小学数学公式大全:植树问题
五年级上册数学植树问题公式
五年级上册数学植树问题公式一、植树问题公式1. 两端都栽:棵数 = 间隔数 + 1 ,间隔数 = 棵数 1 ,距离= 间隔数×间距2. 两端不栽:棵数 = 间隔数 1 ,间隔数 = 棵数 + 1 ,距离= 间隔数×间距3. 一端栽一端不栽:棵数 = 间隔数,距离 = 间隔数×间距二、30 题解析1. 在一条长 200 米的小路一旁植树,每隔 5 米栽一棵,两端都栽,一共要栽多少棵树?间隔数:200÷5 = 40(个)棵数:40 + 1 = 41(棵)2. 一条公路长 300 米,在路的一侧从头到尾每隔 6 米栽一棵柳树,一共要栽多少棵柳树?间隔数:300÷6 = 50(个)棵数:50 + 1 = 51(棵)3. 在一条 480 米长的公路两侧每隔 8 米栽一棵树(两端都栽),一共要栽多少棵树?一侧间隔数:480÷8 = 60(个)一侧棵数:60 + 1 = 61(棵)两侧棵数:61×2 = 122(棵)4. 从一楼到二楼有 20 个台阶,小明从一楼走到三楼,一共要走多少个台阶?从一楼到三楼有:3 1 = 2(层)一共台阶数:20×2 = 40(个)5. 一条走廊长 36 米,每隔 4 米放一盆花,两端都不放,一共要放多少盆花?间隔数:36÷4 = 9(个)盆数:9 1 = 8(盆)6. 一根木头长 10 米,要把它平均分成 5 段。
每锯下一段需要8 分钟,锯完一共要花多少分钟?锯的次数:5 1 = 4(次)总时间:4×8 = 32(分钟)7. 在周长为 400 米的圆形池塘边每隔 10 米栽一棵柳树,一共能栽多少棵柳树?间隔数 = 棵数= 400÷10 = 40(棵)8. 一条长 80 米的道路两旁,每隔 5 米种一棵树(两端都种),一共种多少棵树?一侧间隔数:80÷5 = 16(个)一侧棵数:16 + 1 = 17(棵)两侧棵数:17×2 = 34(棵)9. 时钟 4 点钟敲 4 下,6 秒钟敲完,那么 12 点钟敲 12 下,多少秒钟敲完?敲 4 下,间隔数:4 1 = 3(个)每个间隔时间:6÷3 = 2(秒)敲 12 下,间隔数:12 1 = 11(个)总时间:11×2 = 22(秒)10. 小明从 1 楼走到 5 楼用了 80 秒,照这样计算,他从 1 楼走到 9 楼需要多少秒?从 1 楼到 5 楼走的层数:5 1 = 4(层)走一层用时:80÷4 = 20(秒)从 1 楼到 9 楼走的层数:9 1 = 8(层)总时间:20×8 = 160(秒)11. 一条公路的一旁连两端在内共植树 91 棵,每两棵之间的距离是 5 米,这条公路长多少米?间隔数:91 1 = 90(个)公路长:90×5 = 450(米)12. 在一条长 50 米的跑道两旁,从头到尾每隔 5 米插一面彩旗,一共插多少面彩旗?一侧间隔数:50÷5 = 10(个)一侧彩旗数:10 + 1 = 11(面)两侧彩旗数:11×2 = 22(面)13. 有一个圆形花坛,周长是 30 米,每隔 3 米摆一盆菊花,一共需要多少盆菊花?间隔数 = 盆数= 30÷3 = 10(盆)14. 一条林荫道长 18 米,在路的一旁从一端到另一端每隔 2 米放一盆花,一共安放多少盆花?间隔数:18÷2 = 9(个)盆数:9 + 1 = 10(盆)15. 两栋楼之间相距 30 米,每隔 2 米种一棵树,一共能种多少棵树?棵数:15 1 = 14(棵)16. 一根木料锯成 4 段要 12 分钟,如果每锯一段所用的时间相同,那么锯成 8 段要多少分钟?锯成 4 段锯的次数:4 1 = 3(次)锯一次用时:12÷3 = 4(分钟)锯成 8 段锯的次数:8 1 = 7(次)总时间:7×4 = 28(分钟)17. 在一条 100 米长的小路一边植树,每隔 4 米栽一棵(两端都栽),一共要栽多少棵树?间隔数:100÷4 = 25(个)棵数:25 + 1 = 26(棵)18. 一条路长 25 米,少先队员在路的两旁栽树,起点和终点都栽,一共栽了 12 棵树,每两棵树之间相隔多少米?一侧棵数:12÷2 = 6(棵)间隔数:6 1 = 5(个)间距:25÷5 = 5(米)19. 学校门口摆一排菊花,一共 9 盆。
小学数学植树问题公式及练习题
双边植树(两端都植):(距离÷间隔数+1)×2=棵数 双边植树(只植一端):(距离÷间隔数)×2=棵数 双边植树(两端都不植):(距离÷间隔数-1)×2=棵数 循环植树:距离÷间隔数=棵数 解释:1 非封闭线路上的植树问题主要可分为以下三种情形: ⑴如果在非封闭线路的两端都要植树,那幺:
84×54=4536(平方米). ②一棵苹果树占地多少平方米呢? 2×3=6(平方米). ③这块地能种苹果树多少棵呢? 4536÷6=756(棵). 当长方形土地的长、宽分别能被株距、行距整除时,可用上述两种方法中 的任意一种来解;当长方形土地的长、宽不能被株距、行距整除时,就只能 用第二种解法来解.
公路长:【(205-3)/2-1】X3=300 得:公路长度为 300 米 解法二:(算术解法) 这道题可以用解盈亏问题的思路来考虑:首先,我们在两边起点处各栽下 一棵树,这两棵树与路长没有关系,以后每栽下一棵树,不论栽在哪一侧, 植树的路线(不是路)就增加一个间距,为了简单起见,我们按单侧植树来 考虑。当按 3 米的间距植树时,最后剩下 3 棵,也就是说植树的路线要比路 长出 3 个间距,3×3=9 米,当按 2.5 米的间距植树时,最后还缺 37 棵树,也 就是说植树的路线比路短了 37 个间距,2.5×37=92.5 米,两次相差 9+92.5=101.5 米,两次植树的间距相差是 3-2.5=0.5 米,据此可以求出树的 棵数:(不包括起点的 2 棵)
⑶如果在非封闭线路的两端都不要植树,那幺: 株数=段数-1=全长÷株距-1 全长=株距×(株数+1) 株距=全长÷(株数+1) 2 封闭线路上的植树问题的数量关系如下 株数=段数=全长÷株距
全长=株距×株数 株距=全长÷株数 二、植树问题练习题 例 1 长方形场地:一个 距是 2 米,行距是 3 米.这个苹果园共种苹果树多少棵? 解法一: ①一行能种多少棵?84÷2=42(棵).|
五年级所有数学公式:植树问题的公式_公式总结
五年级所有数学公式:植树问题的公式_公式总结
对五年级所有数学公式:植树问题的公式你了解多少呢,看看下文吧,希望您读后可以有所收获!
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑴如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑴如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
上文是五年级所有数学公式:植树问题的公式,希望文章对您有所帮助!。
小学二年级植树问题数学公式_公式总结
小学二年级植树问题数学公式_公式总结
公式的学习对提高数学成绩很重要,小朋友们要想学好数学,必须熟练掌握数学的基本公式,下面是小学二年级的植树问题数学公式,大家多多了解。
1 非封闭线路上的植树问题主要可分为以下三种情形:请
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长株距-1
全长=株距(株数-1)
株距=全长(株数-1)
⑴如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长株距
全长=株距株数
株距=全长株数
⑴如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长株距-1
全长=株距(株数+1)
株距=全长(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长株距
全长=株距株数
株距=全长株数
以上就是关于植树问题数学公式的总结,大家都学会了么?没有掌握的小朋友要反复阅读反复看哦!希望大家成绩越来越好。
小学植树数量关系问题公式
2020年小学数学公式大全:植树问题
植树问题
1、非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2、封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
2020年小学数学公式大全:数量关系计算公式数量关系计算公式
1.单价×数量=总价
2.单产量×数量=总产量
3.速度×时间=路程
4.工效×时间=工作总量
5.加数+加数=和
6.一个加数=和-另一个加数
7.被减数-减数=差
8.减数=被减数-差
9.被减数=减数+差
10.因数×因数=积。
小学二年级数学公式大全:植树问题
小学二年级数学公式大全:植树问题
导读:本文小学二年级数学公式大全:植树问题,仅供参考,如果觉得很不错,欢迎点评和分享。
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数。
小学数学常考植树问题、年龄问题(附例题、解题思路)
植树问题【含义】按相等的距离植树,在距离、棵距、棵数这三个量之间,已知其中的两个量,要求第三个量,这类应用题叫做植树问题。
【数量关系】线形植树棵数=距离÷棵距+1环形植树棵数=距离÷棵距方形植树棵数=距离÷棵距-4三角形植树棵数=距离÷棵距-3面积植树棵数=面积÷(棵距×行距)【解题思路和方法】先弄清楚植树问题的类型,然后可以利用公式。
例1一条河堤136米,每隔2米栽一棵垂柳,头尾都栽,一共要栽多少棵垂柳?解136÷2+1=68+1=69(棵)答:一共要栽69棵垂柳。
例2一个圆形池塘周长为400米,在岸边每隔4米栽一棵白杨树,一共能栽多少棵白杨树?解400÷4=100(棵)答:一共能栽100棵白杨树。
例3一个正方形的运动场,每边长220米,每隔8米安装一个照明灯,一共可以安装多少个照明灯?解220×4÷8-4=110-4=106(个)答:一共可以安装106个照明灯。
例4给一个面积为96平方米的住宅铺设地板砖,所用地板砖的长和宽分别是60厘米和40厘米,问至少需要多少块地板砖?解96÷(0.6×0.4)=96÷0.24=400(块)答:至少需要400块地板砖。
例5一座大桥长500米,给桥两边的电杆上安装路灯,若每隔50米有一个电杆,每个电杆上安装2盏路灯,一共可以安装多少盏路灯?解(1)桥的一边有多少个电杆?500÷50+1=11(个)(2)桥的两边有多少个电杆?11×2=22(个)(3)大桥两边可安装多少盏路灯?22×2=44(盏)答:大桥两边一共可以安装44盏路灯。
年龄问题【含义】这类问题是根据题目的内容而得名,它的主要特点是两人的年龄差不变,但是,两人年龄之间的倍数关系随着年龄的增长在发生变化。
【数量关系】年龄问题往往与和差、和倍、差倍问题有着密切联系,尤其与差倍问题的解题思路是一致的,要紧紧抓住“年龄差不变”这个特点。
数学百科小知识点:植树问题公式
学期时间已经很长的时间,学生们在享受学期的同时,也要面对一件重要的事情那就是学习。
查字典数学网为大家提供了数学百科小知识点,希望对大家有所帮助。
植树问题1、非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长株距-1全长=株距(株数-1)株距=全长(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:株数=段数=全长株距全长=株距株数株距=全长株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长株距-1全长=株距(株数+1)株距=全长(株数+1)2、封闭线路上的植树问题的数量关系如下株数=段数=全长株距全长=株距株数株距=全长株数现在是不是觉得学期学习很简单啊,希望这篇数学百科小知识点,可以帮助到大家。
努力哦!。
小升初数学植树问题常用公式有哪些
小升初数学植树问题常用公式有哪些小升初数学植树问题常用公式1、非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2、封闭线路上的植树问题的数量关系如下:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数植树问题解题口诀植树多少颗,要问路如何?直的减去1,圆的是结果。
点击下页查看针对练习题及答案一、填空题1.红领巾公园一条长200米的甬道两端各有一株桃树,现在两棵桃树之间等距离栽种了39株月季花,每两株月季花相隔米。
2.学校召开运动会前,在100米直跑道外侧每隔10米插一面彩旗,在跑道的一端原有一面彩旗还需备面彩旗?3.在一条长50米的跑道两旁,从头到尾每隔5米插一面彩旗,一共插面彩旗?4.街心公园一条直甬路的一侧有一端原栽种着一株海棠树,现每隔12米栽一棵海棠树,共用树苗25棵,这条甬路长米?5.街心公园一条甬道长200米,在甬道的两旁从头到尾等距离栽种美人蕉,共栽种美人蕉82棵,每两棵美人蕉相距米.6.有一条长1250米的公路,在公路的一侧从头到尾每隔25米栽一棵杨树,园林部门需运来棵杨树苗?7.在一条绿荫大道的一侧从头到尾每隔15米坚一根电线杆,共用电线杆86根,这条绿荫大道全长米.8.红领巾公园内一条林荫大道全长800米,在它的一侧从头到尾等距离地放着41个垃圾桶,每两个垃圾桶之间相距米.9.在一条长2500米的公路一侧架设电线杆,每隔50米架设一根,若公路两端都不架设,共需电线杆根.10.在一条公路上每隔16米架设一根电线杆,不算路的两端共用电线杆54根,这条公路全长米.二、解答题11.一个圆形养鱼池全长200米,现在水池周围种上杨树25棵,隔几米种一棵才能都种上?12.明明要爷爷出一道趣味题,爷爷给他念了一个顺口溜:湖边春色分外娇,一株杏树一株桃,平湖周围三千米,六米一株都栽到,漫步湖畔美景色,可知桃杏各多少?13.一个圆形池塘,它的周长是300米,每隔5米栽种一棵柳树,需要树苗多少株?14.一个圆形水池周围每隔2米栽一棵杨树,共栽了40棵,水池的周长是多少米?参考答案一、填空题1.此题与题4类型相同,所求不同.已知全长200米,棵数39株,求间隔长.列式是:200÷(39+1)=200÷40=5(米) 答:每两棵月季花相隔5米.2.此题是植树问题中植树线路不封闭的一种,并要求植树线路的一端要植树.那么全长、棵数、间隔长三量之间的关系是:棵数=全长÷间隔长全长=间隔长×棵数间隔长=全长÷棵数只要知道其中两个,就可以求出第三个量.100米是全长,10米是间隔长,求棵树.列式是:100÷10=10(面) 答:还需准备10面彩旗.3.此题也属于植树问题中植树线路不封闭的,并要求植树线路的两端都要植树.与题1类似,但又要求在线路的两旁,而不再是一侧.解法一:50÷5+1=10+1=11(面)…先求出一侧的,再求两旁.11×2=22(面)答:一共要插22面彩旗.解法二:把线路两旁转化成一侧.50×2=100(米),100÷5+1=20+1=21(面).在转化成一侧时,有两棵重叠了,所以还需加1.21+1=22(面)答:一共要插22面彩旗.4.此题与题7类型相同,所求不同.已知间隔长12米,棵数是25棵,求全长.列式是:12×25=300(米)答:这条甬路长300米.5.此题与题8类型相同,所求不同.解法一:82棵是甬道两旁的,先求出一旁栽的棵数.82÷2=41(棵),再求间隔长.200÷(41-1)=200÷40=5(米)答:每两棵美人蕉相距5米.解法二:可以把两旁转成一侧.200×2=400(米),转化成一侧后两棵美人蕉重叠,所以共植82-1=81(棵),再求间隔长,400÷(81-1)=400÷80=5(米)答:每两棵美人蕉相距5米.6.此题是植树问题中植树线路不是封闭的一种,并要求植树线路的两端都要植树.那么全长、棵数、间隔三量之间的关系是:棵数=全长÷间隔长+1全长=间隔长×(棵数-1)间隔长=全长÷(棵数-1)只要知道其中两个,就可求出第三个量.1250是全长,25是间隔长求棵数,列式是:1250÷25+1=50+1=51(棵).答:需运来51棵树苗.7.此题与题1类型相同,所求不同.15是间隔长,86是棵数,求全长.列式是:15×(86-1)=15×85=1275(米)答:这条绿荫大道全长1275米.8.已知全长800米,棵数是41个,求间隔长.列式是:800÷(41-1)=800÷40=20(米)答:每两个垃圾桶相距20米.9.此题是植树问题中植树线路不封闭的一种,并要求植树线路的两端都不植树.那么全长、棵数、间隔长三量之间的关系是:棵数=全长÷间隔长-1全长=间隔长×(棵数+1)间隔长=全长÷(棵数+1)只要知道其中两个,就可以求出第三个量.2500米是全长,50米是间隔长,求棵数.列式是:2500÷50-1=50-1=49(根)答:共需电线杆是49根.10.此题与题4类型相同,所求不同.已知间隔长16米,又知棵数54根,求全长.列式是:16×(54+1)=16×55=880(米)答:这条公路全长880米.二、解答题11.此题类型与题11相同,所求不同.已知全长200米,棵数25棵,求间隔长.列式是:200÷25=8(米) 答:隔8米种一棵才能都种上.12.由顺口溜可知,植树线路是封闭的,所以棵数与间隔数相等.共栽桃树杏树3000÷6=500(棵).由于“一株杏树一株桃”,所以桃、杏的棵数相等,都是500÷2=250(棵).答:桃树、杏树各250棵.13.此题是植树问题中植树线路是封闭的一种.在圆、正方形、长方形、闭全曲线等上面植树,因为首尾相接,两端重合在一起.所以全长、间隔长、棵数三量之间的关系是: 棵数=全长÷间隔长全长=间隔长×棵数间隔长=全长÷棵数只要知道其中两个,就能求出第三个量.已知全长300米,间隔长5米,求棵数.列式是:300÷5=60(株)答:需要树苗60株.14.此题与题11类型相同,所求不同.已知间隔长2米,又知棵数40棵,求全长.列式是:2×40=80(米) 答:水池的周长是80米.。
小学四年级数学:植树问题
小学四年级数学:植树问题★这篇《小学四年级数学:植树问题》,是###特地为大家整理的,希望对大家有所协助!一、植树问题基本公式:1. 非封闭线路上的植树问题主要可分为以下三种情形:(1)如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)(2)如果在非封闭线路的一端要植树,另一端不要植树,那么:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数(3)如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2.封闭线路上的植树问题的数量关系如下:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数二、例题解析:先弄清楚植树问题的类型,然后能够利用公式。
例1:一条河堤136米,每隔2米栽一棵垂柳,头尾都栽,一共要栽多少棵垂柳?解:136÷2+1=68+1=69(棵)答:一共要栽69棵垂柳。
例2:一个圆形池塘周长为400米,在岸边每隔4米栽一棵白杨树,一共能栽多少棵白杨树?解:400÷4=100(棵)答:一共能栽100棵白杨树。
例3:一个正方形的运动场,每边长220米,每隔8米安装一个照明灯,一共能够安装多少个照明灯?解:220×4÷8-4=110-4=106(个)答:一共能够安装106个照明灯。
例4:给一个面积为96平方米的住宅铺设地板砖,所用地板砖的长和宽分别是60厘米和40厘米,问至少需要多少块地板砖?解:96÷(0.6×0.4)=96÷0.24=400(块)答:至少需要400块地板砖。
例5:一座大桥长500米,给桥两边的电杆上安装路灯,若每隔50米有一个电杆,每个电杆上安装2盏路灯,一共能够安装多少盏路灯?解(1)桥的一边有多少个电杆?500÷50+1=11(个)(2)桥的两边有多少个电杆?11×2=22(个)(3)大桥两边可安装多少盏路灯?22×2=44(盏)答:大桥两边一共能够安装44盏路灯。
栽树问题的公式
栽树问题的公式
植树公式:(两端都植): 距离一间隔长+1=棵数,(只植一端): 距离一间隔长=棵数。
(两端都不植)距离一间隔长- 1=棵数。
植树问题是在一定的线路上,根据总路程、间隔长和棵数进行植树的问题。
非封闭线路上的植树问题主要可分为以下,两种情形:
(1)如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长一株距+1。
全长=株距x (株数- 1) 。
株距=全长(株数- 1)。
(2)如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长株距
全长=株距x株数
株距=全长=株数。
二年级数学公式:植树问题_公式总结
二年级数学公式:植树问题_公式总结
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长株距-1
全长=株距(株数-1)
株距=全长(株数-1)
⑴如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长株距
全长=株距株数
株距=全长株数
⑴如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长株距-1
全长=株距(株数+1)
株距=全长(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长株距
全长=株距株数
株距=全长株数
总结:二年级数学公式就为大家整理到这了,小朋友们记住了吗?希望为小朋友的学习带来帮助。
植树问题的公式
关于常用分数与小数的互化:
1/2=0.5 4=0.25 3/4=0.75 1/5=0.2 2/5=0.4 3/5=0.6
4/5=0.8 1/8=0.125 3/8=0.375 5/8=0.625 7/8=0.875
27,反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。 如:x×y = k( k一定)或k / x = y
28,百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。
小学六年级 比例百分比概率,圆扇圆柱及圆锥。
必背定义、定理公式
三角形的面积=底×高÷2。 公式 S= a×h÷2
正方形的面积=边长×边长 公式 S= a×a
长方形的面积=长×宽 公式 S= a×b
平行四边形的面积=底×高 公式 S= a×h
梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2
16,真分数:分子比分母小的分数叫做真分数。
17,假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。
18,带分数:把假分数写成整数和真分数的形式,叫做带分数。
19,分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
常用特殊数的乘积
25×3=75 25×4=100 25×8=200 125×3=375
125×4=500 125×8=1000 625×16=10000 37×3=111
常用平方数
小学生数学公式——植树问题公式_公式总结
小学生数学公式——植树问题公式_公式总结
孩子们要想将这部分知识学习好,最基础的工作就是要牢记这些公式,下面查字典数学网为大家分享数学公式植树问题公式,供大家参考!
植树问题公式
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑴如果在非封闭线路的一端要植树,另一端不要植树,那么:
小学生数学公式——植树问题公式:株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑴如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
以上是查字典数学网为大家分享的数学公式植树问题公式,希望对大家有所帮助!。
五年级上册数学植树问题公式题目
植树问题是一个非常常见的数学问题,主要涉及到的是一些基本的数学公式和计算。
下面我将给你提供一些关于植树问题的公式及相关题目,希望能对你的学习有所帮助。
一、植树问题的公式1.植树公式假设有N棵树,每两棵树之间的距离为d,那么全程共需要走的距离可以用以下公式表示:总距离=第一棵树到第二棵树的距离+第二棵树到第三棵树的距离+...+第N-1棵树到第N棵树的距离=(N-1)d2.植树面积公式假设每棵树的种植面积为A,那么N棵树的总占地面积可以用以下公式表示:总面积=N×A3.植树树籽数量公式假设每棵树需要k颗树籽,那么N棵树需要的总树籽数量可以用以下公式表示:总树籽数量=N×k二、植树问题的题目1.题目一小明计划在周围的街道上种树,他计划按照每棵树之间相隔5米的距离种树,并且共计种植100棵树。
请帮助小明计算,他一共需要走多少米。
解答:根据植树公式,总距离=(N-1)d=(100-1)×5=495米。
所以小明一共需要走495米。
2.题目二小学计划在学校内的空地上种植树木,每棵树木平均占地面积为2平方米。
如果他们计划种植50棵树,那么这些树共需要占地多大面积?解答:根据植树面积公式,总面积=N×A=50×2=100平方米。
所以这些树共需要占地100平方米。
3.题目三城市计划在一条街道上种植树木,假设每棵树需要10颗树籽。
他们计划在该街道上种植120棵树,那么他们一共需要多少树籽?解答:根据植树树籽数量公式,总树籽数量=N×k=120×10=1200颗。
所以他们一共需要1200颗树籽。
以上就是关于五年级上册数学植树问题的公式及相关题目。
希望这些内容能帮助你更好地理解和应用植树问题。
如果有需要,还请继续向我提问。
小学数学《植树问题》
小学数学《植树问题》植树问题【含义】按相等的距离植树,在距离、棵距、棵数这三个量之间,已知其中的两个量,要求第三个量,这类应用题叫做植树问题。
【数量关系】一、非封闭线路1.两端都种(类似问题:竖电线杆,两端插旗……)线形植树棵数=段数+1=距离÷棵距+1距离=棵距x(棵数-1)棵距=全长÷(棵数-1)2.只种一端(类似问题:敲钟听声,上楼时间……)棵数=全长÷棵距全长=棵距x棵数棵距=全长÷棵数3.两端都不种(类似问题:锯木头,剪铁丝……)棵数=段数-1=全长÷棵距-1全长=棵距x(棵数+1)棵距=全长÷(棵数+1)二、封闭路线环形植树棵数=距离÷棵距方形植树棵数=距离÷棵距-4三角形植树棵数=距离÷棵距-3面积植树棵数=面积÷(棵距x行距)【解题思路和方法】先弄清楚植树问题的类型,然后可以利用公式。
例1 一条河堤136米,每隔2米栽一棵垂柳,头尾都栽,一共要栽多少棵垂柳?解:136÷2+1=68+1=69(棵)答:一共要栽69棵垂柳。
例2一个圆形池塘周长为400米,在岸边每隔4米栽一棵白杨树,一共能栽多少棵白杨树?解:400÷4=100(棵)答:一共能栽100棵白杨树。
例3 一个正方形的运动场,每边长220米,每隔8米安装一个照明灯,一共可以安装多少个照明灯?解:220x4÷8-4=110-4=106(个)答:一共可以安装106个照明灯。
练习题一.填空1.兔妈妈种了一行萝卜,一共有16棵,它要在相邻的两个萝卜之间种1棵白菜,一共可以种__棵白菜。
2.工人们沿圆形人工湖栽树,每两棵树之间间隔16米,一共栽树185棵,沿湖步行一圈要走___米。
3.插一排红旗共26面,原来每两面之间的距离是4米,现在改为5米.如果起点一面不移动,还可以有不移动。
4.从小明家到学校原来每隔5米安装一根电线杆,加上两端的两根一共是25根电线杆,现在改成每隔6米安装一根电线杆,除两端的两根不需要移动外,中间有__根不必移动。
小学植树问题公式汇总
植树问题公式
两端都栽树:棵数 = 距离÷间隔长 +1 棵数=段数+1=全长÷棵距+1
全长=棵距×(棵数-1)
棵距=全长÷(棵数-1)
只有一端栽树:棵数 = 距离÷间隔长棵数=段数=全长÷棵距
全长=棵距×棵数
棵距=全长÷棵数
两端都不栽:棵数 = 距离÷间隔长-1 棵数=段数-1=全长÷棵距-1
全长=棵距×(棵数+1)
棵距=全长÷(棵数+1)
封闭循环栽树:棵数 = 距离÷间隔数棵数=段数=全长÷棵距
全长=棵距×棵数
棵距=全长÷棵数
双边植树(两端都植):棵数 =(距离÷间隔长+1)×2双边植树(只植一端):棵数 =(距离÷间隔长)×2双边植树(两端都不植):棵数 =(距离÷间隔长-1)×2。
小学四年级数学公式:植树问题
小学四年级数学公式:植树问题
摘要:本店铺的本店铺在这里为大家整理了数学公式:植树问题,在实际生活中我们经常也会用到,希望能帮助到大家。
植树问题
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长株距-1
全长=株距(株数-1)
株距=全长(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长株距
全长=株距株数
株距=全长株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长株距-1
全长=株距(株数+1)
株距=全长(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长株距
全长=株距株数
株距=全长株数
盈亏问题
(盈+亏)两次分配量之差=参加分配的份数
(大盈-小盈)两次分配量之差=参加分配的份数
(大亏-小亏)两次分配量之差=参加分配的份数
总结:本文介绍的是小学四年级数学公式:植树问题,数学公式植树问题不仅出现在我们的课本上,在实际生活中也会经常的用到,相信大家都能学会,学好。
小学数学植树问题公式_公式总结
小学数学植树问题公式_公式总结
【摘要】为了能帮助广大小学生朋友们提高数学成绩和数学思维能力,查字典数学网小学频道特地为大家整理了数学植树问题公式,希望能够切实的帮到大家,同时祝大家学业进步! 小学数学公式大全植树问题公式
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长株距-1
全长=株距(株数-1)
株距=全长(株数-1)
⑴如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长株距
全长=株距株数
株距=全长株数
⑴如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长株距-1
全长=株距(株数+1)
株距=全长(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长株距
全长=株距株数
株距=全长株数
只要大家脚踏实地的复习、一定能够提高数学应用能力!希望提供的数学植树问题公式,能帮助大家迅速提高数学成绩!。
五年级数学公式:植树问题
五年级数学公式:植树问题
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长divide;株距+1
全长=株距times;(株数-1)
株距=全长divide;(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长divide;株距
全长=株距times;株数
株距=全长divide;株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长divide;株距-1
全长=株距times;(株数+1)
株距=全长divide;(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长divide;株距
全长=株距times;株数
株距=全长divide;株数
总结:本文就是为大家整理的五年级数学公式的相关
内容,希望对大家数学成绩的提高有所帮助,祝大家阅读愉快。
五年级数学公式:和差问题
五年级数学公式:图形计算
更多精彩内容请点击:五年级 gt; 数学 gt; 五年级数学公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学数学公式大全:植树问题
植树问题
1、非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2、封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数。