金属热处理变形原因及改善的技术措施分析

合集下载

热处理变形的原因

热处理变形的原因

热处理变形的原因在实际生产中,热处理变形给后续工序,特别是机械加工增加了很多困难,影响了生产效率,因变形过大而导致报废,增加了成本。

变形是热处理比较难以解决的问题,要完全不变形是不可能的,一般是把变形量控制在一定范围内。

一、热处理变形产生的原因钢在热处理的加热、冷却过程中可能会产生变形,甚至开裂,其原因是由于淬火应力的存在。

淬火应力分为热应力和组织应力两种。

由于热应力和组织应力作用,使热处理后零件产生不同残留应力,可能引起变形。

当应力大于材料的屈服强度时变形就会产生,因此,淬火变形还与钢的屈服强度有关,材料塑性变形抗力越大,其变形程度越小。

1.热应力在加热和冷却时由于零件表里有温差存在造成热胀冷缩的不一致而产生热应力。

零件由高温冷却时表面散热快,温度低于心部,因此表面比心部有更大的体积收缩倾向,但受心部阻碍而使表面受拉应力,而心部则受压应力。

表里温差增大应力也增大。

2.组织应力组织应力是因为奥氏体与其转变产物的比容不同,零件的表面和心部或零件各部分之间的组织转变时间不同而产生的。

由于奥氏体比容最小,淬火冷却时必然发生体积增加。

淬火时表面先开始马氏体转变,体积增大,心部仍为奥氏体体积不变。

由于心部阻碍表面体积增大,表面产生压应力,心部产生拉应力。

二、减少和控制热处理变形的方法1.合理选材和提高硬度要求对于形状复杂,截面尺寸相差较大而又要求变形较小的零件,应选择淬透性较好的材料,以便使用较缓和的淬火冷却介质淬火。

对于薄板状精密零件,应选用双向轧制板材,使零件纤维方向对称。

对零件的硬度要求,在满足使用要求前提下,尽量选择下限硬度。

2.正确设计零件零件外形应尽量简单、均匀、结构对称,以免因冷却不均匀,使变形开裂倾向增大。

尽量避免截面尺寸突然变化,减少沟槽和薄边,不要有尖锐棱角。

避免较深的不通孔。

长形零件避免截面呈横梯形。

3.合理安排生产路线,协调冷热加工与热处理的关系对于形状复杂、精度要求高的零件,应在粗、精加工之间进行预先处理,如消除应力、退火等。

关于金属热处理变形原因及改善的技术措施

关于金属热处理变形原因及改善的技术措施

关于金属热处理变形原因及改善的技术措施
赵新 哈尔滨电气动力装备有限公司 黑龙江哈尔滨
【 搞 要l工业化 的发展有效的促进 了 我国国家整体 实力的提升, 在当
今世 界的发展 过程中 , 工业实力的强弱影响着一个 国家排零件 结构 金 属热处 理后在 冷却 过程 中 , 总是 薄的 部分冷 得快 , 厚的部 分冷 得慢 。 在 满足实际生产 需要的 情况 下 , 应尽量减 少工件厚 薄悬殊 , 零件 截面力求 均匀 , 以减 少过渡 区因应 力集中产生 畴变和开 裂倾向, 工件应 尽量保 持结 构与材 料成分 和组织 的对 称性 , 以减少 由于冷却 不均 引起 的 畸变 : 工件应 尽量避免 尖锐 棱角, 沟 槽等 , 在 工件的厚 薄交界 处 、 台
热处 理的 方式 改善金 属的结 构, 使其 在应 用过程 中达 到新的 刚度以 及 金属 淬火 后冷却过 程 对变形的影 响也 是很重要的 一个变 形原 因。 韧性 , 提 高在使用过程 中技 术部件的质量。 在进行金属热处 理的过程 中, 金属 热处理冷 却速 度越快 , 冷却越 不均匀, 产生 的应力越 大, 模 具 的变 由于金属 部件长相 各不相同的原 因, 在实际的进行 热处 理时, 会出现 金 形也 越大 。 可以在 在保证模 具硬 度要求的 前提 下, 尽量 采用 预冷; 采 用
体实力。 在 我国各 行业 不断更新技 术措施 , 改革现有施 工环境 的过程 中 , 我们发现各种金属 的运 用以及加工都成为了 部 分工业不可避免要 使用的一 项措施 。 在金属的使用加工过程 中 , 对现有金属进行提 炼处理 , 并对其进行 金属热处理 加工, 已经成为了 在使用的必备措施 。 在金属使用的过程中' 由
1 . 金 属热 处 理 变形 的原 因 相 同, 锻 造所形成 的结构 也各不相 同, 所以在进行 炉内加热 的过程 中由 在 工业发 展的过程 中, 金属原件 的使用涉及的范 围十 分的广阔。 在 于金 属部 件本身 的结构 影 响, 在 进行 受热 的过程 中首先会 出现受 热 不

提高金属塑性的措施及机理

提高金属塑性的措施及机理

提高金属塑性的措施及机理引言金属塑性是指金属材料在外力作用下能够发生塑性变形的能力。

提高金属塑性不仅能够改善材料的加工性能,还能够增加其使用范围和寿命。

本文将介绍一些常见的提高金属塑性的措施及其机理。

1. 热处理热处理是通过改变金属的晶体结构和组织来提高其塑性。

常见的热处理方法包括退火、淬火和回火。

这些方法的原理是通过改变金属材料的晶粒结构来改善其塑性。

1.1 退火退火是将金属材料加热至一定温度,然后缓慢冷却到室温的过程。

退火可以有效地消除金属内部的应力,使金属晶粒重新排列,从而提高金属的塑性。

退火可以使金属的晶粒尺寸增大,晶界的移动受到限制,从而提高金属的塑性。

1.2 淬火淬火是将金属材料加热至一定温度,然后迅速冷却至室温的过程。

淬火可以使金属材料的晶体结构变得致密,从而提高金属的硬度和塑性。

淬火通常用于高碳钢等材料,可以显著提高其强度和韧性。

1.3 回火回火是将淬火过的金属材料重新加热至一定温度,然后保温一段时间,最后缓慢冷却到室温的过程。

回火可以降低金属的硬度,增加其塑性,并且使金属具有一定的韧性。

回火可以使金属材料的组织逐渐回复到均匀和稳定的状态。

2. 应变硬化应变硬化是指金属材料在变形过程中,由于晶格的位错运动而引起的硬化现象。

通过增加材料的位错密度和增加位错的移动阻力,可以显著提高金属材料的塑性。

应变硬化的机理主要有以下几个方面:2.1 自脱附当金属材料受到外力作用时,晶体内会产生位错。

位错会阻碍晶体结构的移动,从而增加金属材料的硬度和强度。

自脱附是指晶体中的位错相互抵消或消失的现象,使晶体恢复到无位错状态,从而使金属材料的塑性增加。

2.2 滑移与变形滑移是指晶体中原子或离子相对于晶体的转移运动。

当金属材料受到外力作用时,晶体中的原子会沿着滑移面产生滑移运动,从而引起金属材料的变形。

滑移可以增加材料的位错密度,从而提高金属材料的塑性。

2.3 固溶体间析固溶体间析是指金属材料中不同元素的固溶体相互分离的现象。

金属材料热加工处理发生形变的因素以及优化方法分析

金属材料热加工处理发生形变的因素以及优化方法分析

金属材料热加工处理发生形变的因素以及优化方法分析摘要:本文主要对金属材料热加工处理发生形变的因素以及优化方法进行了研究,运用了文献调查法、资料收集法等研究方法,介绍了热处理工艺的材料变形类型,分析了热处理形变的因素,提出了热处理形变的改进方法,包括预处理控制、优化淬火方法、合理选择冷却方法与机械处理方法等,以为相关技术人员提供一定参考。

关键词:金属材料;热加工处理;形变;因素;优化方法引言:在对金属材料进行可塑性加工期间,热加工处理工艺属于常用技术之一,通过对金属进行热处理加工,可使金属材料形状及规格满足设计要求。

不过在对金属材料进行热处理过程中也存在一些缺陷,比如会受到应力状态、淬火介质以及预处理等因素影响导致材料发生形变问题。

所以在对金属材料进行热处理加工期间,需要高度关注导致热处理形变的因素,针对性的采取热处理形变改进方法,通过有效控制形变,保证金属材料加工质量。

一、热处理工艺的材料变形类型在对金属合金进行热加工处理过程中不可避免会发生形变,而大部分加工工艺应用中所产生的形变主要有两种类型:其中一种属于比容形变,这和金属材料当中所包含的碳元素以及部分微量金属元素密切相关。

曾有研究人员发现金属合金材料在热处理环节普遍存在比容形变,这类现象和游离碳、铁素体以及比容变化等都存在着密切关联。

对于金属合金材料来说,其比容形变体现出各向同性特点,即在对均质金属进行热加工处理期间,虽然金属材料的形变朝向不同方向,但各方向所发生的形变是相同的[1]。

合金材料在出现比容形变之后,尺寸大小较之前会有较大变化;而另外一种在对金属材料进行热加工处理期间发生的形变主要为内应力塑性形变,出现这种形变根本性原因在于金属块温度分布不均,也就是在对金属块实现热加工期间,不同的金属块位置有着不同温度,在温度分布不均情况下,使得不同位置有着差异化的冷却速度,在温度逐步下降过程中,不同的金属位置所产生的热胀冷缩效应也是不尽相同的,由此所导致的不良形变即为热应力塑性形变。

铸造铝合金热处理质量缺陷及其消除与预防

铸造铝合金热处理质量缺陷及其消除与预防

铸造铝合金热处理质量缺陷及其消除与预防铝合金铸件热处理后常见的质量问题有:力学性能不合格、变形、裂纹、过烧等缺陷,对其产生原因和消除与预防方法分述如下。

〔1〕力学性能不合格通常表现为退火状态伸长率〔6 5〕偏低,淬火或时效处理后强度和伸长率不合格。

其形成的原因有多种:如退火温度偏低、保温时间缺乏,或冷却速度太快;淬火温度偏低、保温时间不够,或冷却速度太慢〔淬火介质温度过高〕;不完全人工时效和完全人工时效温度偏高,或保温时间偏长;合金的化学成分出现偏差等。

消除这种缺陷,可采取以下方法:再次退火,提高加热温度或延长保温时间;提高淬火温度或延长保温时间,降低淬火介质温度;如再次淬火,则要调整其后的时效温度和时间;如成分出现偏差,则要根据具体的偏差元素、偏差量,改变或调整重复热处理的工艺参数等。

〔2〕变形与翘曲通常在热处理后或随后的机械加工过程中,反映出铸件尺寸、形状的变化。

产生这种缺陷的原因是:加热升温速度或淬火冷却速度太快〔太剧烈〕;淬火温度太高;铸件的设计构造不合理〔如两连接壁的壁厚相差太大,框形构造中加强筋太薄或太细小〕;淬火时工件下水方向不当及装料方法不当等。

消除与预防的方法是:降低升温速度,提高淬火介质温度,或换成冷却速度稍慢的淬火介质,以防止合金产生剩余应力;在厚壁或薄壁部位涂敷涂料或用石棉纤维等隔热材料包覆薄壁部位;根据铸件构造、形状选择合理的下水方向或采用专用防变形的夹具;变形量不大的部位,则可在淬火后立即予以矫正。

〔3〕裂纹表现为淬火后的铸件外表用肉眼可以看到明显的裂纹,或通过荧光检查肉眼看不见的微细裂纹。

裂纹多曲折不直并呈暗灰色。

产生裂纹的原因是:加热速度太快,淬火时冷却太快〔淬火温度过高或淬火介质温度过低,或淬火介质冷却速度太快〕;铸件构造设计不合理〔两连接壁壁厚差太大,框形件中间的加强筋太薄或太细小〕;装炉方法不当或下水方向不对;炉温不均匀,使铸件温度不均匀等。

消除与预防的方法是:减慢升温速度或采取等温淬火工艺;提高淬火介质温度或换成冷却速度慢的淬火介质;在壁厚或薄壁部位涂敷涂料或在薄壁部位包覆石棉等隔热材料;采用专用防开裂的淬火夹具,并选择正确的下水方向。

《金属热处理缺陷分析及案例》完整版

《金属热处理缺陷分析及案例》完整版
▪ 油:有普通、快速、等温油。 ▪ 聚合物溶液:有聚乙烯醇(PVA)和
聚二醇(PAG)。
▪ F、其它措施: ▪ 及时回火。局部包扎。 ▪ (六)、其它热处理裂纹: ▪ 回火裂纹:多出现于高速钢或高合金工
具钢。 ▪ 冷处理裂纹:高速钢刀具、工模具冷至
-80度以下的淬火处理时易出现裂纹。 ▪ 时效裂纹:高温合金多。 ▪ 磨削裂纹:出现于淬硬工具钢或经渗碳、
▪ 经渗碳、碳氮共渗的零件,表层产生 很大的压应力、心部产生很大的拉应 力。
三、残余应力对力学性能的影响:
▪ 1、残余拉应力导致硬度降低,压应力则提 高硬度值。
▪ 2、残余应力增大,磨损增大。 ▪ 3、疲劳失效: ▪ (1)、失效过程:裂纹萌生→裂纹扩展。 ▪ (2)、残余压应力提高工件的疲劳强度。 ▪ 4、残余拉应力增大了应力腐蚀开裂的敏感
金属热处理缺陷 分析及案例
授课内容:
▪ 第一部分: ▪ 常见热处理缺陷的特征、产生原因、
危害性和预防措施。 ▪ 第二部分: ▪ 热处理质量全面控制体系。 ▪ 第三部分: ▪ 典型热处理缺陷案例分析。 ▪ 第四部分: ▪ 总结复习
▪第一部分
▪热处理缺陷特征、原因 及防止措施
第一章、热处理缺Biblioteka 概述:▪ A、冶金因素: ▪ (1)材料质量:冶金缺陷扩展成淬火裂纹。 ▪ (2)、化学成分:①、碳量超高,倾向越大。
②、合金元素:双向作用。 ▪ (3)、原始组织:粗大组织或魏氏组织倾向
大。球状组织倾向小。
B、零件尺寸和结构:
▪ (1)、截面尺寸过大或过小不易淬 裂。
▪ (2)、截面突变处:淬裂倾向大。
▪ (一)、含义:
▪ 指在热处理生产过程中产生 的使零件失去使用价值或不符合 技术条件要求的各种不足,以及 使热处理以后的后序工序工艺性 能变坏或降低使用性能的热处理 隐患。

金属材料热处理变形的影响因素与控制策略

金属材料热处理变形的影响因素与控制策略

金属材料热处理变形的影响因素与控制策略摘要:热处理是金属材料加工的重要环节,其处理的好坏直接关系到金属材料的加工质量。

目前,金属材料在多种因素的作用下会产生形变,从而对其性能产生一定的影响。

所以,对金属材料的变形进行有效的控制就显得尤为重要。

本文重点讨论了金属材料热处理过程中的各种影响因素及控制方法,以期为今后的发展提供一定的借鉴。

关键词:热处理;金属材料;变形因素;控制策略引言采用热处理工艺进行金属材料的加工和制造,可以从根本上改变其化学性质和物理形态,使其性能得到进一步的提高,满足了经济和社会的需要。

由于对热处理工艺和工作环境的要求很高,因此,在实际应用中,金属材料在热处理过程中往往会出现一些变形,为了降低发生变形的可能性,提高产品的质量和水平,必须从当前的发展现状出发,深入研究影响到金属材料的变形原因及其控制策略。

一、金属材料热处理变形的影响因素(一)热应力引起的变形热应力作用下的变形主要出现在热应力形成的早期,此时工件的内部处于高强度的塑性状态。

由此,在初始热应力(表面是拉应力,心部是压应力)超出了钢材的屈服强度,从而产生了塑性变形。

1、加热时产生的热应力引起的变形在入炉时,工件的表面会受到热量的影响而发生膨胀,随着加热温度的升高,材料的线性膨胀系数也随之增大。

对于热处理变形量小的工件,应首先进行预热,然后逐步升温至更高的温度,以减少加热过程中的热应力。

在低温度和低变形的氮化过程中,缓慢的加热往往是降低变形的一种有效途径。

2、冷却时产生的热应力引起的变形工件在冷却过程中所引起的热应力大于在加热过程中所引起的热应力。

尤其是在盐水中冷却的碳钢件,由于温度和温度的变化,会产生较大的热应力。

(二)组织应力引起的变形1、组织应力引起的变形组织应力导致的变形,是导致材料体积发生改变的重要原因。

由于不同组织的比容,在淬火和冷却时,体积的改变是不可避免的。

该变形特征是,工件的各个部件的大小以相同的速度膨胀或缩小,而不会对工件的外观产生影响。

热处理变形的控制方法

热处理变形的控制方法

热处理变形的控制方法金属热处理在改善材料各种性能的同时,不可避免的导致热处理变形,并且会直接影响到工件的精度、强度、噪声和寿命,因此对于精度要求较高的零件要尽可能减小其变形量,本文着重分析温度与控制变形的关系,同时归纳几种要因素。

一、引言金属材料的热处理是将固态金属采用适当的方式进行加热、保温和冷却,有时并兼之以化学作用和机械作用,使金属合金内部的组织和结构发生改变,从而获得改善材料性能的工艺。

热处理工艺是使各种金属材料获得优良性能的重要手段。

很多实际应用中合理选用材料和各种成形工艺并不能满足金属工件所需要的力学性能、物理性能和化学性能,这时热处理工艺是必不可少的。

但是热处理工艺除了具有积极的作用之外,在处理过程中也不可避免地会产生或多或少的变形,而这又是机械加工中必须避免的,两者之间是共存而又需要避免的关系,只能采用相应的方法尽量把变形量控制在尽量小的范围内。

二、温度是变形的关键因素工业上实际应用的热处理工艺形式非常多,但是它们的基本过程都是热作用过程,都是由加热、保温和冷却三个阶段组成的。

整个工艺过程都可以用加热速度、加热温度、保温时间、冷却速度以及热处理周期等几个参数来描述。

在热处理工艺中,要用到各种加热炉,金属热处理便在这些加热炉中进行(如基本热处理中的退火、淬火、回火、化学热处理的渗碳、渗氮、渗铝、气相多元复合共渗、渗铬或去氢等等)。

因此,加热炉内的温度测量就成为热处理的重要工艺参数测量。

每一种热处理工艺规范中,温度是很重要的内容。

如果温度测量不准确,热处理工艺规范就得不到正确的执行,以至造成产品质量下降甚至报废。

温度的测量与控制是热处理工艺的关键,也是影响变形的关键因素。

(1)工艺温度降低后工件的高温强度损失相对减少,塑性抗力增强。

这样工件的抗应力变形、抗淬火变形、抗高温蠕变的综合能力增强,变形就会减少;(2)工艺温度降低后工件加热、冷却的温度区间减少,由此而引起的各部位温度不一致性也会降低,由此而导致的热应力和组织应力也相对减少,这样变形就会减少;(3)如果工艺温降低、且热处理工艺时间缩短,则工件的高温蠕变时间减少,变形也会减少。

金属材料热处理变形的影响因素及应对措施

金属材料热处理变形的影响因素及应对措施

金属材料热处理变形的影响因素及应对措施摘要:在金属制品制作过程中经常使用的技术就是热处理技术,工作人员可以利用这种技术来提升技术材料的整体性能。

但是这种技术在应用过程中也存在一定问题,比如在金属制品热处理时会受到多种因素影响导致金属材料变形,如果工作人员不采取有效的措施预防金属材料的变形,就会导致技术材料的精度、质量无法满足生产要求。

基于此,本文将对影响金属制品热处理变形的因素进行详细分析,并且提出针对性的应对措施。

关键词:金属材料;影响因素;热处理前言:我国社会的快速发展使得人们对金属制品的要求不断提升,而金属制品热处理技术的熟练运用可以一定程度上提升金属制品的整体性能,使金属材料有更长的使用寿命。

所以金属材料加工人员需要在日常工作中对影响金属制品变形的因素进行综合分析,并且制定详细的应对措施,只有这样才能保证金属材料的整体加工质量。

因此,对金属制品热处理变形的影响因素及应对措施进行深入探究具有十分重要的现实意义。

1.金属材料热处理的基本概述金属材料热处理通常是指利用金属材料在一定温度下的变形和转变反应,使其物理性能和化学性能得到优化和调整的过程。

基本包括以下几个概念:第一,加热:工作人员需要将金属制品加热到一定程度之后,然后让其缓慢冷却,从而改变金属晶体结构和化学组成,以调整其硬度、强度、延展性和导电性等物理性能。

常用于改善加工硬化后产生的材料内部应力和晶界的组织。

第二,淬火:将金属材料加热至临界温度,然后迅速冷却,以改变其晶粒结构和组织,使材料显著地增强硬度,并提高其抗拉强度和疲劳极限等力学性能。

第三,固溶处理:这需要工作人员将金属制品的温度保持在一定温度下,使材料中的固溶体或混合物溶解为单一相,然后迅速冷却以避免沉淀形成,从而获得均匀的微观组织结构和化学成分,以增强金属的抗腐蚀性、可加工性和机械性能等。

第四,沉淀强化处理:将金属材料进行固溶处理后,再退火至特定温度下让固溶体于固溶体中析出沉淀相,从而形成分散的硬质相,使材料得到强化。

浅析金属材料热处理变形问题及开裂问题的解决措施

浅析金属材料热处理变形问题及开裂问题的解决措施

– 115 –《装备维修技术》2020年第2期(总第176期)doi:10.16648/ki.1005-2917.2020.02.100浅析金属材料热处理变形问题及开裂问题的解决措施陈越伟(南京大驰科技有限公司,江苏 南京 210000)摘要: 工业生产蓬勃发展,带动各行业领域对金属材料需求量的逐步提升,机械设备制造中对其的应用也日益广泛。

热处理工艺技术可实现对金属材料的深加工,在提高材料综合性能方面意义重大,但受多方因素的影响,热处理环节中还存在变形、开裂的可能性,需要予以重视。

文章分析金属材料热处理变形、开裂的影响因素,遵循科学、实用、可操作的基本原则,提出解决变形以及开裂问题的关键措施,仅供参考。

关键词: 金属材料;热处理;变形;开裂热处理工艺可以以多重方式淬炼金属材料,减少网状碳化物等杂质含量,消除内应力缺陷,促进金属材料自身强度以及韧性水平的提升,因而被广泛应用于深加工环节中。

但目前技术条件支持下,热处理环节中金属材料仍然存在变形甚至开裂的可能性,必然对其使用以及相关功能的拓展产生不良影响。

如何解决变形、开裂问题,提高热处理工艺的安全性与稳定性,这一问题备受业内重视。

1. 金属材料热处理变形、开裂影响因素第一是冷处理工艺与时效。

金属材料前期冷处理过程当中有残留奥氏体→马氏体的转化反应,会在一定程度上增加金属材料体积。

同时,受到低温回火工艺及其时效的影响,一方面可能因应力松弛机制导致金属材料产生畸变,另一方面可能因马氏体转化分解以及大量碳化物分解析出导致金属材料体积下降。

第二是原始组织与应力状态。

原始组织对金属材料体积及其完整性的影响集中表现在热处理淬火环节前,主要通过碳化物数量、锻造所致纤维方向、以及合金元素偏析这几种机制实现。

通常可以依赖于调质处理的方式降低金属材料变形量绝对值,使淬火工艺所致材料变形更加规律,以达到合理控制变形的效果。

在此基础之上,化学热处理对改善材料表层性能有重要意义,但受到处理层深度局限的因素影响,为尽可能发挥渗透层作用,在化学热处理基础之上仅可进行磨削加工,进而导致变形矫正的难度增加,控制效果有所折扣[1]。

影响金属热处理变形的因素及改善措施

影响金属热处理变形的因素及改善措施

技 术 应 用
影响金属热处理变形 的因素及改善措施
白钰枝( 西安 航空职业技术 学院, 陕 西 西安 7 1 0 0 8 9 )
摘 要 : 金属 的力学性能可以通 过热处 理得到 改善 。 金属在 热处理 过程 中不可避 免地 会发 生 变形, 势 必影响到 工件 的精度、 强度、 噪声和 寿
应 尽量保持零件结构与材料成分 速 既不能 过 大又不 能过小 。 最 常用 的冷却 介质 是 水和 油 , 水 于冷却速度 不均引起 的变 形, 设计零件结构时, 应 尽量 避免零件 有尖锐 棱 在6 5 0  ̄5 5 0 ℃范围内具有很大 的冷却速 度 ( >6 0 0  ̄ C / s ) , 但在 和 组织的对 称性。 3 0 0  ̄2 0 0  ̄ C时冷 却速度仍然很快 ( 约为2 7 O ℃/ s ) , 这 时正发 生 角、 沟槽等,在零件的厚薄交界处、 台阶处要有圆角过渡 , 尽量
. 6机械加工 油性介质的冷却速 2 当热处理 是中间工序 时, 热 处理前的加工余 量可视 为机 度较慢, 而水性介质 的冷却 速度则相对快一 些, 而且, 和油性 加工余量和热 处理变形量之和 , 通常机 械加工余量 易于确定, 介质相比, 水温变化对水 l 生介质冷 却特 性的影响较 大, 在同样
. 4零件 结构 构上 的变化 。 实践证 明, 在正火后采 用等温淬火可有效地 使金 2 金属零件 结构在 金属热处理冷 却过程中对变形的影 响也 属组织 结构趋于均匀,从而使其变形量减 小。
2 . 2淬火介质
Hale Waihona Puke 不容忽视 。 薄的部分冷得快 , 厚的部分冷得慢 。 在满足实际生产
应尽量减少工件的厚 薄悬殊 。 为减 少过渡区因应 淬火 冷却 是决定淬火 质量 的关键 , 但介质使 用不合 理经 需要 的情况下J 要求零 件截面均匀 ; 为了减 少 由 常会 造成 很大的内应力 , 容 易引起工件 的变形和 开裂。因此冷 力集中产 生变 形和开裂倾 向,

热处理变形产生的原因及控制方法

热处理变形产生的原因及控制方法

热处理变形产生的原因及控制方法1. 引言热处理是一种常用的工艺,用于改善金属材料的机械性能。

然而,热处理过程中常常会引起材料的无意变形,对最终产品的质量造成影响。

本文将探讨热处理变形产生的原因以及相应的控制方法。

2. 原因热处理变形产生的原因可以从以下几个方面来分析:2.1. 内应力释放热处理过程中,材料内部会产生应力,特别是在急冷或急热的情况下。

当材料的结构发生变化时,这些应力会引起材料的塑性变形,导致尺寸变化或形状失真。

2.2. 相变效应在热处理过程中,金属材料的组织可能发生相变。

例如,当钢材经过淬火过程时,奥氏体会转变为马氏体。

这种相变过程会引起材料的体积变化和形状失真。

2.3. 不均匀加热或冷却如果热处理过程中加热或冷却不均匀,材料的局部温度会存在差异。

这种温度差异会导致材料的非均匀膨胀或收缩,从而引起变形。

3. 控制方法为了减少热处理产生的变形,可以采取以下控制方法:3.1. 控制加热和冷却速率合理控制加热和冷却速率,避免过快或过慢,可以减少材料的变形。

在进行急冷或急热处理时,可以采取预先控制的温度梯度,以缓解内应力的释放。

3.2. 优化工艺参数通过调整热处理过程中的工艺参数,如温度、时间和冷却介质等,可以最大限度地减少材料的变形。

合理选择工艺参数,可以提高材料的均匀性和稳定性。

3.3. 采用合适的支撑结构对于形状复杂的工件,可以采用合适的支撑结构来减少变形。

支撑结构可以提供一定的约束,防止材料发生不受控制的变形。

4. 结论热处理变形是热处理过程中常见的问题,但通过合理的控制方法可以有效减少其影响。

合理控制加热和冷却速率、优化工艺参数以及采用合适的支撑结构都是减少热处理变形的有效途径。

这些控制方法可以提高最终产品的质量和性能。

---以上是关于热处理变形产生的原因及控制方法的内容。

请基于以上内容,进一步完善和添加具体细节,使文档达到800字以上的要求。

热处理变形校正方法

热处理变形校正方法

热处理变形校正方法在金属加工行业中,热处理是一个至关重要的环节,它能够改善材料的性能,为产品提供必要的强度和硬度。

然而,热处理过程中往往伴随着变形的问题,这给产品质量带来了挑战。

本文将详细介绍热处理变形校正的方法,帮助读者更好地理解和应对这一工艺难题。

一、热处理变形的原因热处理变形主要是由于材料在加热和冷却过程中,内部应力重新分布所导致的。

当材料暴露在高温环境下,其晶体结构会发生改变,冷却后,这些改变会导致尺寸变化和形状变形。

二、热处理变形校正方法1.预防措施:- 选择合适的材料:不同材料的热处理变形程度不同,选择变形较小的材料是预防变形的有效手段。

- 优化热处理工艺:通过调整加热速度、保温时间、冷却速度等参数,降低热处理变形的风险。

2.变形校正方法:- 机械校正:通过机械力对变形部位进行校正,如锤击、拉伸等,但这种方法仅适用于轻微变形。

- 热校正:利用材料在高温下的塑性变形,对变形部位进行加热至适当温度后进行校正。

这种方法对操作技术要求较高,需防止过度加热导致新的变形。

- 液体校正:将变形部位浸入高温液体中,利用液体的压力和温度对变形进行校正。

此方法适用于复杂形状的零件。

3.数控加工校正:- 采用数控加工技术,根据变形量对零件进行精确加工,以消除变形影响。

这种方法适用于高精度要求的零件。

4.表面处理:- 对变形部位进行表面处理,如喷漆、氧化等,以掩盖或补偿变形。

三、总结热处理变形是金属加工中不可避免的问题,但通过合理的预防措施和校正方法,可以最大限度地降低变形对产品质量的影响。

在实际操作中,应根据具体情况选择合适的校正方法,确保产品达到预期的性能和质量要求。

金属材料的热处理工艺及性能改善技术

金属材料的热处理工艺及性能改善技术

金属材料的热处理工艺及性能改善技术随着工业技术的不断发展,金属材料在各个领域中扮演着重要的角色。

然而,金属材料的性能往往需要根据具体需求进行改善。

而其中一种常见的方法就是通过热处理工艺来实现。

本文将介绍金属材料的热处理工艺及性能改善技术。

1. 热处理工艺热处理是指通过加热和冷却等一系列工艺过程,使金属材料的结构及性能得到改善的工艺方法。

常见的热处理工艺包括退火、正火、淬火、回火等。

1.1 退火退火是将金属材料加热到一定温度,保持一段时间后缓慢冷却的工艺。

通过退火可使金属材料的晶粒细化、消除内应力以及改善塑性和韧性等性能。

1.2 正火正火是将金属材料加热到适当温度,然后在空气中自然冷却的工艺。

正火可以提高金属的强度和硬度,但相对于淬火而言变形较小。

1.3 淬火淬火是将金属材料加热到临界温度,然后迅速冷却的工艺。

淬火可以使金属材料的组织变为马氏体,从而提高硬度和强度,但会减小其塑性和韧性。

1.4 回火回火是将淬火后的金属材料再次加热到适当温度后冷却的工艺。

通过回火可以减轻淬火带来的脆性,提高金属材料的韧性和塑性。

2. 性能改善技术除了热处理工艺外,还有一些其他的技术可以用于金属材料的性能改善。

2.1 表面处理技术表面处理技术可以通过改变金属材料的表面结构和成分,来提升其耐磨性、耐腐蚀性以及表面光洁度等性能。

常见的表面处理技术包括电镀、喷涂和化学处理等。

2.2 合金化合金化是指将金属材料与其他元素进行混合,形成新的合金材料的过程。

通过合金化可以改变金属材料的组织结构和成分,从而改善其硬度、耐磨性、耐腐蚀性等性能。

2.3 疲劳寿命改善技术金属材料在长时间的使用过程中往往会出现疲劳破坏。

为了提高金属材料的疲劳寿命,可以采用表面强化、应力调控和表面涂覆等技术来改善材料的耐疲劳性能。

2.4 加工技术金属材料在加工过程中,其组织结构可能会发生变化,从而影响其性能。

因此,通过精确的加工技术可以使金属材料的性能得到改善。

金属材料热处理变形原因及防止变形的技术措施

金属材料热处理变形原因及防止变形的技术措施

金属材料热处理变形原因及防止变形的技术措施摘要:热处理能改善工件的综合机械机能,但热处理过程引起工件的变形是不可避免的。

任何因素的变化都或多或少地影响工件的变形倾向和形变大小。

在热处理过程中,能够把握工件热处理过程中导致工件变形的主要因素和关键点。

通过分析和实践,改进热处理工艺技术,一定能够在热处理工件的形变问题上得到突破,制定出合理的技术措施,保证热处理产品的质量和合格率。

关键词:金属材料;热处理;变形原因;防止变形技术引言实际工业生产中,仅凭选择材料和成形工艺并不能满足工件所需要的性能,通过对金属材料进行热处理而获得优良的综合性能是必不可少的。

但金属材料的热处理除改善材料的综合性能的积极作用外,在热处理过程中也不可避免地会产生或多或少的变形,而这又是工件生产过程中极力消除和避免的。

因此,需要找出工件热处理过程中发生形变的原因,采取技术措施把变形量控制在符合要求范围内。

1金属材料性能分析在当前的社会生产生活中,金属材料的应用范围十分的广泛。

由于金属材料具有韧性强、塑性好以及高强度的特点,因此其在诸多行业中均有所应用。

当前常用的金属材料主要包括两种:即多孔金属材料以及纳米金属材料。

纳米金属材料:一般情况下,只有物质的尺寸达到了纳米的级别,那么该物质的物理性质和化学性质均会发生改变。

在分析与研究金属材料性能的过程中,主要分析金属材料的如下两种性能:其一,硬度。

一般情况下,金属材料的硬度主要指的是金属材料的抗击能力。

其二,耐久性。

耐久性能和腐蚀性是金属材料需要着重考虑的一对因素。

在应用金属材料的过程中不可避免的会受到各种物质的腐蚀,由此就会导致金属材料出现缝隙等问题。

2金属热处理变形的原因分析在工业生产过程中,各种金属零件早已成为机械制造的必要部分。

在零件的设计、选材中,对综合性能方面也提出了更高要求。

特别是生产过程中,对产品热处理加工后的品质提出了新要求。

但在热处理过程中出现形变等质量问题,一直是热处理过程中难以克服的。

钢热处理十种组织缺陷分析及对策

钢热处理十种组织缺陷分析及对策

钢热处理十种组织缺陷分析及对策钢的力学性能、物理性能和化学性能决定钢的热处理组织。

正常组织赋予钢优异性能;组织缺陷恶化钢的性能,降低产品质量和使用寿命,甚至发生事故。

钢热处理主要有十种组织缺陷.分析原因,采取对第,有显著技术经济效益。

一、奥氏体晶粒粗大钢奥氏体晶粒定为13级,一级最粗,13 级最细。

晶粒愈细,强韧性愈佳,淬火得到隐晶马氏体;晶粒禽粗,强韧性愈差、脆性大,淬火得到粗马氏体。

实践证明.奥氏体形成后,随着温度升高和长时间保温,奥氏体晶粒急剧长大当加热温度一定时,快速加热奥氏体晶粒细小;慢速加热,奥氏体晶粒粗大奥氏体晶粒随钢中含C、Mn元素增加而增大,随钢中含W、Mo、V元素增加而细化。

钢最终淬火前未经预处理,奥氏体晶粒易粗化,淬火得到粗马氏体,强韧性低,脆性大。

晶粒粗化,降低晶粒之闻结合力,力学性能恶化。

对策——合理选择加热温度和保温时间。

加热温度过低,起始晶粒大,相转变缓慢;加热温度过高,起始晶粒细,长大倾向大,得到粗大奥氏体晶粒。

加热温度应按钢的临界温度确定,保温时间接加热设备确定。

合理选择加热速度,根据过热度对奥氏体形核率和长大速率影响规律,采用快速加热和瞬时加热方法细化奥氏体晶粒,如铅浴加热、盐浴加热、高频加热、循环加热、激光加热等。

淬火前预处理细化奥氏体晶粒,如正火、退火、调质处理等。

选用细晶粒钢和严格控温等措施。

二、残余奥氏体量过多钢件淬火后过冷奥氏体已转变成淬火马氏体.未完全转变者为残余奥氏体。

残余奥氏体在回火过程可部分转变成马氏体,但因材料与工艺不同,残余奥氏体可多可少保留在使用状态中。

保留少量残余奥氏体有利增加强韧性、松驰残余应力、延缓裂纹扩展、减少变形等。

但过量残余奥氏体将降低钢的硬度、耐磨性、疲劳强度、屈服强度、弹性极限和引起组织不稳定,导致使用时发生尺寸变化等不利因素。

园此,残余奥氏体含量不宜过多。

高合金钢中有大量降低Ms点的台金元素,会增加淬火钢残余奥氏体量,如高速钢淬火后残余奥氏体量高达50%以上;过高的淬火加热温度会使钢中C和合金元素大量溶入高温奥氏体中,提高了台金化奥氏体稳定性,不易发生马氏体相变,保留在淬火组织中,增加残余奥氏体量;等温淬火较普通淬火残余奥氏体量多;淬火冷却速度慢,残余奥氏体量多等。

热处理变形产生的原因及控制方法

热处理变形产生的原因及控制方法

热处理变形产生的原因及控制方法摘要:热处理变形是热处理过程中的主要缺陷之一,对于一些精密零件和工具、模具,常常会因为热处理变形超差而报废。

为此,本文对热处理变形产生的原因进行了阐述,并总结了减少和控制热处理变形的几种方法。

关键词:热处理变形、产生原因、控制方法引言:金属热处理是将金属工件在适当的温度下通过加热、保温和冷却等过程,使金属工件内部组织结构发生改变,从而改善材料力学、物理、化学性能的工艺。

热处理是改善金属工件性能的一种重要手段[1]。

在工件制造中选取合适的材料后,为了达到工艺要求而经常采用热处理工艺,但是热处理除了具有积极作用外,在处理过程中也不可避免地会产生形变。

在实际生产中,热处理产生的变形,对后续工序的影响是至关重要的,有些贵重材料和一些机器中的重要零部件,因变形过大而导致报废。

钢件在热处理过程中由于钢中组织转变时比容变化所造成的体积膨胀,以及热处理所引起的塑性变形,使钢件体积及形状发生不同程度改变[2~5]。

变形是热处理较难解决的问题,要完全不变形是不可能的,一般是把变形量控制在一定范围内。

正文:1热处理变形的原因在生产实际中,热处理变形的表现形式多种多样,有体积和尺寸的增大和收缩变形,也有弯曲、歪扭、翘曲等变形,就其产生的根源来说, 可分为内应力造成的应力塑性变形和比容变化引起的体积变形两大类[6~11]。

(1) 内应力塑性变形热处理过程中加热冷却的不均匀和相变的不等时性, 都会产生内应力, 在一定塑性条件的配合下, 就会产生内应力塑性变形。

在加热和冷却过程中, 零件的内外层加热和冷却速度不同造成各处温度不一致,致使热胀冷缩的程度不同, 这样产生的应力变形叫热应力塑性变形。

在加热和冷却过程中, 零件的内部组织转变而发生的时间不同, 这样产生的应力变形叫组织应力变形塑性变形。

(2) 比容变形在热处理过程中, 各种相结构的组织比容不同,在相变时发生的体积和尺寸变化为比容变形。

比容变形一般只与奥氏体中碳和金元素的含量、游离相碳化物、铁素体的多少、淬火前后组织比容变化差和残余奥氏体的多少和钢的淬透性等因素有关。

分析金属材料热处理变形问题及开裂问题的解决措施

分析金属材料热处理变形问题及开裂问题的解决措施

分析金属材料热处理变形问题及开裂问题的解决措施摘要:金属材料性能全面提升的最为有效途径就是热处理,但是在实际的热处理过程中,最不可避免的问题,就是热处理变形和开裂问题,其对工件的加工和后续的交付非常不利。

基于此,本篇文章对金属材料热处理变形问题及开裂问题的解决措施进行深入的分析和探讨。

关键词:金属材料热处理变形问题开裂问题前言:所谓金属材料的热处理,其主要就是以固态金属具体的工艺制造需求,将相应的加热和保温以及冷却处理实施进来,与此同时,还要将相应的机械作用和化学作用辅助配合进来,改变金属材料的内部结构,改变其性能,进而将符合工艺需求的金属产品制造出来。

1.热处理变形开裂的主要原因在金属材料的热处理中,主要存在两种类型的变形,首先就是尺寸变形,其次就是形状变形,而对于大部分的类型而言,其都是金属材料本身在接受热处理的过程中,工件内部的应力进一步导致。

而实际的内应力不同,则又分为两种应力类型,一种为组织应力,另一种为热应力。

而金属材料工件本身会出现变硬的问题,主要原因就是这两种应力因素结合到一起的成果,远远的超出了应力自身的变形极限,进而出现永久变形的问题。

1.1.热处理引起的开裂与变形因素在金属材料的热处理中,主要包含冷却和加热这两个过程中。

而且在实际的热处理过程中,相应的金属工件要经过热胀冷缩处理,而实际的体积变化非常明显。

对于金属材料工件而言,其在达到相应的淬火温度时,会明显的降低工件屈服强度,提高工件塑性,在热处理金属的过程中,金属屈服强度无法超越内应力,则实际的塑性变性进一步发生。

1.1.组织应力引起的变形和开裂因素对于金属材料工件而言,相应的组织应力具备两个非常明显的特点:首先,就是实际的切向应力要远远的大于轴向应力,而且与金属工件表层十分贴近;其次,就是对于金属工件表面而言,其本身主要会受到拉应力的影响,与此同时,内部则受到压应力。

对于组织应力而言,其本身在经历工件淬火的过程中,之所以会发生形变和开裂的问题,其根本原因就是在实际的热处理过程中,受到了组织应力和热应力的综合影响。

各种热处理工艺造成变形的原因总结

各种热处理工艺造成变形的原因总结

各种热处理工艺造成变形的原因总结引言:热处理工艺是一种常见的金属加工方法,它通过对金属材料进行加热和冷却来改变其结构和性能。

然而,热处理过程中往往会导致材料发生变形,这对于一些精密零件的加工和制造带来一定的困扰。

本文将从各种热处理工艺的角度,总结造成变形的原因,并探讨相应的解决方法。

一、淬火过程中的变形原因淬火是一种通过快速冷却来使金属材料达到高强度和硬度的热处理工艺。

然而,淬火过程中常常会出现变形现象。

造成淬火变形的主要原因有以下几点:1. 冷却速度不均匀:淬火过程中,材料表面和内部的冷却速度不一致,导致应力不均匀分布,从而引起变形。

2. 材料内部组织不均匀:金属材料内部的组织不均匀,如晶粒尺寸、相含量等差异,会导致淬火时的收缩和变形不一致。

3. 冷却介质选择不当:不同的冷却介质对材料的冷却速度有不同的影响,选择不当可能导致应力集中和变形。

解决方法:针对淬火过程中的变形问题,可以采取以下措施:1. 控制冷却速度:通过优化冷却介质的选择和控制冷却速度,使材料表面和内部的冷却速度尽可能一致,减少应力的不均匀分布。

2. 优化材料组织:通过调整材料的化学成分和热处理工艺,使材料内部的组织更加均匀,减少淬火时的收缩和变形差异。

3. 采用适当的淬火工艺:根据材料的特性和要求,选择适当的淬火工艺,控制冷却速度和温度,减少变形的发生。

二、退火过程中的变形原因退火是一种通过加热和缓慢冷却来改善材料的性能和结构的热处理工艺。

然而,退火过程中同样存在变形的问题。

造成退火变形的主要原因有以下几点:1. 温度不均匀:退火过程中,材料的温度分布不均匀,导致应力分布不均匀,从而引起变形。

2. 冷却速度过快:退火结束后,如果冷却速度过快,会导致材料内部的残余应力无法得到充分释放,从而引起变形。

3. 材料内部缺陷:金属材料内部存在各种缺陷,如气孔、夹杂物等,这些缺陷在退火过程中会扩散和移动,导致变形的发生。

解决方法:针对退火过程中的变形问题,可以采取以下措施:1. 控制温度均匀性:通过合理设计加热设备和工艺参数,确保材料的温度分布均匀,减少应力的不均匀分布。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

金属热处理变形原因及改善的技术措施分析
摘要:随着社会科技及工业的不断发展与进步,各种金属在不断被广泛应用于我们实际生活及生产的同时,人们在金属的使用的质量方面也提出了更高的要求。

然而金属材料在进行热处理的过程中产生的变形现象却严重影响的金属使用功效的有效发挥。

如何提升在金属热处理变形方面的改善技术水平,也已成为摆在相关技术人员面前的一道重要课题。

本文首先就金属热处理变形的原因进行了简要分析,然后提出了金属热处理变形改善的技术措施,希望能为实际工作起到一定的指导作用。

关键词:金属热处理;变形原因;改善技术措施
引言
金属的热处理即是指为了满足金属加工工艺需要,在金属材料加工过程中,对材料进行加热、保温以及冷却的处理,以改变金属材料的内部结构,增强金属实用性的过程。

然而在具体的金属热处理过程中,往往会由于材料自身的性质及各种外界因素的影响,致使金属材料变形的产生,进而影响到金属材料的使用寿命与使用效率,达不到使用者的质量要求。

为此,对应对金属热处理过程中金属变形的技术进行研究则显得尤为必要与迫切。

1.金属热处理变形原因分析
内应力塑性变形,内应力的产生一般情况下是由金属热处理过程中的加热不均或相变不同时所造成或引起的,同时在一定塑性条件的配合下,还会导致内应力塑性变形的产生。

内应力塑性变形由于影响因素的不同,又可分为热应力塑性变形以及组织应力塑性变形。

其中,前者是由于金属工件在热处理过程中由受热不均,在内外部温度上未能保证一致,使其热胀冷缩的程度存在一定差异而产生的。

而后者则是由于金属工件内部组织转变发生时间不同而产生的。

2.金属热处理变形改善的技术措施
科学、合理的金属热处理变形改善技术是有效降低热处理过程中金属变形发生率的重要手段,现对金属热处理变形改善的技术措施进行具体分析如下
2.1 做好热处理之前的预处理工作
温度过高的正火会加剧金属内部的变形,为此,在金属热处理之前进行正火处理来对温度进行控制,则显得尤为必要。

具体而言,即是在金属热处理之前做好正火处理工作来控制好温度,并在完成正火处理的基础上运用等温淬火的处理方法来对金属材料内部结构的均匀性进行提升,从而一定程度上减少金属变形的发生。

另外需要注意的是,要根据金属结构的特点来对热处理工序进行合理选择,这不仅减少了热处理过程中的变形,还能让热处理过程中的变形相互抵消,能够
有效促进改善变形目的的达成。

诚然,该种方式的运用需要耗费较多的成本及时间,因此,对于一些有高精度要求的零件则更为适用【1】。

2.2 做好淬火处理工艺
做好淬火冷却处理工艺是金属热处理中改善金属变形问题的关键,倘若处理不好,未能选择合理的介质,则会大大增加金属的内部应力,进而导致工件的变形甚至开裂。

为此,在淬火冷处理过程中应当充分注意到冷却速度的稳定性,切勿由于过快而致使冷却不均,进而加剧金属材料的变形。

另外,重视淬火冷却过程中在介质方面的选用,一般情况下,人们用水和油作为介质。

而水温在550℃-650℃内,冷却速度高,在200℃-300℃内,其冷却速度虽有大幅下降,但从整体上来看,依然较高,极易导致金属的变形。

即使可以通过在水中加入适当盐和碱的方式来提升水在550℃-650℃内的冷却速度,但是水在200-300℃内的冷却速度却依然未能进行改善,进而金属在热处理过程中的变形问题也得不到有效解决。

而油在200-300℃内的冷却速度较低,能有效改善金属在淬火时的变形情况,但油在550-650℃内的冷却速度却不高【2】。

为此只适用于合金钢的淬火冷却中。

综上所述,在硬度一致时在介质的选用上则优先使用冷却速度较低的油,以降低对金属的影响。

2.3 冷却方法的选择
常见的冷却方法主要包括单液淬火、双液淬火法以及分级淬火法等。

其中单液淬火法的优缺点较为显著,优点即是符合机械化及自动化的需要,缺点即是对淬火冷却的度难以进行有效控制。

而双液淬火法即是将金属放在冷却速度较高的介质中冷却到300℃左右后,再放入冷却速度慢的介质中进行冷却。

分级淬火冷法,即是先将加热的金属放入高温的碱液或者盐液中,2到5分钟过后,在保证金属内部与外部温度一致的基础上,再放入空气中进行冷却【3】。

该方法能够将金属内部的热应力和组织预冷进行有效降低,同时对于复杂结构金属变形问题的改善也大有裨益。

但由于该方法内溶液冷却能力较低,因此只适用于精度要求较高,尺寸较小的金属工件。

3.结语
综上所述,金属热处理过程中造成的金属变形现象务必会减少金属材料使用寿命,降低金属使用效率。

为此我们应当对金属热处理变形的原因进行仔细分析与探究,有效的找到具体导致变形的影响因素,并在进行金属加热处理的过程中,采取针对性有效技术措施对其产生问题的因素进行解决与处理,才能解决金属材料在热处理过程中的变形问题,进一步将金属材料的使用效率进行有效提升。

参考文献:
[1]李斐,石玉生.辽宁经济管理干部学院(辽宁经济职业技术学院学报). [J],2011(03)
[2]夏新涛,王中宇,周福章,周近民,张雷,刘春国,刘伟.汽车离合器轴承热处理变形数据分析[J].轴承,2013(04)
[3]《金属热处理原理》荣获1998年度国家机械局科技进步三等奖[J].大连铁道学院学报,2013(01)。

相关文档
最新文档