三年级下奥数--5乘除法简巧算
小学奥数-乘除法中的巧算(含答案)
乘除法中的巧算同学们好!我们学习了加、减、连加、连减的混合运算律,可利用加法的运算定律或连减及加减的混合运算的性质进行简便运算。
而乘、除法更有着一些巧妙的简便算法,下面共同学习。
(一)学习指导首先认识乘法交换律:乘法结合律:如:或利用这些定律,可以使式题简便,同时可以推广到多个数相乘,我们可以选择两个因数相乘,得出较简单的(整十、整百、整千……)积,再将这个积与其它因数相乘,有时也可以把某个因数再分解成两个因数,使其中一个因数与其它的乘数的积成为较简单的数,然后再与其它的因数相乘,这样就可以进行巧算。
例1. 用简便方法计算。
(1)(3)(2)(4)分析:(1)可以将4和25结合起来先乘。
这样:原式(2)可以将125和8相结合起来乘,这样:原式(3)可以把28变成4×7,再将125和4结合起来先乘:原式(4)我们先把32变为4×8,再把25和4,125和8结合起来乘:原式利用乘法分配律,可以使一些题简便:,这个定律可以推广,一般的有,如,当两个数相乘时,有时可以把一个因数变为两个数的和与另一个因数相乘,也可以把一个因数变为两个数的差与另一个因数相乘,这样计算简便。
例2. 用简便方法计算下面各题。
(1)(3)(2)(4)分析:(1)、(2)题可以直接用乘法分配律去计算。
(1)(2)(3)题可以先把4004变为(),然后再用分配律计算。
(4)小题可以先把798变为(),再运用分配律计算。
例3. 巧算一个数乘以10,100,1000……分析:一个数乘以10,就是在这个数后添0,如:4301043=⨯当一个数乘以100时,就是在这个数后添00,如:52000100520=⨯当一个数乘以1000时,就是在这个数后添000,如:……例4. 巧算一个数与99相乘。
分析:先填空,再观察一个数与99相乘的规律。
观察发现:“一个数与99相乘,先在这个数后添00,再减去此数”即可。
如果是一个数与999相乘,是否也具有这样的规律呢?请你先填空,再总结规律。
三年级奥数乘除法巧算
1、乘除法巧算这一讲介绍的是乘除法巧算的一些基本方法,同加减法一样,通过“带符号搬家”来适当改变运算顺序。
例题1计算:(1)2×13×5(2)51÷17×17÷51(3)12×7÷3÷7分析:仔细观察算式,如何改变运算顺序来使得计算简单些呢?练习1、计算:(1)4×7×25 (2)21×19÷7÷19 .在乘法巧算时,有三组乘法在巧算时经常用到:2×5=10,4×25=100, 8×125=1000 .还有许多两位数乘法中的乘数,十位相同,个位相加得10,例如:47和43,72和78、65和65等,我们把这样的情况称为“头同尾合十”。
对于“头同尾合十”的两个数可以这样进行计算:把“尾×尾”的结果作为得数的末两位,“头×(头+1)”的结果作为得数的头。
例题2计算:(1)25×28 ;125×24 ;(2)300÷25 ;8000÷125 ;(3)45×45 ;41×49 .分析:前两个小题中都有25或者125,这两个数能够如何巧算呢?第3小题的每组数有什么特点?练习:2、计算:(1)25×24 ;(2)2000÷125 ;(3)88×82 .在计算连续乘除法运算时,式子中经常会出现括号。
在乘除法中去括号同在加减法中去括号类似,要注意变号的问题,具体来说,乘除法中去括号的法则是:例题3计算:(1)(126÷9)×(9÷3)÷(6÷3);(2)512÷(512÷16×8).分析:在去括号的时候要注意些什么?去括号后算式变成了什么样?能够如何巧算?练习3、计算:(10÷7)×(7÷6)×(6÷5)例题4计算:(1)23×70×22÷11÷7 ;(2)300×13÷4÷25分析:(1)算式中有几个数有倍数关系,该如何计算?(2)看到4和25,能不能让它俩相乘呢?练习4、计算:3000×28÷125÷8÷14除了“带符号搬家”、“添、脱括号”等巧算方法之外,还有一个非常重要的方法,那就是运用乘法分配律进行巧算。
小学三年级奥数第15讲 乘除巧算(含答案分析)
第15讲乘除巧算一、知识要点前面我们已给同学们介绍了加、减法中的巧算,大家学会了运用“凑整”的方法进行巧算,实际上这种凑整的方法也同样可以运用在乘除计算中。
为了更好地凑整,同学们要牢记以下几个计算结果:2×5=10,4×25=100,8×125=1000。
提高计算能力,除了加、减、乘、除基本运算要熟练之外,还要掌握一定的运算技巧。
巧算中,经常要用到一些运算定律,例如乘法交换律、乘法结合律、乘法分配律等等,善于运用运算定律,是提高巧算能力的关键。
二、精讲精练【例题1】你有好办法算出下面各题的结果吗?(1)25×17×4 (2)8×18×125(3)8×25×4×125 (4)125×2×8×5练习1:1、计算:(1)25×23×4 (2)125×27×82、计算:(1)5×25×2×4 (2)125×4×8×25 (3)2×125×8×5【例题2】你有好办法计算下面各题吗?(1)25×8 (2)16×125(3)16×25×25 (4)125×32×25练习2:(1)25×12 (2)125×32 (3)48×125 (4)125×16×5 (5)25×8×5【例题3】你能很快算出它们的结果吗?(1)82×88 (2)51×59练习3:(1)72×78 (2)45×45(3)81×89 (4)91×99【例题4】简便运算:(1)130÷5 (2)4200÷25 (3)34000÷125练习4:1、你能迅速算出结果吗?(1)170÷5 (2)3270÷5 (3)2340÷52、计算:(1)7200÷25 (2)3600÷25 (3)5600÷25 【例题5】计算:31×25练习5:计算:(1)29×25 (2)17×25 (3)221×25三、课后作业1、想一想,怎样算比较简便?125×16 25×322、(1)125×64×25 (2)32×25×253、你能很快算出它们的结果吗?(1)42×48 (2)61×694 、你有好办法计算下面各题吗?(1)32000÷125 (2)78000÷125 (3)43000÷125(4)322×25 (5)2561×25 (6)3753×25第15讲乘除巧算(答案)一、知识要点前面我们已给同学们介绍了加、减法中的巧算,大家学会了运用“凑整”的方法进行巧算,实际上这种凑整的方法也同样可以运用在乘除计算中。
奥数秘决加减乘除法(小学中学高中)的速算与巧算方法有例题有习题
速算与巧算速算与巧算知识背景:速算与巧算是计算中的一个重要组成部分,掌握一些速算与巧算的方法,有助于提高我们的计算能力和思维能力。
我们先学习加、减法的巧算方法,这些方法主要根据加、减法的运算定律和运算性质,通过对算式适当变形从而使计算简便。
在巧算方法里,蕴含着一种重要的解决问题的策略。
转化问题法即把所给的算式,根据运算定律和性质,或改变运算顺序,或减整从而变成一个易于算出结果的算式。
一、加减法简单例题例题:例1:1234+5678+8766+4322分析:请仔细观察后,发现:1234+8766=10000,5678+4322=10000,如果两数相加,恰好凑成10,100,1000,……就把其中的一个数叫做另一个数的补数,这两个数为互为补数。
这类题的速算方法是:运用加法交换律、结合律,把互为补数的两数先加,然后,再把所得的和相加。
解:1234+5678+8766+4322=(1234+8766)+(5678+4322)=1000+1000=2000例2:2000-70-40-60-30分析:请仔细观察后,发现:70+30=100,40+60=100方法:把几个互为”补数”的减数先加起来,再从被减数中减去。
解:2000-70-40-60-30=2000-(70+30+40+60)=2000-(100+100)=2000-200=1800例3:58+56+63+62+57+60+59+65+61分析:请仔细观察后,发现:题中的这些加数,都接近于”60”。
方法:当几个加数都比较接近于某一整数时,就选这个整数为”基准数”。
解:58+56+63+62+57+60+59+65+61=60×9-2-4+3+2-3+0-1+5+1=540+1=541例4:16×125×25×5×4分析:请仔细观察后,发现:题中有些特殊的因数(125、25、5),125×8=1000, 25×4=100, 5×2=10方法:把这些两数的乘积是10,100,1000……的,先乘。
初级奥数教程四则运算-乘除法巧算
标准奥数教程(初级)四则运算-乘除法巧算【知识点与基本方法】乘除法中的简便运算,要熟练地运用乘法的运算定律与除法的运算性质,实际进行乘法除法以及乘除法混合运算时可以利用以下性质进行巧算:(1)乘法交换律:a x b=b x a(2)乘法结合律:a x b x c=a x (b x c)(3)乘法分配律:(a+b)x c=a x c+ b x c(4)加扩号或去括号:a* b —c=a —c* b=a —(b x c)(5)商不变的性质:a* b= ( a x c)*( b x c)(6)凑整:利用乘法除法的这些性质,先凑整十、整百、整千…使计算更简便。
(7)特殊数:在乘法中出现0,运算就会比较简单。
2x 5=10; 25x 4=100; 125x 8=1000; 125 x 4=500; 625x 8=5000(8)平方差公式:a2—b2= (a + b)x( a-b )【例题精选】例 1. ( 1) 25 x 4x 64 x 125; ( 2) 56 x 165* 7* 11。
(1)分析:在计算乘除法时,我们通常可以运用2x 5、4x 25、8 x 125来进行巧算原式=25x 5 x 2x 4 x 8x 125= ( 25 x 4 )x( 5x 2)x( 8x 125) =100 x 10x 1000=1000000(2)分析:运用除法的性质,带着符号“搬家”原式=(56* 7)*( 165 * 11) =8x 15=120课堂练习题:(1) 25x 96x 125 ; (2) 77777x 99999 * 11111 * 11111例 2. ( 1) 218x 730+7820x 73 ; ( 2) 4000 * 125 * 8(1)分析:运用积不变的规律求解218 x 730+7820 x 73=218 x 730+782 x 10 x 73=218x 730+782x 730= (218+782)x 730=1000 x 730=730000(2)可以运用除法的性质,加上括号:a* b * c= a * c* b= a * (b x c)化简原式=4000 *( 125 x 8) =4000 * 1000=4课堂练习题:(1) 60000 * 125* 2* 5* 8 ; ( 2) 375 x 480-2750 x 48; ( 3) 99999 x 7+11111 x 37例3.不用计算,请判别下面哪道题题得数大。
三年级奥数 乘除法的巧算及练习
乘除法的巧算用简便方法计算下面各题1、25×8×22、37×9×103、25×64×125×54、125×125×645、32×25×1256、56×1257、16×25×5例3:计算:1200÷25÷4用简便方法计算下面的题目6000÷125÷85200÷4÷25 6300÷4÷75 4200÷8÷25巧算:333÷37÷31000000÷8÷125÷25÷8÷5例4:计算:12÷5+13÷532÷3-20÷3用简便方法计算下面的题目63÷8+9÷852÷5-7÷59÷13+6÷13+11÷1337÷9-11÷9-8÷91000000÷8÷125÷25÷8÷5例5:计算:120×80÷60技巧:四则元算中,若是同级运算,可以“带着符号搬家”(符号在前,数字在后)。
用简便方法计算下面的题目28×25÷732×125÷4120×260÷12045×37÷1563÷8×64÷79÷13+6÷13+11÷1337÷9-11÷9-8÷9例6:计算:25÷10×4技巧:四则运算中,若是同级运算,可以“带着符号搬家”(符号在前,数字在后)。
乘除法的速算与巧算
练习1
计算下面各题:
1、450÷25 2、525÷25 3、3500÷125 4、10000÷625 5、49500÷900 6、9000÷225
计算25×125×4×8
分析与解答: 经过仔细观察可以发现:在这道连乘算 式中,如果先把25与4相乘,可以得到100; 同时把125与8相乘,可以得到1000;再把 100与1000相乘就简便了。这就启发我们运用 乘法交换律和结合律使计算简便。 25×125×4×8 =(25×4)×(125×8) =100×1000 =100000
小数除法的简便运算9056905690303一个数连续除以两个数等于除以这两个数的积5635567556758516abcabc把除数分成两个因数的积然后用被除数分别除以这两个因数除法的性质abcabc182518425472100072被除数和除数同时扩大或缩小相同的倍数商不变商不变的规律5635905061825仔细观察你发现了什么
例11 计算①110÷5
②3300÷25
③ 44000÷125
解:①110÷5=(110×2)÷(5×2)=220÷10=22
②3300÷25=(3300×4)÷(25×4)
=13200÷100=132
③ 44000÷125=(44000×8)÷(125×8)
=352000÷1000=352
习题11 计算①120÷5 ②150÷25 ③ 40000÷125
1.在除法中,利用商不变的性质巧算
商不变的性质是:被除数和除数同时乘以或除以相同的数 (零除外),商不变.利用这个性质巧算,使除数变为整十、 整百、整千的数,再除。
计算:325÷25
分析与解答: 在除法里,被除数和除数同时扩大或缩 小相同的倍数,商不变。利用这一性质,可 以使这道计算题简便。 325÷25 =(325×4)÷(25×4) =1300÷100 =13
【小学奥数题库系统】---整数乘除法速算巧算学生版
整数乘除法速算与巧算教学目标本节课主要学习乘、除法的速算与巧算.要求学生理解乘、除法的意义及其关系,能根据乘、除法之间的关系验算乘除法;并且掌握积的变化规律以及商不变的性质,并能合理利用,解决相关问题.知识点拨一、乘法凑整思想核心:先把能凑成整十、整百、整千的几个乘数结合在一起,最后再与前面的数相乘,使得运算简便。
例如: 4 25 100 , 8 125 1000 , 5 20 10012345679 9 111111111 (去 8 数,重点记忆)711 13 1001 (三个常用质数的乘积,重点记忆)理论依据:乘法交换率: a×b=b×a乘法结合率:(a×b) ×c=a×(b×c)乘法分配率:(a+b) ×c=a×c+b×c积不变规律:a×b=(a×c) ×(b÷c)=(a÷c) ×(b×c)二、乘、除法混合运算的性质⑴ 商不变性质:被除数和除数乘(或除)以同一个非零数,其商不变.即:a b (a n) (b n) (a m) (b m) m 0 , n 0⑵在连除时,可以交换除数的位置,商不变.即: a b c a c b⑶ 在乘、除混合运算中,被乘数、乘数或除数可以连同运算符号一起交换位置(即带着符号搬家).例如: a b c a c b b c a⑷ 在乘、除混合运算中,去掉或添加括号的规则去括号情形:① 括号前是“×”时,去括号后,括号内的乘、除符号不变.即1 / 5a (b c) a b ca (b c) a b c②括号前是 “÷”时,去括号后,括号内的 “×”变为 “÷”,“÷”变为 “×”.即a (b c) a bc a (b c) a b c添加括号情形: 加括号时,括号前是 “×”时,原符号不变;括号前是 “÷”时,原符号 “×”变为 “÷”,“÷” a b c a (b c)a b c a (b c) 变为 “×”.即a b c a (b c )a b c a (b c)⑸ 两个数之积除以两个数之积,可以分别相除后再相乘.即 (a b) (c d ) (a c) ( b d ) (a d ) (b c) 上面的三个性质都可以推广到多个数的情形.例题精讲一,乘 5、15、 25、 125【例 1】 下面这些题你会算吗?⑴ 125 (408) ⑵ (100 4) 25【巩固】用简便方法计算下面各题.( 1) 125 (80 4) ( 2) (100 8)25【巩固】下面这道题怎样算比较简便呢?看谁算的快!26 25【例 2】 你知道下题怎样快速的计算吗?⑴ 786 5 ⑵ 124 25 ⑶ 96 125 ⑷ 75258 【巩固】运用乘法的运算律大显身手吧,可以记录自己速算的时间啊 .⑴ 17 4 25 ⑵125 19 8 ⑶ 125 72 ⑷ 25 125 16 【巩固】计算: 564 25 125 2009 .【巩固】为了考察大头儿子的速算能力,小头爸爸给他出了一道题,并且限时一分钟,小朋友,你能做到吗?19 25 64 125【巩固】计算: 173 32 125 25 . 【巩固】计算: 13×25×125×4×8=. 【巩固】请快速计算下面各题. ⑴ 2004 25⑵ 125 792【巩固】 456 2 125 25 5 4 8【例 3】 聪明的你也来试试吧!⑴ 2415 ⑵ 8475 ⑶ 39 75 ⑷ 56 625【巩固】请你简便计算.2 / 5⑴ 536 5 ⑵ 638 15 ⑶ 3225 ⑷ 68 75【巩固】计算: 8 13 125 =【巩固】计算: 125 16 111 9 ____________.【例4】计算: 45000 25 90 =二,乘 9、 99、 999【例5】下面各题怎样算简便呢?⑴ 12 9 ⑵ 12 99 ⑶ 12 999【巩固】相信你能快速的计算下面各题,我们一起来做做吧.⑴ 23 9 ⑵ 33 99 ⑶ 25 9999【巩固】计算: 12345678987654321 9【巩固】算式 12345678987654321 63 值的各位数字之和为。
小学生奥数速算与巧算题五篇
【导语】指利⽤数与数之间的特殊关系进⾏较快的加减乘除运算,⽤⼀种思维,⼀种⽅法快速准确地掌握任意数加、减、乘、除的速算⽅法。
这种运算⽅法称为速算法,⼼算法。
以下是⽆忧考整理的《⼩学⽣奥数速算与巧算题五篇》相关资料,希望帮助到您。
1.⼩学⽣奥数速算与巧算题 【思路】在计算没有括号的加减法混合运算式题时,有时可以根据题⽬的特点,采⽤添括号的⽅法使计算简便,与前⾯去括号的⽅法类似,我们可以把这种⽅法概括为:括号前⾯是加号,添上括号不变号;括号前⾯是减号,添上括号要变号。
(2)812-593+193 =812-(593-193) =812-400 =412 (1)286+879-679 =286+(879-679) =286+200 =868 练习: 计算下⾯各题。
1.368+1859-859 2.582+393-293 3.632-385+285 4.2756-2748+1748+244 5.612-375+275+(388+286) 6.756+1478+346-(256+278)-246 2.⼩学⽣奥数速算与巧算题 【例题】计算9+99+999+9999 【思路】这四个加数分别接近10、100、1000、10000。
在计算这类题⽬时,常使⽤减整法,例如将99转化为100-1。
这是⼩学数学计算中常⽤的⼀种技巧。
9+99+999+9999 =(10-1)+(100-1)+(1000-1)+(10000-1) =10+100+1000+10000-4 =11106 练习: 1、计算99999+9999+999+99+9 2、计算9+98+996+9997 3、计算1999+2998+396+497 4、计算198+297+396+495 5、计算1998+2997+4995+5994 6、计算19998+39996+49995+699963.⼩学⽣奥数速算与巧算题1、⽤2、3、4、6这四张牌进⾏计算,使最后得数等于24。
三年级计算乘除法速算与巧算教师版
知识要点二、乘、除法混合运算的性质⑴商不变性质:被除数和除数乘(或除)以同一个非零数,其商不变.即:()()()()0a b a n b n a m b m m ÷=⨯÷⨯=÷÷÷≠ ,0n ≠ ⑵在连除时,可以交换除数的位置,商不变.即:a b c a c b ÷÷=÷÷⑶在乘、除混合运算中,被乘数、乘数或除数可以连同运算符号一起交换位置(即带着符号搬家).例如:a b c a c b b c a ⨯÷=÷⨯=÷⨯⑷在乘、除混合运算中,去掉或添加括号的规则一、乘法凑整思想核心:先把能凑成整十、整百、整千的几个乘数结合在一起,最后再与前面的数相乘,使得运算简便。
例如:425100⨯=,81251000⨯=,520100⨯=123456799111111111⨯= (去8数,重点记忆) 711131001⨯⨯=(三个常用质数的乘积,重点记忆) 理论依据:乘法交换率:a×b=b×a 乘法结合率:(a×b) ×c=a×(b×c) 乘法分配率:(a+b) ×c=a×c+b×c 积不变规律:a×b=(a×c) ×(b÷c)=(a÷c) ×(b×c)乘除法速算与巧算两人和倍乘5、15、25、125【例 1】 下面这些题你会算吗?(1)125(408)⨯+ (2)(1004)25-⨯ (3)(1008)25-⨯【分析】 (1)125(408)125401258500010006000⨯+=⨯+⨯=+=(2)(1004)251002542525001002400-⨯=⨯-⨯=-= (3)(1008)251002582525002002300-⨯=⨯-⨯=-=【例 2】 下面这道题怎样算比较简便呢?看谁算的快!2625⨯【分析】 26不能被4整除,但26可以拆成642⨯+,这样2625⨯,可转化为6425⨯⨯再加上225⨯,这样就可速算了. 原式64225=⨯+⨯()642522560050650=⨯⨯+⨯=+=【例 3】 你知道下题怎样快速的计算吗?⑴786 5 ⨯ ⑵12425⨯ ⑶96125 ⨯ ⑷75258⨯⨯ 【分析】 我们刚刚学过了乘 5,25,125的速算法,大显身手练一下吧!⑴7865786(52)2786023930⨯=⨯⨯÷=÷=或 786539325393103930⨯=⨯⨯=⨯= ⑵12425124(254)41240043100⨯=⨯⨯÷=÷=或1242531425311003100⨯=⨯⨯=⨯=⑶9612596(1258)896000812000 ⨯=⨯⨯÷=÷=或 9612512812512100012000⨯=⨯⨯=⨯= ⑷7525825475210015015000⨯⨯=⨯⨯⨯=⨯=【例 4】 计算:813125⨯⨯= 【分析】 根据乘法凑整原则81312581251310001313000⨯⨯=⨯⨯=⨯=去括号情形:①括号前是“×”时,去括号后,括号内的乘、除符号不变.即()()a b c a b c a b c a b c ⨯⨯=⨯⨯⨯÷=⨯÷ ②括号前是“÷”时,去括号后,括号内的“×”变为“÷”,“÷”变为“×”.即()()a b c a b c a b c a b c ÷⨯=÷÷÷÷=÷⨯ 添加括号情形:加括号时,括号前是“×”时,原符号不变;括号前是“÷”时,原符号“×”变为“÷”,“÷”变为“×”.即()()()()a b c a b c a b c a b c a b c a b c a b c a b c ⨯⨯=⨯⨯⨯÷=⨯÷÷÷=÷⨯÷⨯=÷÷ ⑸两个数之积除以两个数之积,可以分别相除后再相乘.即 ()()()()()()a b c d a c b d a d b c ⨯÷⨯=÷⨯÷=÷⨯÷ 上面的三个性质都可以推广到多个数的情形.【例 5】 为了考察大头儿子的速算能力,小头爸爸给他出了一道题,并且限时一分钟,小朋友,你能做到吗?192564125⨯⨯⨯ 【分析】 把64分成482⨯⨯,用乘法结合律便可速算.原式2541258192=⨯⨯⨯⨯⨯()()()1001000383800000=⨯⨯=【例 6】 计算:1733212525⨯⨯⨯. 【分析】 原式1734812525=⨯⨯⨯⨯()173425812517300000=⨯⨯⨯⨯=()()【例 7】 请快速计算下面各题. ⑴200425⨯ ⑵125792⨯ 【分析】 ⑴200425(20004)2520002542550100⨯=+⨯=⨯+⨯=⑵125792125(8008)1258001258100010010001000(1001)99000⨯=⨯-=⨯-⨯=⨯-=⨯-=【例 8】 456212525548⨯⨯⨯⨯⨯⨯ 【分析】 原式456252541258=⨯⨯⨯⨯⨯⨯()()()456101001000=⨯⨯⨯ 456000000=【例 9】 聪明的你也来试试吧!⑴2415 ⨯ ⑵8475⨯ ⑶3975 ⨯ ⑷56625 ⨯【分析】 ⑴2415(24242)10(2412)10360⨯=+÷⨯=+⨯=⑵8475(214)(253)(213)(425)631006300⨯=⨯⨯⨯=⨯⨯⨯=⨯= ⑶3975 (401)7540751753000752925⨯=-⨯=⨯-⨯=-=⑷56625(78)(1255)(75)(8125)35100035000⨯=⨯⨯⨯=⨯⨯⨯=⨯=【例 10】 请你简便计算.⑴5365⨯ ⑵63815⨯ ⑶3225⨯ ⑷6875⨯【分析】 ⑴5365536(52)2536022680⨯=⨯⨯÷=÷=⑵63815(6386382)109570⨯=+÷⨯= ⑶322532(254)432004800⨯=⨯⨯÷=÷=⑷6875174253173(425)5100⨯=⨯⨯⨯=⨯⨯⨯=【例 11】 计算:125161119⨯-⨯=____________. 【分析】 根据乘法凑整原则整理为125161119⨯-⨯ ()=125829992000100012000100011001⨯⨯-=--=-+=【例 12】 计算:()450002590÷⨯=【分析】()450002590÷⨯()=450005045=450005045=100050=20÷⨯÷÷÷乘9、99、999【例 13】 下面各题怎样算简便呢?⑴129⨯ ⑵1299⨯ ⑶12999⨯【分析】 ⑴利用公式,可以得出结果:12912012108⨯=-=;⑵12991200121188⨯=-=,此题也可用小技巧:“去1添补”法,“补”就是“补数”,和为整十或整百或整千的两个数都可称为互补数.注意:只适用于“两位数乘99”.的补数是88去11112=118812× 99⑶12999120001211988⨯=-=,此题可用小技巧:“去1添补,中间隔9”法. 注意:只适用于“两位数乘999”.中间隔的补数是88去1是12=1198812×【例 14】 计算:123456789876543219⨯=【分析】 原式()21111111119=⨯ 999999999111111111=⨯111111111000000000111111111=- 111111110888888889=【例 15】 算式1234567898765432163⨯值的各位数字之和为 。
三年级奥数第13讲 乘除巧算13
第13讲:乘除巧算专题简析:学前我们已给小朋友们介绍了加、减法的巧算,大家学会了运用“凑整”的方法进行巧算,实际上这种“凑整”的方法也同样可以运用在乘、除计算中。
为了更好地凑整,大家要牢记以下几个计算结果:2×5=10,4×25=100,8×125=1000。
要提高计算能力,除了加、减、乘、除基本运算要熟练之外,还要掌握一定的运算技巧。
巧算中经常要用到一些运算定律,例如乘法交换律、乘法结合律、乘法分配律等等。
善于运用运算定律是提高巧算能力的关键。
【例题1】你有好办法算出下面各题的结果吗?(1)25×14×4 (2)8×18×25 (3)8×25×4×125 (4)125×2×8×5【习题一】1、计算。
(1)25×23×4 (2)125×27×82、计算。
(1)5×25×2×4 (2)125×4×8 ×25 (3)2×125×8×53、想一想,怎样算比较简便?125×16 25×24【例题2】你有好办法计算下面各题吗?(1)25×8 (2)16×125 (3)16×25×25 (4)125×32×25【习题二】速算。
1、(1)25×12 (2)125×32 (3)125×482、(1)125×16×5 (2)25×8 ×53、(1)125×64×25 (2)32×25 ×25【例题3】你能很快算出下面各题吗?(1)45×101 (2)37×201【习题三】计算。
(完整)三年级乘除法速算巧算
一、乘法中的巧算1.两数的乘积是整十、整百、整千的,要先乘.为此,要牢记下面这三个特殊的等式:5×2=1025×4=100125×8=1000例1计算①123×4×25②125×2×8×25×5×4解:①式=123×(4×25)=123×100=12300②式=(125×8)×(25×4)×(5×2)=1000×100×10=10000002.分解因数,凑整先乘。
例2计算①24×25②56×125③125×5×32×5解:①式=6×(4×25)=6×100=600②式=7×8×125=7×(8×125)=7×1000=7000③式=125×5×4×8×5=(125×8)×(5×5×4)=1000×100=1000003.应用乘法分配律。
例3计算①175×34+175×66②67×12+67×35+67×52+6解:①式=175×(34+66)=175×100=17500②式=67×(12+35+52+1)=67×100=6700(原式中最后一项67可看成67×1)例4计算①123×101②123×99解:①式=123×(100+1)=123×100+123=12300+123=12423②式=123×(100-1)=12300-123=121774.几种特殊因数的巧算。