初中数学 2013年北师大版 3.3 轴对称与坐标变化
北师大版数学八年级上册3《轴对称与坐标变化》说课稿3
北师大版数学八年级上册3《轴对称与坐标变化》说课稿3一. 教材分析北师大版数学八年级上册3《轴对称与坐标变化》这一节的内容是在学生已经学习了平面直角坐标系、坐标与图形的性质等知识的基础上进行教授的。
本节课主要介绍了轴对称的概念,以及坐标变化中的平移和旋转。
通过本节课的学习,使学生能够理解轴对称的性质,掌握坐标变化的方法,提高学生的空间想象能力和解决问题的能力。
二. 学情分析在进入八年级的学生中,大部分学生对平面直角坐标系和坐标与图形的性质已经有了初步的认识和了解。
但是,对于轴对称的概念,以及坐标变化中的平移和旋转,部分学生可能还存在着一定的困惑。
因此,在教学过程中,需要针对学生的实际情况,进行有针对性的教学。
三. 说教学目标1.知识与技能目标:使学生理解轴对称的概念,掌握坐标变化的方法,提高学生的空间想象能力和解决问题的能力。
2.过程与方法目标:通过观察、操作、思考、交流等过程,培养学生的动手操作能力和团队协作能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的自主学习能力,使学生感受数学与生活实际的联系。
四. 说教学重难点1.教学重点:轴对称的概念,坐标变化的方法。
2.教学难点:轴对称的性质,坐标变化的计算。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、合作学习法等教学方法,引导学生主动探究,提高学生的学习效果。
2.教学手段:利用多媒体课件、教具模型等教学手段,直观展示轴对称和坐标变化的过程,帮助学生更好地理解和掌握知识。
六. 说教学过程1.导入:通过展示一些生活中的对称现象,引导学生思考对称的概念,从而引出轴对称的概念。
2.探究:引导学生通过观察、操作、思考、交流等方式,探索轴对称的性质,以及坐标变化的方法。
3.讲解:对轴对称的性质和坐标变化的计算进行详细的讲解,让学生深刻理解并掌握知识。
4.练习:设计一些具有代表性的练习题,让学生进行练习,巩固所学知识。
5.总结:对本节课的主要内容进行总结,加深学生对知识的理解。
3.3 轴对称与坐标变化(课件)北师大版数学八年级上册
所以根据关于坐标轴对称的点的坐标特征
可得A′(-3,-1),B′(-1,0),C′(-2,1),A″(3,1),
B″(1,0),C″(2,-1).
1-1.如图,在平面直角坐标系中,每个小正方形的边 知1-练 长均为 1.
(1)点 A 在第__四__ 象限, 它的坐标是_(3_,__-__2_)__ ;
(1)若点A,B关于x轴对称,求a,b的值; 解:因为点A,B关于x轴对称, 所以2a+b=2b-1,5+a-a+b=0, 解得a=-3,b=-5.
知2-练
(2)若点A,B关于y轴对称,求(4a+4b)2 025 的值. 解:因为点A,B关于y轴对称, 所以2a+b+2b-1=0,5+a=-a+b,
知1-讲
图示
知1-讲
特别提醒 当原图上所有点的横坐标不变,纵坐标乘
-1后,得到新图形上对应点的坐标,则新图形 与原图形上的每一组对应点都关于 x 轴对称, 所以新图形与原图形关于x轴对称;同理可得新 图形与原图形关于 y 轴对称的变化方式 .
知1-练
例1 [母题 教材P69习题T2 ]△ABC在平面直角坐标系中 的位置如图3-3-1所示,已知A,B,C三点在格点上, 请分别画出与△ABC关于x轴和y轴对称的图形,并 写出对称图形顶点的坐标.
A.1
B.-1
C.32 025
D.0
课堂小结
轴对称与坐标变化
画轴对称图形
对称轴 坐标轴
关键
关于坐标轴对称 坐标 变化
作对称点
关于x 轴对称
关于y 轴对称
称,横不变,纵相反;纵对称,纵不变,横相反. ◆关于坐标轴对称的点的坐标只有符号不同,其绝
对值相同.
知2-练
例2 已知点A(2a+b,5+a),B(2b-1,-a+b). (1)若点A,B关于x轴对称,求a,b的值; (2)若点A,B关于y轴对称,求(4a+4b)2 025 的值.
北师大版八年级上册数学 3.3 轴对称与坐标变化 优秀教案
北师大版八年级上册数学 3.3 轴对称与坐标变化优秀教案北师大版八年级上册数学3.3轴对称与坐标变化优秀教案3.3轴对称性和坐标变化写出对称点的坐标.1.探索图形坐标变化的过程;(要点)2。
理解并掌握图形坐标变化与图形轴对称性之间的关系。
(难点)分别作点a,b,c关于x轴、y解析:轴的对称点就足够了解:如图所示.点A1(1,4)、B1(3,1)、A2(-1,-4)、B2(-3,-1)和C相对于x轴和y轴对称点的坐标保持不变方法总结:作对称图形应先确定关键点的对称点,再顺次连接各点即可作图.探索点3:探索平面直角坐标系中的规律如图,已知a1(1,0),a2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),。
,那么点a2022的坐标是___一、情境导入在我们的生活中,对称是一种非常普遍的现象。
将图中所示轴对称的黄鹤楼图形置于平面直角坐标系中,其对称轴为坐标轴。
那么,图形上的对称坐标之间的关系是什么?试试看二、合作探究探测点1:关于x轴和y轴对称的点的坐标点a(2a-3,b)与点a′(4,a+2)关于X轴对称,找到a,B解析:此题应根据关于x轴对称的两个点的坐标的特点:横坐标相同,纵坐标互为相反数,得2a-3与4相等,b与a+2互为相反数.解决方案:从点a(2a-3,b)和点a'(4,a+2)关于x轴的对称性,我们知道2a-3=4,a+2=-b.711所以a=,b=-.22方法概述:在平面直角坐标系中,关于坐标轴对称的点的坐标关系:若a(x,y)与b(m,n)关于x轴对称,则有x=m,y=-n;若a(x,y)与b(m,n)关于y轴对称,则有x=-m,y=n.探索点2:绘图-轴对称变换如下图所示,△abc三个顶点的坐标签分别是a(-1,4)、B(-3,1)和C(0,0)。
使…对称△ ABC关于x轴和y轴解析:从各点的位置可以发现a1(1,0),a2(1,1),a3(-1,1),a4(-1,-1),a5(2,-1),a6(2,2),a7(-2,2),a8(-2,-2),a9(3,-2),a10(3,3),a11(-3,3),a12(-3,-3),….仔细观察每四个点的横、纵坐标,发现存在着一定规律性.因为2021=503×4+3,所以点a2021在第二象限,纵坐标和横坐标互为相反数,所以a2021的坐标为(-504,504).故填(-504,504).方法小结:解决这类问题的常用方法是通过对几个特例的研究总结出一般规律,然后根据一般规律探索特例三、板书设计。
八年级数学北师大版上册 第3章《3.3 轴对称与坐标变化》教学设计 教案
课题轴对称与坐标变化课型新课课时数 1 主备教师执教教师教学目标1、在同一直角坐标系中,感受图形上点的坐标变化与图形的轴对称变换之间的关系.2、经历图形坐标变化与图形轴对称之间关系的探索过程,发展形象思维能力和数形结合意识。
教学重点难点教学重点:经历图形坐标变化与图形轴对称之间关系的探索过程,明确图形坐标变化与图形轴对称之间关系。
教学难点:由坐标的变化探索新旧图形之间的变化探索过程,发展形象思维能力和数形结合意识。
教学准备三角板、课件教学过程个性化修改一、引入新课1.什么叫轴对称图形?沿着某一直线对折,直线两旁的部分能够完全重合的图形就是轴对称图形;这条直线称为对称轴2.如何在平面直角坐标系中确定点P的位置?二、自学导航8分钟,完成教材68----69页的内容,并回答以下问题。
1、认真阅读例题,你可以做出怎样的总结?2、关于坐标轴对称的点的坐标有什么特点?3、完成课本P69页第2题。
三、精讲1、△ABC与△A1B1C1在如图所示的直角坐标系中,仔细观察,完成下列各题:①△ABC与△A1B1C1有怎样的位置关系?△ABC 与△A 1B 1C 1关于x 轴对称②关于x 轴对称的两点,它们的横坐标 ,纵坐标 ;2.如右图所示的平面直角坐标系中,第一、二象限内各有一面小旗.① 两面小旗之间有怎样的位置关系?关于y 轴成轴对称。
② 关于y 轴对称的两点,它们的横坐标 ,纵坐标 。
反过来,坐标具有这种关系的点有怎样的位置关系?四、课堂检测1.平面直角坐标系中,点P (2,3)关于x 轴对称的点的坐标为( ).2. 已知点A (a ,1)与点A 1(5,b )关于y 轴对称,则a= ,b= . 讨论:点P (2,-3)到x 轴、y 轴和坐标原点的距离分别多少? 点M (-3,4)到x 轴、y 轴和坐标原点的距离分别多少? 点P(a,b)与坐标原点的距离22b a3. 已知点M (m ,-5). ①点M 到x 轴的距离是____;②若点M 到y 轴的距离是4;那么 m 为____.4. 点P 到x 轴的距离是2.5;到y 轴的距离是4.5. 求点P 的坐标.五、拓展提升在x 轴上有一条河,现准备在河流边上建一个抽水站P ,使得抽。
北师大版八年级数学上册:3.3《轴对称与坐标变化》教学设计
北师大版八年级数学上册:3.3《轴对称与坐标变化》教学设计一. 教材分析北师大版八年级数学上册3.3《轴对称与坐标变化》是学生在学习了平面直角坐标系、坐标与图形的性质等知识的基础上,进一步研究图形的轴对称性质以及坐标变化规律。
本节内容通过具体实例让学生体会坐标变化与图形轴对称之间的关系,提高学生的空间想象能力和抽象思维能力。
二. 学情分析学生在七年级已经学习了平面直角坐标系的相关知识,对坐标与图形的性质有了初步了解。
但轴对称与坐标变化的知识较为抽象,需要通过具体实例和操作活动,让学生逐步理解和掌握。
三. 教学目标1.理解轴对称的定义,掌握坐标变化与轴对称之间的关系。
2.能够运用坐标变化规律,解决实际问题。
3.培养学生的空间想象能力和抽象思维能力。
四. 教学重难点1.教学重点:坐标变化与轴对称之间的关系。
2.教学难点:如何运用坐标变化规律解决实际问题。
五. 教学方法采用问题驱动法、案例分析法、合作学习法等,引导学生通过观察、思考、操作、交流等活动,理解坐标变化与轴对称的内在联系。
六. 教学准备1.准备相关的多媒体教学课件和教学素材。
2.准备坐标纸、剪刀、胶水等实验材料。
3.设计好课堂练习题和课后作业。
七. 教学过程1.导入(5分钟)通过一个简单的实例,如翻转一张纸片,让学生观察和描述其轴对称性质。
引导学生思考:如何用坐标来表示轴对称变换?2.呈现(10分钟)利用多媒体课件,展示一系列轴对称变换的图形,让学生观察和分析坐标变化规律。
引导学生发现:轴对称变换不改变图形的大小和形状,只改变图形的位置。
3.操练(10分钟)让学生分组进行实验,使用坐标纸、剪刀、胶水等材料,制作并观察轴对称变换的图形。
要求学生用自己的语言描述坐标变化规律。
4.巩固(10分钟)课堂练习:让学生独立完成教材中的相关练习题,巩固轴对称与坐标变化的知识。
教师巡回指导,解答学生的疑问。
5.拓展(10分钟)让学生思考:轴对称变换在实际生活中有哪些应用?引导学生举例说明,如建筑设计、艺术创作等。
北师大版八年级数学上册:3.3《轴对称与坐标变化》教案
北师大版八年级数学上册:3.3《轴对称与坐标变化》教案一. 教材分析《轴对称与坐标变化》这一节的内容,主要让学生了解轴对称的概念,以及如何利用坐标来表示轴对称图形。
通过学习,学生能理解轴对称图形的性质,并能够运用坐标变化来解决一些实际问题。
二. 学情分析八年级的学生已经学习了平面几何的基础知识,对图形的性质和坐标系有一定的了解。
但是,对于轴对称的概念和坐标变化的应用,可能还存在一定的困难。
因此,在教学过程中,需要引导学生通过观察、操作、思考,自主探索轴对称的性质和坐标变化的应用。
三. 教学目标1.了解轴对称的概念,理解轴对称图形的性质。
2.学会利用坐标来表示轴对称图形,并能够运用坐标变化解决实际问题。
3.培养学生的观察能力、操作能力和思维能力。
四. 教学重难点1.轴对称的概念和性质。
2.坐标变化的应用。
五. 教学方法采用问题驱动的教学方法,引导学生通过观察、操作、思考,自主探索轴对称的性质和坐标变化的应用。
同时,运用小组合作学习的方式,培养学生的团队协作能力和沟通能力。
六. 教学准备1.准备一些轴对称的图形,如正方形、矩形、三角形等。
2.准备坐标纸,以便学生进行坐标操作。
3.准备一些实际问题,如寻找平面直角坐标系中的对称点等。
七. 教学过程1.导入(5分钟)利用多媒体展示一些轴对称的图形,如剪刀、飞机等,引导学生观察这些图形的特点,引出轴对称的概念。
2.呈现(10分钟)让学生拿出准备好的轴对称图形,观察并描述它们的特点。
引导学生发现轴对称图形的性质,如对称轴两侧的图形完全相同,对称轴是图形的中心线等。
3.操练(10分钟)让学生在坐标纸上画出一些轴对称图形,并标出对称轴。
然后,让学生将对称轴沿坐标轴移动,观察图形的变化。
通过操作,让学生理解坐标变化对轴对称图形的影响。
4.巩固(10分钟)让学生解决一些实际问题,如寻找平面直角坐标系中的对称点等。
通过解决问题,巩固学生对轴对称和坐标变化的理解。
5.拓展(10分钟)让学生思考:轴对称图形在现实生活中的应用。
北师大数学八年级上册第二章3.3轴对称与坐标变化
3.3轴对称与坐标变化知识精讲图形的平移1.在平面直角坐标系中,图形上各点的纵坐标不变,横坐标分别加上(或减去)一个正数a,则图形沿水平方向向右(或向左)平移a个单位长度,图形形状、大小不变.2.在平面直角坐标系中,图形上各点的横坐标不变,纵坐标分别加上(或减去)一个正数b,则图形向上(或向下)平移b个单位长度,图形形状、大小不变.横坐标(x)纵坐标(y)左右向左移动n个单位长度(n>0),横坐标变为x n-不变向右移动n个单位长度(n>0),横坐标变为x n+上下不变向上移动n个单位长度(n>0),纵坐标变为x n+向下移动n个单位长度(n>0),纵坐标变为x n-割分割,把图形分割成几部分容易求解的图形,分别求解,然后相加即可.补补齐,把图形补成一个容易求解的图形,然后再减去补上的那些部分.三点剖析一.考点:用坐标表示地理位置,坐标系内图形的变换,计算坐标系内图形的面积,坐标找规律.二.重难点:坐标系内图形的变换,计算坐标系内图形的面积,坐标找规律.三.易错点:1.平行移动最关键的是掌握平移的方向与坐标变化之间的关系,可以用口诀形式表示:横坐标,右移加,左移减;纵坐标,上移加,下移减;2.求面积时,优先考虑补的方法,通常补成一个长方形或者梯形,之后再相减求解即可;3.计算坐标系内图形的面积时,平行或垂直于坐标轴直线上的两个点之间的距离,用横坐标之差的绝对值或者纵坐标之差的绝对值表示.用坐标表示地理位置例题1、多多和爸爸、妈妈周末到动物园游玩,回到家后,她利用平面直角坐标系画出了动物园的景区地图,如图所示.可是她忘记了在图中标出原点和x轴、y轴.只知道马场的坐标为(-1,-2),你能帮她建立平面直角坐标系并求出其他各景点的坐标?(图中每个小正方形的边长为1)【答案】两栖动物(6,2);狮子(-2,6);飞禽(5,5)【解析】如图所示:南门(2,1),两栖动物(6,2),狮子(-2,6),飞禽(5,5).随练1、如图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(-6,-3)时,表示左安门的点的坐标为(5,-6);②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(-12,-6)时,表示左安门的点的坐标为(10,-12);③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(-11,-5)时,表示左安门的点的坐标为(11,-11);④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(-16.5,-7.5)时,表示左安门的点的坐标为(16.5,-16.5).上述结论中,所有正确结论的序号是()A.①②③B.②③④C.①④D.①②③④【答案】D【解析】①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(-6,-3)时,表示左安门的点的坐标为(5,-6),此结论正确;②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(-12,-6)时,表示左安门的点的坐标为(10,-12),此结论正确;③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(-5,-2)时,表示左安门的点的坐标为(11,-11),此结论正确;④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(-16.5,-7.5)时,表示左安门的点的坐标为(16.5,-16.5),此结论正确.坐标系内图形的变换例题1、把点P(1,1)向右平移3个单位长度,再向上平移2个单位长度后的坐标为________。
八年级数学上册第三章位置与坐标3.3轴对称与坐标变化说课稿北师大版
《轴对称与坐标变化》说课稿我说课的内容是北师大版八年级上册第三章第三节《轴对称与坐标变化》。
教材分析:教材的地位与作用:这节课的内容体现了轴对称在平面直角坐标系中的应用,从数量关系的角度刻画轴对称的内容。
教材从观察和实验入手,归纳得出坐标平面上一个点关于x轴或y轴对称的点的坐标的对应关系,并进一步探讨了如何利用这种关系在平面直角坐标系中作出一个图形关于x轴或y轴对称的图形。
二、学法指导1、教学方法:根据本节教材内容和编排特点,为了更有效地突出重点,突破难点,这节课我主要采用了自主探究,发现式教学方法,体现教学方法的科学性和时效性.2、学法:根据学法指导自主性和差异性原则,让学生在“观察-—操作——概括——检验—-应用”的学习过程中,使学生掌握知识。
在教学过程中应注意:(1)注重学生的合作和交流活动,在活动中促进知识的学习,并进一步发展学生的合作交流意识。
(2)注重学生动手能力的培养,在动手的过程中体会轴对称变换,并且对上一节课的知识作进一步理解.结合教材及学生的情况,我制订了如下的教学目标:【知识目标】:1、在同一直角坐标系中,感受图形上点的坐标变化与图形的轴对称变换之间的关系.2、经历图形坐标变化与图形轴对称之间关系的探索过程,发展形象思维能力和数形结合意识。
【能力目标】:1.经历探究物体与图形的形状、大小、位置关系和变换的过程,掌握空间与图形的基础知识和基本技能,培养学生的探索能力。
【情感目标】1.丰富对现实空间及图形的认识,建立初步的空间观念,发展形象思维。
2.通过有趣的图形的研究,激发学生对数学学习的好奇心与求知欲,能积极参与数学学习活动。
3.通过“坐标与轴对称",让学生体验数学活动充满着探索与创造。
教学重点:经历图形坐标变化与图形轴对称之间关系的探索过程,明确图形坐标变化与图形轴对称之间关系。
根据对教材内容的分析,根据八年级学生的认知规律和心理特点,我设计如下的教学过程。
1。
3.3《轴对称与坐标变化》北师大版八年级数学上册精品教案
第三章位置与坐标3 轴对称与坐标变化一、教学目标1.在同一直角坐标系中,感受图形上点的坐标变化与图形的轴对称变换之间的关系.2.经历图形坐标变化与图形轴对称之间关系的探索过程,发展形象思维能力和数形结合思想.3.通过“坐标与轴对称”,让学生体验数学活动充满着探索与创造.4.通过有趣的图形的研究,激发学生对数学学习的好奇心与求知欲,能积极参与数学学习活动.二、教学重难点重点:在同一直角坐标系中,感受图形上点的坐标变化与图形的轴对称变换之间的关系.难点:经历图形坐标变化与图形轴对称之间关系的探索过程,发展形象思维能力和数形结合思想.三、教学用具电脑、多媒体、课件、教学用具等四、教学过程设计教学环节教师活动学生活动设计意图环节一创设情境【复习回顾】问题1:什么叫轴对称?教师活动:教师演示对应的课件,学生观看思考后回答.预设:如果两个平面图形沿一直线折叠后能够完全重合,那么称这两个图形成轴对称,这条直线叫做这两个图形的对称轴.问题2:如何在平面直角坐标系中确定点P的位置?预设:a称为点P的横坐标,b称为点P的纵学生回忆并积极回答.通过回忆已学知识,一方面加深记忆,另一方面为后面学习新知识坐标.做铺垫.环节二探究新知【探究】教师活动:通过问题1、2,引导学生探究两个点关于x、y轴对称的规律.探究过程由浅到深,循序渐进,符合学生的认知过程.情境1:问题1 如右图所示的平面直角坐标系中,第一、二象限内各有一面小旗.(1)两面小旗之间有怎样的位置关系?预设:关于y轴成轴对称(2)请在下表中填入点A与A1、点B与B1、点C与C1、点D与D1的坐标,并思考:这些对应点的坐标之间有什么关系?预设:找到对应点,列表、画图:对应点的横坐标互为相反数,对应点的纵观察两面小旗,尝试找到对应点的坐标,并交流、讨论对应坐标之间的特征.通过呈现两面关于y轴对称的小旗,问题1引领学生思考关于y轴对称的点的坐标的特征.(3)如果点P(m,n)在△ABC内,那么它在△A1B1C1内的对应点P1的坐标是_______ .预设:P与P1横坐标互为相反数,纵坐标相同,则P1(-m,n).情境2:△ABC与△A1B1C1在如图所示的直角坐标系中,仔细观察,完成下列各题:(1)△ABC与△A1B1C1有怎样的位置关系?预设:关于x轴成轴对称(2)请在下表中填入点A与A1、点B与B1、点C与C1的坐标,并思考:这些对应点的坐标之间有什么关系?预设:找到对应点,列表:对应点的横坐标相同,对应点的纵坐标互观察两个图形,尝试找到对应点的坐标,并交流、讨论对应坐标之间的特征.通过呈现两个关于x轴对称的三角形问题2,进一步研究关于x轴对称的点的坐标的特征.(3)如果点P(m,n)在△ABC内,那么它在△A1B1C1内的对应点P1的坐标是_______ .预设:P与P1横坐标互为相反数,纵坐标相同,则P1(-m,n).【议一议】通过以上学习,你知道关于x轴对称的两个点的坐标之间的关系吗?关于y轴对称的两个点的坐标之间的关系呢?预设:关于x轴对称的两个点的坐标,横坐标相同,纵坐标互为相反数;关于y轴对称的两个点的坐标,横坐标互为相反数,纵坐标相同.友情提醒:关于横轴对称的点,横坐标相同;关于纵轴对称的点,纵坐标相同.交流讨论,与教师一起归纳目的是引导学生讨论关于坐标轴对称的点的坐标之间的关系,也可以更全面地认识轴对称与坐标变化之间的关系.环节三应用新知【典型例题】教师提出问题,学生先独立思考,解答.然后再小组交流探讨,如遇到有困难的学生适当点拨,最终教师展示答题过程.例(1)在平面直角坐标系中依次连接下列各点:(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0) ,(4,-2),(0,0),你得到了一个怎样的图案?(2)将所得图案的各个顶点的纵坐标保持不变,横坐标分别乘-1,依次连接这些点,那么图形会怎么变化?分析:(1)坐标轴上依次描出各点,顺次连接即可;(2)找出变化后的对应顶点的坐标,再顺次连接所的图形与原图形进行对比.解:(1)它像一条鱼.(2)顶点坐标的变化两个图案关于y轴对称.教师动画演示两个图案关于y轴对称,达到强化巩固的目的.【做一做】明确例题的做法,尝试独立解答,并交流讨论通过解决例题与做一做,明确图形的变化实际上是图形上点的坐标变化.(1)在平面直角坐标系中依次连接下列各点:(5,2),(4,4),(6,3),(7,6),(8,3),(10,2),(7,1) ,(5,2),你又能得到了一个怎样的图案?(2)将所得图案的各个顶点的横坐标保持不变,纵坐标分别乘-1,依次连接这些点,那么图形会怎么变化?解:(1)它像一片树叶.(2)顶点坐标的变化两个图案关于x轴对称.教师动画演示两个图案关于x轴对称,达到强化巩固的目的.【归纳】仿照例题的做法,尝试独立解答,并交流讨论(1)关于y轴对称的两个图形上点的坐标特征:横坐标互为相反数,纵坐标相同;(2)关于x轴对称的两个图形上点的坐标特征:横坐标相同,纵坐标互为相反数.与教师一起归纳总结总结归纳两个图形上点的坐标特征.环节四巩固新知教师给出练习,随时观察学生完成情况并相应指导,最后给出答案,根据学生完成情况适当分析讲解.1.平面直角坐标系中,点P(4,5)关于x轴对称的点的坐标为__________.2. 已知点A(a,2)与点A1(3,b)关于y轴对称,则a=__________,b=__________.3.如图,利用关于坐标轴对称的点的坐标的特点,请你试着分别作出△ABC关于x轴和y轴对称的图形.答案:1. (4,-5)2.-3,23.如下图:自主完成练习,然后进行集体交流、评价.通过课堂练习及时巩固本节课所学内容,并考查学生的知识应用能力,培养独立完成练习的习惯.红色图形是关于x轴对称的,绿色图形是关于y轴对称的.环节五课堂小结思维导图的形式呈现本节课的主要内容:学生尝试回顾本节课所讲的内容通过小结总结回顾本节课学习内容,帮助学生归纳、巩固所学知识.环节六布置作业教科书第70页习题3.5 第1、3题.学生课后自主完成.通过课后作业,教师能及时了解学生对本节课知识的掌握情况,以便对教学进度和方法进行适当的调整.。
北师大版数学八年级上册3.3轴对称与坐标变化优秀教学案例
二、教学目标
(一)知识与技能
1.理解轴对称的概念,掌握轴对称图形的基本性质,如对称轴、对称点等。
(二)问题导向
在教学过程中,教师将采用问题导向法,引导学生提出问题、分析问题、解决问题。例如,在学习轴对称图形的坐标变化规律时,教师可以提出以下问题:“轴对称图形的坐标是如何变化的?”“你能找出轴对称变换中坐标的规律吗?”通过这些问题,激发学生的思考,促使他们在探究中掌握知识。
(三)小组合作
小组合作是本章节教学的重要环节。教师将根据学生的实际情况,合理分组,确保每个学生都能在小组中发挥自己的优势。在合作学习过程中,教师引导学生相互讨论、交流,共同完成学习任务。例如,在学习轴对称图形的坐标变化规律时,小组成员可以共同分析、总结规律,然后向全班同学分享他们的发现。
2.学生分小组讨论,共同探讨解决问题的方法。
3.各小组分享讨论成果,教师进行点评和指导。
(四)总结归纳
1.教师引导学生回顾本节课所学内容,总结轴对称与坐标变化的知识点。
2.学生用自己的话复述轴对称图形的坐标变化规律,加深对知识的理解。
3.教师强调本节课的重点和难点,提醒学生注意在实际应用中灵活运用。
三、教学策略
(一)情景创设
为了让学生更好地理解轴对称与坐标变化的概念,教师将从生活实际出发,创设丰富多样的教学情景。例如,引入一些具有轴对称特点的建筑物、图案等,让学生在观察中感知轴对称的美。同时,通过多媒体展示一些动态的轴对称变换过程,激发学生的学习兴趣。此外,还可以设计一些实际操作活动,如让学生制作轴对称的剪纸作品,使他们在动手操作中加深对轴对称的理解。
八年级数学上册3.3轴对称与坐标变化说课稿 (新版北师大版)
八年级数学上册3.3轴对称与坐标变化说课稿(新版北师大版)一. 教材分析《八年级数学上册3.3轴对称与坐标变化》这一节的内容,主要介绍了轴对称的概念,以及如何利用坐标来表示轴对称的变换。
这部分内容是学生在学习了平面几何和坐标系的基础上,进一步深化对几何变换的理解,为后续学习函数、解析几何等内容打下基础。
教材通过具体的实例,引导学生认识轴对称,并学会用坐标来表示对称变换。
同时,通过练习题的设置,让学生在实际操作中掌握坐标变换的规律,提高解决问题的能力。
二. 学情分析学生在学习这一节内容时,已经有了一定的几何基础,对平面几何的概念和性质有所了解。
同时,学生也学习了坐标系,能够熟练地用坐标表示点的位置。
但是,学生对于轴对称的概念可能还比较陌生,对于如何利用坐标来表示轴对称的变换,可能还存在一定的困难。
三. 说教学目标1.知识与技能目标:学生能够理解轴对称的概念,掌握坐标变换的规律,能够用坐标来表示轴对称的变换。
2.过程与方法目标:通过实例的讲解和练习,培养学生解决问题的能力,提高学生的逻辑思维能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作精神。
四. 说教学重难点1.教学重点:轴对称的概念,坐标变换的规律。
2.教学难点:如何用坐标来表示轴对称的变换。
五. 说教学方法与手段1.教学方法:采用讲解法、演示法、练习法等教学方法,引导学生通过观察、思考、操作等活动,掌握轴对称的概念和坐标变换的规律。
2.教学手段:利用多媒体课件,直观地展示轴对称的变换过程,帮助学生理解和掌握。
六. 说教学过程1.导入:通过一个具体的实例,引导学生认识轴对称,激发学生的兴趣。
2.新课讲解:讲解轴对称的概念,引导学生通过观察、思考,发现坐标变换的规律。
3.练习:让学生通过实际操作,运用坐标变换的规律解决问题。
4.总结:对本节课的内容进行总结,强调轴对称的概念和坐标变换的规律。
5.作业布置:布置一些有关轴对称和坐标变换的练习题,巩固所学内容。
3.3 轴对称与坐标变化 北师大版八年级数学册同步作业(含答案)
3.3轴对称与坐标变化一、单选题1.已知点Q与点关于x轴对称点是,那么点为()A.B.C.D.【答案】B【分析】根据关于x轴对称点的坐标特点:纵坐标互为相反数,横坐标不变,可得a=2,b=3,进而可得答案.【解析】解:∵点P(3,a)关于x轴的对称点为Q(b,-2),∴a=2,b=3,∴点(a,b)的坐标为(2,3),故选:B.【点睛】此题主要考查了关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.2.已知点和关于y轴对称,则的值为()A.0B.C.1D.【答案】C【分析】根据平面直角坐标系中点的对称的知识点可得到m、n的值,代入求值即可.【解析】解:∵点与点关于轴对称,∴,∴,故选C.【点睛】本题主要考查了平面直角坐标系点的对称,代数式求值,掌握平面直角坐标系点的对称,代数式求值方法,根据对称性构造方程组是解题的关键.3.已知的坐标为,直线轴,且,则点的坐标为()A.B.或C.D.或【答案】D【解析】【分析】根据平行于x轴的直线是上的点的纵坐标相等求出点B的纵坐标,再分点B在点A的左边与右边两种情况求出点B的横坐标,即可得解.【解析】∵AB//x轴,点A的坐标为(1,2),∴点B的横坐标为2,∵AB=5,∴点B在点A的左边时,横坐标为1−5=−4,点B在点A的右边时,横坐标为1+5=6,∴点B的坐标为(−4,2)或(6,2).故选:D.【点睛】此题考查坐标与图形-轴对称,解题关键在于掌握运算法则.4.已知点与点关于某条直线对称,则这条直线是()A.轴B.轴C.过点且垂直于轴的直线D.过点且平行于轴的直线【答案】C【分析】由题意PQ∥x轴,所以过PQ中点且垂直于x轴的直线即为所求的直线,然后根据选项内容进行判断.【解析】解:∵点,点∴PQ∥x轴,设PQ的中点为M则M点坐标为,即∴点与点关于经过点且垂直于轴的直线对称故选项A,B,D错误;又∵在这条直线上,∴选项C符合题意故选:C.【点睛】本题考查点的坐标及轴对称,掌握轴对称的性质,利用数形结合思想解题是关键.5.甲、乙、丙三人所处的位置不同,甲说:“以我为坐标原点,乙的位置是,”丙说:“以我为坐标原点,乙的位置是.”则以乙为坐标原点,甲、丙的坐标分别是(已知三人所建立的直角坐标系在同一平面内,且x轴、y轴的正方向相同)( )A.,B.,C.,D.,【答案】C【解析】【分析】由于已知三人建立坐标时,x轴y轴正方向相同,以甲为坐标原点,乙的位置是(2,3),则以乙为坐标原点,甲的位置是(-2,-3);同样,以乙为坐标原点,丙的位置是(3,2).【解析】∵以甲为坐标原点,乙的位置是,∴以乙为坐标原点,甲的位置是;∵以丙为坐标原点,乙的位置是,∴以乙为坐标原点,丙的位置是.故选C.【点睛】本题考查了坐标确定位置:直角坐标平面内点的位置由有序实数对确定,有序实数对与点一一对应.6.如果A(1-a,b+1)关于y轴的对称点在第三象限,那么点B(1-a,b)在( ) A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得答案.【解析】∵A(1-a,b+1)关于y轴的对称点在第三象限,∴A(1-a,b+1)在第四象限,∴1-a>0,b+1<0,∴1-a>0,b<-1,∴B(1-a,b)在第四象限;故选:D.【点睛】本题考查了关于y对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.7.在平面直角坐标系中,已知点,则点关于直线(直线上各点的横坐标都为)对称点的坐标是( )A.B.C.D.【答案】B【分析】利用已知直线m上各点的横坐标都是-2,得出其解析式,再利用对称点的性质得出答案.【解析】∵a2+2>0,∴点在第一象限,∵直线m上各点的横坐标都是-2,∴直线为:x=-2,∴a2+2到-2的距离为:a2+4,∴点P关于直线m对称的点的横坐标是:-a2-6,故P点对称的点的坐标是:(-a2-6,5).故选B.【点睛】此题主要考查了坐标与图形的性质,根据题意得出对称点的横坐标是解题关键.8.已知在平面直角坐标系中,点A的坐标为(﹣3,4),下列说法正确的有( )个①点A与点B(-3,﹣4)关于x轴对称②点A与点C(3,﹣4)关于原点对称③点A与点F(-4,3)关于第二象限的平分线对称④点A与点C(4,-3)关于第一象限的平分线对称A.1B.2C.3D.4【答案】D【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数;关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变;关于第2象限角平分线对称的点的坐标特点:横纵坐标变换位置且变为相反数;关于第1象限角平分线对称的点的坐标特点:横纵坐标变换位置.综合以上即可得答案.【解析】∵点A的坐标为(﹣3,4),∴点A关于x轴对称的点的坐标为(﹣3,﹣4),点A关于原点对称的点的坐标为(3,-4),点A关于第二象限的角平分线对称的点的坐标为(-4,3)点A关于第一象限的角平分线对称的点的坐标为(4,-3)∴①、②、③、④正确.故选:D.【点睛】此题主要考查了关于x轴、y轴、第二象限的角平分线、第一象限的角平分线对称的点的坐标规律,关键是熟练掌握点的变化规律,不要混淆.9.在坐标平面上有一个轴对称图形,其中A(3,﹣)和B(3,﹣)是图形上的一对对称点,若此图形上另有一点C(﹣2,﹣9),则C点对称点的坐标是( )A.(﹣2,1)B.(﹣2,﹣)C.(﹣,﹣9)D.(﹣2,﹣1)【答案】A【分析】先利用点A和点B的坐标特征可判断图形的对称轴为直线y=-4,然后写出点C关于直线y=-4的对称点即可.【解析】解:∵A(3,﹣)和B(3,﹣)是图形上的一对对称点,∴点A与点B关于直线y=﹣4对称,∴点C(﹣2,﹣9)关于直线y=﹣4的对称点的坐标为(﹣2,1).故选:A.【点睛】本题考查了坐标与图形的变化,需要注意关于直线对称:关于直线x=m对称,则两点的纵坐标相同,横坐标和为2m;关于直线y=n对称,则两点的横坐标相同,纵坐标和为2n.10.在平面直角坐标系中,正方形ABCD的顶点分别为A(1,1)、B(1,﹣1)、C (﹣1,﹣1)、D(﹣1,1),y轴上有一点P(0,2).作点P关于点A的对称点P1,作P1关于点B的对称点P2,作点P2关于点C的对称点P3,作P3关于点D的对称点P4,作点P4关于点A的对称点P5,作P5关于点B的对称点P6┅,按如此操作下去,则点P2011的坐标为( )A.(0,2)B.(2,0)C.(0,﹣2)D.(﹣2,0)【答案】D【分析】根据正方形的性质以及坐标变化得出对应点的坐标,再利用变化规律得出点P2011的坐标与P3坐标相同,即可得出答案.【解析】解:∵作点P关于点A的对称点P1,作P1关于点B的对称点P2,作点P2关于点C的对称点P3,作P3关于点D的对称点P4,作点P4关于点A的对称点P5,作P5关于点B的对称点P6…,按如此操作下去,∴每变换4次一循环,∴点P2011的坐标为:2011÷4=502…3,点P2011的坐标与P3坐标相同,∴点P2011的坐标为:(-2,0),故选:D.【点睛】此题主要考查了坐标与图形的变化以及正方形的性质,根据图形的变化得出点P2011的坐标与P3坐标相同是解决问题的关键.二、填空题11.点(x,y)关于x轴对称的点的坐标为_______;点(x,y)关于y轴对称的点的坐标为_______.【答案】(x,-y)(-x,y)【解析】略12.已知点A(2a+3b,﹣2)和点B(8,3a+1)关于y轴对称,那么a+b=_____.【答案】-3.【分析】关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.据此可得a,b的值.【解析】解:∵点A(2a+3b,﹣2)和点B(8,3a+1)关于y轴对称,∴,解得,∴a+b=﹣3,故答案为:﹣3.【点睛】本题考查的是关于轴对称的两个点的坐标关系,掌握以上知识是解题的关键.13.若点与点关于轴对称,则_______.【答案】3【分析】利用关于x轴对称“横坐标不变,纵坐标互为相反数”求得m的值.【解析】解:∵点A(2,m)与点B(2,-3)关于x轴对称,∴-3+m=0,∴m=3,故答案为:3【点睛】本题考查了关于x轴对称点的坐标变化,掌握关于轴对称坐标变化法则是解题关键.14.如图,与关于轴对称,已知点,则点的坐标_______,点的坐标__________,点的坐标__________.【答案】(-2,1)(4,6)(6,2)【分析】根据关于y轴对称的点的坐标特点:纵坐标不变,横坐标互为相反数解答即可.【解析】解:∵△与△关于轴对称,且点,∴点的坐标为(-2,1),点的坐标为(4,6),点的坐标为(6,2).故答案为:(-2,1),(4,6),(6,2).【点睛】本题考查了关于坐标轴对称的点的坐标特点,属于应知应会题型,熟练掌握基本知识是关键.15.若过点的直线与轴平行,则点关于轴的对称点的坐标是_________.【答案】【分析】根据MN与x轴平行可以求得M点坐标,进一步可以求得点M关于y轴的对称点的坐标. 【解析】解:∵MN与x轴平行,∴两点纵坐标相同,∴a=-5,即M为(-3,-5)∴点M关于y轴的对称点的坐标为:(3,-5)故答案为(3,-5).【点睛】本题考查图形及图形变化的坐标表示,熟练掌握各种图形及图形变化的坐标特征是解题关键. 16.已知两点E(x1,y1),F(x2,y2),如果x1+x2=2x1,y1+y2=0,那么E,F两点关于_______对称.【答案】x轴【分析】先根据已知条件得出x1与x2,y1与y2的关系,继而根据这一关系判断即可.【解析】∵x1+x2=2x1,y1+y2=0,∴x1=x2,y1=-y2,∴E,F两点关于x轴对称,故答案为x轴.【点睛】本题考查了关于x轴、y轴对称的点的坐标,比较容易,熟记平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系是解题的关键.17.如图,在平面直角坐标系中,将点向右平移2个单位长度得到点,则点关于轴的对称点的坐标是___________.【答案】根据平移的坐标变化规律和关于x轴对称的点的坐标特征即可解决.【解析】解:∵点A(-1,2)向右平移2个单位得到点B,∴B(1,2).∵点C与点B关于x轴对称,∴C(1,-2).故答案为:(1,-2)【点睛】本题考查了平移、关于坐标轴对称等知识点,熟知平移时点的坐标变化规律和关于正半轴对称的点的坐标特征是解题的关键.18.当m=___,n=___时,点A(2m+n,2)与点B(1,n-m)关于y轴对称.【答案】-1 1【分析】根据关于y轴对称的点的坐标特点可知,对应点横坐标互为相反数,纵坐标不变.【解析】因为点A(2m+n,2)与点B(1,n-m)关于y轴对称所以解得故答案为:-1;1考核知识点:轴对称与点的坐标.理解轴对称与点的坐标对应关系是关键.19.如图,在平面直角坐标系中,已知点A(2,3),点B(﹣2,1),在x轴上存在点P到A,B两点的距离之和最小,则P点的坐标是________.【答案】(﹣1,0).【解析】试题分析:作A关于x轴的对称点C,连接BC交x轴于P,则此时AP+BP最小,求出C的坐标,设直线BC的解析式是y=kx+b,把B、C的坐标代入求出k、b,得出直线BC的解析式,求出直线与x轴的交点坐标即可.试题解析: 作A关于x轴的对称点C,连接BC交x轴于P,则此时AP+BP最小,∵A点的坐标为(2,3),B点的坐标为(﹣2,1),∴C(2,﹣3),设直线BC的解析式是:y=kx+b,把B、C的坐标代入得:解得.即直线BC的解析式是y=﹣x﹣1,当y=0时,﹣x﹣﹣1=0,解得:x=﹣1,∴P点的坐标是(﹣1,0).考点:1.轴对称-最短路线问题;2.坐标与图形性质.20.如图,在平面直角坐标系中,函数y=2x和y=﹣x的图象分别为直线l1,l2,过点(1,0)作x轴的垂线交l l于点A1,过点A1作y轴的垂线交l2于点A2,过点A2作x轴的垂线交l1于点A3,过点作y轴的垂线交l2于点A4,…依次进行下去.则点A4的坐标为__;点的坐标为_____;点A2021的坐标为____.【答案】(4,﹣4)(﹣8,8)(21010,21011)【分析】根据一次函数图象上点的坐标特征可得出点A1、A2、A3、A4、A5、A6、A7、A8等的坐标,根据坐标的变化找出变化规律“A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n为自然数)”,依此规律结合6=1×4+2;2021=505×4+1即可找出点A2021的坐标.【解析】解:观察,发现规律:A1(1,2),A2(-2,2),A3(-2,-4),A4(4,-4),A5(4,8),…,∴“A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n为自然数)”,∵6=1×4+2,A6(﹣8,8)∵2021=505×4+1,∴A2021的坐标为(21010,21011).故答案为:(4,﹣4);(﹣8,8);(21010,21011).【点睛】本题考查了一次函数图象上点的坐标特征以及规律型中坐标的变化,解题的关键是找出变化规律“A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n为自然数)”.三、解答题21.(1)分别写出下列各点关于x轴对称点的坐标:A(3,6),B(﹣7,9),C(6,﹣1)(2)分别写出下列各点关于y轴对称点的坐标:D(﹣3,﹣5),E(0,10),F(8,0)【答案】(1)A、B、C关于x轴对称的点的坐标分别为(3,﹣6)、(﹣7,﹣9)、(6,1);(2)D、E、F关于y轴对称的点的坐标分别为(3,﹣5)、(0,10)、(﹣8,0).【分析】(1)根据关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数解答即可;(2)根据关于y轴对称的点的坐标特点:纵坐标不变,横坐标互为相反数解答即可.【解析】解:(1)A(3,6)关于x轴对称点的坐标是(3,﹣6),B(﹣7,9)关于x轴对称点的坐标是(﹣7,﹣9),C(6,﹣1)关于x轴对称点的坐标是(6,1);(2)D(﹣3,﹣5)关于y轴对称点的坐标为(3,﹣5),E(0,10)关于y轴对称点的坐标为(0,10),F(8,0)关于y轴对称点的坐标为(﹣8,0).【点睛】本题考查了关于坐标轴对称的点的坐标特征,属于应知应会题型,熟练掌握基本知识是解题的关键.22.如图,在直角坐标系中,A(﹣1,5),B(﹣3,0),C(﹣4,3).(1)在图中作出△ABC关于y轴对称的图形△A1B1C1;(2)写出点C1的坐标;(3)求△ABC的面积.【答案】(1)见解析;(2)(4,3);(3);【分析】(1)从三角形的三边向y轴引垂线,并延长相同的距离找到三点的对称点,顺次连接.(2)从图形中找出点C1,并写出它的坐标.(3) 根据三角形的面积公式求出△ABC的面积.【解析】(1)△A1B1C1如图所示.(2)点C1的坐标为(4,3).(3)S△ABC=3×5-×3×2-×3×1-×2×5=.【点睛】本题主要考查了轴对称图形的作法,注意画轴对称图形找关键点的对称点然后顺次连接是关键.23.如图,已知的顶点分别为,,和直线(直线上各点的横坐标都为1).(1)作出关于轴对称的图形,并写出点的坐标;(2)作出关于轴对称的图形,并写出点的坐标;(3)若点是内部一点,则点关于直线对称的点的坐标是________.【答案】(1)见解析,;(2)见解析,;(3)【分析】(1)分别作出点A,B,C关于x轴的对称点,再首尾顺次连接可得;(2)分别作出点A,B,C关于y轴的对称点,再首尾顺次连接可得;(3)利用对称轴为直线x=1,进而得出P点的对应点坐标.【解析】解:(1)如图所示,即为所求作的三角形,点的坐标为.(2)解:如图所示,即为所求作的三角形,点的坐标为.(3)解:∵点是内部一点,∴设点关于直线对称的点的横坐标为,则,故.∴点关于直线对称的点的坐标是:.【点睛】本题主要考查作图——轴对称变换,解题的关键是掌握轴对称变换的定义和性质,并根据轴对称变换的定义和性质得出变换后的对应点位置.24.如图,在平面直角坐标系中,,,,试分别作出关于直线和直线的对称图形,并写出对应顶点的坐标.【答案】见解析,,,,,,【分析】根据题意找到各顶点的对应点,即可作图.【解析】解:如图所示,关于直线的对称图形为;关于直线的对称图形为.对应顶点的坐标分别为,,,,,.【点睛】此题主要考查画轴对称图形,解题的关键是熟知轴对称的性质.25.已知,M,N是x轴上两动点(M在N左边),,请在x轴上画出当的值最小时,M,N两点的位置.【答案】见解析【分析】作点A关于x轴的对称点,再将点B向左平移3个单位得到点,连接,与x轴的交点即为点M,将向右平移3个单位得到点C,连接,与x轴的交点即为N.点M,N即为所求.【解析】如图,作点A关于x轴的对称点,再将点B向左平移3个单位得到点,连接,与x轴的交点即为点M,将向右平移3个单位得到点C,连接,与x轴的交点即为N.点M,N即为所求.【点睛】本题主要考查了坐标与图形的性质和最短路线问题,准确计算是解题的关键.26.如图,在平面直角坐标系中,直线l经过点,且平行于y轴给出如下定义:点先关于y轴对称得点,再将点关于直线l对称得点,则称点是点P 关于y轴和直线l的二次反射点.(1)已知,则它们关于y轴和直线l的二次反射点,,的坐标分别是__________________;(2)若点D的坐标是,其中,点D关于y轴和直线l的二次反射点是点,求线段的长;(3)已知点,点,以线段为边在x轴上方作正方形,若点,关于y轴和直线l的二次反射点分别为,且线段与正方形的边有公共点,求a的取值范围.【答案】(1);(2)6;(3)或.【分析】(1)先求关于y轴对称点的坐标,再求关于直线l对称点的坐标即可;(2)根据题意,表示出点的坐标即可;(3)表示为两点的坐标,再根据与正方形有交点列不等式组即可.【解析】解:(1)关于y轴对称的点的坐标分别为:,它们关于直线l对称,纵坐标不变,横坐标加上3的2倍与原横坐标的差,即为:,故答案为:.(2)由(1)可知,..(3)由(1)可知,,当与有公共点时,,∴.当与有公共点时,,∴,∴或.【点睛】本题考查了关于y轴对称和关于平行于y轴的直线对称点的坐标变化规律以及正方形、不等式等知识,能够发现关于平行于y轴的直线对称点的坐标变化规律是解题关键.。
北师大版八年级数学上册3.3 轴对称与坐标变化 课件
探究新知
1.关于y轴对称的两个图形上点的坐标特征:
(x , y)
(-x , y)
横坐标变为相反数,纵坐标不变.
2.关于x轴对称的两个图形上点的坐标特征:
(x , y)
( x , -y)
横坐标不变,纵坐标变为相反数.
3.关于原点轴对称的两个图形上点的坐标特征:
(x , y)
(-x , -y) 横坐标、纵坐标都变为相反数.
探究新知
知识点 2 坐标变化与图形变化
在平面直角坐标
y 5
系中依次连接下列各 4
3
点:(0,0), (5,4) ,
2
1
(3,0), (5,1) ,(5,-1), –1
5
1 23 4 5
x
(3,0), (4,-2) ,(0,0),
你得到了一个怎样的
图案?
探究新知
将各坐标的纵坐
y
5
标保持不变,横坐
4
探究新知
y
5 4
3 2 1 0 12345678 –1
–2 –3 –4
–5
将各坐标的纵坐标都
乘以-1,横坐标保持不
变,则图形怎么变化?
x
横坐标保持不变,纵 坐标都乘以-1,
两个图形关于x轴对称
(x,y) (0,0) (5,4) (3,0) (5,1) (5,-1) (3,0) (4,-2) (0,0) (x,-y) (0,0) (5,-4)(3,0) (5,-1)(5,1)(3,0)(4,2)(0,0)
探究新知
y
与原图形关5于原点中心对
称
4
将各坐标的纵 坐标与横坐标都乘
坐标变 化为:
3 2 1 –5 –4 –3 –2 –1 0 1 2 3 4 –1 –2 –3
北师大版八年级上册 33 轴对称与坐标变化 教案
集体备课教案【教学标题】轴对称与坐标变化【教学目标】1. 理解平面直角坐标系的概念,能正确画出平面直角坐标系.2. 能根据坐标确定点,由点求坐标;会确定点关于x 轴、y 轴、原点的对称点问题;知道点与象限的位置关系.3、能建立平面直角坐标系表示一些基本图形的点的坐标并解答相应问题【重点难点】建立平面直角坐标系表示一些基本图形的点的坐标并解答相应问题 【教学内容】 1. 相关概念(1)在平面内画两条互相垂直的数轴,组成平面直角坐标系. 水平的数轴叫做x 轴或横轴,取向右为正方向;铅直的数轴叫做y 轴或纵轴,取向上为正方向;两轴交点0是原点;平面叫坐标平面. 坐标平面被分成四部分,按逆时针方向分别为一、二、三、四象限,如图所示:(2)点的坐标由该点出发向x 轴作垂线,交在x 轴上的点表示的数是几,这个数就是这个点的横坐标. 同样,由该点向y 轴作垂线,交在y 轴上的点表示的数是这个点的纵坐标. 写法是圆括号,先横后纵,中间逗号隔开. 如(2,3). 2.点的坐标的特征(1)象限内点的坐标的符号:若点P (a ,b )在第一象限,那么a >0,b >0,简记为(+,+); 若点P (a ,b )在第二象限,那么a <0,b >0,简记为(-,+); 若点P (a ,b )在第三象限,那么a <0,b <0,简记为(-,-); 若点P (a 、b )在第四象限,那么a >0,b <0,简记为(+,-). (2)坐标轴上的点坐标轴上的点不属于任何象限. x 轴上的点纵坐标为0. y 轴上的点横坐标为0. (3)角平分线上的点一、三象限角平分线上的点的横纵坐标相等.若P (a ,b )在一、三象限的角平分线上,那么a=b. 二、四象限角平分线上的点的横纵坐标互为相反数. 若P (a ,b )在二、四象限的角平分线上,那么a=-b. (4)对称点的坐标点 点点 (5)点与实数对的关系坐标平面的点与有序实数对是一一对应关系.【例题讲解】例1、在平面直角坐标系中,已知线段AB 的两个端点分别是()()41A B --,,1,1,将线段AB 平移后得到线段A B '',若点A '的坐标为()22-,,则点B '的坐标为( )A .()43,B .()34,C .()12--,D .()21--,例2、在平面直角坐标系中,设点P 到原点O 的距离为ρ,OP 与x 轴正方向的夹角为α,则用][αρ,表示点P 的极坐标,显然,点P 的极坐标与它的坐标存在一一对应关系.例如:点P 的坐标为(1,1),则其极坐标为[]︒45,2.若点Q 的极坐标为[]︒60,4,则点Q 的坐标为 A.()32,2 B.()32,2- C.(23,2) D.(2,2)例3、如图所示,在平面直角坐标系中,OAB △三个顶点的坐标是(00)3452O A B ,、(,)、(,).将OAB △绕原点O 按逆时针方向旋转90°后得到11OA B △,则点1A 的坐标是 .例4、如图,将边长为1的正方形OAPB 沿x 轴正方向连续翻转2021次,点P 依次落在点P 1,P 2,P 3,P 4,…P 2021的位置,则P 2021的横坐标X 2021=_______. 例5、在平面直角坐标系中描出下列各点A (2,1),B (0,1),C (-4,3),D (6,3),并将各点用线段依次连接构成一个四边形ABCD . (1)四边形ABCD 是什么特殊的四边形?(2)在四边形ABCD 内找一点P ,使得△APB 、△BPC 、△CPD 、△APD•都是等腰三角形,请写出P 点的坐标.例6、如图,四边形ABCD 各个顶点的坐标分别为 (– 2,8),(– 11,6),(– 14,0),(0,0).(1)确定这个四边形的面积,你是怎么做的/(2)如果把原来ABCD 各个顶点纵坐标保持不变,横坐标增加2,所得的四边形面积又是多少?例7、如图所示,在直角梯形O ABC 中,CB ∥O A ,CB =8,O C =8,∠O AB =45°(1)求点A 、B 、C 的坐标; (2)求△ABC 的面积.若点 例8、在平面直角坐标系中,以任意两点P (x 1,y 1)、Q (x 2,y 2)为端点的线段中点坐标为(x 1 +x 22,y 1 +y 22).(1)如图,矩形ONEF 的对角线交于点M ,ON 、OF 分别在x 轴和y 轴上,O 为坐标原点,点E 的坐标为(4,3),则点的坐标为______;(4分) (2)在直角坐标系中,有A (-1,2),B (3,1),C (1,4)三点,另有一点D 与点A 、B 、O BAy A 1B 1xOC B A x yC 构成平行四边形的顶点,求点D 的坐标.(6分)例9、如图,已知点O 是等边三角形ABC 的∠BAC 、∠ACB 的平分线的交点,以O 为顶点作∠DOE=120°,其两边分别交AB 、BC 于D 、E ,则四边形DBEO 的面积与三角形ABC 的面积之比是 ;例10、龟兔赛跑,它们从同一地点同时出发,不久兔子就把乌龟远远地甩在后面,于是兔子便得意洋洋地躺在一棵大树下睡起觉来.乌龟一直在坚持不懈、持之以恒地向终点跑着,兔子一觉醒来,看见乌龟快接近终点了,这才慌忙追赶上去,但最终输给了乌龟.下列图象中能大致反映龟兔行走的路程S 随时间t 变化情况的是( ).【过手练习】1、已知点A (m2-5,2m+3)在第三象限角平分线上,则m=( )A 、4B 、-2C 、4或-2D 、-12、在平面直角坐标系xOy 中,已知点A(2,3),若将OA 绕原点O 逆时针旋转180°得到0A′, 则点A ′在平面直角坐标系中的位置是在(A)第一象限 (B)第二象限 (c)第三象限 (D)第四象限3、以方程组21y x y x =-+⎧⎨=-⎩的解为坐标的点(,)x y 在平面直角坐标系中的位置是( )A .第一象限B .第二象限C .第三象限D .第四象限4、到x 轴的距离为2,到y 轴的距离为3,则点P 的坐标为__,它到原点的距离为__.5、第二象限内的点()P x y ,满足||9x =,24y =,则点P 的坐标是 .6、点A 的坐标为(2,0),把点A 绕着坐标原点顺时针旋转135º到点B ,那么点B 的坐标是 _________ .7、点K ()n m ,在坐标平面内,若0>mn ,则点K 位于___象限;若0<mn ,则点K不在___象限.8、已知点P ()3,3b a +与点Q ()b a 2,5+-关于x 轴对称,则___________==b a . 9、已知点M ()a a -+4,3在y 轴上,则点M 的坐标为_____. 10、已知点M ()y x ,与点N ()3,2--关于x 轴对称,则______=+y x .【拓展训练】1、在平面直角坐标系中,已知3个点的坐标分别为1(11)A ,、2(02)A ,、3(11)A -,. 一只电子蛙位于坐标原点处,第1次电子蛙由原点跳到以1A 为对称中心的对称点1P ,第2次电子蛙由1P 点跳到以2A 为对称中心的对称点2P ,第3次电子蛙由2P 点跳到以3A 为对称中心的对称点3P ,…,按此规律,电子蛙分别以1A 、2A 、3A 为对称中心继续跳下去.问当电子蛙跳了20XX 次后,电子蛙落点的坐标是2009P (_______ ,_______).2、如图,在直角坐标系中,第一次将△OAB变换成△OA 1B 1,第二次将△OA 1B 1变换成△OA 2B 2,第三次将△OA 2B 2变换成△OA 3B 3,…… 已知:A (1,3),A 1(2,3),A 2(4,3),A 3(8,3),B (2,0),B 1(4,0),B 2(8,0),B 3(16,0). 观察每次变换前后的三角形有何变化,按照变换规律,第五次变换后得到的三角形A 5的坐标是 ,B 5的坐标是 .【课后作业】一、选择题:已知点A ()2,2-,如果点A 关于x 轴的1、对称点是B ,点B 关于原点的对称点是C ,那么C 点的坐标是( )A .()2,2B .()2,2-C .()1,1--D .()2,2--2、在平面直角坐标系中,以点P ()2,1为圆心,1为半径的圆必与x 轴有 个公共点( )A .0B .1C .2D .33、一个长方形在平面直角坐标系中三个顶点的坐标为(– 1,– 1)、(– 1,2)、(3,– 1),则第四个顶点的坐标为( )A .(2,2)B .(3,2)C .(3,3)D .(2,3) 4、若点P (x ,y )的坐标满足xy =0,则点P 的位置是( )A .在x 轴上B .在y 轴上C .D .在x 轴上或在y 轴上5、如图,点A 的坐标是(2,2),若点P 在x 轴上,且△APO 是等腰三角形,则点P 的坐标不可能是( ) A .(4,0) B .(1.0) C .(-22,0) D .(2,0)1 23 4-1 12 xy AyxOBAOyxA 1B 2B 3B 3AA 1A 2A y6、如图,点A 的坐标为(-1,0),点B 在直线y =x 上运动,当线段AB 最短时,点B 的坐标为( ) A.(0,0) B.(22,22-) C.(-21,-21) D.(-22,-22) 7、如图,将△AOB 绕点O 逆时针旋转90°,得到△A ′OB ′,•若点A 的坐标为(a ,b ),则点A ′的坐标为( )A .(a ,-b )B .(b ,a )C .(-b ,a )D .(-a ,b ) 二、填空题:8、如图,在直角坐标系中,已知点)0,3(-A ,)4,0(B ,对△OAB 连续作旋转变换,依次得到三角形①、②、③、④…,则三角形⑩的直角顶点的坐标为 .9、已知边长为a 的正三角形ABC ,两顶点A B 、分别在平面直角坐标系的x 轴、y 轴的正半轴上滑动,点C 在第一象限,连结OC ,则OC 的长的最大值是 . 10、点H 坐标为(4,-3),把点H 向左平移5个单位到点H ’,则点H ’的坐标为 . 三、解答题:11、已知A 、B 两村庄的坐标分别为(2,2)、(7,4),一辆汽车在x 轴上行驶,从原点O 出发.(1)汽车行驶到什么位置时离A 村最近?写出此点的坐标. (2)汽车行驶到什么位置时离B 村最近?写出此点的坐标. (3)请在图中画出汽车行驶到什么位置时,距离两村的和最短?12、平行四边形ABCD 的边长AB=4,BC=2,若把它放在直角坐标系内,使AB 在x 轴上,点C 在y 轴上,点A 的坐标是(-3,0),求:B 、C 、D 的坐标.13、点A(0,-3),点B(0,-4),点C 在x 轴上,如果△ABC 的面积为15,求点C 的坐标.14、一个菱形、相邻的内角比是1:2,对角线长是6,取两条对角线所在的直线为坐标轴,求四个顶点坐标.15、在直角坐标系中,已知点A(2,2),在x 轴上确定点B ,使△AOB 为等腰三角形,写出点B 的坐标.y OAB①②③ ④ 4812164。
3.3《轴对称与坐标变化》北师大版八年级数学上册教案
第三章位置与坐标3.3轴对称与坐标变化一、教学目标1.经历轴对称变化与点的坐标的变化之间关系的探索过程,发展数形结合意识,初步建立几何直观.2.在直角坐标系中,以坐标轴为对称轴,能写出一个已知顶点坐标的多边形的对称图形的顶点坐标,并知道对应顶点坐标之间的关系.二、教学重点及难点重点:经历图形坐标变化与图形轴对称之间关系的探索过程,明确图形坐标变化与图形轴对称之间关系.难点:由坐标的变化探索新旧图形之间的变化探索过程,发展形象思维能力和数形结合意识.三、教学用具多媒体课件,直尺,三角板.四、相关资《复习平面直角坐标系》动画五、教学过程【复习导入】在前几节课中我们学习了平面直角坐标系的有关知识,会画平面直角坐标系;能在方格纸上建立适当的直角坐标系,描述物体的位置;在给定的直角坐标系下,会根据坐标描出点的位置,由点的位置写出它的坐标.我们知道点的位置不同写出的坐标就不同,反过来,不同的坐标确定不同的点.如果坐标中的横(纵)坐标不变,纵(横)坐标按一定的规律变化,或者横纵坐标都按一定的规律变化,那么图形是否会变化,变化的规律是怎样的,这将是本节课中我们要研究的问题.【探究新知】探索两个关于坐标轴对称的图形的坐标关系1.在如图所示的平面直角坐标系中,第一、二象限内各有一面小旗.两面小旗之间有怎样的位置关系?对应点A与A1的坐标又有什么特点?其它对应的点也有这个特点吗?2.在右边的坐标系内,任取一点,做出这个点关于y轴对称的点,看看两个点的坐标有什么样的位置关系,说说其中的道理.答:(1)关于y轴对称.对应点A与A1的横坐标互为相反数,纵坐标相同,其它对应的点也有这个特点.(2)做出的两个点的横坐标互为相反数,纵坐标相同.【典例精讲】例1 在平面直角坐标系中依次连接下列各点:(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0)你得到了一个怎样的图案?做以下变化:(1)纵坐标保持不变,横坐标分别乘以-1,再将所得的点用线段依次连接起来,所得的图案与原来的图案相比有什么变化?(2)横坐标保持不变,纵坐标分别乘以-1,再将所得的点用线段依次连接起来,所得的图案与原来的图案相比有什么变化?解析:先根据题意写出变化后的坐标,然后根据变化后的坐标,把变化后的图形在自己准备的方格纸上画出来.你们画出的图形与下面的图形相同吗?这个图形与原来的图形相比有什么变化呢?(1)所得的图案与原图案关于纵轴成轴对称.(2)所得的图案与原图案关于横轴成轴对称.议一议关于x轴对称的两个点的坐标之间有什么关系?关于y轴呢?学生思考,讨论,归纳得出结论:关于x轴对称的两个点的坐标,横坐标相同,纵坐标互为相反数.关于y轴对称的两个点的坐标,纵坐标相同,横坐标互为相反数.【课堂练习】1.将平面直角坐标系内某个图形各个点的横坐标不变,纵坐标都乘以-1,所得图形与原图形的关系是()A.关于x轴对称B.关于y轴对称C.关于原点对称D.无法确定2.在平面直角坐标系中,将点A(1,2)的横坐标乘以-1,纵坐标不变,得到点A’,则点A与点A’的关系是( )A.关于x轴对称B.关于y轴对称C.关于原点对称D.将点A向x轴负方向平移一个单位得A3.点(4,3)与点(4,-3)的关系是().A.关于原点对称B.关于x轴对称C.关于y轴对称D.不能构成对称关系4.在平面直角坐标系中,点A(2,3)与点B关于x轴对称,则点B的坐标为()A.(3,2) B.(-2,-3) C.(-2,3) D.(2,-3)5.点M(1,2)关于y轴对称的点坐标为( )A.(-1,2) B.(1,-2) C.(2,-1) D.(-1,-2).6.点(m,-1)和点(2,n)关于x轴对称,则mn等于( )A.-2 B.2 C.1 D.-17.已知A、B两点的坐标分别是(-2,3)和(2,3),则下面四个结论:①A、B关于x轴对称;②A、B关于y轴对称;③A、B关于原点对称;④A、B之间的距离为4,其中正确的有( )A.1个B.2个C.3个D.4个8.若P(a,3-b),Q(5,2)关于x轴对称,则a= ,b= .9.点A(2,-3)关于x轴对称的点的坐标是.10.点B(-2,1)关于y轴对称的点的坐标是.答案:1.A;2.B;3.B;4.D;5.A;6.B;7.B;8.5,5;9.(2,3);10.(2,1).六、课堂小结对称:1.纵坐标不变,横坐标分别乘-1,所得图形与原图形关于y轴对称;2.横坐标不变,纵坐标分别乘-1,所得图形与原图形关于x轴对称;七、板书设计3.3轴对称与坐标变化1.纵坐标不变,横坐标分别乘-1,所得图形与原图形关于y轴对称2.横坐标不变,纵坐标分别乘-1,所得图形与原图形关于x轴对称。
北师大版数学八年级上册3《轴对称与坐标变化》教案1
北师大版数学八年级上册3《轴对称与坐标变化》教案1一. 教材分析《轴对称与坐标变化》是北师大版数学八年级上册第三章的内容。
本节课主要介绍轴对称的概念,以及如何在坐标系中进行对称变换。
教材通过丰富的实例,让学生体会轴对称的性质,培养学生的空间想象能力。
同时,本节课还引导学生利用坐标系解决实际问题,提高学生的数学应用能力。
二. 学情分析学生在七年级已经学习了平面几何的基本知识,对图形的性质有一定的了解。
但是,对于轴对称的概念,以及如何在坐标系中进行对称变换,可能还比较陌生。
因此,在教学过程中,需要注重引导学生理解轴对称的性质,以及如何利用坐标系进行对称变换。
三. 教学目标1.理解轴对称的概念,掌握轴对称的性质。
2.学会在坐标系中进行对称变换,解决实际问题。
3.培养学生的空间想象能力,提高数学应用能力。
四. 教学重难点1.轴对称的概念及其性质。
2.在坐标系中进行对称变换的方法。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究轴对称的性质。
2.利用直观教具,如图形、模型等,帮助学生理解轴对称的概念。
3.通过实例分析,让学生掌握在坐标系中进行对称变换的方法。
4.注重启发式教学,引导学生运用坐标系解决实际问题。
六. 教学准备1.准备相关的图形、模型等直观教具。
2.准备一些实际问题,用于巩固和拓展学生的知识。
七. 教学过程1.导入(5分钟)通过展示一些生活中的轴对称现象,如剪纸、建筑等,引导学生关注轴对称的概念。
提问:什么是轴对称?学生在思考和讨论中初步理解轴对称的概念。
2.呈现(10分钟)教师展示一些轴对称的图形,如正方形、矩形等,引导学生观察和分析这些图形的性质。
提问:轴对称图形的性质有哪些?学生在思考和回答中进一步理解轴对称的性质。
3.操练(10分钟)教师引导学生利用坐标系进行对称变换。
示例:已知点A(2,3),求点A关于x 轴的对称点B的坐标。
学生独立完成,教师点评和讲解。
4.巩固(10分钟)教师给出一些实际问题,让学生运用坐标系进行解决。
北师大版八年级上册第三章第三节平面直角坐标系轴对称与坐标变化教案
第三章第三节平面直角坐标系轴对称与坐标变化教案一、教学目标1. 理解轴对称及其相关概念,掌握轴对称图形的性质和判定方法。
2. 理解坐标系的基本概念和运用,能够描述和操作平面直角坐标系中的对称。
3. 能够理解和应用坐标变换的概念和方法,掌握坐标变换的规律。
4. 培养学生的观察、归纳和抽象思维能力,发展学生的空间观念和数学思考能力。
二、教学重点和难点1. 教学重点:轴对称的概念和性质,坐标系的基本概念和运用,轴对称图形的判定方法,坐标变换的方法和规律。
2. 教学难点:理解轴对称的性质,掌握坐标变换的方法,理解平面图形绕轴旋转、翻折的变化规律。
三、教学过程1. 引入新知:通过展示一些轴对称图形和坐标变化的现象,引导学生进入本节课的主题,激发他们的学习兴趣。
2. 讲解新知:* 轴对称:通过图像和例子,帮助学生理解轴对称的概念和性质,掌握轴对称图形的判定方法。
* 坐标系:介绍坐标系的基本概念和运用,描述平面直角坐标系中的对称现象。
* 坐标变换:通过实例分析,帮助学生理解坐标变换的概念和方法,掌握坐标变换的规律。
3. 举例分析:举出一些实际生活中的例子,让学生运用所学知识进行分析和解释,加深学生对轴对称和坐标变化的理解。
4. 练习环节:让学生在教师指导下完成有一定难度的轴对称和坐标变化的题目,巩固所学知识。
5. 总结回顾:回顾本节课的重点和难点,对学生的学习成果进行展示和评价,同时对下节课的内容进行预告。
四、教学方法和手段1. 讲解法:通过讲解轴对称、坐标系和坐标变换的概念和性质,使学生理解和掌握相关知识。
2. 演示法:通过演示图像和动画,帮助学生理解轴对称和坐标变化的过程和规律。
3. 探究法:通过引导学生探究实例,培养他们的观察、归纳和抽象思维能力,发展他们的空间观念和数学思考能力。
4. 互动讨论法:组织学生进行小组讨论,促进相互交流和学习,加深学生对知识的理解和应用。
五、课堂练习、作业与评价方式1. 课堂练习:选择具有代表性的轴对称和坐标变化的题目,让学生在课堂上完成,检验学生对所学知识的掌握情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7. 已知A、B两点的坐标分别是(-2,3)和(2,3), 则下面四个结论: ①A、B关于x轴对称;②A、B关于y轴对称;③A、B关 于原点对称;④A、B之间的距离为4,其中正确的有 ( B ) A.1个 B.2个 C.3个 D.4个 8.一束光线从点A(3,3)出发,经过y轴上点C 反射后经过点B(1,0)则光线从A点到B点经过 的路线长是( B )。 A.4 B.5 C.6 D.7
归纳 概括
1.关于x轴对称的两点,它们的横坐标 相同 ,纵坐 标 互为相反数 ; 互为相反数 , 2.关于y轴对称的两点,它们的横坐标 纵坐标 相同 。
运用 巩固
已知点P(2a-3,3),点A(-1,3b+2), (1)如果点P与点A关于x轴对称,那么a+b= (2)如果点P与点A关于y轴对称,那么a+b=
小结 归纳 1、关于y轴对称的两个图形上点的坐标特征: (x , y) (-x , y) 2、关于x轴对称的两个图形上点的坐标特征:
(x , y)
(x , -y)
3、关于原点轴对称的两个图形上点的坐标特征: (x , y) (-x , -y)
1.在y轴上的点的横坐标是 0
,在 x轴上的点 的 ,到 y轴的
2
3
4
5
6
7
8
–3
坐标变化为:
(0,0) (0,0) (5,4) (5,-4) (3,0) (3,0) (5,1) (5,-1) (5,-1) (5, 1) (3,0) (3,0) (4,-2) (0,0) (4, 2) (0,0)
(x,y)
–4 –5(x,-y)1、关于y轴对称的两个图形上点的坐标特征:
2、关于x轴对称的两个图形上点的坐标特征: (x , y) (x , -y)
3、关于原点轴对称的两个图形上点的坐标特征: (x , y) (-x , -y) 对称前后横坐标变号,
纵坐标变号
拓展 练习
1.点 A(2,- 3)关 于 x 轴 对 称 的 点 的 坐 标 是(2,3 ). 2.点 B( - 2,1)关 于 y 轴 对 称 的 点 的 坐 标 是( 2,1 ). 3.点(4,3)与点(4,- 3)的关系是( B ) . A.关于原点对称 B.关于 x轴对称 C.关于 y轴对称 D.不能构成对称关系 4.点(m,- 1)和点(2,n)关于 x轴对称,则 mn等 于( B ) A.- 2 B.2 C.1 D.- 1
2 3
7 3
; 。
y
5
4 3 2
1
0 –1 –2 –3 –4 –5 1 2 3 4 5 6 7 8 9
在直角坐标系中 描出以下各点: (0,0) (5,4) (3,0) (5,1) (5,-1) (3,0) (4,-2) (0,0)并用 线段依次连接, 看一看是什么图 10 x 案.
y
两个图形关于y轴对称
对称前后纵坐标不变,横坐标变号
y
5 4 3 2 1 0 –1 –2 1
与原图形关于x轴对称
图中的鱼是将 坐标为:(0,0) (5,4) (3,0) (5,1) (5,-1) (3,0) (4,2) (0,0)的点用 线段依次连接 而成的 将各坐标的纵坐 x 标都乘以-1,横 坐标保持不变,则 图形怎么变化?
C.经过原点
D.以上都不对
5.实数 x,y满足 x²+ y²= 0,则点 P( x,y)在( ) A.原点 B.x轴正半轴 C.第一象限 D.任意位置
6.若 mn = 0,则点 P(m,n)必定在 上.
7.已知点 P( a,b),Q(3,6),且 PQ ∥ x轴, 则b的值为 .
作业布置
• 教材3.5习题 1,2,3,4题
x
(x,y) (-x,-y)
(0,0)
(5,4)
(3,0)
(5,1)
(5,-1) (-5, 1)
(3,0) (-3,0)
(4,-2) (0,0) (-4, 2) (0,0)
–5 (0,0) (-5,-4) (-3,0) (-5,-1)
1、关于y轴对称的两个图形上点的坐标特征:
(x , y)
(-x , y)
第三章
位置与坐标
3.3 轴对称与坐标变化
探究
1.在如图所示的平面直角坐标 系中,第一、二象限内各有一面 小旗。两面小旗之间有怎样的位 置关系? 对应点A与A1的坐标又有什么特 点? 其它对应的点也有这个特点吗?
2.在右边的坐标系内,任取一
点,做出这个点关于y轴对称的
点,看看两个点的坐标有什么样 的位置关系.关于x轴对称呢?
纵坐标是 0 . 2.点 M(-8,-12)到 x轴的距离是 12 距离是
8 .
)
B.m <1/2 C.m≥-1/2 D.m ≤1/2
3. 若点 P(2m - 1,3)在第二象限,则( B
A.m >1/2
4. 如果同一直角坐标系下两个点的横坐标相同,那么 通过这两点的直线( A ) A.平行于x轴 B.平行于 y轴
4 3 2 1
5
图中的鱼是将坐标为: (0,0) (5,4) (3,0) (5,1) (5,-1) (3,0) (4,-2) (0,0)的点用线段依次 连接而成的。 观察坐标系中的两条 鱼的位置关系?
-5
-4
-3
-2
-1
0 –1 –2 –3 –4
1
2
3
4
5
x 要得到两个关于y轴对 称的图形:将各坐标 的纵坐标保持不变, 横坐标都乘以-1。 顶点坐标的变化:
(x , y)
(-x , y)
2、关于x轴对称的两个图形上点的坐标特征: (x , y) (x , -y)
对称前后横坐标不变,纵坐标变号
y
5 与原图形关于原点中心对称 4 3 2 1 –5 –4 –3 –2 –1 0 –1 –2 –3 –4 1 2 3 4 5
图中的鱼是将坐 标为:(0,0) (5,4) (3,0) (5,1) (5,-1) (3,0) (4,-2) (0,0)的 点用线段依次连接 而成的。 将各坐标的纵 坐标与横坐标都 乘以-1,图形 会变成什么样? 坐标变化为:
(x,y) (-x,y)
(0,0) (0,0)
(5,4) –5 (3,0) (-5,4) (-3,0)
(5,1) (-5,1)
(5,-1) (-5,-1)
(3,0) (-3,0)
(4,-2)
(0,0)
(-2,-2) (0,0)
1、关于y轴对称的两个图形上点的坐标特征:
(x , y)
(-x , y)