人教版五年级简易方程单元顺口溜
五年级解方程顺口溜
五年级解方程顺口溜
摘要:
一、解方程的意义
二、解方程的步骤
1.移项
2.合并同类项
3.化系数为1
正文:
解方程是数学中非常基本的概念,尤其在五年级这个阶段,学生们开始正式接触解方程。
解方程的意义是将一个等式中的未知数求解出来,使得等式两边相等。
在这个过程中,我们需要遵循一定的步骤,才能保证求解的正确性。
首先,我们需要进行移项。
移项就是将等式中的未知数移到等式的一边,将常数移到另一边。
这一步需要注意的是,移项时需要改变移项的符号,即将加号变为减号,将减号变为加号。
其次,我们需要合并同类项。
合并同类项是将等式中的同类项合并在一起,这样可以简化等式,便于我们下一步的操作。
最后,我们需要将等式中未知数的系数化为1。
这一步是为了保证求解出来的未知数的值是正确的。
化系数为1的方法是除以未知数的系数,但是在除法中,需要注意不能除以0。
人教五年级数学上册要求背熟的公式和口诀
复习资料人教五年级数学上册要求背熟的公式和口诀第一单元:小数乘法1.小数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
如:1.2×5表示5个1.2是多少。
2.一个数乘纯小数的意义就是求这个数的十分之几、百分几、千分之几……是多少。
如:1.2×0.5表示求1.2的十分之五是多少。
3.小数乘法的计算方法:计算小数乘法,先按整数乘法算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。
乘得的积的小数位数不够,要在前面用0补足,再点上小数点。
4.一个数(0除外)乘1,积等于原来的数。
一个数(0除外)乘大于1的数,积比原来的数大。
一个数(0除外)乘小于1的数,积比原来的数小。
5.整数乘法的交换律、结合律和分配律,对于小数乘法也适用。
6.公式:乘法交换律:a×b=b×a乘法结合律:a×b×c=a×(b×c)乘法分配律:a×b+a×c=a×(b+c)第二单元:小数除法1.小数除法的意义与整数除法的意义相同,是已知两个因数的积与其中一个因数,求另一个因数的运算。
如:2.4÷1.6表示已知两个因数的积是2.4与其中一个因数是1.6,求另一个因数是多少。
2.小数除以整数,按整数除法的方法去除,商的小数点要和被除数的小数点对齐。
如果除到末尾仍有余数,要添0再继续除。
3.被除数比除数大的,商大于1。
被除数比除数小的,商小于1。
4.计算除数是小数的除法,先移动除数的小数点,使它变成整数,除数的小数点向右移动几位,被除数的小数点也向右移动几位,数位不够的要添0补足。
再按照除数是整数的小数除法进行计算。
5.一个数(0除外)除以1,商等于原来的数。
一个数(0除外)除以大于1的数,商比原来的数小。
一个数(0除外)除以小于1的数,商比原来的数大。
6.A除以B=A÷B;A除B=B÷A;A去除B=B÷A;A被B除=A÷B。
新人教版小学数学五年级上册 《简易方程》知识点梳理 复习资料
第五单元《简易方程》知识点梳理一、用字母表示数1.在含有字母的式子里,字母中间的乘号可以记作“•”,也可以省略不写,字母和数字相乘一般要把数字写在前面。
加号、减号、除号以及数与数之间的乘号不能省略。
2.a2读作a的平方,表示2个a相乘或a×a。
2a表示2个a相加或a+a 或2×a 。
3.用字母表运算定律。
加法交换律:a+b=b+a 加法结合律:a+b+c=a+(b+c)乘法交换律:ab=ba 乘法结合律:abc=a(bc)乘法分配律:(a+b)c=ac+bc4.用字母表示计算公式。
长方形的周长公式:c=2(a+b) 长方形的面积公式:s=ab正方形的周长公式:c=4a 正方形的面积公式:s= a2二、等式和方程1.等式:表示相等关系的式子叫等式。
2.等式的性质1:等式两边加上(或减去)同一个数,左右两边仍然相等;等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,左右两边仍然相等。
3.方程:(1)方程:含有未知数的等式叫做方程。
(2)使方程左右两边相等的未知数的值,叫做方程的解。
(3)求方程的解的过程叫做解方程。
(4)所有的方程都是等式,但等式不一定都是方程。
(5)方程的解是一个数,解方程是一个计算过程。
4.四则运算的10个关系式:加法:和=加数+加数一个加数=和-另一个加数减法:差=被减数-减数被减数=差+减数减数=被减数-差乘法:积=因数×因数一个因数=积÷另一个因数除法:商=被除数÷除数被除数=商×除数除数=被除数÷商8、方程的检验过程:方程左边=……=……=方程右边所以,X=……是方程的解。
9.方程与实际问题中常用的等量关系式。
路程=速度X 时间速度=路程÷时间时间=路程÷速度总价=单价X 数量单价=总价÷数量数量=总价÷单价工作总量=工作效率X 工作时间工作效率=工作总量÷工作时间工作时间=工作总量÷工作效率总产量=单产量X 数量单产量=总产量÷数量数量=总产量÷单产量大数-小数=相差数大数-相差数=小数小数+相差数=大数一倍量X倍数=几倍量几倍量÷倍数=一倍量几倍量÷一倍量=倍数评价测试样例一、填空题。
第单元 简易方程解题技巧及难点归纳
第5单元简易方程解题技巧解简易方程的口诀准备讲简易方程的数学教师看看,口诀很实用的,可能会对你的教学会有很大帮助的。
口诀:左边相反,两边一致。
解释:左边相反——左边含有未知数的一边加上几就减去几,减去几就加上几,乘以几就除以几,除以几就乘以几。
两边一致——左边加上几,右边加上几;左边减去几,右边减去几;左边乘以几,右边乘以几;左边除以几,右边除以几。
举例:(1)x﹢5=50解:x﹢5﹣5=50﹣5x=45(2)x﹣5=50解:x﹣5﹢5=50﹢5x=55(3) 5x=50解: 5x÷5=50÷5x=10(4)x÷5=50解:x÷5×5=50×5x=250按住Ctrl键单击鼠标打开配套的名师解题教学视频播放五年级上册解简易方程之方法及难点归纳重点概念:方程,方程的解,解方程,等式的基本性质(详见“知识点汇总”)要点回顾:“解方程”就是要运用“等式的基本性质”,对“方程”的左右两边同时进行运算,以求出“方程的解”的过程。
(方程的解即是如同“X=6”的形式)“解方程”就好像是要把复杂的绳结解开,因此一般要按照“绳结”形成的过程逆向操作(逆运算)。
过程规范:先写“解:”,“=”号对齐往下写,同时运算前左右两边要照抄,解的未知数写在左边。
注意事项:以下内容除了标明的外,全都是正确的方程习题示例,且没有跳步,请仔细观看其中每步的解题意图。
带“*”号的题目不会考查,但了解它们有助于掌握解复杂方程的一般方法,对简单的方程也就自然游刃有余了。
一、一步方程只有一步计算的方程,直接逆运算除未知数外的部分。
难点:当未知数出现在减数和除数时,要先逆运算含未知数的部分。
二、两步方程两步方程中,若是只有同级运算,也可以先计算,后当做一步方程求解。
注意要“带符号移动”,增添括号时还要注意符号的变化。
“先乘后减”,则先逆运算减法(即两边同加),再逆运算乘法(即两边同时除以),依此类推。
小学数学解方程口诀
小学数学解方程口诀解方程一直是小学数学的重难点,类型多且容易混淆,如何快速有效的让学生掌解方程,通过总结分析,我汇总了各类方程的解决的技巧,编纂了一首口诀帮助记忆:一般方程很简单,具体数字帮你办,加减乘除要相反。
特殊方程别犯难,减去除以未知数,加上乘上变一般。
若遇稍微复杂点,舍远取近便了然。
具体分析如下:我们可以把课本中出现的方程分为三大类:一般方程,特殊方程,稍复杂的方程。
形如:x+a=b , x-a=b , ax=b , x÷a=b 这几种方程,我们可以称为一般方程。
形如:a- x =b,a÷x =b这两种方程,我们可以称为特殊方程。
形如:ax+b=c , a(x-b)=c这两种方程,我们可以称为稍复杂的方程。
我们知道,对于一般方程,如果方程是加上a,在利用等式的性质求解时,会在方程的两边减去a,同样,如果方程是减去a,在利用等式的性质求解时,会在方程的两边加上a,乘和除以也是一样的,换句话说,加减乘除是相反的,并且加减乘除的都是一个具体的数字。
总结一句话就是:一般方程很简单,具体数字帮你办,加减乘除要相反。
对于特殊方程,减去和除以的都是未知数x,求解时,减去未知数那就加上未知数,除以未知数那就乘未知数,符号也是相反的,这样方程也就变换成了一般方程,总结为:特殊方程别犯难,减去除以未知数,加上乘上变一般。
对于稍复杂的方程,我教给孩子们的方法是,“舍远取近”的方法,意思是,离未知数x远的就先去掉,离未知数x进的先看成整体保留,通过变换,方程就变得简单,一目了然。
总结为:若遇稍微复杂点,舍远取近便了然。
当然后面还有形如ax+bx=c等形式,能够学会上面这几种,对于孩子来说,这些方程就显得轻而易举了。
小学五年级数学解方程口诀,附2套练习题.docx
一般方程很简单,具体数字帮你办,加减乘除要相反。
特殊方程别犯难,减去除以未知数,加上乘上变一般。
若遇稍微复杂点,舍远取近便了然。
具体分析如下:我们可以把课本中出现的方程分为三大类:一般方程,特殊方程,稍复杂的方程。
形如:x+a=b , x-a=b , ax=b , x÷a=b 这几种方程,我们可以称为一般方程。
形如:a- x =b,a÷x =b这两种方程,我们可以称为特殊方程。
形如:ax+b=c , a(x-b)=c这两种方程,我们可以称为稍复杂的方程。
我们知道,对于一般方程,如果方程是加上a,在利用等式的性质求解时,会在方程的两边减去a,同样,如果方程是减去a,在利用等式的性质求解时,会在方程的两边加上a,乘和除以也是一样的,换句话说,加减乘除是相反的,并且加减乘除的都是一个具体的数字。
总结一句话就是:一般方程很简单,具体数字帮你办,加减乘除要相反。
对于特殊方程,减去和除以的都是未知数x,求解时,减去未知数那就加上未知数,除以未知数那就乘未知数,符号也是相反的,这样方程也就变换成了一般方程,总结为:特殊方程别犯难,减去除以未知数,加上乘上变一般。
对于稍复杂的方程,我教给孩子们的方法是,“舍远取近”的方法,意思是,离未知数x远的就先去掉,离未知数x进的先看成整体保留,通过变换,方程就变得简单,一目了然。
总结为:若遇稍微复杂点,舍远取近便了然。
当然后面还有形如ax+bx=c等形式,能够学会上面这几种,对于孩子来说,这些方程就显得轻而易举了。
解方程知识点汇总1、知识点:1、用字母表示数(1)用字母表示数量关系(2)用字母表示计算公式(3)用字母表示运算定律和计算法则(4)求代数式的值:把给定字母的数值代入式子,求出式子的值。
2、注意:(1)数字和字母、字母和字母相乘时,乘号可以记作“·”,或者省略不写,数字要写在字母的前面。
(2)当1与任何字母相乘时,1省略不写。
(3)在一个问题中,不同的量用不同的字母来表示,而不能用同一个字母表示。
小学五年级数学上册解方程口诀及练习题
解方程口诀一般方程很简单;具体数字帮你办;加减乘除要相反。
特殊方程别犯难;减去除以未知数;加上乘上变一般。
若遇稍微复杂点;舍远取近便了然。
具体分析如下:我们可以把课本中出现的方程分为三大类:一般方程;特殊方程;稍复杂的方程。
形如:x+a=b , x-a=b , ax=b , x÷a=b 这几种方程;我们可以称为一般方程。
形如:a- x =b;a÷x =b这两种方程;我们可以称为特殊方程。
形如:ax+b=c , a(x-b)=c这两种方程;我们可以称为稍复杂的方程。
我们知道;对于一般方程;如果方程是加上a;在利用等式的性质求解时;会在方程的两边减去a;同样;如果方程是减去a;在利用等式的性质求解时;会在方程的两边加上a;乘和除以也是一样的;换句话说;加减乘除是相反的;并且加减乘除的都是一个具体的数字。
总结一句话就是:一般方程很简单;具体数字帮你办;加减乘除要相反。
对于特殊方程;减去和除以的都是未知数x;求解时;减去未知数那就加上未知数;除以未知数那就乘未知数;符号也是相反的;这样方程也就变换成了一般方程;总结为:特殊方程别犯难;减去除以未知数;加上乘上变一般。
对于稍复杂的方程;我教给孩子们的方法是;“舍远取近”的方法;意思是;离未知数x远的就先去掉;离未知数x进的先看成整体保留;通过变换;方程就变得简单;一目了然。
总结为:若遇稍微复杂点;舍远取近便了然。
当然后面还有形如ax+bx=c等形式;能够学会上面这几种;对于孩子来说;这些方程就显得轻而易举了。
解方程练习题带答案一、填空(1)使方程左右两边相等的________;叫做方程。
(2)被减数=差()减数;除数=()○()(3)求______的过程叫做解方程。
(4)小明买5支钢笔;每支a元;买4支铅笔;每支b元。
一共付出()元。
二、判断1.含有未知数的式子叫做方程。
()2.4x+5、6x=8?都是方程。
()3.18x=6的解是x=3。
第5单元简易方程解题技巧及难点归纳
第5单元简易方程解题技巧解简易方程的口诀准备讲简易方程的数学教师看看,口诀很实用的,可能会对你的教学会有很大帮助的。
口诀:左边相反,两边一致。
解释:左边相反——左边含有未知数的一边加上几就减去几,减去几就加上几,乘以几就除以几,除以几就乘以几。
两边一致——左边加上几,右边加上几;左边减去几,右边减去几;左边乘以几,右边乘以几;左边除以几,右边除以几。
举例:(1)x﹢5=50解:x﹢5﹣5=50﹣5x=45(2)x﹣5=50解:x﹣5﹢5=50﹢5x=55(3)5x=50解:5x÷5=50÷5x=10(4)x÷5=50解:x÷5×5=50×5x=250按住Ctrl键单击鼠标打开配套的名师解题教学视频播放五年级上册解简易方程之方法及难点归纳重点概念:方程,方程的解,解方程,等式的基本性质(详见“知识点汇总”)要点回顾:“解方程”就是要运用“等式的基本性质”,对“方程”的左右两边同时进行运算,以求出“方程的解”的过程。
(方程的解即是如同“X=6”的形式)“解方程”就好像是要把复杂的绳结解开,因此一般要按照“绳结”形成的过程逆向操作(逆运算)。
过程规范:先写“解:”,“=”号对齐往下写,同时运算前左右两边要照抄,解的未知数写在左边。
注意事项:以下内容除了标明的外,全都是正确的方程习题示例,且没有跳步,请仔细观看其中每步的解题意图。
带“*”号的题目不会考查,但了解它们有助于掌握解复杂方程的一般方法,对简单的方程也就自然游刃有余了。
一、一步方程只有一步计算的方程,直接逆运算除未知数外的部分。
难点:当未知数出现在减数和除数时,要先逆运算含未知数的部分。
二、两步方程两步方程中,若是只有同级运算,也可以先计算,后当做一步方程求解。
注意要“带符号移动”,增添括号时还要注意符号的变化。
“先乘后减”,则先逆运算减法(即两边同加),再逆运算乘法(即两边同时除以),依此类推。
解方程必背公式口诀练习题
解方程必背公式口诀练习题在解方程的过程中,掌握一些常用的公式和口诀是非常重要的。
下面是一些常用的解方程公式口诀及练习题,希望对你的数学学习有所帮助。
1. 一元一次方程:形如ax + b = 0的方程,其中a和b为已知系数,x为未知数。
我们可以通过以下公式进行解。
口诀:同底异号,去括号;同底同号,去b;有负号,取负值。
练习题:1) 3x + 5 = 02) 2x - 7 = 03) -4x + 2 = 04) 0.5x - 0.3 = 02. 一元二次方程:形如ax² + bx + c = 0的方程,其中a、b和c为已知系数,x为未知数。
我们可以通过以下公式进行解。
口诀:变号相减平方根;分之二倍a,来个加减。
练习题:1) x² + 4x + 3 = 02) 2x² - x - 1 = 03) -3x² - 2x + 1 = 04) 0.5x² + 3x - 2 = 03. 分式方程:将含有分式的方程转化为整式方程进行求解。
口诀:通分整理消;归零去分子。
练习题:1) 2/x + 1/(x + 1) = 1/22) 1/(x - 1) + 2/(x + 1) = 1/33) 3/(2x - 1) - 2/(2x + 1) = 1/44. 无理方程:将含有无理数的方程通过化简或转化为整式方程进行求解。
口诀:合并化整配;两变求平方。
练习题:1) √(x + 3) + 2 = 52) 2√(x - 1) +7 = 3√(2x - 1)3) √(3x + 2) - √(2x + 1) = 55. 联立方程:将两个或多个方程联立起来求解未知数。
口诀:整体消元法;变量代入式。
练习题:1) 解联立方程组:{ 2x - y = 5{ x + y = 32) 解联立方程组:{ 3x - 2y + z = 10{ 2x + y - z = -5{ x - y - z = 3以上是解方程必背公式口诀的练习题。
小学数学解方程口诀-精品
解方程一直是小学数学的重难点,类型多且容易混淆,如何快速有效的让学生掌解方程,通过总结分析,我汇总了各类方程的解决的技巧,编纂了一首口诀帮助记忆:一般方程很简单,具体数字帮你办,加减乘除要相反。
特殊方程别犯难,减去除以未知数,加上乘上变一般。
若遇稍微复杂点,舍远取近便了然。
具体分析如下:我们可以把课本中出现的方程分为三大类:一般方程,特殊方程,稍复杂的方程。
形如:x+a=b , x-a=b , ax=b , x÷a=b 这几种方程,我们可以称为一般方程。
形如:a- x =b,a÷x =b这两种方程,我们可以称为特殊方程。
形如:ax+b=c , a(x-b)=c这两种方程,我们可以称为稍复杂的方程。
我们知道,对于一般方程,如果方程是加上a,在利用等式的性质求解时,会在方程的两边减去a,同样,如果方程是减去a,在利用等式的性质求解时,会在方程的两边加上a,乘和除以也是一样的,换句话说,加减乘除是相反的,并且加减乘除的都是一个具体的数字。
总结一句话就是:一般方程很简单,具体数字帮你办,加减乘除要相反。
对于特殊方程,减去和除以的都是未知数x,求解时,减去未知数那就加上未知数,除以未知数那就乘未知数,符号也是相反的,这样方程也就变换成了一般方程,总结为:特殊方程别犯难,减去除以未知数,加上乘上变一般。
对于稍复杂的方程,我教给孩子们的方法是,“舍远取近”的方法,意思是,离未知数x远的就先去掉,离未知数x进的先看成整体保留,通过变换,方程就变得简单,一目了然。
总结为:若遇稍微复杂点,舍远取近便了然。
当然后面还有形如ax+bx=c等形式,能够学会上面这几种,对于孩子来说,这些方程就显得轻而易举了。
小学解方程口诀
小学解方程口诀
1、知识点:
1、用字母表示数
(1)用字母表示数量关系
(2)用字母表示计算公式
(3)用字母表示运算定律和计算法则
(4)求代数式的值:把给定字母的数值代入式子,求出式子的值。
2、注意:
(1)数字和字母、字母和字母相乘时,乘号可以记作“·”,或者省略不写,数字要写在字母的前面。
(2)当1与任何字母相乘时,1省略不写。
(3)在一个问题中,不同的量用不同的字母来表示,而不能用同一个字母表示。
(4)字母可以表示任意数,所以在一些式子中,对字母的表示要进行说明。
如:(a≠0)
3、简易方程:
(1)方程:含有未知数的等式叫作方程。
方程都是等式,等式不一定是方程,只有当等式中含有未知数时,才是方程。
(2)方程的解:使方程左右两边相等的未知数的值叫作方程的解。
(3)解方程:求方程的解的过程叫作解方程。
(4)方程的解是一个值,一般来说,没有解方程这个计算过程,方程的解是难以求出的,解方程是求方程的解的过程,是一个演算过程。
小学五年级数学解方程口诀及知识点汇总(附习题)
小学五年级数学解方程口诀及知识点汇总(附习题)
解方程口诀、知识点
解方程一直是小学数学的重难点,类型多且容易混淆,如何快速有效的让学生掌解方程,通过总结分析,我汇总了各类方程的解决的技巧,编纂了一首口诀帮助记忆:
一般方程很简单,
具体数字帮你办,
加减乘除要相反。
特殊方程别犯难,
减去除以未知数,
加上乘上变一般。
若遇稍微复杂点,
舍远取近便了然。
具体分析如下:
我们可以把课本中出现的方程分为三大类:一般方程,特殊方程,稍复杂的方程。
形如:x+a=b , x-a=b , ax=b , x÷a=b 这几种方程,我们可以称为一般方程。
形如:a- x =b,a÷x =b这两种方程,我们可以称为特殊方程。
形如:ax+b=c , a(x-b)=c这两种方程,我们可以称为稍复杂的方程。
我们知道,对于一般方程,如果方程是加上a,在利用等式的性质求解时,会在方程的两边减去a,同样,如果方程是减去a,在利用等式的性质求解时,会在方程的两边加上a,乘和除以也是一样的,换句话说,加减乘除是相反的,并且加减乘除的都是一个具体的数字。
总结一句话就是:一般方程很简单,具体数字帮你办,加减乘除要相反。
解方程必背公式口诀
解方程必背公式口诀1、解一元二次方程方程没有一次项,直接开方最理想。
如果缺少常数项,因式分解没商量。
b、c相等都为零,等根是零不要忘。
b、c同时不为零,因式分解或配方,也可直接套公式,因题而异择良方。
2、有理数的减法运算减正等于加负,减负等于加正。
3、有理数的乘法运算符号法同号得正异号负,一项为零积是零。
4、合并同类项说起合并同类项,法则千万不能忘。
只求系数代数和,字母指数留原样。
5、去、添括号法则去括号或添括号,关键要看连接号。
扩号前面是正号,去添括号不变号。
括号前面是负号,去添括号都变号。
6、解方程已知未知闹分离,分离要靠移完成。
移加变减减变加,移乘变除除变乘。
7、平方差公式两数和乘两数差,等于两数平方差。
积化和差变两项,完全平方不是它。
8、完全平方公式二数和或差平方,展开式它共三项。
首平方与末平方,首末二倍中间放。
和的平方加联结,先减后加差平方。
9、完全平方公式首平方又末平方,二倍首末在中央。
和的平方加再加,先减后加差平方。
10、解一元一次方程先去分母再括号,移项变号要记牢。
同类各项去合并,系数化“1”还没好。
求得未知须检验,回代值等才算了。
11、解一元一次方程先去分母再括号,移项合并同类项。
系数化1还没好,准确无误不白忙。
12、因式分解与乘法和差化积是乘法,乘法本身是运算。
积化和差是分解,因式分解非运算。
13、因式分解两式平方符号异,因式分解你别怕。
两底和乘两底差,分解结果就是它。
两式平方符号同,底积2倍坐中央。
因式分解能与否,符号上面有文章。
同和异差先平方,还要加上正负号。
同正则正负就负,异则需添幂符号。
14、因式分解一提二套三分组,十字相乘也上数。
四种方法都不行,拆项添项去重组。
重组无望试求根,换元或者算余数。
多种方法灵活选,连乘结果是基础。
同式相乘若出现,乘方表示要记住。
【注】一提(提公因式)二套(套公式)15、因式分解一提二套三分组,叉乘求根也上数。
五种方法都不行,拆项添项去重组。
小升初数学计算解方程口诀
小升初数学计算解方程口诀解方程始终是学校数学的重难点,类型多且简单混淆,如何快速有效的让同学掌解方程,以下是我为大家整理了各类方程的解决的技巧,让我们一起来看看吧!口诀一般方程很简洁,详细数字帮你办,加减乘除要相反。
特别方程别犯难,减去除以未知数,加上乘上变一般。
若遇略微简单点,舍远取近便了然。
详细分析如下:我们可以把课本中消失的方程分为三大类:一般方程,特别方程,稍简单的方程。
形如:x+a=b , x-a=b , ax=b , x÷a=b 这几种方程,我们可以称为一般方程。
形如:a- x =b,a÷x =b这两种方程,我们可以称为特别方程。
形如:ax+b=c , a(x-b)=c这两种方程,我们可以称为稍简单的方程。
我们知道,对于一般方程,假如方程是加上a,在利用等式的性质求解时,会在方程的两边减去a,同样,假如方程是减去a,在利用等式的性质求解时,会在方程的两边加上a,乘和除以也是一样的,换句话说,加减乘除是相反的,并且加减乘除的都是一个详细的数字。
总结一句话就是:一般方程很简洁,详细数字帮你办,加减乘除要相反。
对于特别方程,减去和除以的都是未知数x,求解时,减去未知数那就加上未知数,除以未知数那就乘未知数,符号也是相反的,这样方程也就变换成了一般方程,总结为:特别方程别犯难,减去除以未知数,加上乘上变一般。
对于稍简单的方程,我教给孩子们的方法是,“舍远取近”的方法,意思是,离未知数x 远的就先去掉,离未知数x、进的先看成整体保留,通过变换,方程就变得简洁,一目了然。
总结为:若遇略微简单点,舍远取近便了然。
当然后面还有形如ax+bx=c等形式,能够学会上面这几种,对于孩子来说,这些方程就显得轻而易举了。
小升初数学计算解方程口诀。
歌诀为1
歌诀为:“解答方程应用题,步骤要点要记清,读(题)想(意)设(x)列(式)解查答,解无单位等号齐。
”、歌诀为:“带分数除法要记清,一化(带分数化假分数)二倒(乘以倒数)三约分,四算五简第六套,书写规范要仔细。
”歌诀为:“一三五七八十腊,三十一天永不差。
四六九冬三十整,平年二月二十八。
”教学植树、上楼、敲钟等间隔问题,关键在于搞清间距与棵数(层数、次数)的关系,而这一关键点正是学生容易出错的地方。
为解决这个难点,可以编成儿歌:“小朋友,张开手,五只手指人人有,手指之间几个空,请你仔细瞅一瞅”。
混合运算要记牢,一读(题目)二看(符号)三思考(顺序),第四计算要仔细,第五检查不可少。
”顶点对准中心,0刻度线对准一条边,看另一边在量角器的位置读数。
读数中有个难点,到底读内圈刻度还是外圈刻度。
中心对顶点,0刻度对边边,0刻度在右读内圈,0刻度在左读外圈”。
长度、面积、体积、容积的认识长度一条线,面积一大片;体积占空间,容积算里面。
分数大小的比较分数大小的比较,分子、分母要记好。
分母相同看分子,分子大的分数大;分子相同看分母,分母大的分数小。
分数的基本性质分子、分母同时乘,乘的因数要相同。
分子、分母同除以,除以的数也相同。
乘、除都把0除外,分数值的大小不变更。
2.分数加减法法则分数加减很简单,统一单位是关键。
同分母分数相加减,只把分子相加减,分母大小不改变。
异分母分数相加减,先通分来后计算。
小学数学儿歌大全乘法口诀儿歌一只青蛙一张嘴,两只眼睛四条腿。
两只青蛙两张嘴,四只眼睛八条腿。
三只青蛙三张嘴,六只眼睛十二条腿。
四只青蛙四张嘴,扑嗵扑嗵跳下水。
一个数除几位数儿歌先看被除数最高位,高位不够多一位除到被除数哪一位,商就写在哪一位,不够商1就写0,商中头尾算数位,余数要比除数小,这样运算才算对。
小数加减法儿歌计算小数加减法,关键对齐小数点,用0补齐末位,便可进行加减。
小数大小比较儿歌(自编)小数大小比较很容易,先把他们都竖起,小数点,数位要对起,然后再把他们比。
【推荐】2019-2020学年小学数学解方程口诀.doc
解方程一直是小学数学的重难点,类型多且容易混淆,如何快速有效的让学生掌解方程,通过总结分析,我汇总了各类方程的解决的技巧,编纂了一首口诀帮助记忆:一般方程很简单,具体数字帮你办,加减乘除要相反。
特殊方程别犯难,减去除以未知数,加上乘上变一般。
若遇稍微复杂点,舍远取近便了然。
具体分析如下:我们可以把课本中出现的方程分为三大类:一般方程,特殊方程,稍复杂的方程。
形如:x+a=b , x-a=b , ax=b , x÷a=b 这几种方程,我们可以称为一般方程。
形如:a- x =b,a÷x =b这两种方程,我们可以称为特殊方程。
形如:ax+b=c , a(x-b)=c这两种方程,我们可以称为稍复杂的方程。
我们知道,对于一般方程,如果方程是加上a,在利用等式的性质求解时,会在方程的两边减去a,同样,如果方程是减去a,在利用等式的性质求解时,会在方程的两边加上a,乘和除以也是一样的,换句话说,加减乘除是相反的,并且加减乘除的都是一个具体的数字。
总结一句话就是:一般方程很简单,具体数字帮你办,加减乘除要相反。
对于特殊方程,减去和除以的都是未知数x,求解时,减去未知数那就加上未知数,除以未知数那就乘未知数,符号也是相反的,这样方程也就变换成了一般方程,总结为:特殊方程别犯难,减去除以未知数,加上乘上变一般。
对于稍复杂的方程,我教给孩子们的方法是,“舍远取近”的方法,意思是,离未知数x远的就先去掉,离未知数x进的先看成整体保留,通过变换,方程就变得简单,一目了然。
总结为:若遇稍微复杂点,舍远取近便了然。
当然后面还有形如ax+bx=c等形式,能够学会上面这几种,对于孩子来说,这些方程就显得轻而易举了。
五年级小学生简易方程知识点
与当今“教师”一称最接近的“老师”概念,最早也要追溯至宋元时期。金代元好问《示侄孙伯安》诗云:“伯安入小学,颖悟非凡貌,属句有夙性,说字惊老师。”于是看,宋元时期小学教师被称为“老师”有案可稽。清代称主考官也为“老师”,而一般学堂里的先生则称为“教师”或“教习”。可见,“教师”一说是比较晚的事了。如今体会,“教师”的含义比之“老师”一说,具有资历和学识程度上较低一些的差别。辛亥革命后,教师与其他官员一样依法令任命,故又称“教师”为“教员”。=……解方程式一个计算过程。
与当今“教师”一称最接近的“老师”概念,最早也要追溯至宋元时期。金代元好问《示侄孙伯安》诗云:“伯安入小学,颖悟非凡貌,属句有夙性,说字惊老师。”于是看,宋元时期小学教师被称为“老师”有案可稽。清代称主考官也为“老师”,而一般学堂里的先生则称为“教师”或“教习”。可见,“教师”一说是比较晚的事了。如今体会,“教师”的含义比之“老师”一说,具有资历和学识程度上较低一些的差别。辛亥革命后,教师与பைடு நூலகம்他官员一样依法令任命,故又称“教师”为“教员”。
以上就是为大家分享的五年级小学生简易方程知识点,希望对大家有帮助。
=方程右边
所以,X=…是方程的解。
死记硬背是一种传统的教学方式,在我国有悠久的历史。但随着素质教育的开展,死记硬背被作为一种僵化的、阻碍学生能力发展的教学方式,渐渐为人们所摒弃;而另一方面,老师们又为提高学生的语文素养煞费苦心。其实,只要应用得当,“死记硬背”与提高学生素质并不矛盾。相反,它恰是提高学生语文水平的重要前提和基础。
【数学知识点】数学解方程顺口溜
【数学知识点】数学解方程顺口溜
使方程左右两边相等的未知数的值,叫做方程的解。
求方程的解的过程叫做解方程。
接下来给大家分享解方程的顺口溜,供参考!
解方程,去分母,
乘以最小公倍数,
分子加上小括号,
有括号要去掉,
正负变化忘不了,
去括号要看符号,
如果前面是负号,
括号里面全变号,
移项变号很重要,
正负变化要记牢,
同类项,要合并,
系数化1就完成。
1.含有未知数的等式叫方程,也可以说是含有未知数的等式是方程。
2.使等式成立的未知数的值,称为方程的解,或方程的根。
3.解方程就是求出方程中所有未知数的值的过程。
4.方程一定是等式,等式不一定是方程。
不含未知数的等式不是方程。
5.验证:一般解方程之后,需要进行验证。
验证就是将解得的未知数的值代入原方程,看看方程两边是否相等。
如果相等,那么所求得的值就是方程的解。
6.注意事项:写“解”字,等号对齐,检验。
7.方程依靠等式各部分的关系,和加减乘除各部分的关系(加数+加数=和,和-其中一
个加数=另一个加数,差+减数=被减数,被减数-减数=差,被减数-差=减数,因数×因数=
积,积÷一个因数=另一个因数,被除数÷除数=商,被除数÷商=除数,商×除数=被除数)。
感谢您的阅读,祝您生活愉快。