大坝渗流稳定主要参数计算

合集下载

理正软件计算土石坝渗流稳定

理正软件计算土石坝渗流稳定

用理正软件计算土石坝渗流稳定的方法1渗流计算1在CAD中绘制土石坝横断面图,图中坝坡下的长垫层为基岩,图例中有两种基岩,根据情况有几种画几种,长度为1.5-2倍坝长,注意不能使用镜像。

绘制时要注意并另存为DXF文件(最好存为最低版本即2000)2进行渗流计算打开理正岩土软件,选择渗流分析计算在选工程中选择软件生成结论的存储位置如上例,计算结论存在e盘考博文件中,确认后弹出下图直接点确认即可。

确认后点增,选择系统默认例题,点确认然后自动弹出下图中对话框然后点击左上角的“辅助功能”选择“读入DXF文件自动生成坡面、节点、土层数据”,弹出以下对话框选择已画好的CAD图打开打开后出现如下对话框,在图上双击后可放大图形,放大后可看到起始点编号(起始点在图中用红圈标出,及上游坝坡起始点)。

坡面线段数及坝坡分为几段,无马道土石坝坡面线段数为3,图例中有9条。

弹出以下对话框,在坡面形状中填写正确的上下游水位节点坐标一栏为理正自动生成坐标,不用修改土层定义一栏如下图,图中不同土性区域数为软件自动生成软件同时为不同区域编号,双击图中土石坝图形放大图形可以看到编号(如下附图2)Kx,Ky为土层的x,y向的渗透系数,同一土层两数相等且等于土层渗透系数,对应区号输入渗透系数(渗透系数由地质资料中查找)α值若无资料则都为0计算即可。

附图2面边界条件中,同样双击放大土石坝剖面图可以看到节点编号,顺时针输入计算所需要的坡面信息(即始末节点编号),面边界个数及浸润线可能经过的面,即上游所有水面线以下的坡面加上坝基上表面,下游所有坡面加坝基上表面,如图,蓝色为已知水面线,红色为可能的浸出面.点边界描述项数为2,节点即上下游水面线与坝体的交点,若下游无水则为下游坝脚,取值为0。

计算参数栏为系统默认,不用修改输出结果栏目中,需注意流量计算截面的点数一栏和理正边坡文件接口一栏。

流量计算截面的点数即下游截面所有点和基岩上表面所有点,如本例有5个,且须在右边一栏输入5个节点的坐标,坐标从第二栏节点坐标中查找。

渗流稳定计算

渗流稳定计算

赤峰市红山区城郊乡防洪工程5.6稳定计算5.6.1渗流及渗透稳定计算1)渗流分析的目的(1)确定堤身浸润线及下游逸出点位置,以便核算堤坡稳定。

(2)估算堤身、堤基的渗透量。

(3)求出局部渗流坡降,验算发生渗透变形的可能。

概括以上分析,对初步拟定的土堤剖面进行修改,最后确定土堤剖面及主渗,排水设备的型式及尺寸。

2)渗流分析计算的原则(1)土堤渗流分析计算断面应具有代表性。

(2)土堤渗流计算应严格按照《堤防工程设计规范》(GB50286-981)第8.1.2条及本规范附录E的有关规定执行。

3)渗流分析计算的内容(1)核算在设计洪水持续时间内浸润线的位置,当在背水侧堤坡逸出时,应计算出逸点位置,逸出段与背水侧堤基表面的出逸比降。

(2)当堤身、堤基土渗透系数K≥10-3cm/s时,应计算渗流量。

(3)设计洪水位降落时临水侧堤身内自由水位。

4)堤防渗流分析计算的水位组合(1)临水侧为设计洪水位,背水侧为相应水位。

(2)临水侧为设计洪水位,背水侧无水。

(3)洪水降落时对临水侧堤坡稳定最不利情况。

5)渗透计算方法堤防渗流分析计算方法按照《堤防工程设计规范》(GB50286-98)附录E3的透水堤基均质土堤渗流计算即——渗流问题的水力学解法。

6)土堤渗流分析计算计算锡泊河左岸(0-468)横断面,堤高 5.05米(P=2%),半支箭左岸(0+302.25)横断面,堤高6.46米(P=2%),该两段堤防均属于 2级堤防,堤防渗流计算断面采用1个断面计算即可。

采用《堤防工程设计规范》中透水堤基均质土堤下游坡无排水设备或有贴坡式排水稳定渗流计算公式:TH L TH H D 88.0m k q q 11210++-+=)( (E.3.1)H m m b 121+-+=)(H H L (E2.1-3) 11112m m H L +=∆ (E2.1-4) 当K ≤k 0时h 0=a+H 2=q÷⎭⎬⎫⎩⎨⎧+++⎥⎦⎤⎢⎣⎡++++∙T H a m T K H a m H m m K 44.0)(5.0)5.0()5.0(122022222+H 2 ……………(E.3.2-2) 对于各种情况下坝体浸润线均可按下式确定X=k·T '0q h y -+k '222q h y - ……………(E.3.2-6)式中:q'= )(0211120211m 2m 2k h m H L h H -++-+0211010m k h m H L h H T -+-(E.3.2-7)k ——堤身渗透系数; k 0——堤基渗透系数; H 1——水位到坝脚的距离(m ); H 2——下游水位(m ); H ——堤防高度(m );q ——单位宽度渗流量(m 3/s·m); m 1——上游坡坡率,m 1=3.0;m2——下游坡坡率,m2=3.0;b——坝体顶部宽度6.0m;h0——下游出逸点高度(m);锡伯河采用数据列表如下:正常工况锡伯河渗流计算结果表部分为相对不透水层,基础和堤身渗透系数相差100倍以上,下游无水,经计算堤身和堤脚无无出逸点,渗流稳定。

某水库大坝渗流计算及稳定分析

某水库大坝渗流计算及稳定分析

某水库大坝渗流计算及稳定分析作者:彭成山梁荣慧来源:《城市建设理论研究》2012年第30期摘要:在病险水库除险加固工程中,经常需要对加固前的建筑物进行安全复核。

本文根据某水库的地勘资料,对其进行了渗流计算和坝坡稳定抗滑稳定计算,计算结果为水库大坝的加固提供合理的构筑建议和措施。

关键词:土石坝;渗流计算;稳定分析中图分类号:TV697 文献标识码:A 文章编号:1.工程概况某水库位于罗山县西南约55km处的灵山镇境内,属丘陵地区水库,位于淮河水系小黄河支沟上,控制流域面积3.3km2,总库容102.02万m3。

水库是一座以防洪、灌溉为主,结合水产养殖等综合利用的小(1)型水库。

大坝为粘土心墙坝,现状坝长90m,最大坝高17.4m,坝顶宽约3m。

该水库按50年一遇设计,500年一遇防洪标准校核。

2.工程地质某水库位于秦岭-昆仑纬向复杂构造带之南亚带与新华夏系第二沉降带的交接复合部位。

受淮阳山字型构造与经向构造复合干扰,地质构造十分复杂。

据地质测绘及勘探揭露范围内,坝址区地层岩性主要为坝体人工填土(Qs)及燕山晚期侵入的花岗岩,仅在下游河槽分布有泥卵石。

坝址区地层根据时代、成因、岩性及其物理力学性特征,现由老到新分述如下:燕山晚期(r3 5)岩性为花岗岩,分布在水库两岸,肉红色、灰白色~淡红色,细粒~中粗粒结构,肉眼可见斑状矿物,矿物按含量依次为正长石、斜长石、石英、黑云母等。

裂隙较发育,多为60度左右的高倾角,裂隙宽0.3mm,裂面平整,沿裂隙面充填有铁锰质薄膜。

表层2m左右多为全风化,岩芯多呈碎屑状、块状,地质取芯率(RQD)低于10%;多为中等风化,岩芯呈块状和柱状,岩心采取率60%~90%,RQD值25%~80%。

第四系全新统(alplQ4)岩性为泥卵石,分布在下游河槽内,卵石成分主要为安山岩、花岗岩,灰绿色,灰黄色,多呈次圆状,粒径一般3~5cm,最大10cm左右,含量50%左右,泥质充填,结构较松散。

关村水库大坝渗流计算及稳定分析

关村水库大坝渗流计算及稳定分析
s c i e nt i f i c ba s i s i s e s t a b l i s h e d or f c o ns t r u c t i ng t he d a n g e r o b v i a t i n g a n d c o n s o l i d a t i n g wo r k s o f t hi s r e s e vo r i r .
k e y wo r d s : d i l a p i d a t e d r e s e r v o i r ; d a m; s e e p a g e l f o w; s t a b i l i t y a n a l y s i s ; G u a n c u n Re s e r v o i r
年一遇校核。总库容 3 1 7 . 8 万m , , 控制流域 面积 3 5 . 1 5 k m 。
关村水库枢纽工 程 由大坝 、 放水涵 卧管 、 溢洪道等三部分
组成 。
5 . 5 4 x 1 0 - s c m / s 。 坝体土稍密~ 密实状态 , 属高~ 中等压缩性土。 从 黏粒含量 、 塑性指数 、 渗透系数等指标 分析 , 满足均质土坝土料 质量要求 。坝体土的渗透变形破坏类型为流土 , 允许水力坡 降
为0 . 4 5 。
大坝为碾压均质土坝 , 最大坝高 3 2 . 2 m, 现状坝顶长 1 6 0 m,
坝顶宽 4 m。 大 坝 上 游 坡 比 1 : 3 ~ 1 : 2 . 5 , 干砌石护坡 , 下 游 坡 比
1 : 2 . 5 ~ h 2 , 设二级 马道 , 马道高程分别 为 2 6 . 7 m、 1 9 . 2 m, ( 以坝 底高程为 0 m计 , 下同 ) 为草皮护坡。 卧管位于库区右侧岸坡上 , 共 1 0个进水 口, 相邻两孔高差 为 8 0 c m, 最 高一 级进 水 口高程为 2 5 . 5 m。放水 涵洞 与卧管消 力池相 接 , 为砌 石半 圆拱无 压洞 , 断面尺 寸 1 . 1 ax t i . 5【 n , 进口 底板高程 2 1 . 1 n l , 纵坡 1 / 2 0 0 。

AutoBank计算某水库大坝渗流计算资料

AutoBank计算某水库大坝渗流计算资料

稳定计算原理简介按照对附加孔隙水压力的不同考虑,稳定计算分为总应力法和有效应力法,总应力法不考虑孔隙水压力,采用总应力强度指标(快剪指标);有效应力法计入附加孔隙水压力,采用有效应力强度指标。

有效应力法是通用计算方法,适用于各种工况。

稳定渗流期认为附加孔隙水压力已经消散不予考虑,施工期和水位降落期对粘性土应该计入附加孔隙水压力。

在没有实测资料的情况下,附加孔隙水压力=孔压系数×土条有效重量的增量。

表计算方法和对应的强度指标体公式参见《碾压式土石坝设计规范》,《堤防工程设计规范》等相关文献。

计算时需要求最小安全系数的滑弧位置,有关计算由软件自动实现。

Autobank稳定计算报告1 计算选项设定值作业数量=0搜索精度=3设定滑面最小长度(m)=1设定滑面最小深度(m)=0.5土条数量=302 材料表3 各工况计算过程正常运行+死水位,正常运行期,有效应力法,死水位,u'=0,无降雨,毕肖普法,0g(向左滑动)稳定安全系数Fs=1.46693AF/F=1656/1128.79滑面类型=圆弧圆弧半径(m)=24.1132滑动方向=向左滑动外加荷载总量(KN):Fx=0,Fy=0Autobank稳定计算报告 2020.05.11 17:03:31土条宽度(m)=1.034说明:有效重:浸润线以上为自然容重,浸润线以下浮容重.总重:计算地震惯性力所用重量,浸润线以下饱和容重.渗流水重:浸润线和坡外水位之间的水流重量.增量重:土条新填筑土层的重量,用于有效应力法u:渗流水重/土条宽度坡外水位=317.37Autobank稳定计算报告 2020.05.11 17:03:31正常运行+死水位,正常运行期,有效应力法,死水位,u'=0,无降雨,毕肖普法,0g(向右滑动)稳定安全系数Fs=1.41469AF/F=2093.62/1479.84滑面类型=圆弧圆弧半径(m)=26.0648滑动方向=向右滑动外加荷载总量(KN):Fx=0,Fy=0土条宽度(m)=1.2Autobank稳定计算报告 2020.05.11 17:03:31说明:有效重:浸润线以上为自然容重,浸润线以下浮容重.总重:计算地震惯性力所用重量,浸润线以下饱和容重.渗流水重:浸润线和坡外水位之间的水流重量.增量重:土条新填筑土层的重量,用于有效应力法u:渗流水重/土条宽度坡外水位=312.09Autobank稳定计算报告 2020.05.11 17:03:31正常运行+正常蓄水位,正常运行期,有效应力法,正常蓄水位,u'=0,无降雨,毕肖普法,0g(向左滑动)稳定安全系数Fs=1.56246AF/F=1545.02/988.738滑面类型=圆弧圆弧半径(m)=25.7258滑动方向=向左滑动外加荷载总量(KN):Fx=0,Fy=0土条宽度(m)=1.034Autobank稳定计算报告 2020.05.11 17:03:31说明:有效重:浸润线以上为自然容重,浸润线以下浮容重.总重:计算地震惯性力所用重量,浸润线以下饱和容重.渗流水重:浸润线和坡外水位之间的水流重量.增量重:土条新填筑土层的重量,用于有效应力法u:渗流水重/土条宽度坡外水位=318.94Autobank稳定计算报告 2020.05.11 17:03:31正常运行+正常蓄水位,正常运行期,有效应力法,正常蓄水位,u'=0,无降雨,毕肖普法,0g(向右滑动)稳定安全系数Fs=1.40225AF/F=2164.3/1543.37滑面类型=圆弧圆弧半径(m)=24.8143滑动方向=向右滑动外加荷载总量(KN):Fx=0,Fy=0土条宽度(m)=1.2Autobank稳定计算报告 2020.05.11 17:03:31说明:有效重:浸润线以上为自然容重,浸润线以下浮容重.总重:计算地震惯性力所用重量,浸润线以下饱和容重.渗流水重:浸润线和坡外水位之间的水流重量.增量重:土条新填筑土层的重量,用于有效应力法u:渗流水重/土条宽度坡外水位=312.09Autobank稳定计算报告 2020.05.11 17:03:31正常运行+设计洪水位,正常运行期,有效应力法,设计洪水位,u'=0,无降雨,毕肖普法,0g(向左滑动)稳定安全系数Fs=1.78929AF/F=1529.33/854.606滑面类型=圆弧圆弧半径(m)=24.1132滑动方向=向左滑动外加荷载总量(KN):Fx=0,Fy=0土条宽度(m)=1.034说明:Autobank稳定计算报告 2020.05.11 17:03:31有效重:浸润线以上为自然容重,浸润线以下浮容重.总重:计算地震惯性力所用重量,浸润线以下饱和容重.渗流水重:浸润线和坡外水位之间的水流重量.增量重:土条新填筑土层的重量,用于有效应力法u:渗流水重/土条宽度坡外水位=321.5正常运行+设计洪水位,正常运行期,有效应力法,设计洪水位,u'=0,无降雨,毕肖普法,0g(向右滑动)稳定安全系数Fs=1.37287AF/F=2118.93/1543.36滑面类型=圆弧圆弧半径(m)=24.8143滑动方向=向右滑动Autobank稳定计算报告 2020.05.11 17:03:31外加荷载总量(KN):Fx=0,Fy=0土条宽度(m)=1.2说明:有效重:浸润线以上为自然容重,浸润线以下浮容重.总重:计算地震惯性力所用重量,浸润线以下饱和容重.渗流水重:浸润线和坡外水位之间的水流重量.增量重:土条新填筑土层的重量,用于有效应力法u:渗流水重/土条宽度坡外水位=312.09Autobank稳定计算报告 2020.05.11 17:03:31正常运行+校核洪水位,正常运行期,有效应力法,校核洪水位,u'=0,无降雨,毕肖普法,0g(向右滑动)稳定安全系数Fs=1.34223AF/F=2166.45/1614.03滑面类型=圆弧圆弧半径(m)=26.9612滑动方向=向右滑动外加荷载总量(KN):Fx=0,Fy=0土条宽度(m)=1.255Autobank稳定计算报告 2020.05.11 17:03:31说明:有效重:浸润线以上为自然容重,浸润线以下浮容重.总重:计算地震惯性力所用重量,浸润线以下饱和容重.渗流水重:浸润线和坡外水位之间的水流重量.增量重:土条新填筑土层的重量,用于有效应力法u:渗流水重/土条宽度坡外水位=312.09Autobank稳定计算报告 2020.05.11 17:03:314 计算结果5 附图Autobank稳定计算报告 2020.05.11 17:03:31。

用手算方法计算均质土坝渗流稳定

用手算方法计算均质土坝渗流稳定

某水库均质土坝渗流稳定计算1.渗流允许坡降(J 允)对粉质黏土,可按下式计算:J 允(1)(1)/wG n c Kγ--+=式中 G —土粒比重,取2.73;n —土的孔隙率;/(1)n e e =+=0.849 /(1+0.849)= 0.4592;c —土的黏聚力,取7.0 kPa ; w γ—水的重度,取10 kN/m 3;K —安全系数,取2.0。

经计算得J = 0.818。

2.渗流计算方法根据地质勘察报告,坝基部位土层的渗透系数均小于 1.64×10-6cm/s ,属于弱~微透水层,可以认为本工程坝基为不透水地基。

本设计按均质坝、不透水地基、下游无排水设备进行计算,稳定渗流期计算简图如图1:图1 某水库稳定渗流期计算简图(无排水设备)稳定渗流期计算公式如下:221201200020211()(1)2()sin (1ln )(2)()(3)(4)21H H a q kH s H a q ka a s L m a H m m λβλ⎧-+=⎪+⎪⎪+=+⎪⎨⎪=-+⎪⎪=⎪+⎩式中 q —单位渗流量,m 3/s ·m ;k —渗透系数,取坝体平均渗透系数6.43×10-5cm/s (0.0556m 3/d ); 1H —上游水深,m ; 2H —下游水深,取7.45m ; 1m —上游坡比,取2.0; 2m —下游坡比,取2.0;0a —下游水位以上出逸点高度,m ; β—下游坝坡坡角,sin β=。

浸润线方程为:2212qy H x k=-渗流计算可采用迭代方法求解,即先假设一个0a 值,然后判断式(1)与式(2)计算结果是否相等。

此方法在手算时比较烦琐,为此,将上述公式进行变换。

先将式(3)、式(4)代入式(1),并令式(1)= 式(2),经化简后成为一单变量0a 的非线性方程,即:2210000100(0.90)0.90()1ln (5)46.4 2.445H a a f a a H a a ⎛⎫-++=-+ ⎪--⎝⎭满足0()0f a =的0a 值即为所求。

水利堤坝工程中渗透参数的选取及渗流计算方法评价

水利堤坝工程中渗透参数的选取及渗流计算方法评价

水利堤坝工程中渗透参数的选取及渗流计算方法评价水利堤坝工程中渗透参数的选取及渗流计算方法评价摘要:渗流是引起涉水工程破坏的重要原因,因此渗流计算是水利水电工程涉水工程设计中不可或缺的步骤。

渗透参数的选取与渗流方法的选择,直接影响对工程渗流稳定性的评价。

本文结合笔者多年工作经验,就水利水电工程设计中渗透参数的选取与渗流计算的几种方法进行了初步的分析,并总结出渗流计算注意的一些问题,提高了计算结果准确性,对进一步采取防渗措施提供参考。

关键词:水利工程渗流计算堤坝设计引言堤防工程的设计与施工准则要求保证堤防建筑物能抵御洪水的威胁。

由于堤防大多沿天然河岸修建,因此,堤防基础的渗透稳定问题普遍存在。

本文主要针对堤防渗流参数的选用并对渗流计算方法进行了评价。

1、渗流计算目的(1)坝体(堤身)浸润线的位置。

(2)渗透压力、水力坡降和流速。

(3)通过坝体(堤身)或堤基的渗流量。

(4)坝体(堤身)整体和局部渗流稳定性分析。

2、计算工况及渗透系数的选用岩土工程参数的选用需要根据满足给定保证率时,通过实验方法选用。

不同工况需要选用不同的参数,否则就无法满足工程设计所需要的保证率。

2.1常规堤防工程常规的堤防工程计算提出了三种水位组合,此三种水位组合的渗流计算目的及相应土体的渗透系数选取原则主要为:(1)临水侧为高水位,背水坡为相应水位。

本组合的计算目的:①计算背水坡可能最高的逸出点位置、背水坡逸出段及背水坡基础表面出逸比降,用于背水坡渗流安全复核、反滤层及排水设施设计;②背水坡面可能最高的浸润线,用于背水边坡稳定计算;③当堤身、堤基土的渗透系数大于10-3cm∕s时,计算渗流量,用于分析防渗措施对本工程运行要求的可行性和背水坡排水设施设计(对于大坝均要求进行渗流量计算)。

对上述第①、②种计算目的工况,堤身、堤基的渗透系数则取小值平均值,对第③种计算目的工况则取大值平均值。

(2)临水侧为高水位,背水坡为低水位或无水。

本组合的计算目的:①背水坡面可能最高的浸润线,用于背水坡边坡稳定计算,相应各土体的渗透系数取小值平均值;②复核局部渗流稳定及进行反滤层设计,则进行局部渗流稳定性复核土体的渗透系数取小值,其上、下部位土体的渗透系数取大值平均值。

水库大坝渗流量及稳定计算

水库大坝渗流量及稳定计算
电规 划 设 计 总 院 》 编 制 的 《 压 式 土 石 坝 设 计 手 册 》 水 碾 ( 册 ) 按混合 式土石 坝计算 公式 ,计算成 果见表 1: 下 , 4稳定 计 算 稳定 计算 方 法根 据 规 范 ( L 7 - 0 i S 2 4 2 0 )规 定 ,采用 不计 条 块 间作用 力 的瑞 典圆 弧 法 ,计 算坝 坡 抗 滑 稳 定 安全 系 数 。边 坡 稳 定计 算 采 用 北京 理 正 软 件 设 计 研 究 院编 制 的 《 正 边 坡 稳 定 分 析 软 件 》计 算 , 以 “ 计 洪 水 理 设
l — 6 8 2.
3渗漉 计 算 与分 析 1、计 算 方法 及计 算 参 数 根 据水 库 初 步 设计 标 准 断 面 图 ,该水 库 大 坝 由两 种土 料 组 成 ,一 是粘 土斜 墙 ,二是 由壤 土 、砂 砾料 组 成 的 混 合坝 壳 ,背水 坡 脚 新 设 有贴 坡 排 水 体 ,按 有 限透 水 地 基 上具 有 截 水墙 的斜 墙 混 合 土石 坝 进 行 渗 流计 算 。渗透 系数 的确 定 ,根 据土 工 实 验报 告 分析 ,粘 土 的渗 透 系数 为 1 3 8X 1 - m . 0 O5 / c S ,壤 土 的渗透 系 数为 15 3X 1一 m s . 0 0 c / ,砂 砾 料 的渗透 系数 为 19 6× 1一 .6 0
I工程 概 况 某水 库 坝址 以 上集 雨面 积 l 6 i ,河道 长度 为 2 . k ,河 道平 均 比降 ik 2 n 22m 为 1 . ‰ 。总库 容 1 0万 m , 是一 座 以 防洪 、农业 灌 溉 为 主 ,兼 顾养 2 2 5 0 3 鱼 、 发 电及 旅 游 等 综合 利 用 的 中 型 水 库 。

大坝渗流稳定计算过程

大坝渗流稳定计算过程

------------------------------------------------------------------------ 计算项目:草荡------------------------------------------------------------------------ [计算简图]分析类型: 不稳定流[坡面信息]左侧水位高: 4.330(m)右侧水位高: -0.420(m)左侧水位高2: 2.330(m)右侧水位高2: -10000.000(m)坡面线段数 6坡面线号水平投影(m) 竖直投影(m)1 10.625 4.7502 4.219 0.0003 8.281 -4.2504 0.719 -0.2505 1.500 0.0006 2.219 -1.500[土层信息]坡面节点数 = 10编号 X(m) Y(m)0 0.000 0.000-1 10.625 4.750-2 14.844 4.750-3 23.125 0.500-4 23.844 0.250-5 25.344 0.250-6 27.563 -1.250-7 9.686 4.330-8 26.335 -0.420-9 5.212 2.330附加节点数 = 17编号 X(m) Y(m)1 9.250 -1.2502 20.313 -1.2503 -3.000 0.0004 -3.000 -6.0005 9.250 -6.5006 13.125 -7.5007 15.531 -8.7508 28.781 -9.5009 28.781 -1.25010 26.875 -2.00011 21.031 -2.00012 -3.000 -10.50013 9.219 -10.50014 22.813 -13.50015 28.781 -13.50016 -3.000 -17.00017 28.781 -17.000不同土性区域数 = 5区号土类型 Kx Ky Alfa 孔隙率饱和度单位储存节点编号(m/d) (m/d) (度) 量1/m*0.0011 细砂 0.00606 0.02240 0.100 0.445 0.900 2.000(-1,-7,0,1,2,-3,-2,)2 细砂 0.00264 0.00861 0.100 0.564 0.900 2.000(0,3,4,5,6,7,8,9,-6,10,11,2,1,)3 细砂 0.05500 0.05260 0.100 0.434 0.850 2.000(4,12,13,14,15,8,7,6,5,)4 细砂 0.79500 0.26800 0.100 0.407 0.900 2.000(12,16,17,15,14,13,)5 细砂 86.40000 86.40000 0.100 0.350 0.250 2.000(-3,2,11,10,-6,-8,-5,-4,)[面边界数据]面边界数 = 8编号1, 边界类型: 已知水头节点号: 3 --- 0时间节点水位升降值(m)初始节点水头高度 4.330 --- 4.330 (m)0.000 0.0001.000 -0.6802.000 -1.3503.000 -2.0304.500 -2.030编号2, 边界类型: 已知水头节点号: 0 --- -7时间节点水位升降值(m)初始节点水头高度 4.330 --- 4.330 (m)0.000 0.0001.000 -0.6802.000 -1.3503.000 -2.0304.500 -2.030编号3, 边界类型: 已知水头节点号: -6 --- -8节点水头高度 0.420 --- 0.420 (m) 编号4, 边界类型: 已知水头节点号: -6 --- 9节点水头高度 0.420 --- 0.420 (m) 编号5, 边界类型: 可能的浸出点节点号: -2 --- -3编号6, 边界类型: 可能的浸出点节点号: -4 --- -3编号7, 边界类型: 可能的浸出点节点号: -4 --- -5编号8, 边界类型: 可能的浸出点节点号: -5 --- -8[点边界数据]点边界数 = 1编号1, 边界类型: 已知水头节点编号描述: -5节点水头高度 1.000(m)[计算参数]剖分长度 = 1.000(m)收敛判断误差(两次计算的相对变化) = 0.100%最大的迭代次数 = 30时间增量的段数 = 1时间步时间增量(天) 重复次数累计时间(天) 1 2.000 1 2.000初始压力水头:由原始水面线计算初始水面线段数 = 3初始水面线起始坐标X = 0.000(m)初始水面线起始坐标Y = 3.000(m)水面线号水平投影(m) 竖直投影(m)1 10.000 5.0002 10.000 5.0003 10.000 5.000[输出内容]计算流量:流量计算截面的点数 = 2编号 X(m) Y(m)1 13.000 8.0002 13.000 -20.000画分析曲线:分析曲线截面始点坐标: (0.000,0.000)分析曲线截面终点坐标: (30.000,0.000)------------------------------------------------------------------------ 计算结果:------------------------------------------------------------------------渗流量时间增量步 01, 时间 0.0000(天) : 2.38476 m3/天时间增量步 02, 时间 2.0000(天) : -0.02015 m3/天浸润线时间增量步 1, 时间 0.000(天) :时间增量步 2, 时间 2.000(天) :浸润线共分为 2 段第 1段 X(m) Y(m)23.844 0.25023.844 0.25023.844 0.25023.844 0.25023.844 0.25023.130 0.26623.130 0.26622.750 0.26722.750 0.26722.194 0.28622.194 0.28621.031 0.44521.031 0.44520.942 0.45720.942 0.45720.891 0.47420.891 0.47419.979 0.82219.979 0.82219.599 0.99519.599 0.99519.263 1.15719.263 1.15718.638 1.43118.638 1.43118.350 1.54118.350 1.54117.639 1.80217.639 1.80217.367 1.88717.367 1.88716.558 2.125 16.440 2.161 16.440 2.161 16.409 2.170 16.409 2.170 16.362 2.182 16.362 2.182 15.270 2.417 15.270 2.417 15.195 2.431 15.195 2.431 14.405 2.570 14.405 2.570 14.097 2.602 14.097 2.602 13.386 2.680 13.386 2.680 12.460 2.746 12.460 2.746 12.235 2.764 12.235 2.764 11.978 2.776 11.978 2.776 11.409 2.804 11.409 2.804 11.052 2.810 11.052 2.810 10.384 2.818 10.384 2.818 9.697 2.811 9.697 2.811 9.213 2.809 9.213 2.809 8.782 2.798 8.782 2.798 8.413 2.795 8.413 2.795 7.688 2.798 7.688 2.798 7.063 2.821 7.063 2.821 6.779 2.832 6.779 2.832 6.450 2.884第 2段 X(m) Y(m) 26.335 -0.420 26.335 -0.420 26.335 -0.42026.335 -0.420 26.335 -0.420 26.335 -0.420 26.335 -0.420。

长青水库大坝渗流及稳定分析

长青水库大坝渗流及稳定分析
m, 常 蓄 水 位 2 8 0m, 水 位 155 m, 库 容 1 0 正 1. 0 死 9 .0 总 2万 6
址 的所 有地 质 情 况 。 有 较 可 靠 的地 质 钻孔 资料 和 试验 具
结果 , 因此 确定 以该 断面作 为代 表性 断面进 行计算 。大坝
计算 断面见 图 1 。
1 渗流分析
11 计算 方法及 计算 参数 .
渗 流 计算 采 用 有 限元 方 法 进 行平 面渗 流 计 算 。 用 采
理正 渗流分 析软 件进行 计算 。

张晓元
宋思敏
李长城 , , 长青水库大坝渗流及稳定 分析
轰 2 汝鼻_ 髓1 锰 工况 蔓球

表 5 长青水库水位从校核洪水位一 死水位降落过褪计算取值
< 湖南水利水 电)0 0 2 1 年第 2 期

张晓元 宋思敏 李长城
( 武汉 大学水 资源 与水 电工程科 学国家重 点实验 室 武汉 市 4 07 ) 302
【 摘
要 】 文章通过对长青水库 大坝 最大坝 高断面进行 渗流计算及 坝坡抗 滑稳 定计算 , 算结 计
果 为 长青 水 库 大 坝 的 工 程 处理 提 供 了依 据 , 为其 他 土 坝 的 渗 流及 稳 定 安 全 分 析提 供 了可 供 借 也 鉴 的 资料 。
图 1 大坝 最 大 坝 高 断面 图
显 出现 了异常 渗 漏 ,0 5年 6月 2 20 4日, 青水 库 大 坝在 长
遭遇 暴 雨且 水 库水 位 较 高时 , 坝 坝 顶靠 下 游 侧 在 粘土 大 心墙 和下 游坝 壳体 的结合 面处 出现 的一条 基 本上 贯 穿整
个坝顶 的裂缝 , 示大 坝存 在着 严重 的安全 隐患 。 显

花桥水库大坝渗漏量监测资料及渗流计算分析

花桥水库大坝渗漏量监测资料及渗流计算分析

花桥水库大坝渗漏量监测资料及渗流计算分析花桥水库是我国的一座重要水源库,位于山区,是当地重要的供水来源之一。

水库大坝的安全性对当地的水资源保障起着至关重要的作用。

由于水库大坝长期承受着水压力,难免会出现一定程度的渗漏现象。

及时监测和分析水库大坝的渗漏量是非常必要的。

一、监测资料的收集1. 采集渗漏水样品为了对水库大坝的渗漏情况进行监测,首先需要采集渗漏水样。

通过在大坝表面和下游地面周围设置采样点并定期采集水样,可以了解渗漏水的性质及其变化规律。

根据实验室对水样的组成分析和处理,可以对渗漏水的来源和渗漏特征进行初步的诊断。

2. 安装渗流计除了采集水样外,还需要在大坝内部和外部设置渗流计,用于长期、连续地监测渗漏量。

通过传感器采集的数据,可以及时发现渗漏情况,并对渗漏量进行实时监测。

安装在水库大坝的渗流计要具备高灵敏度和高精度,以确保监测数据的准确性。

二、渗流计算分析1. 计算渗漏水量基于采集到的渗流计数据,可以进行渗漏水量的计算和分析。

在水库大坝的上游和下游设置水流量计,并配合渗流计数据进行对比分析,得出渗漏水量的准确数值。

这个数值的计算与分析可以帮助水库管理人员了解水库大坝的实际工作状态,并及时制定维护和修复方案。

2. 渗漏水的渗透性分析通过对水样的分析和处理,可以得出渗漏水的渗透性参数。

渗透性参数的分析可以帮助我们更好地了解渗漏水的来源和特性,并为采取有效防治措施提供科学依据。

根据渗透性参数的变化规律,可以进行预测和预警,提前采取对策,以确保水库大坝的安全性。

三、渗漏防治建议1. 加强大坝检查对于已经发现渗漏现象的水库大坝,建议加强定期检查,发现问题及时修复。

通过定期的大坝巡查和检测,可以及时发现漏水点,并进行必要的修复工作,避免漏水现象的扩大和加剧。

2. 加固渗漏部位对于渗漏较为严重的部位,可以考虑采取加固措施。

通过重建大坝或者在渗漏部位进行补漏处理,可以有效地减少渗漏水量,提高水库大坝的安全性。

面板坝剖面及渗流稳定计算

面板坝剖面及渗流稳定计算

坝体设计1、坝体断面设计基本资料设计洪水位 上游:605.5m 下游:578.8m 校核洪水位 上游:607.35m 下游:580m 正常水位 上游:605m 下游:578.5m 死水位 588m多年平均风速:12m/s 多年最大风速:18m/s吹程:正常水位:210m 设计水位:210.5m 校核水位:212m 地震烈度:7度。

坝顶高程的确定坝顶高程按以下四种条件计算,取其最大值: ① 设计洪水位加正常运用条件的坝顶超高;② 正常蓄水位加正常运用条件的坝顶超高; ③ 校核洪水位加非常运用条件的坝顶超高;④ 正常蓄水位加非常运用条件的坝顶超高,再加地震安全超高。

坝顶高程=水库静水位+坝顶超高 坝顶超高d=R+e+AR —波浪在坝坡上的设计爬高; e —风浪引起的坝前水位壅高;运行条件下A=0.4m 。

水位壅高计算公式如下:βcos 22mgH D KW e =式中 e —计算点处的风壅水面高度,m ; D —风区长度,m ;K —综合摩阻系数,取3.6×10-6; β—计算风向与坝轴线法线的夹角。

波浪爬高计算公式如下:m m W m L h mK K R 21+=∆⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛=7.0245.027.0227.013.00018.07.013.0W gH th W gD th W gH th W gh m m m 5.0438.4m m h T = π22mm gT L =m m W m L h mK K R 21+=∆605m 坝前水深40m ,平均水深340*0.55m 。

设计情况:计算得m h =0.448m,970.2=m T m,761.13=mL m 1.240m h =0.645 m T =3.564 m L =19.820 1.785m m W m L h mK K R 21+=∆取防浪墙顶高程609m,防浪墙坝顶超高1.2m,所以坝顶高程为607.8m。

渗流计算

渗流计算
v=k h1 − h2 = kJ L
q = vA = kJA
上式是水在土中渗透的基本规律,称为渗透定律或达西定律。 达西定律虽然只适用于线性阻力的层流运动,但在工程实践中,超过 达西定律上下限的局部区域与整个渗流场相比较经常是不大的,且大多数 自然状态土中的渗流均能基本上符合层流规律或偏离不远,故一般均可简 化为符合达西定律的问题来处理。 2)渗透系数的确定 2.1)单层土渗透系数的确定 单层土的渗透系数是由现场或室内实验确定的。工程设计中土的渗透 系数作为基本资料由地勘专业提供。单层土假定为各向同性土,则土中任 意一点、任意方向的渗透系数相等,即 Kx=Ky=Kz。 2.2)各向已性土渗透系数的确定 实际工程中的土层一般都具有各向异性,如冲积土层、碾压土层等。 由于层次的存在,土层的水平向渗透系数长大于垂直向渗透系数。对各种
(焦建华) 焦建华)
中山市水利水电勘测设计咨询有限公司 2010.12.30

录ቤተ መጻሕፍቲ ባይዱ
一、渗流计算的基本知识 ...........................................................................................1 一) 、渗透与渗透影响 .......................................................................................... 1 1)渗透 ........................................................................................................................ 1 2)渗透影响 ................................................................................................................ 1 3)渗透变形及判别 .................................................................................................... 2 二) 、渗流计算的基本原理及渗透系数 .............................................................. 3 1)达西定律 ................................................................................................................ 3 2)渗透系数的确定 .................................................................................................... 3 3)渗透系数的应用 .................................................................................................... 5 三) 、渗流计算的基本方程 .................................................................................. 6 二、大坝、 大坝、堤防渗流计算 ...........................................................................................6 一) 、土石坝渗流计算 .......................................................................................... 6 1)渗流计算的目的 .................................................................................................... 6 2)渗流计算的内容 .................................................................................................... 6 3)渗流计算工况及水位组合的选择 ........................................................................ 7 4)渗流计算的方法 .................................................................................................... 9 5)渗透系数的选用 .................................................................................................. 10 6)渗透稳定计算 ...................................................................................................... 10 7)渗透稳定结果分析 .............................................................................................. 11 二)堤防渗流计算 ...............................................................................................11 1)增加了渗流量计算条件 ...................................................................................... 11 2)水位组合结合堤防工程的特点 .......................................................................... 11 3)根据堤防功能特点,增加了一种计算模型 ...................................................... 11 三、水闸、 水闸、泵站渗流计算 .........................................................................................12 1)与土石坝渗流计算的比较 .................................................................................. 12 2)渗流计算的目的 .................................................................................................. 12 3)渗流计算的工况及水位组合选择 ...................................................................... 12 4)渗流计算的主要方法 .......................................................................................... 13 5)侧向绕渗 .............................................................................................................. 24

花桥水库大坝渗漏量监测资料及渗流计算分析

花桥水库大坝渗漏量监测资料及渗流计算分析

图1 2011年~2018年花桥水库大坝渗漏量过程线图图2 2011年~2018年花桥水库大坝渗漏量过程线修正图图3 2015年~2018年花桥水库大坝渗漏量过程线图115 /量数据异常,经过与管理人员核实,该日从花桥水库下游河道调水至金牛镇,堰后有回水,使堰水位升高。

剔除该数据,修正后的水库渗漏量过程线见图2。

由图2可知,水库渗漏量与库水位过程线波峰与波谷基本对应,呈正相关性,说明渗漏量随库水位升高而增大。

但过程线后段仍有两个陡增段,结合降雨量,对2015年1月~2018年3月的渗流量过程线分析见图3。

由图3可知,渗流量与降雨量变化正相关,且渗漏量变化受降雨量影响大于库水位影响,渗漏量波峰滞后于降雨量波峰,说明降雨后有一个汇流过程。

2011年1月~2018年3月,花桥水库大坝渗漏量最大值为496.8m³/ d(出现在2017年7月21日、2017年9月11日,遇暴雨),渗漏最小值69.12m³/d。

除偶遇暴雨外,渗漏量量随库水位变化平稳,渗漏量不大。

4.渗漏量计算渗流稳定评价是建立在现状坝高的基础上进行的,水库特征水位以本次调洪演算结论为依据。

大坝渗流计算依据《碾压式土石坝设计规范》(S L274-2001)中的规定进行计算。

计算采用河海大学Autobank7.51软件。

经计算得主、副坝不同工况的渗漏量,分别见表1。

根据表1计算所得主、副坝单宽渗漏量,估算花桥水库大坝在现状水位下的渗漏量为413.28m³/d,与大坝实测渗漏量接近。

因现有资料缺多年平均来水量资料,不能判断渗漏程度,但相较于水库库容,渗漏量不大。

5.渗漏变形计算渗流安全评价采用“Autobank软件”进行计算,大坝坝坡出逸点的渗透坡降分别详见表2和表3。

6.结束语综上所述,得出以下结论:(1)水库渗漏量与库水位正相关,渗漏量随库水位升高而增大;(2)渗流量受降水影响明显,过程相对滞后,影响幅度大于库水位;(3)均值土坝的下游坝基表面最大出逸比降较心墙坝、面板坝偏大,容易引起渗透破坏,故应做好下游反滤及压重,防止渗透破坏。

汤河水库大坝渗流稳定分析

汤河水库大坝渗流稳定分析

及 高 坝 透 水 率 宜 为 3~5l 汤 河 水 库 为 大 Ⅱ型 水 库 ,原 帷 u。 幕 设 计 标 准 7l 大 ,不 满 足 现 行 规 范要 求 。 但 灌 浆 后 的检 u过 查 孔 压 水 ,单 位 吸水 量 不 超 过 00 9Lm nm・ . / i・ m,均 小 于 0 5 3 . 0
1 、表 2 。
2 土坝渗 流 复核
表 1 20 0 2年 5月 水 库 平 均 水 位 (0 .1 ) 1 63 m
断面 m 1 10 +0 12 0 +2 l3 0 +4
大坝基坑 坐落在古 老的强风化花 岗岩侵入体上 ,岩石 坚
硬 较 完 整 ,没 有 大 的 构 造 破 碎 带 及 断 层 分 布 ,岩 石 的极 限 抗 压 强 度 可 达 t0M a 砂 壳 坐 落 在 砂 砾 石 层 上 ,砂 砾 石 层 承 6 P 。 载 强 度 在 10k a以上 。 水 库 经 多 年 运 行 ,大 坝 坝 基 未 发 现 5 P
汤河 水库 大坝渗流稳 定分析
口 钟 秋娟


通 过 对 汤 河 水 库 的 大 坝 观 测 资料 分析 、土 坝 渗 流 复 核 计 算 ,进 而 对 汤 河 水库 大 坝 渗 流 安 全 进 行 了科
学 的评 估 ,解 释 了 坝脚 棱 体 排 水 沟 内 出现 长 年 积 水 的现 象 ,证 明 了汤 河 水 库 大坝 渗 流是 稳 定 和 安 全 的 , 有 力 地把
管 号
水位
A1 A A Al A A A6 A1 A7 A A Al 2 3 6 4 5 7 8 9 8
入 运行 ,于 17 9 8年 进 行 了加 固处 理 ,水库 控 制 流域 面积 1 2 m ,总库 容 72 8 2 k . 3亿 m ,兴利库容 3 . m ,防洪库容 7亿 37 . 4亿 r 。主要枢纽建筑物 由大坝 、输水道 、溢洪道 、水 电 n 3

坝体渗流与稳定计算

坝体渗流与稳定计算

坝体渗流与稳定计算依据:碾压土石坝设计规范SL274-2001 8.3节 丰镇例:4.1加高3m (Ⅰ格东坝、南坝,Ⅱ格南坝)坝坡稳定安全计算分析 4.1.1 计算工况根据《火力发电厂设计技术规程》(DL5000-94)、《碾压式土石坝设计规范》(SL274-2001),结合灰坝的具体情况,灰坝的稳定分析中应核算以下工况的坝坡稳定性:灰水位1209.00m ,下游水位1200.00m ,计算下游坝坡稳定。

4.1.2 计算方法与计算参数指标的选取 (1)计算方法按照《碾压式土石坝设计规范》(SL274-2001),土坝采用依据刚体极限平衡原理的圆弧滑动法进行稳定分析。

计算同时采用了不计条块间作用力的瑞典圆弧法和计及条块间作用力的简化毕肖普法。

稳定渗流期的下游坝坡稳定采用有效应力法计算,水库水位降落期的上游坝坡稳定采用总应力法计算。

土体抗剪强度可用有效应力法按下式确定:C tg '+''=φστ式中: σ'——土的有效应力;φ'、C '——土的有效内摩擦角和粘聚力。

在库水位降落期,土体的抗剪强度用总应力法按下式确定:u u c C tg +'=φστ式中: u φ、u C ——用不排水剪的内摩擦角和粘聚力。

(2)计算参数上游灰水位1209.00m ,对应下游水位1200.00m ;计算采用的相关材料物理力学指标见表4-1表4-1 计算采用的物理力学指标项 目 干容重d γ(kN/m 3) 湿容重湿γ(kN/m 3) 饱和容重sat γ(kN/m 3)粘结力 c (kN/m 2)内摩擦角φ(°)坝体土 17.3 17.5 21.0 20 21 库区灰24.0 0 30 固结灰15.720.050354.1.3 浸润线计算采用均质坝浸润线计算原理进行计算。

经计算得浸润线方程为:92.422.22+=x y 4.1.4 计算方案和计算结果根据坝体各部分填土性质,进行各土层划分(见图4-1),计算中对可能的弧顶、弧脚位置进行了组合,各种组合方案见表4-2,计算工况下各方案的计算结果见表4-2,通过计算得到最危险的划弧(见图4-2)。

凤山峡水库大坝渗流及稳定计算分析

凤山峡水库大坝渗流及稳定计算分析
曾小建平 楼林 海 李东风 , ,
(、 1浙江省衢州市水利水 电勘测设计有限公司, 浙江 衢州 340 ; . 200 2柯城区水利局 , 浙江 衢州 34 3;, 200 3浙江水利水 电专科学校 , 江 杭州 浙 30 1) 108

要: 对凤 山峡 水库大坝现状渗 漏及稳 定等 问题进 行的基 础上 , 正常蓄 水位和校 核 洪水位等 不 同库 水位情 况下浸 对
m. 3主坝 为 粘 土心 墙 坝 , 顶 宽度 4I, 大 坝 高 1 . 坝 最 n 82
所 取 坝体 土样 经击 实试 验表 明主坝 心墙碾 压填 筑质 量
不能满足现行规范要求 ; 主坝坝壳碾压填筑质量不能
满足 现行 规范 要求 ; 主坝 迎 水 坡 面原 干 砌 块 石 护 面 风
化破 损严 重 , 凸不平 , 凹 结构 松散 , 物滋 生现 象严重 . 植 主坝 背水坡 面 为土 坡 , 场 检查 发 现 坝 坡 坡 度极 不 规 现
则 , 坡度 较 陡 ; 且 主坝背 水坡 坡脚 贴坡 排水 体设 置高 度
偏低 , 而实际浸润线 出逸点位州市 柯 城 区航 埠 镇黄 泥 山头村 以西 , 系属 钱塘 江流 域常 山港 支流 西瓜 源 , 库属小 水 水 () 1型水 库 , 水 面积 5 6 m , 道 长 4k 比降 为 集 .8k 2河 m, 005 , .31汇流参 数 为 09 . .0 水库 总库 容经 计算 复 核后 为 14 8 4 .0万 m , 常蓄水 位 9 .9I, 3正 6 9 相应 库 容 16 6万 n 0.
为此 , 根据 《 江省 中型 水库 主坝 安全 鉴定 及小 型水 库 浙
I, 长 15I, 顶高 程 10 6I. n坝 4 坝 n 0 . 主坝 迎 水 坡坡 度 1 n : 22背水 坡 坡度 1 19 副坝 为粘 土 均 质坝 , ., : .. 坝顶 宽 度 25I, . 最大坝 高 60I, n . 坝长 10I, 顶高 程 9 . , n 0 坝 n 92I n

建兴水库大坝渗流计算方法及渗透指标-水利工程论文-水利论文

建兴水库大坝渗流计算方法及渗透指标-水利工程论文-水利论文

建兴水库大坝渗流计算方法及渗透指标-水利工程论文-水利论文——文章均为WORD文档,下载后可直接编辑使用亦可打印——1工程基本情况建兴水库位于四川省德阳市中江县富兴镇会棚乡,是一座拦蓄式水库,其工程任务是以灌溉为主,兼有防洪、养殖等综合功能的小(1)型水利工程。

中江县距震中汶川县映秀镇不到100km,水库坝址以上集雨面积18.1km2,总库容170万m3,设计灌面4000亩,设计洪水标准为30年一遇(P=3.3%),设计洪水位596.28m,校核洪水为500年一遇(P=0.20%),校核洪水位597.18m。

水库正常蓄水位594.20m,位583.00m。

大坝为均质土坝,坝顶高程为597.80m,坝顶宽4.4m,最大坝高18.4m,坝顶长91.00m,基础底高程为579.40m。

大坝上游坡比为1∶2.25;下游坡比为1∶2.0。

工程自1960年12月建成以来,对当地的生产生活起着重大作用,同时发挥了较大的经济效益。

据现场调查,该坝施工时为抢工期,上坝土料不均,碾压不均或不密实,加之无检测手段,导致填筑质量较差。

受汶川特大地震影响,坝脚及放空洞出现5处涌水点且有明显浑水流出。

2008年7月,据钻孔揭露:坝体填料为黄褐色粘土夹块碎石,粘土呈可塑硬塑状,碎石、角砾及砂约占15%~20%。

压水试验表明,渗透系数K变化较大,从1.3810-5cm/s~2.2310-4cm/s,说明坝体均匀性较差,渗透系数平均值为1.3010-4cm/s大于10-4cm/s,足规范要求。

工程于2009年进行加除险加固整治,其渗渗整治措施为:坝体充填灌浆,坝基帷幕灌浆。

灌浆沿坝轴线布孔,分三序钻灌,施工时严格质量控制,灌浆防渗体渗透系数要求小于10-4cm/s,达10-5cm/s左右。

经过多年运行,渗漏整治效果良好。

2大坝渗流计算方法及渗透指标2.1计算公式对于符合达西定律的二向均质、各向同性土体的渗流,当土体已完全固结时,其水头函数符合拉普拉斯方程式:【1】z:坐标位置高程q:自由面下降或上升时从自由边界流入或流出渗流场的单宽流量2.1.1计算断面。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档