初中函数概念之欧阳光明创编
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数及其相关概念 1、变量与常量
在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
一般地,在某一变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有唯一确定的值与它对应,那么就说x 是自变量,y 是x 的函数。
2、函数解析式
用来表示函数关系的数学式子叫做函数解析式或函数关系式。 使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
3、函数的三种表示法及其优缺点 (1)解析法
两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。
(2)列表法
把自变量x 的一系列值和函数y 的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
(3)图像法
用图像表示函数关系的方法叫做图像法。 4、由函数解析式画其图像的一般步骤
(1)列表:列表给出自变量与函数的一些对应值
Ⅱ
欧
(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点
(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。
一次函数和正比例函数
1、一次函数的概念:一般地,如果b kx y +=(k ,b 是常数,k ≠0),那么y 叫做x 的一次函数。
特别地,当一次函数b kx y +=中的b 为0时,kx y =(k 为常
数,k ≠0)。这时,y 叫做x 的正比例函数。
2、一次函数、正比例函数的图像 所有一次函数的图像都是一条直线
一次函数y =kx +b (k ≠0)的图像是经过点(0,b )的直线(b 是直线与y 轴的交点的纵坐标,即一次函数在y 数kx y =的图像是经过原点(0,0)的直线。
3、斜率:1
21
2tan x x y y k --=
=α
①直线的斜截式方程,简称斜截式: y =kx +b (k ≠0)③由直线在x 轴和y 轴上的截距确定的直线的截距式方程,简称截距
式:1=+b
y
a x
④设两条直线分别为,1l :11y k x b =+2l :
22y k x b =+若
若12//l l ,则有1212//l l k k ⇔=且12b b ≠。
⑤点P (x 0,y 0)到直线y=kx+b(即:kx-y+b=0) 的距离:
4、两点间距离公式(当遇到没有思路的题时,可用此方法拓展思路,以寻求解题方法)
如图:点A 坐标为(x 1,y 1)点B 坐标为(x 2,y 2)
则AB 间的距离,即线段AB 的长度为()()2
21221y y x x -+-
5、正比例函数和一次函数解析式的确定
确定一个正比例函数,就是要确定正比例函数定义式kx y =(k ≠0)中的常数k 。确定一个一次函数,需要确定一次函数定义式b kx y +=(k ≠0)中的常数k 和b 。解这类问题的一般方法是待定系数法。
6、(1)一次函数图象是过 两点的一条直线,|k|的值越大,图象越靠近于y 轴。(2)当k>0时,图象过一、三象限,y 随x 的增大而增大;从左至右图象是上升的(左低右高);(3)当k<0时,图象过二、四象限,y 随x 的增大而减小。从左至右图象是下降的(左高右低);(4)当b>0时,与y 轴的交点(0,b )在正半轴;当b<0时,与y 轴的交点(0,b)在负半轴。当b =0时,一次函数就是正比例函数,图象是过原点的一条直线(5)几条直线互相平行时 ,k 值相等而b 不相等。
反比例函数
1、反比例函数的概念
一般地,函数
x k
y =
(k
是常数,k ≠0)叫做反比例函数。反比例
B
函数的解析式也可以写成
1-=kx y 的形式。自变量
x 的取值范围是
x ≠0的一切实数,函数的取值范围也是一切非零实数,也可写成xy=k(k 是常数,k≠0)
反比例函数中,两个变量成反比例关系:由xy=k ,因为k 为常数,k≠0,两个变量的积是定值,所以y 与x 成反比变化,而正比例函数y=kx(k≠0)是正比例关系:由x
y =k (k≠0),因为k 为不等于零的常数,两个变量的商是定值。
2、反比例函数y=x
k (k≠0)的图象的画法 画图方法:描点法
。
由于双曲线的图象有关于原点对称的性质,所以只要描出它在一个象限内的分支,再对称地画出另一分支。一定要注意:k>0,双曲线两分支分别在第一、三象限。k<0,双曲线两分支分别在第二、四象限。(在每一象限内,从左向右上升).因此,它的增减性与一次函数相反.反比例函数与正比例函数的交点关于原点对称。
特点:y=x
k
=kx-1(k≠0)中,∵x≠0,∴ y≠0,则有双曲线不过原
点且与两坐标轴永不相交。但无限靠近x 轴、y 轴。画图时图象要体现这种性质,千万注意不要将两个分支连起来。
3、反比例函数的性质和图像
4、反比例函数解析式的确定
确定的方法仍是待定系数法。由于在反比例函数
x
k y =
中,只有
一个待定系数,因此只需要一对对应值或图像上的一个点的坐标,即可求出k 的值,从而确定其解析式。
5、反比例函数中反比例系数的几何的意义 如下图,过反比例函数)0(≠=
k x k
y 图像上任一点
P 作x 轴、y 轴
的垂线
PM ,PN ,则所得的矩形PMON 的面积
S=PM •PN=xy x y =•k S k xy x k
y ==∴=,,
二次函数
1、二次函数的概念:一般地,如果
)0,,(2≠++=a c b a c bx ax y 是常数,,那么
y 叫做x 的二次函数。
)0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。
2、二次函数的图像:二次函数的图像是一条关于a b
x 2-
=对称的
曲线,这条曲线叫抛物线。