大坝渗流稳定计算过程
渗流稳定计算
赤峰市红山区城郊乡防洪工程5.6稳定计算5.6.1渗流及渗透稳定计算1)渗流分析的目的(1)确定堤身浸润线及下游逸出点位置,以便核算堤坡稳定。
(2)估算堤身、堤基的渗透量。
(3)求出局部渗流坡降,验算发生渗透变形的可能。
概括以上分析,对初步拟定的土堤剖面进行修改,最后确定土堤剖面及主渗,排水设备的型式及尺寸。
2)渗流分析计算的原则(1)土堤渗流分析计算断面应具有代表性。
(2)土堤渗流计算应严格按照《堤防工程设计规范》(GB50286-981)第8.1.2条及本规范附录E的有关规定执行。
3)渗流分析计算的内容(1)核算在设计洪水持续时间内浸润线的位置,当在背水侧堤坡逸出时,应计算出逸点位置,逸出段与背水侧堤基表面的出逸比降。
(2)当堤身、堤基土渗透系数K≥10-3cm/s时,应计算渗流量。
(3)设计洪水位降落时临水侧堤身内自由水位。
4)堤防渗流分析计算的水位组合(1)临水侧为设计洪水位,背水侧为相应水位。
(2)临水侧为设计洪水位,背水侧无水。
(3)洪水降落时对临水侧堤坡稳定最不利情况。
5)渗透计算方法堤防渗流分析计算方法按照《堤防工程设计规范》(GB50286-98)附录E3的透水堤基均质土堤渗流计算即——渗流问题的水力学解法。
6)土堤渗流分析计算计算锡泊河左岸(0-468)横断面,堤高 5.05米(P=2%),半支箭左岸(0+302.25)横断面,堤高6.46米(P=2%),该两段堤防均属于 2级堤防,堤防渗流计算断面采用1个断面计算即可。
采用《堤防工程设计规范》中透水堤基均质土堤下游坡无排水设备或有贴坡式排水稳定渗流计算公式:TH L TH H D 88.0m k q q 11210++-+=)( (E.3.1)H m m b 121+-+=)(H H L (E2.1-3) 11112m m H L +=∆ (E2.1-4) 当K ≤k 0时h 0=a+H 2=q÷⎭⎬⎫⎩⎨⎧+++⎥⎦⎤⎢⎣⎡++++∙T H a m T K H a m H m m K 44.0)(5.0)5.0()5.0(122022222+H 2 ……………(E.3.2-2) 对于各种情况下坝体浸润线均可按下式确定X=k·T '0q h y -+k '222q h y - ……………(E.3.2-6)式中:q'= )(0211120211m 2m 2k h m H L h H -++-+0211010m k h m H L h H T -+-(E.3.2-7)k ——堤身渗透系数; k 0——堤基渗透系数; H 1——水位到坝脚的距离(m ); H 2——下游水位(m ); H ——堤防高度(m );q ——单位宽度渗流量(m 3/s·m); m 1——上游坡坡率,m 1=3.0;m2——下游坡坡率,m2=3.0;b——坝体顶部宽度6.0m;h0——下游出逸点高度(m);锡伯河采用数据列表如下:正常工况锡伯河渗流计算结果表部分为相对不透水层,基础和堤身渗透系数相差100倍以上,下游无水,经计算堤身和堤脚无无出逸点,渗流稳定。
关村水库大坝渗流计算及稳定分析
k e y wo r d s : d i l a p i d a t e d r e s e r v o i r ; d a m; s e e p a g e l f o w; s t a b i l i t y a n a l y s i s ; G u a n c u n Re s e r v o i r
年一遇校核。总库容 3 1 7 . 8 万m , , 控制流域 面积 3 5 . 1 5 k m 。
关村水库枢纽工 程 由大坝 、 放水涵 卧管 、 溢洪道等三部分
组成 。
5 . 5 4 x 1 0 - s c m / s 。 坝体土稍密~ 密实状态 , 属高~ 中等压缩性土。 从 黏粒含量 、 塑性指数 、 渗透系数等指标 分析 , 满足均质土坝土料 质量要求 。坝体土的渗透变形破坏类型为流土 , 允许水力坡 降
为0 . 4 5 。
大坝为碾压均质土坝 , 最大坝高 3 2 . 2 m, 现状坝顶长 1 6 0 m,
坝顶宽 4 m。 大 坝 上 游 坡 比 1 : 3 ~ 1 : 2 . 5 , 干砌石护坡 , 下 游 坡 比
1 : 2 . 5 ~ h 2 , 设二级 马道 , 马道高程分别 为 2 6 . 7 m、 1 9 . 2 m, ( 以坝 底高程为 0 m计 , 下同 ) 为草皮护坡。 卧管位于库区右侧岸坡上 , 共 1 0个进水 口, 相邻两孔高差 为 8 0 c m, 最 高一 级进 水 口高程为 2 5 . 5 m。放水 涵洞 与卧管消 力池相 接 , 为砌 石半 圆拱无 压洞 , 断面尺 寸 1 . 1 ax t i . 5【 n , 进口 底板高程 2 1 . 1 n l , 纵坡 1 / 2 0 0 。
重力坝、拱坝、土石坝三种坝体的防渗处理
重⼒坝、拱坝、⼟⽯坝三种坝体的防渗处理重⼒坝、拱坝、⼟⽯坝三种不同坝体的防渗处理摘要:分析重⼒坝、⼟⽯坝、拱坝出现渗漏原因,采取相应措施⼀、重⼒坝渗漏分析与防渗处理⼀)、重⼒坝渗漏分析1、重⼒坝是⽤浆砌⽯(grouted rubble)或者混凝⼟(concrete)材料建筑⽽成的挡⽔建筑物,其剖⾯⼀般做成上游⾯近于垂直的三⾓形断⾯,主要依靠坝体的重量,在坝体和地基的接触⾯产⽣抗剪强度或者摩擦⼒,来抵抗⽔库的⽔平推⼒,以达到稳定的要求;同时,也依靠坝体的⾃重产⽣的压应⼒,来抵消由于⽔压⼒所引起的坝体上游侧的拉应⼒,以满⾜坝⾝强度的要求。
2、由于混凝⼟与岩体都是透⽔材料,加上施⼯⽅法、施⼯过程存在差异,故此渗流不可避免⼆)、重⼒坝防渗处理地基处理时重⼒坝防渗处理的关键,坝基的固结灌浆和帷幕灌浆是坝基防渗处理的主要措施。
1、重⼒坝坝基固结灌浆1)、⽬的:△减少坝基的渗透性(permeability),减少渗透量;△提⾼基岩的整体性和弹性模量(modulus of elasticity),减少基岩受⼒后的变形(deformation);△提⾼岩体的抗压强度和抗剪强度;△在帷幕灌浆前的固结灌浆,可提⾼帷幕灌浆的灌浆压⼒。
2)、固结灌浆的设计:①灌浆范围:依坝⾼和岩基裂隙分布情况⽽定。
—⾼坝或者裂隙发育,坝基全部灌浆,并适当加⼤范围。
—裂隙很不发育,只在坝踵或者坝趾处灌浆—只在坝踵处固结灌浆,以加⼤帷幕灌浆的压⼒—溶洞、溶槽部位,除回填外,应对顶部及周围进⾏固结灌浆。
②排孔形式:梅花形或者⽅格形,对较⼤的断层和裂隙应专门布孔。
③间距:根据地质条件,并参照灌浆试验确定,⼀般为3~6m④孔深:⼀般为5~8m,局部区域及坝基应⼒较⼤的⾼坝基础,可适当加深,帷幕灌浆区附近,与帷幕灌浆配合,可适当加深,⼀般为8~15m。
⑤灌浆压⼒:以不掀动岩⽯为原则,取较⼤值。
施⼯时,应加强监测。
⼀般⽆盖重时0.2~0.4Mpa,有盖重时0.4~0.7Mpa 2、重⼒坝坝基帷幕灌浆1)、⽬的:降低坝底渗透压⼒;防⽌坝基内产⽣机械或者化学管涌;减少坝基和坝肩渗透流量2)、灌浆材料的选择:①⽔泥灌浆●裂隙宽度>0.1mm,地下⽔流≮600m/昼夜,地下⽔对⽔泥⽆危害性的侵蚀作⽤,采⽤⽔泥灌浆。
AutoBank计算某水库大坝渗流计算资料
稳定计算原理简介按照对附加孔隙水压力的不同考虑,稳定计算分为总应力法和有效应力法,总应力法不考虑孔隙水压力,采用总应力强度指标(快剪指标);有效应力法计入附加孔隙水压力,采用有效应力强度指标。
有效应力法是通用计算方法,适用于各种工况。
稳定渗流期认为附加孔隙水压力已经消散不予考虑,施工期和水位降落期对粘性土应该计入附加孔隙水压力。
在没有实测资料的情况下,附加孔隙水压力=孔压系数×土条有效重量的增量。
表计算方法和对应的强度指标体公式参见《碾压式土石坝设计规范》,《堤防工程设计规范》等相关文献。
计算时需要求最小安全系数的滑弧位置,有关计算由软件自动实现。
Autobank稳定计算报告1 计算选项设定值作业数量=0搜索精度=3设定滑面最小长度(m)=1设定滑面最小深度(m)=0.5土条数量=302 材料表3 各工况计算过程正常运行+死水位,正常运行期,有效应力法,死水位,u'=0,无降雨,毕肖普法,0g(向左滑动)稳定安全系数Fs=1.46693AF/F=1656/1128.79滑面类型=圆弧圆弧半径(m)=24.1132滑动方向=向左滑动外加荷载总量(KN):Fx=0,Fy=0Autobank稳定计算报告 2020.05.11 17:03:31土条宽度(m)=1.034说明:有效重:浸润线以上为自然容重,浸润线以下浮容重.总重:计算地震惯性力所用重量,浸润线以下饱和容重.渗流水重:浸润线和坡外水位之间的水流重量.增量重:土条新填筑土层的重量,用于有效应力法u:渗流水重/土条宽度坡外水位=317.37Autobank稳定计算报告 2020.05.11 17:03:31正常运行+死水位,正常运行期,有效应力法,死水位,u'=0,无降雨,毕肖普法,0g(向右滑动)稳定安全系数Fs=1.41469AF/F=2093.62/1479.84滑面类型=圆弧圆弧半径(m)=26.0648滑动方向=向右滑动外加荷载总量(KN):Fx=0,Fy=0土条宽度(m)=1.2Autobank稳定计算报告 2020.05.11 17:03:31说明:有效重:浸润线以上为自然容重,浸润线以下浮容重.总重:计算地震惯性力所用重量,浸润线以下饱和容重.渗流水重:浸润线和坡外水位之间的水流重量.增量重:土条新填筑土层的重量,用于有效应力法u:渗流水重/土条宽度坡外水位=312.09Autobank稳定计算报告 2020.05.11 17:03:31正常运行+正常蓄水位,正常运行期,有效应力法,正常蓄水位,u'=0,无降雨,毕肖普法,0g(向左滑动)稳定安全系数Fs=1.56246AF/F=1545.02/988.738滑面类型=圆弧圆弧半径(m)=25.7258滑动方向=向左滑动外加荷载总量(KN):Fx=0,Fy=0土条宽度(m)=1.034Autobank稳定计算报告 2020.05.11 17:03:31说明:有效重:浸润线以上为自然容重,浸润线以下浮容重.总重:计算地震惯性力所用重量,浸润线以下饱和容重.渗流水重:浸润线和坡外水位之间的水流重量.增量重:土条新填筑土层的重量,用于有效应力法u:渗流水重/土条宽度坡外水位=318.94Autobank稳定计算报告 2020.05.11 17:03:31正常运行+正常蓄水位,正常运行期,有效应力法,正常蓄水位,u'=0,无降雨,毕肖普法,0g(向右滑动)稳定安全系数Fs=1.40225AF/F=2164.3/1543.37滑面类型=圆弧圆弧半径(m)=24.8143滑动方向=向右滑动外加荷载总量(KN):Fx=0,Fy=0土条宽度(m)=1.2Autobank稳定计算报告 2020.05.11 17:03:31说明:有效重:浸润线以上为自然容重,浸润线以下浮容重.总重:计算地震惯性力所用重量,浸润线以下饱和容重.渗流水重:浸润线和坡外水位之间的水流重量.增量重:土条新填筑土层的重量,用于有效应力法u:渗流水重/土条宽度坡外水位=312.09Autobank稳定计算报告 2020.05.11 17:03:31正常运行+设计洪水位,正常运行期,有效应力法,设计洪水位,u'=0,无降雨,毕肖普法,0g(向左滑动)稳定安全系数Fs=1.78929AF/F=1529.33/854.606滑面类型=圆弧圆弧半径(m)=24.1132滑动方向=向左滑动外加荷载总量(KN):Fx=0,Fy=0土条宽度(m)=1.034说明:Autobank稳定计算报告 2020.05.11 17:03:31有效重:浸润线以上为自然容重,浸润线以下浮容重.总重:计算地震惯性力所用重量,浸润线以下饱和容重.渗流水重:浸润线和坡外水位之间的水流重量.增量重:土条新填筑土层的重量,用于有效应力法u:渗流水重/土条宽度坡外水位=321.5正常运行+设计洪水位,正常运行期,有效应力法,设计洪水位,u'=0,无降雨,毕肖普法,0g(向右滑动)稳定安全系数Fs=1.37287AF/F=2118.93/1543.36滑面类型=圆弧圆弧半径(m)=24.8143滑动方向=向右滑动Autobank稳定计算报告 2020.05.11 17:03:31外加荷载总量(KN):Fx=0,Fy=0土条宽度(m)=1.2说明:有效重:浸润线以上为自然容重,浸润线以下浮容重.总重:计算地震惯性力所用重量,浸润线以下饱和容重.渗流水重:浸润线和坡外水位之间的水流重量.增量重:土条新填筑土层的重量,用于有效应力法u:渗流水重/土条宽度坡外水位=312.09Autobank稳定计算报告 2020.05.11 17:03:31正常运行+校核洪水位,正常运行期,有效应力法,校核洪水位,u'=0,无降雨,毕肖普法,0g(向右滑动)稳定安全系数Fs=1.34223AF/F=2166.45/1614.03滑面类型=圆弧圆弧半径(m)=26.9612滑动方向=向右滑动外加荷载总量(KN):Fx=0,Fy=0土条宽度(m)=1.255Autobank稳定计算报告 2020.05.11 17:03:31说明:有效重:浸润线以上为自然容重,浸润线以下浮容重.总重:计算地震惯性力所用重量,浸润线以下饱和容重.渗流水重:浸润线和坡外水位之间的水流重量.增量重:土条新填筑土层的重量,用于有效应力法u:渗流水重/土条宽度坡外水位=312.09Autobank稳定计算报告 2020.05.11 17:03:314 计算结果5 附图Autobank稳定计算报告 2020.05.11 17:03:31。
某水库大坝渗流计算及稳定分析
某水库大坝渗流计算及稳定分析摘要:在病险水库除险加固工程中,经常需要对加固前的建筑物进行安全复核。
本文根据某水库的地勘资料,对其进行了渗流计算和坝坡稳定抗滑稳定计算,计算结果为水库大坝的加固提供合理的构筑建议和措施。
关键词:土石坝;渗流计算;稳定分析1.工程概况某水库位于罗山县西南约55km处的灵山镇境内,属丘陵地区水库,位于淮河水系小黄河支沟上,控制流域面积3.3km2,总库容102.02万m3。
水库是一座以防洪、灌溉为主,结合水产养殖等综合利用的小(1)型水库。
大坝为粘土心墙坝,现状坝长90m,最大坝高17.4m,坝顶宽约3m。
该水库按50年一遇设计,500年一遇防洪标准校核。
2.工程地质某水库位于秦岭-昆仑纬向复杂构造带之南亚带与新华夏系第二沉降带的交接复合部位。
受淮阳山字型构造与经向构造复合干扰,地质构造十分复杂。
据地质测绘及勘探揭露范围内,坝址区地层岩性主要为坝体人工填土(Qs)及燕山晚期侵入的花岗岩,仅在下游河槽分布有泥卵石。
坝址区地层根据时代、成因、岩性及其物理力学性特征,现由老到新分述如下:燕山晚期(r3 5)岩性为花岗岩,分布在水库两岸,肉红色、灰白色~淡红色,细粒~中粗粒结构,肉眼可见斑状矿物,矿物按含量依次为正长石、斜长石、石英、黑云母等。
裂隙较发育,多为60度左右的高倾角,裂隙宽0.3mm,裂面平整,沿裂隙面充填有铁锰质薄膜。
表层2m左右多为全风化,岩芯多呈碎屑状、块状,地质取芯率(RQD)低于10%;多为中等风化,岩芯呈块状和柱状,岩心采取率60%~90%,RQD值25%~80%。
第四系全新统(alplQ4)岩性为泥卵石,分布在下游河槽内,卵石成分主要为安山岩、花岗岩,灰绿色,灰黄色,多呈次圆状,粒径一般3~5cm,最大10cm左右,含量50%左右,泥质充填,结构较松散。
坝体填土(QS)坝体为粘土心墙砂壳坝,坝轴线处2.4m以上主要为全风化的花岗岩碎屑,2.4~12.3m主要为低液限粘土,含有全风化花岗岩碎屑,局部含量较高,但颗粒较细,12.3m以下为低液限粘土,灰褐色,棕黄色,见有铁锈,粘粒含量较高。
水利堤坝工程中渗透参数的选取及渗流计算方法评价
水利堤坝工程中渗透参数的选取及渗流计算方法评价水利堤坝工程中渗透参数的选取及渗流计算方法评价摘要:渗流是引起涉水工程破坏的重要原因,因此渗流计算是水利水电工程涉水工程设计中不可或缺的步骤。
渗透参数的选取与渗流方法的选择,直接影响对工程渗流稳定性的评价。
本文结合笔者多年工作经验,就水利水电工程设计中渗透参数的选取与渗流计算的几种方法进行了初步的分析,并总结出渗流计算注意的一些问题,提高了计算结果准确性,对进一步采取防渗措施提供参考。
关键词:水利工程渗流计算堤坝设计引言堤防工程的设计与施工准则要求保证堤防建筑物能抵御洪水的威胁。
由于堤防大多沿天然河岸修建,因此,堤防基础的渗透稳定问题普遍存在。
本文主要针对堤防渗流参数的选用并对渗流计算方法进行了评价。
1、渗流计算目的(1)坝体(堤身)浸润线的位置。
(2)渗透压力、水力坡降和流速。
(3)通过坝体(堤身)或堤基的渗流量。
(4)坝体(堤身)整体和局部渗流稳定性分析。
2、计算工况及渗透系数的选用岩土工程参数的选用需要根据满足给定保证率时,通过实验方法选用。
不同工况需要选用不同的参数,否则就无法满足工程设计所需要的保证率。
2.1常规堤防工程常规的堤防工程计算提出了三种水位组合,此三种水位组合的渗流计算目的及相应土体的渗透系数选取原则主要为:(1)临水侧为高水位,背水坡为相应水位。
本组合的计算目的:①计算背水坡可能最高的逸出点位置、背水坡逸出段及背水坡基础表面出逸比降,用于背水坡渗流安全复核、反滤层及排水设施设计;②背水坡面可能最高的浸润线,用于背水边坡稳定计算;③当堤身、堤基土的渗透系数大于10-3cm∕s时,计算渗流量,用于分析防渗措施对本工程运行要求的可行性和背水坡排水设施设计(对于大坝均要求进行渗流量计算)。
对上述第①、②种计算目的工况,堤身、堤基的渗透系数则取小值平均值,对第③种计算目的工况则取大值平均值。
(2)临水侧为高水位,背水坡为低水位或无水。
本组合的计算目的:①背水坡面可能最高的浸润线,用于背水坡边坡稳定计算,相应各土体的渗透系数取小值平均值;②复核局部渗流稳定及进行反滤层设计,则进行局部渗流稳定性复核土体的渗透系数取小值,其上、下部位土体的渗透系数取大值平均值。
水库大坝渗流量及稳定计算
l — 6 8 2.
3渗漉 计 算 与分 析 1、计 算 方法 及计 算 参 数 根 据水 库 初 步 设计 标 准 断 面 图 ,该水 库 大 坝 由两 种土 料 组 成 ,一 是粘 土斜 墙 ,二是 由壤 土 、砂 砾料 组 成 的 混 合坝 壳 ,背水 坡 脚 新 设 有贴 坡 排 水 体 ,按 有 限透 水 地 基 上具 有 截 水墙 的斜 墙 混 合 土石 坝 进 行 渗 流计 算 。渗透 系数 的确 定 ,根 据土 工 实 验报 告 分析 ,粘 土 的渗 透 系数 为 1 3 8X 1 - m . 0 O5 / c S ,壤 土 的渗透 系 数为 15 3X 1一 m s . 0 0 c / ,砂 砾 料 的渗透 系数 为 19 6× 1一 .6 0
I工程 概 况 某水 库 坝址 以 上集 雨面 积 l 6 i ,河道 长度 为 2 . k ,河 道平 均 比降 ik 2 n 22m 为 1 . ‰ 。总库 容 1 0万 m , 是一 座 以 防洪 、农业 灌 溉 为 主 ,兼 顾养 2 2 5 0 3 鱼 、 发 电及 旅 游 等 综合 利 用 的 中 型 水 库 。
渗流分析——精选推荐
渗流分析7 渗流稳定计算7.1 渗流场分析1、渗流计算1.1计算依据、条件及计算断⾯本次根据地勘资料和⼤坝的渗漏现象,采⽤北京理正软件设计研究所编著的《渗流分析软件》程序按⼆维有限元数值⽅法对⼤坝的渗流场进⾏计算。
根据试验测定并结合⼯程类⽐选⽤参数采⽤有限元计算.计算主要进⾏上游正常蓄⽔位与下游相应最低⽔位、库⽔位降落时上游坝坡稳定最不利的不同⼯况坝体的渗流稳定计算,为时家村⽔库⼤坝加固断⾯设计提供依据。
⼤坝为粘⼟⼼墙砂壳坝,坝顶宽度2.50⽶,现状坝顶⾼程210.00⽶,(黄海⾼程,下同)坝长80.00⽶,最⼤坝⾼12.00⽶,⽆裂缝,坝顶平均沉降0.15⽶;⼤坝上游坝坡1:1.63,下游坝坡成阶梯分布⾃上⽽下为:1:2.35、1:1.49、1:1.54,设2道戗台,宽1.50⽶。
坝前库中有部分淤积,根据以上资料,计算断⾯可以简化为5个区域:①前砼⾯板;②砂⽯料垫层;③坝体⼽壁填筑;④坝基砂砾⽯;⑤基岩;1.1.1计算断⾯及参数的选取根据地质勘探⼤坝纵横剖⾯图中坝体及坝基的地质情况,渗流计算取⼤坝最⼤坝⾼断⾯作为典型断⾯进⾏渗流计算,该断⾯的渗流状况可较全⾯的反应⼤坝实际渗流状况。
计算参数以本次地勘资料分析选⽤,⼟层的渗透系数根据现场坝体钻探取芯⼟质观察结合室内⼟⼯实验成果,⼤坝典型计算断⾯共11个区,详见图1,渗透系数取值见表1。
1.1.2计算⼯况考虑到⼩⑵型⽔库流域⾯积⼩,属⼭区河流,洪⽔陡涨陡落,洪峰历时短,⾼⽔位时坝体不能形成稳定渗流,根据《⼩型⽔利⽔电碾压式⼟⽯坝设计导则》(SL189-96)规定,渗流计算选择以下⽔位组合情况:1)上游正常蓄⽔位与下游相应的最低⽔位。
2)库⽔位由校核洪⽔位降⾄正常蓄⽔位时上游坝坡稳定最不利的情况。
3)库⽔位由正常蓄⽔位降⾄死⽔位时上游坝坡稳定最不利的情况。
时家村⽔库正常蓄⽔位为76.10m,校核洪⽔标准为76 年⼀遇,校核洪⽔位为 77.31m,死⽔位60.10m,下游均⽆⽔。
面板坝剖面及渗流稳定计算
坝体设计1、坝体断面设计基本资料设计洪水位 上游:605.5m 下游:578.8m 校核洪水位 上游:607.35m 下游:580m 正常水位 上游:605m 下游:578.5m 死水位 588m多年平均风速:12m/s 多年最大风速:18m/s吹程:正常水位:210m 设计水位:210.5m 校核水位:212m 地震烈度:7度。
坝顶高程的确定坝顶高程按以下四种条件计算,取其最大值: ① 设计洪水位加正常运用条件的坝顶超高;② 正常蓄水位加正常运用条件的坝顶超高; ③ 校核洪水位加非常运用条件的坝顶超高;④ 正常蓄水位加非常运用条件的坝顶超高,再加地震安全超高。
坝顶高程=水库静水位+坝顶超高 坝顶超高d=R+e+AR —波浪在坝坡上的设计爬高; e —风浪引起的坝前水位壅高;运行条件下A=0.4m 。
水位壅高计算公式如下:βcos 22mgH D KW e =式中 e —计算点处的风壅水面高度,m ; D —风区长度,m ;K —综合摩阻系数,取3.6×10-6; β—计算风向与坝轴线法线的夹角。
波浪爬高计算公式如下:m m W m L h mK K R 21+=∆⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛=7.0245.027.0227.013.00018.07.013.0W gH th W gD th W gH th W gh m m m 5.0438.4m m h T = π22mm gT L =m m W m L h mK K R 21+=∆605m 坝前水深40m ,平均水深340*0.55m 。
设计情况:计算得m h =0.448m,970.2=m T m,761.13=mL m 1.240m h =0.645 m T =3.564 m L =19.820 1.785m m W m L h mK K R 21+=∆取防浪墙顶高程609m,防浪墙坝顶超高1.2m,所以坝顶高程为607.8m。
渗流计算
q = vA = kJA
上式是水在土中渗透的基本规律,称为渗透定律或达西定律。 达西定律虽然只适用于线性阻力的层流运动,但在工程实践中,超过 达西定律上下限的局部区域与整个渗流场相比较经常是不大的,且大多数 自然状态土中的渗流均能基本上符合层流规律或偏离不远,故一般均可简 化为符合达西定律的问题来处理。 2)渗透系数的确定 2.1)单层土渗透系数的确定 单层土的渗透系数是由现场或室内实验确定的。工程设计中土的渗透 系数作为基本资料由地勘专业提供。单层土假定为各向同性土,则土中任 意一点、任意方向的渗透系数相等,即 Kx=Ky=Kz。 2.2)各向已性土渗透系数的确定 实际工程中的土层一般都具有各向异性,如冲积土层、碾压土层等。 由于层次的存在,土层的水平向渗透系数长大于垂直向渗透系数。对各种
(焦建华) 焦建华)
中山市水利水电勘测设计咨询有限公司 2010.12.30
目
录ቤተ መጻሕፍቲ ባይዱ
一、渗流计算的基本知识 ...........................................................................................1 一) 、渗透与渗透影响 .......................................................................................... 1 1)渗透 ........................................................................................................................ 1 2)渗透影响 ................................................................................................................ 1 3)渗透变形及判别 .................................................................................................... 2 二) 、渗流计算的基本原理及渗透系数 .............................................................. 3 1)达西定律 ................................................................................................................ 3 2)渗透系数的确定 .................................................................................................... 3 3)渗透系数的应用 .................................................................................................... 5 三) 、渗流计算的基本方程 .................................................................................. 6 二、大坝、 大坝、堤防渗流计算 ...........................................................................................6 一) 、土石坝渗流计算 .......................................................................................... 6 1)渗流计算的目的 .................................................................................................... 6 2)渗流计算的内容 .................................................................................................... 6 3)渗流计算工况及水位组合的选择 ........................................................................ 7 4)渗流计算的方法 .................................................................................................... 9 5)渗透系数的选用 .................................................................................................. 10 6)渗透稳定计算 ...................................................................................................... 10 7)渗透稳定结果分析 .............................................................................................. 11 二)堤防渗流计算 ...............................................................................................11 1)增加了渗流量计算条件 ...................................................................................... 11 2)水位组合结合堤防工程的特点 .......................................................................... 11 3)根据堤防功能特点,增加了一种计算模型 ...................................................... 11 三、水闸、 水闸、泵站渗流计算 .........................................................................................12 1)与土石坝渗流计算的比较 .................................................................................. 12 2)渗流计算的目的 .................................................................................................. 12 3)渗流计算的工况及水位组合选择 ...................................................................... 12 4)渗流计算的主要方法 .......................................................................................... 13 5)侧向绕渗 .............................................................................................................. 24
浅谈锁水阁水库大坝水位缓慢降落期的渗流及稳定计算
浅谈锁水阁水库大坝水位缓慢降落期的渗流及稳定计算高仝【摘要】根据对锁水阁水库大坝非稳定渗流的分析,库水位由正常蓄水位缓慢降落至死水位期间(简称"缓慢降落期")的坝体浸润线明显比死水位时的稳定渗流期浸润线要高出很多,且上述库水位的缓慢降落情况并不少见.不论采用瑞典圆弧法还是简化毕肖普法,由此缓慢降落期浸润线计算所得上游坝坡抗滑稳定安全系数均比死水位时稳定渗流期浸润线计算所得的安全系数小很多.瑞典法计算上游坝坡的抗滑稳定安全系数小0.541,毕肖普法计算的小0.529.瑞典法计算库水位缓慢降落期的上游坝坡抗滑稳定安全系数小于规范规定值1.21,不满足要求.【期刊名称】《水电与新能源》【年(卷),期】2017(000)009【总页数】7页(P5-11)【关键词】锁水阁水库;均质土坝;库水位缓降;非稳定渗流分析;浸润线【作者】高仝【作者单位】云南省滇中引水工程建设管理局大理分局,云南大理 671000【正文语种】中文【中图分类】TV697巍山县锁水阁水库(又称小麦庄水库)位于巍山坝子东北部,属红河流域沅江水系西河支流河底街河上游小麦庄箐,坝址以上径流面积为28.6 km2。
锁水阁水库是以灌溉为主,兼水产养殖,城镇供水及防洪综合利用的水利工程,担负着永建、大仓两镇,7个村委会约666.6 hm2农田灌溉和大仓水厂的部分水源供给任务。
扩建前水库枢纽由大坝、输水隧洞和溢洪道组成。
大坝坝型为砂壤土均质土坝,坝顶高程1 888.30 m,坝高44 m,坝顶长171 m,坝顶宽5 m;输水隧洞位于坝体左岸,为无压隧洞,全长402 m,最大输水能力3 m3/s;溢洪道位于坝体左岸,输水隧洞左上方,全长347.5 m,堰顶高程1 882 m,最大泄洪能力44 m3/s。
扩建前水库总库容730万m3,兴利库容515万m3,为小(一)型水库,工程等别为Ⅳ等,其主要建筑物为4级,次要建筑物为5级,工程地震基本烈度为Ⅷ度,抗震设防烈度为Ⅷ度。
花桥水库大坝渗漏量监测资料及渗流计算分析
图1 2011年~2018年花桥水库大坝渗漏量过程线图图2 2011年~2018年花桥水库大坝渗漏量过程线修正图图3 2015年~2018年花桥水库大坝渗漏量过程线图115 /量数据异常,经过与管理人员核实,该日从花桥水库下游河道调水至金牛镇,堰后有回水,使堰水位升高。
剔除该数据,修正后的水库渗漏量过程线见图2。
由图2可知,水库渗漏量与库水位过程线波峰与波谷基本对应,呈正相关性,说明渗漏量随库水位升高而增大。
但过程线后段仍有两个陡增段,结合降雨量,对2015年1月~2018年3月的渗流量过程线分析见图3。
由图3可知,渗流量与降雨量变化正相关,且渗漏量变化受降雨量影响大于库水位影响,渗漏量波峰滞后于降雨量波峰,说明降雨后有一个汇流过程。
2011年1月~2018年3月,花桥水库大坝渗漏量最大值为496.8m³/ d(出现在2017年7月21日、2017年9月11日,遇暴雨),渗漏最小值69.12m³/d。
除偶遇暴雨外,渗漏量量随库水位变化平稳,渗漏量不大。
4.渗漏量计算渗流稳定评价是建立在现状坝高的基础上进行的,水库特征水位以本次调洪演算结论为依据。
大坝渗流计算依据《碾压式土石坝设计规范》(S L274-2001)中的规定进行计算。
计算采用河海大学Autobank7.51软件。
经计算得主、副坝不同工况的渗漏量,分别见表1。
根据表1计算所得主、副坝单宽渗漏量,估算花桥水库大坝在现状水位下的渗漏量为413.28m³/d,与大坝实测渗漏量接近。
因现有资料缺多年平均来水量资料,不能判断渗漏程度,但相较于水库库容,渗漏量不大。
5.渗漏变形计算渗流安全评价采用“Autobank软件”进行计算,大坝坝坡出逸点的渗透坡降分别详见表2和表3。
6.结束语综上所述,得出以下结论:(1)水库渗漏量与库水位正相关,渗漏量随库水位升高而增大;(2)渗流量受降水影响明显,过程相对滞后,影响幅度大于库水位;(3)均值土坝的下游坝基表面最大出逸比降较心墙坝、面板坝偏大,容易引起渗透破坏,故应做好下游反滤及压重,防止渗透破坏。
下株梧水库大坝渗流计算与分析
由表 可 见 , + 2 断 面 和 0 4 0 面 的 坝 体 和 0 10 +5 断
表 5 大 坝 渗 透 坡 降 计 算 结 果 汇 总 表
T b e5 C lua in r s l f ed m e p g r d e t a l a c l t e u t o t a s e a eg a in o s h
张
粒径 ( m) a r 。
民, : 等 下株梧水库大坝渗流计算与分析
坝体 土 质 为壤 土 , 渗 透变 形类 型 为流 土 。根 其 据规 范可 知 : 游 在 有 保 护 的 情况 下 , 土 的允 许 下 壤
根 据 规 范 , 的允 许 比 降 . 许 取 06 。经 土 , 允 . 7 计算 , 下游碎石土渗透变形 临界水力比降值见表4 。
表 4 临界水力坡降值计算结果
T be 4 Cac l t nr s l f h r ia y r u i g a in a l lua i ut o e c ic l d a l r d e t o e s t t h c
水力 比降为4 5下游无保护的情况下 , —; 壤土的允许
・
事水利工程管理工作。
‘’。 。‘ 。 。 ‘。 。。’ 1 。。一 I
?
f ‘’。。’ 。 ‘‘ 。 ‘‘。。 。 。。’。 。。 。 。。 ‘ 。 + ’ 。
}以降水发电指数来估计损失, 避免或降低了实地勘查定损的成本; 同时, 它能有效地将人为因素的影响排 } ÷除在外, 降低道德风险; 降水数据能够在保险期间结束后迅速获得 , 因此能够加快定损和赔付的时间。 {
} 除了水力发电企业之外 , 天气指数保险还可运用于风力发电企业和其他能源企业 。天气指数保险 } {还 可运 用 到农业 、 游业 、 筑业 等能 源行 业 以外 的企业 。 旅 建 }
AutoBank计算某水库大坝渗流计算资料
渗流计算原理对于稳定渗流,符合达西定律的非均各向异性二维渗流场,水头势函数满足微分方程0=+⎪⎪⎭⎫⎝⎛∂∂∂∂+⎪⎭⎫ ⎝⎛∂∂∂∂Q y k y x k x y x ϕϕ (1-1) 式中:φ=φ(x,y)为待求水头势函数;x ,y 为平面坐标;K x ,K y 为x ,y 轴方向的渗透系数。
水头φ还必须满足一定的边界条件,经常出现以下几种边界条件: (1) 在上游边界上水头已知φ=φn (1-2)(2) 在逸出边界水头和位置高程相等φ=z (1-3)(3) 在某边界上渗流量q 已知q l yk l x k y y x x-=∂∂+∂∂ϕϕ (1-4) 其中l x ,l y 为边界表面向外法线在x ,y 方向的余弦。
将渗流场用有限元离散,假定单元渗流场的水头函数势φ为多项式,由微分方程及边界条件确定问题的变分形式,可导得出线性方程组:[H]{φ}={F} (1-5)式中[H]——渗透矩阵;{φ}——渗流场水头;{F}——节点渗流量。
求解以上方程组可以得到节点水头,据此求得单元的水力坡降,流速等物理量。
求解渗流场的关键是确定浸润线位置,Autobank 采用节点流量平衡法通过迭代计算自动确定浸润线位置和渗流量。
Autobank渗流计算报告1 概要分析类型:二维稳定渗流工况数量=4工况0,最高水位=339.88m工况1,最高水位=338.8m工况2,最高水位=331.9m工况3,最高水位=339.52m2 材料参数3 渗流量4 附图计算模型工况0工况1工况2工况35 有限元计算结果列表Autobank渗流计算报告 2020.04.28 15:37:00Autobank渗流计算报告 2020.04.28 15:37:00Autobank渗流计算报告 2020.04.28 15:37:00Autobank渗流计算报告 2020.04.28 15:37:00Autobank渗流计算报告 2020.04.28 15:37:00Autobank渗流计算报告 2020.04.28 15:37:00Autobank渗流计算报告 2020.04.28 15:37:00Autobank渗流计算报告 2020.04.28 15:37:00Autobank渗流计算报告 2020.04.28 15:37:00Autobank渗流计算报告 2020.04.28 15:37:00Autobank渗流计算报告 2020.04.28 15:37:00Autobank渗流计算报告 2020.04.28 15:37:00Autobank渗流计算报告 2020.04.28 15:37:00Autobank渗流计算报告 2020.04.28 15:37:00Autobank渗流计算报告 2020.04.28 15:37:00Autobank渗流计算报告 2020.04.28 15:37:00Autobank渗流计算报告 2020.04.28 15:37:00。
粘土心墙土石坝坝体结构设计及渗流稳定分析
图1粘土心墙土石坝典型断面图
2.1 堆石护坡 护坡在最大局部波浪压力作用下所需的换算球
形直径和质量、平均粒径、平均质量和厚度按下式
收稿日期:2019-11-01 作者简介:陈平川(1977 -),男,高级工程师,主要从事
水环境治理、水资源开发及利用等方面的研究 工作。
・34・
确定:
p D
2粘土心墙土石坝坝体结构
粘土心墙土石坝上游坡1-3.0,下游坡1-2.5,
坝顶高程106.50 m,宽度8 m,坝顶上游设1.2 m 高防浪墙。坝体采用粘土心墙防渗,坝基采用帷幕 灌浆防渗。粘土心墙顶部厚3.00 m,两侧坡比 1-0.25,粘土心墙外设反滤带和过渡区,反滤带宽 1.00 m,过渡区宽3.00 m。上、下游坝坡均采用 1.00 m厚堆石护坡。上游堆石护坡下设0.8 m厚反 滤层,下游堆石护坡高程93.00 m以下设0.8 m厚 反滤层,下游坝壳与坝基接触区设1m厚反滤层; 坝基沿坝轴线铺筑1.0 m厚、3.0 m宽垫层混凝土
坝体的防渗依靠粘土心墙体,心墙防渗体顶部 厚3.00 m,两侧坡比1:0.25。大坝防渗粘土料应 采用经过挑选的不透水材料,要求无任何有机物 (植物残渣),水溶盐含量不大于5%,最大颗粒尺 寸不超过15 mm,渗透系数不大于1025cm/s。粘土 料压实度应不小于98%。 2.4 坝壳料
坝壳料主要采用开挖的土石料(包括厂房及泄
SMALL HYDRO POWER 2020No. 1, Total No. 211
表2计算工况及荷载组合
渗透系数/(cm・s2:L)
2x10"6 2xl023 5xl022
lxlO0 6x 10-4 5x 10" 1 x 10"6
Geostudio实际边坡稳定计算案例
坝坡稳定1.计算方法及计算断面典型断面选取同围坝渗流安全评价,采用Geostudio软件进行二维有限元边坡稳定分析计算,计算模型如下。
图8.1-1 围坝坝坡稳定计算模型2.坝体稳定计算工况根据《碾压式土石坝设计规范》(SL274-2001)1.0.5,土石坝设计条件应根据所处的工作状况和作用力的性质分为:(1)正常运用条件①上游设计蓄水位6.70m,下游无水时的迎水面、背水面坝坡稳定;②上游库水位为5.30m(约1/3坝高),下游无水时迎水面、背水面坝坡稳定;3.计算所采用的土料的物理力学指标根据勘察提供的指标进行分析、比较,结合大坝地层结构,确定计算断面采用的土料物理力学指标详见下表。
根据该区域类似水库工程坝坡建设经验及上述极限坝高的确定,坝体上下游坝坡坡度实测值为:上游1:0,下游1:2.1,根据工程实际,对各坝段上、下游坡在正常运行期及水位降落期等各种工况,分别采用计及条块间阻力的简化毕肖普法进行计算。
经计算,各工况下大坝边坡稳定均满足规范要求,计算结果汇总如表。
图8.1-2 正常蓄水位坝坡滑弧位置图(上游)图8.1-3 正常蓄水位坝坡滑弧位置图(上游)图8.1-4 三分之一水位坝坡滑弧位置图(上游)图8.1-5 三分之一水位坝坡滑弧位置图(下游)抗震安全评价坝体抗震稳定1.计算方法及计算断面坝体抗震稳定计算方法及计算断面同“坝坡稳定”分析计算章节。
2.坝体抗震计算工况根据《碾压式土石坝设计规范》(SL274-2001)1.0.5,土石坝抗震稳定计算工况为非常运用条件Ⅱ。
地震情况:设计蓄水位 6.70m,下游无水,遇七度地震时的迎水面、背水面坝坡稳定。
3.计算所采用的土料的物理力学指标计算所采用的土料的物理力学指标同“坝坡稳定”分析计算章节。
4.计算方法及结果经计算,地震工况下大坝边坡稳定满足规范要求,计算结果如下。
况计算滑弧位置如下:图9.2-1 地震工况下围坝坝坡滑弧位置图(上游)图9.2-2 地震工况下围坝坝坡滑弧位置图(下游)。
土石坝渗流的计算方法及防渗技术
^
部分 , 究渗流控制技术 的理论的基础 , 是研 渗流控制技术是具 体T程 的 实施措施 , 如灌浆技术 , 反滤坝技术等。土石坝是挡水建筑物 , 它和渗流 并存 , 从一定意义上来说 , 土石坝 的发展史 就是渗流控制 理论 的发展历 史。 因此 , 研究 土石坝 的渗流破坏机理 , 掌握土石 坝渗流造成土石坝破坏 的一般规律 , 防治土石坝破坏 、 对 发挥土石坝应有的工程和社会效益 , 保 护人民的生命 和财产安全都具有重要的意义。 由于水库坝 区渗流不仅使库水流失影响水库T程效益 , 而且可导致 坝 区发生危害性破坏 而影 响大坝的安全稳定性 , 因此 , 水库 坝区渗流研 究一直是 围绕着确保水库l 丁程效益和大坝的安全稳定需要而展开 的。 坝 区渗流研究 主要包括两方面 的内容 , 一是渗流的基本理论和渗流分析方 法研究 , 二是由坝 区渗流导致 的渗透稳定问题及渗流控制研究 。随着水 利 1程建 设实践 的发展需要 , 渗流的基本理论研究已从长期的孔隙介质 渗流理论发展 到具有强烈非均质特性的裂隙介质渗 流理论 的研究 。 22 渗流计算方法 . 土 渗流方法 可以概括为流体力学解法和水利 学解法两类 。 流体力 学解法 是一种严格 的解析法 ,它在满足定解条件下求解渗流基本方程 , 然后得 到解 的解析表达式 。它能给 出渗流场中任何一点的值 , 但这种方 法只是对简单 的流动情况有效 , 而且所 得的解 异常复杂;水力学解法是 种近似的解 析法, 它基 于对土坝渗流做某些假定及对局部急变渗 流区
1 土 石坝 渗 流 原 因
由于填筑土石坝的 土料和坝基的砂砾是散粒体结 构 , 颗粒 间存在大 量的孑 隙 , L 都具有一 定的透水性, 水库 蓄水 后 , 在水 力 的作 用 F, 流 水 必然会沿 着坝 身土料 、 坝基土体 、 坝端两岸地基 中的孔隙渗 向下游 , 成 造 坝 身、 坝基和绕坝的渗漏。 若渗流在设计控制之下 , 大坝任何部位的土体 都不会产牛渗透破坏 , 则为正常渗 流, 流量在规 范许 可的范围内 , 渗 表现
建兴水库大坝渗流计算方法及渗透指标-水利工程论文-水利论文
建兴水库大坝渗流计算方法及渗透指标-水利工程论文-水利论文——文章均为WORD文档,下载后可直接编辑使用亦可打印——1工程基本情况建兴水库位于四川省德阳市中江县富兴镇会棚乡,是一座拦蓄式水库,其工程任务是以灌溉为主,兼有防洪、养殖等综合功能的小(1)型水利工程。
中江县距震中汶川县映秀镇不到100km,水库坝址以上集雨面积18.1km2,总库容170万m3,设计灌面4000亩,设计洪水标准为30年一遇(P=3.3%),设计洪水位596.28m,校核洪水为500年一遇(P=0.20%),校核洪水位597.18m。
水库正常蓄水位594.20m,位583.00m。
大坝为均质土坝,坝顶高程为597.80m,坝顶宽4.4m,最大坝高18.4m,坝顶长91.00m,基础底高程为579.40m。
大坝上游坡比为1∶2.25;下游坡比为1∶2.0。
工程自1960年12月建成以来,对当地的生产生活起着重大作用,同时发挥了较大的经济效益。
据现场调查,该坝施工时为抢工期,上坝土料不均,碾压不均或不密实,加之无检测手段,导致填筑质量较差。
受汶川特大地震影响,坝脚及放空洞出现5处涌水点且有明显浑水流出。
2008年7月,据钻孔揭露:坝体填料为黄褐色粘土夹块碎石,粘土呈可塑硬塑状,碎石、角砾及砂约占15%~20%。
压水试验表明,渗透系数K变化较大,从1.3810-5cm/s~2.2310-4cm/s,说明坝体均匀性较差,渗透系数平均值为1.3010-4cm/s大于10-4cm/s,足规范要求。
工程于2009年进行加除险加固整治,其渗渗整治措施为:坝体充填灌浆,坝基帷幕灌浆。
灌浆沿坝轴线布孔,分三序钻灌,施工时严格质量控制,灌浆防渗体渗透系数要求小于10-4cm/s,达10-5cm/s左右。
经过多年运行,渗漏整治效果良好。
2大坝渗流计算方法及渗透指标2.1计算公式对于符合达西定律的二向均质、各向同性土体的渗流,当土体已完全固结时,其水头函数符合拉普拉斯方程式:【1】z:坐标位置高程q:自由面下降或上升时从自由边界流入或流出渗流场的单宽流量2.1.1计算断面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
------------------------------------------------------------------------ 计算项目:草荡
------------------------------------------------------------------------ [计算简图]
分析类型: 不稳定流
[坡面信息]
左侧水位高: 4.330(m)
右侧水位高: -0.420(m)
左侧水位高2: 2.330(m)
右侧水位高2: -10000.000(m)
坡面线段数 6
坡面线号水平投影(m) 竖直投影(m)
1 10.625 4.750
2 4.219 0.000
3 8.281 -4.250
4 0.719 -0.250
5 1.500 0.000
6 2.219 -1.500
[土层信息]
坡面节点数 = 10
编号 X(m) Y(m)
0 0.000 0.000
-1 10.625 4.750
-2 14.844 4.750
-3 23.125 0.500
-4 23.844 0.250
-5 25.344 0.250
-6 27.563 -1.250
-7 9.686 4.330
-8 26.335 -0.420
-9 5.212 2.330
附加节点数 = 17
编号 X(m) Y(m)
1 9.250 -1.250
2 20.31
3 -1.250
3 -3.000 0.000
4 -3.000 -6.000
5 9.250 -6.500
6 13.125 -7.500
7 15.531 -8.750
8 28.781 -9.500
9 28.781 -1.250
10 26.875 -2.000
11 21.031 -2.000
12 -3.000 -10.500
13 9.219 -10.500
14 22.813 -13.500
15 28.781 -13.500
16 -3.000 -17.000
17 28.781 -17.000
不同土性区域数 = 5
区号土类型 Kx Ky Alfa 孔隙率饱和度单位储存节点编号
(m/d) (m/d) (度) 量1/m*0.001
1 细砂 0.00606 0.02240 0.100 0.445 0.900 2.000
(-1,-7,0,1,2,-3,-2,)
2 细砂 0.00264 0.00861 0.100 0.564 0.900 2.000
(0,3,4,5,6,7,8,9,-6,10,11,2,1,)
3 细砂 0.05500 0.05260 0.100 0.43
4 0.850 2.000
(4,12,13,14,15,8,7,6,5,)
4 细砂 0.79500 0.26800 0.100 0.407 0.900 2.000
(12,16,17,15,14,13,)
5 细砂 86.40000 86.40000 0.100 0.350 0.250 2.000
(-3,2,11,10,-6,-8,-5,-4,)
[面边界数据]
面边界数 = 8
编号1, 边界类型: 已知水头
节点号: 3 --- 0
时间节点水位升降值(m)
初始节点水头高度 4.330 --- 4.330 (m)
0.000 0.000
1.000 -0.680
2.000 -1.350
3.000 -2.030
4.500 -2.030
编号2, 边界类型: 已知水头
节点号: 0 --- -7
时间节点水位升降值(m)
初始节点水头高度 4.330 --- 4.330 (m)
0.000 0.000
1.000 -0.680
2.000 -1.350
3.000 -2.030
4.500 -2.030
编号3, 边界类型: 已知水头
节点号: -6 --- -8
节点水头高度 0.420 --- 0.420 (m) 编号4, 边界类型: 已知水头
节点号: -6 --- 9
节点水头高度 0.420 --- 0.420 (m) 编号5, 边界类型: 可能的浸出点
节点号: -2 --- -3
编号6, 边界类型: 可能的浸出点
节点号: -4 --- -3
编号7, 边界类型: 可能的浸出点
节点号: -4 --- -5
编号8, 边界类型: 可能的浸出点
节点号: -5 --- -8
[点边界数据]
点边界数 = 1
编号1, 边界类型: 已知水头
节点编号描述: -5
节点水头高度 1.000(m)
[计算参数]
剖分长度 = 1.000(m)
收敛判断误差(两次计算的相对变化) = 0.100%
最大的迭代次数 = 30
时间增量的段数 = 1
时间步时间增量(天) 重复次数累计时间(天) 1 2.000 1 2.000
初始压力水头:由原始水面线计算
初始水面线段数 = 3
初始水面线起始坐标X = 0.000(m)
初始水面线起始坐标Y = 3.000(m)
水面线号水平投影(m) 竖直投影(m)
1 10.000 5.000
2 10.000 5.000
3 10.000 5.000
[输出内容]
计算流量:
流量计算截面的点数 = 2
编号 X(m) Y(m)
1 13.000 8.000
2 13.000 -20.000
画分析曲线:
分析曲线截面始点坐标: (0.000,0.000)
分析曲线截面终点坐标: (30.000,0.000)
------------------------------------------------------------------------ 计算结果:
------------------------------------------------------------------------
渗流量
时间增量步 01, 时间 0.0000(天) : 2.38476 m3/天
时间增量步 02, 时间 2.0000(天) : -0.02015 m3/天
浸润线
时间增量步 1, 时间 0.000(天) :
时间增量步 2, 时间 2.000(天) :
浸润线共分为 2 段
第 1段 X(m) Y(m)
23.844 0.250
23.844 0.250
23.844 0.250
23.844 0.250
23.844 0.250
23.130 0.266
23.130 0.266
22.750 0.267
22.750 0.267
22.194 0.286
22.194 0.286
21.031 0.445
21.031 0.445
20.942 0.457
20.942 0.457
20.891 0.474
20.891 0.474
19.979 0.822
19.979 0.822
19.599 0.995
19.599 0.995
19.263 1.157
19.263 1.157
18.638 1.431
18.638 1.431
18.350 1.541
18.350 1.541
17.639 1.802
17.639 1.802
17.367 1.887
17.367 1.887
16.558 2.125 16.440 2.161 16.440 2.161 16.409 2.170 16.409 2.170 16.362 2.182 16.362 2.182 15.270 2.417 15.270 2.417 15.195 2.431 15.195 2.431 14.405 2.570 14.405 2.570 14.097 2.602 14.097 2.602 13.386 2.680 13.386 2.680 12.460 2.746 12.460 2.746 12.235 2.764 12.235 2.764 11.978 2.776 11.978 2.776 11.409 2.804 11.409 2.804 11.052 2.810 11.052 2.810 10.384 2.818 10.384 2.818 9.697 2.811 9.697 2.811 9.213 2.809 9.213 2.809 8.782 2.798 8.782 2.798 8.413 2.795 8.413 2.795 7.688 2.798 7.688 2.798 7.063 2.821 7.063 2.821 6.779 2.832 6.779 2.832 6.450 2.884
第 2段 X(m) Y(m) 26.335 -0.420 26.335 -0.420 26.335 -0.420
26.335 -0.420 26.335 -0.420 26.335 -0.420 26.335 -0.420。