、系统的稳定性以及模式识别等问题,为我们深入理解和应用矩阵提供了重要的工具和方法。
综上所述,矩阵的特征值问题求解是一个具有重要意义和广泛应用的问题,通过不同的方法和技术,我们可以有效地求解矩阵的特征值和特征向量,为我们更好地理解和利用矩阵提供了重要的支持。
矩阵特征值问题的解法要点

1k [a1v1
a2
(
2 1
)k
v2
(
n 1
)k
vn
]
因为
i 1(i 2,3,, n) 1
故当k→∞时, xk→λ1ka1v1.
因此,xk可看成是关于特征值λ1的近似特征向量
有一严重缺点,当|1|>1 (或| 1 |<1时){Vk}中不 为零的分量将随K的增大而无限增大,计算机就可 能出现上溢(或随K的增大而很快出现下溢)
17
算法: 乘幂法
min R( x) x0
min( Ax,
x 2 1
x)
n
max x0
R( x)
max ( Ax, , x 2 1
x)
由于R(x) R( x) ,对于任意 x ,可以取 ,使
得:||x ||2 1 .
证明: 假设 u1, u2 ,, un 为 A 的规范正交特征向量
组,则对任何向量 x Rn ,有 n x iui i 1
||
Ak z0 Ak z0 ||
14
zk
1k | 1k
|
b1v1 || b1v1
b2
(
2 1
)
k
v2
b2
(
2 1
)
k
v2
bn
(
n 1
)k
vn
bn
( n 1
)k
vn
||
当1>0时
|
1k 1k
|
1
zk
b1v1 || b1v1 ||
当1<0时 1k 1 | 1k |
zk
b1v1 || b1v1 ||
8
于是
数值分析-第7章 矩阵特征值问题的数值解法n

7
9 11 12
6.104716
6.026349 6.006637 6.003327
(-0.450275, -0.322058, 1.0)
(-0.445914, -0.318617, 1.0) (-0.444814, -0.31775, 1.0) (-0.444630, -0.317606, 1.0)
其中i为A的特征值,P的各列为相应于i的特征向量。
P -1 AP D
2
n
2
定理7.1.3 ARnn,1, …, n为A的特征值,则
(1)A的迹数等于特征值之和,即 tr ( A) aii i
i 1 i 1
n
n
(2)A的行列式值等于全体特征值之积,即
1 xi(k +1) / xi(k )
i 1,2,, n
可见,当k充分大时, ( k ) 近似于主特征值, ( k +1) 与x ( k )的对应非零分量的比值 x x 近似于主特征值。
在实际计算中需要对计算结果进行规 , 范化。因为当 1 1时,x (k ) 趋于零, 当1 1时, x ( k )的非零分量趋于无穷。 从而计算时会出现下溢 或上溢。
特征值的范围. 解 我们先分别求出各个圆盘区域。 D1 = {z:|z – 1|£0.6};D2 = {z:|z – 3|£0.8} D3 = {z:|z + 1|£1.8};D4 = {z:|z + 4|£0.6}. 易见D2和D4为 弧立圆盘分别 包含A的两个实 特征值.
矩阵的特征值和特征向量的应用

矩阵的特征值和特征向量的应用矩阵的特征值和特征向量是线性代数中非常重要的概念,它们在许多领域中有广泛的应用。
本文将介绍特征值和特征向量的定义和计算方法,并探讨它们在实际问题中的应用。
1. 特征值和特征向量的定义在矩阵A中,如果向量v在进行线性变换后,仍然保持方向不变,只改变了长度,那么v称为A的特征向量,它所对应的标量λ称为A的特征值。
即满足下述等式:Av = λv其中,A是一个n阶方阵,v是一个n维非零向量,λ是一个标量。
2. 计算特征值和特征向量的方法要计算一个矩阵的特征值和特征向量,需要求解线性方程组(A-λI)x = 0,其中I是单位矩阵,x是一个非零向量。
解这个方程组,可以得到λ的值,即特征值,以及对应的特征向量。
3. 特征值与特征向量的性质- 特征值可以是实数或复数,特征向量通常是复数。
- 特征向量可以相互线性组合,但特征向量的数量不超过矩阵的阶数n。
- 特征值的个数等于矩阵的阶数n,不同特征值对应的特征向量线性无关。
4. 特征值和特征向量在几何中的应用矩阵的特征值和特征向量在几何中有重要的应用,可以帮助我们理解线性变换的性质。
例如,在二维空间中,对应于矩阵的特征向量可以表示空间中的特定方向,特征值代表了沿该方向进行线性变换的比例因子。
5. 特征值和特征向量在物理学中的应用在量子力学中,特征值和特征向量与物理量的测量和量子态的演化密切相关。
例如,在求解薛定谔方程时,特征值对应于能量的可能取值,特征向量对应于量子态的波函数。
6. 特征值和特征向量在数据分析中的应用特征值和特征向量在数据分析中也有广泛的应用。
例如,在主成分分析(PCA)中,特征向量可以帮助我们找到数据集中的主要变化方向,特征值可以衡量这些变化的重要性。
另外,在图像处理中,特征向量可以用于图像压缩和特征提取。
总结:矩阵的特征值和特征向量是线性代数中重要的概念,它们在几何、物理学和数据分析等领域都有广泛的应用。
通过计算特征值和特征向量,我们可以更好地理解线性变换的性质,同时也可以应用于解决实际问题。
矩阵特征值的数值解法

矩阵特征值的数值解法矩阵的特征值是在矩阵与其特征向量之间的关系中的数值解。
特征值在各个领域中都有广泛应用,包括物理、工程、金融等。
在解决实际问题时,我们经常需要计算矩阵的特征值,因此研究如何求解矩阵特征值的数值方法是非常重要的。
1. 幂迭代法(Power Iteration)幂迭代法是求解矩阵特征值的一种简单而常用的数值方法。
它的基本思想是通过不断迭代矩阵与向量的乘积,使得向量趋近于该矩阵的一个特征向量。
具体步骤如下:(1)初始化一个非零的初始向量x。
(2)进行迭代计算,即$x^{(k+1)}=Ax^{(k)}/,Ax^{(k)},$。
(3)当向量x的相对误差小于一些预设的精度要求时,停止迭代,此时的x即为矩阵A的一个特征向量。
(4)将x带入特征值的定义式$\frac{Ax}{x}$,计算出特征值。
幂迭代法的优点是简单易实现,计算速度较快,缺点是只能求解特征值模最大的特征向量,而且对于存在特征值模相近的情况,容易收敛到错误的特征值上。
2. QR迭代法(QR Iteration)QR迭代法是一种较为稳定的求解矩阵特征值的数值方法。
它的基本思想是通过不断进行QR分解,使得矩阵的特征值逐渐收敛。
具体步骤如下:(1)将矩阵A进行QR分解,得到正交矩阵Q和上三角矩阵R,令$A_1=RQ$。
(2)将$A_1$再次进行QR分解,得到新的矩阵$A_2=R_1Q_1$。
(3)重复步骤(2),直到得到收敛的矩阵$A_k$,此时$A_k$的对角线上的元素即为矩阵A的特征值。
QR迭代法的优点是对于特征值模相近的情况仍然能够收敛到正确的特征值上。
缺点是每次QR分解都需要消耗大量的计算量,迭代次数较多时计算速度较慢。
3. Jacobi迭代法(Jacobi's Method)Jacobi迭代法是一种通过对称矩阵的对角线元素进行迭代操作,逐步将非对角元素变为零的求解特征值的方法。
具体步骤如下:(1)初始化一个对称矩阵A。
矩阵特征值和特征向量的数值解法

的常用方法是迭代每一步对向量 u
规范化。引入函数 max( u
(k )
) ,它表示取
向 量 u (k ) 中 按模 最大 的分 量,例 如, u (k ) =(2,-5,4)T,则 max( u (k ) )=-5,这 样
u (k ) 的最大分量为 1,即完成了规范化。 (k ) max (u )
7.1 幂法
7.1.1 幂法原理及实用幂法 幂法主要用于求矩阵按模最大的特征值和相应的特征向量。设矩阵,2,..., n) 满足:
| λ1 |>| λ 2 |≥| λ3 |≥ ... ≥| λ n | (7.1.1)
相应的 n 个特征向量 xi (i = 1,2,..., n) 线性无关。上述假设表明, λ1 为非零单 实根, x1 为实特征向量。
k →∞
k →∞
lim v ( k ) =
x1 max( x1 )
事实上,由式(7.1.5)知
v
(k )
=
Ak u ( 0 )
∏m
i =0
k
i
算法 7.1.1 实用幂法 (1) 输入: aij (i, j = 1,2, L n), ui (i = 1,2, L), ε ; (2) k = 1; m0 = max(ui );
7.1 幂法
幂法基本原理是:任取非零实向量 u
(0)
,做迭代
u ( k ) = Au ( k −1) = Ak u ( 0 ) (k = 1,2,...)
则
( 7 .1 . 2 )
λ1 = lim
这里 u j 表示向量 u
(k ) (k )
u (jk +1) u (jk )
k →∞
矩阵特征问题的计算方法

矩阵特征问题的计算方法首先,我们来定义特征值和特征向量。
对于一个n阶方阵A,如果存在一个非零向量X,使得下式成立:AX=λX其中,λ是一个实数常数,称为特征值;X是一个非零向量,称为特征向量。
也可以将上面的等式写成(A-λI)X=0,其中I是n阶单位矩阵。
接下来,我们介绍一些常用的计算特征值和特征向量的方法。
一、特征方程法特征方程法是最常用的求解特征值和特征向量的方法。
对于n阶方阵A,我们可以将特征方程写成:A-λI,=0其中,A-λI,表示A-λI的行列式。
解特征方程即可得到n个特征值λ1,λ2,...,λn。
对于每个特征值λi,我们可以代入(A-λiI)X=0,求解出对应的特征向量Xi。
二、幂法幂法是一种迭代计算特征值和特征向量的方法。
它的基本思想是,假设一个向量X0,然后通过迭代的方式不断计算Xk+1=AXk,直到收敛为止。
此时,Xk就是所求的特征向量,而特征值可以通过计算向量Xk与Xk+1的比值得到。
三、雅可比迭代法雅可比迭代法是一种用于计算对称矩阵特征值和特征向量的方法。
它的基本思想是,通过矩阵的相似变换将对称矩阵转化为对角矩阵。
雅可比迭代法的具体步骤如下:1.初始化一个对称矩阵A,令Q为单位矩阵。
2.找到A的非对角元素中绝对值最大的元素(a,b)。
3.计算旋转矩阵R,使得AR=RD,其中D为对角矩阵,D的对角线元素与A的特征值相等。
4.更新矩阵A=R^TAR,更新矩阵Q=Q×R,重复步骤2和3,直到达到收敛条件。
四、QR分解法QR分解法是一种计算特征值和特征向量的常用方法。
它的基本思想是,将矩阵A分解为QR,其中Q是正交矩阵,R是上三角矩阵。
然后,通过对R进行迭代得到对角矩阵D,D的对角线元素与A的特征值相等。
具体步骤如下:1.初始化一个矩阵A。
2.对A进行QR分解,得到矩阵Q和R。
3.计算新矩阵A=RQ,重复步骤2和3,直到达到收敛条件。
特征值和特征向量在实际应用中具有重要的意义。
矩阵特征值问题的数值计算

矩阵特征值问题的计算方法特征值问题:A V=λV¾直接计算:A的阶数较小,且特征值分离得较好 特征值:det(λI-A)=0,特征向量:(λI-A)V=0¾迭代法:幂法与反幂法¾变换法:雅可比方法与QR方法内容:一、 特征值的估计及其误差问题二、 幂法与反幂法三、 雅可比方法四、 QR方法一、 特征值的估计及其误差问题 (一)特征值的估计结论 1.1:n 阶矩阵()ij n n A a ×=的任何一个特征值必属于复平面上的n 个圆盘:1,||||,1,2,ni ii ij j j i D z z a a i n =≠⎧⎫⎪⎪=−≤=⎨⎬⎪⎪⎩⎭∑"(10.1) 的并集。
结论1.2:若(10.1)中的m个圆盘形成一个连通区域D,且D与其余的n-m个圆盘不相连,则D中恰有A的m个特征值。
(二)特征值的误差问题结论1.3:对于n 阶矩阵()ij n n A a ×=,若存在n 阶非奇异矩阵H ,使得11(,,)n H AH diag λλ−=Λ=", (10.2)则11min ||||||||||||||i p p p i nH H A λλ−≤≤−≤∆ (10.3)其中λ是A A +∆的一个特征值,而(1,,)i i n λ="是A 的特征值,1,2,p =∞。
结论1.4:若n 阶矩阵A 是实对称的,则1min ||||||i p i nA λλ≤≤−≤∆。
(10.4)注:(10.4)表明,当A 是实对称时,由矩阵的微小误差所引起的特征值摄动也是微小的。
但是对于非对称矩阵而言,特别是对条件数很大的矩阵,情况未必如此。
二、 幂法与反幂法(一) 幂法:求实矩阵按模最大的特征值与特征向量假设n 阶实矩阵A 具有n 个线性无关的特征向量,1,iV i n =",则对于任意的0nX R ∈,有 01ni ii X a V ==∑,从而有01111112((/))n nk k k i i i i ii i nk k i i i i A X a A V a V a V a V λλλλ======+∑∑∑.若A 的特征值分布如下:123||||||||n λλλλ>≥≥≥",则有01111()k kk A X a V λλ→∞⎯⎯⎯→为对应的特征向量须注意的是,若1||1λ<,则10kλ→,出现“下溢”,若1||1λ>,则1kλ→∞,出现“上溢”,为避免这些现象的发生,须对0kA X 进行规范化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
给出 A (aij )nn .若有 使得: Ax x, x 0
则称 为矩阵 A 的特征值, x 为相应的特征向量。 特征值 为特征方程的根。
det(A I ) 0
2
与矩阵想干的一些重要结果: eigenvalueofmarix.doc
4
第二圆盘定理
设 A 为n 阶实方阵,如果 A 的 k 个Gerschgorin
圆盘与其他圆盘不相连,则恰好有 A的 k 个特征 值落在该 k 个圆盘的并集之中,即:
k
n
S
j 1
Di
j
,
T
D jk 1 i j
{i1,, ik , ik1,, in }为{1,2,, n}的一个重新排
列, S T , 则 S 中含有 A 的 k 个特征值.
||
Ak z0 Ak z0 ||
14
zk
1k | 1k
|
b1v1 || b1v1
b2
(
2 1
)
k
v2
b2
(
2 1
)
k
v2
bn
(
n 1
)k
vn
bn
( n 1
)k
vn
||
当1>0时
|
1k 1k
|
1
zk
b1v1 || b1v1 ||
当1<0时 1k 1 | 1k |
zk
b1v1 || b1v1 ||
3
特征值的估计与扰动问题
特征值的估计
Di ( A) {z c :| z aii | | aij | i }, i 1,2,, n ji
称之为Gerschgorin圆盘(盖尔圆). Gerschgorin 圆盘定理
设A (aij )nn为n阶实方阵,则 A 的任一特征值必落 在的某个Gerschgorin圆盘之中.
8
于是
n
n
R(x)
( Ax, x) (x, x)
( ii ui , i ui )
i 1
i 1
n
n
( i ui , i ui )
i 1
i 1
n
n
i
2 i
/
2 i
,, x) (x, x)
n
,特别地,若取
x
u1
,这时
从而
( Au1 , u1 ) (u1 , u1 )
(1u1 , u1 )
min R( x) x0
min( Ax,
x 2 1
x)
n
max x0
R( x)
max ( Ax, , x 2 1
x)
由于R(x) R( x) ,对于任意 x ,可以取 ,使
得:||x ||2 1 .
证明: 假设 u1, u2 ,, un 为 A 的规范正交特征向量
组,则对任何向量 x Rn ,有 n x iui i 1
A 为 n 阶实对称矩阵,则其特征值皆为实数, 记做: 1 2 n 并且存在规范正交特征向量系,满足:
Aui iui , i 1,2,, n , (ui , u j ) ij , i, j 1,2,, n
7
定理 设 A 为 n 阶实对称矩阵,其特征值
为 1 2 n ,则
1
1
1
min x0
R(
x).同理可证
n
max R( x) X 0
9
按模最大特征值和特征向量的乘幂法
• 设A是n阶矩阵,其n个特征值按模从大到小 排序为
1 2 3 n
又假设关于λ1,λ2,…,λn的特征向量 v1,v2,…,vn线性无关.
10
任意取定初始向量x0
x0 a1v1 a2v2 anvn (a1 0)
17
算法: 乘幂法
12
在实际计算时,须按规范法计算,每步先 对向量xk进行“规范化”。迭代格式改 为
zk
xk xk
xk 1 Azk , k 0,1,
13
对任意给定的初始向量x0
z0
x0 x0
b1v1 b2v2
bnvn
x1
Az0 , z1
x1 || x1 ||
||
Az0 Az0 ||
类似地
zk
建立迭代公式 : xk Axk1
x1 Ax0 a1Av1 a2 Av2 an Avn
a11v1 a22v2 annvn
x2 Ax1 A2 x0 a112v1 a222v2 ann2vn
…………..
11
xk Axk1 Ak x0 a11k v1 a22k v2 annkvn
1k [a1v1
a2
(
2 1
)k
v2
(
n 1
)k
vn
]
因为
i 1(i 2,3,, n) 1
故当k→∞时, xk→λ1ka1v1.
因此,xk可看成是关于特征值λ1的近似特征向量
有一严重缺点,当|1|>1 (或| 1 |<1时){Vk}中不 为零的分量将随K的增大而无限增大,计算机就可 能出现上溢(或随K的增大而很快出现下溢)
0
)
敛到1。
每个不同的特征根
注: 结论对重根 1 = 2 = … = r 成立。
只对应一个Jordan 块
(k)
1k
r
i xi
i1
n i
i r 1
i 1
k
xi
1k
r
i xi
i 1
若有 1 = 2 ,则此法不收敛。
(
(
0
)
,
xm
)
任0取的1初第始一0,向个故量x所m时,求,同得因时之为得不(到k )知不的道一特定x征1 ,是根所是x1以,m不而。能是保使证得
特别地:孤立圆盘仅含有一个特征值.
5
例 1 设矩阵
4 1 0 A 1 0 1
1 1 4
试讨论A的特征值的分布.
解 由A确定的3个圆盘分别为
R1=-41, R2=2, R3=+42
所以
y
315 -2<22 -63<-2
-6 -4 -2 0 2 3 4 5 x
实际上, 1=4.20308 , 2=-0.442931 , 3=-3.76010 6
15
按模最大特征值λ1及其相应的特征向量v1 的乘幂法的计算公式:
zk
xk xk
xk 1 Azk
k 1 1
zkT xk 1 zkT zk
z
T k
Azk
z
T k
zk
,
k 0,1,
16
定理
且|1| 出发,
>迭|设代2| A…(kR) |nAnnk|为。(0) 非则收亏从敛损任到矩意主阵非特,零征其向向主量量特x(01征) ,(满根(足(k1)1)1为i /((实v((k0)根)),ix收1,)
关于实对称矩阵的极大—极小定理
定义 设 A 为 n 阶实矩阵,x ( x1 ,, xn )T 0, x Rn .
我们称
R(x)
( Ax, x) (x, x)
xT Ax xT x
n i 1
n
aij xi x j
j 1
/
n i 1
xi2
为矩阵 A 关于向量 x 的Rayleigh(雷利)商.