第三章-水热法ppt课件
第三章水热法
水热法的工艺参数控制
温度
水热反应温度是影响产物质量和产量的重要因素 ,需要精确控制。
时间
水热反应时间也是影响产物的重要因素,需要根 据实际反应情况确定。
压力
水热反应压力对产物的结构和形貌有影响,需要 合理控制。
浓度
原料的浓度对水热反应速度和产物也有影响,需 要适当控制。
04
水热法的应用实例
水热法在陶瓷行业的应用实例
第三章 水热法
xx年xx月xx日
目录
• 水热法的简介 • 水热法的原理和特点 • 水热法的工艺流程和设备 • 水热法的应用实例 • 水热法的未来发展趋势和挑战
01
水热法的简介
水热法的定义
定义
水热法是指在密闭的容器中,将水加热到 高温高压状态,形成高温高压水溶液,使 反应物质在这样的水溶液中完成化学反应 并形成结晶的一种方法。
水热法与计算化学结合
计算化学可以模拟和预测水热反应过程中物质的物理化学性质和演变规律, 有助于深入了解水热反应过程和优化制备工艺。
THANKS
感谢观看
2
水热法还具有环保性,因为它是在密闭的反应 器中进行的,避免了环境污染,同时也可以实 现工业废渣的资源化利用。
3
水热法可以制备出常规固相法难以制备的特殊 性能材料,如高熔点氧化物、高活性催化剂等 。
水热法与其他方法的比较
与固相法相比,水热法的制备温度和压力较低,制备周期 短,粉体材料粒度细且分布均匀,晶体发育完整。
05
水热法的未来发展趋势和挑战
水热法的未来发展趋势
应用领域的扩展
水热法有望在更多领域得到应用,如能源、环保、材料科学等领域。特别是在能源领域, 水热法可以用来制备太阳能电池、燃料电池等高性能能源材料。
第三章-水热和溶剂热法
水热、溶剂热反应的基本类型
(1)合成反应
通过数种组分在水热或溶剂热条件下直接化 合或经中间态发生化合反应。 利用此类反应可合成各种多晶或单晶材料。
Nd2O3 + H3PO4 NdP5O14 CaO· nAl2O3 + H3PO4 Ca(PO4)3OH + AlPO4 La2O3 + Fe2O3 + SrCl2 (La, Sr)FeO3 FeTiO3 + KOH K2O· nTiO2 (n = 4, 6)
例如
Cr + H2O Cr2O3 + H2 Zr + H2O ZrO2 + H2 M + n L MeLn (L = 有机配体) 使溶胶、凝胶(so1、gel)等非晶 态物质晶化的反应
(11)晶化反应 例如
CeO2· xH2O CeO2 ZrO2· H2O M-ZrO2 + T-ZrO2 硅铝酸盐凝胶 沸石
四、有机溶剂的性质标度
有机溶剂种类多,性质差异大,需进行溶剂 选择。 溶剂会使反应物溶解或部分溶解,生成溶剂 合物,这会影响化学反应速率。 在合成体系中,反应物在液相中的浓度、解 离程度,及聚合态分布等都会影响反应过程。
§3.2 水热、溶剂热体系的成核与晶体生长
(6)脱水反应
一定温度、压力下物质脱水结晶的反应 例如
(7)分解反应
分解化合物得到结晶的反应
例如 FeTiO FeO + TiO 3 2 ZrSiO4 + NaOH Na2SiO3 + ZrO2 FeTiO3 + K2O FeO + K2O· nTiO2 (n = 4, 6)
(8)提取反应
第3章 水热法合成宝石
5、水热法生长宝石晶体的优缺点
(1)优点 a、能够生长存在相变(如a石英等)和在接 近熔点时蒸汽压高的材料 (如ZnO)或要分解的 材料(如V02)。 b、能够生长出较完美的优质大晶体,并且 能够很好地控制材料的成分。 c、用此法生长晶体时,由于与自然界生长 晶体的条件很相似,因此生长出的宝石晶体与 天然宝石晶体最接近。
一、水热法生长宝石晶体概述
1、定义 水热法也称热液法,是在密封的高压容器 内,从水溶液中生长出晶体的方法,在一定程 度上再现了地下热液矿床矿物结晶的过程。 2、原理 是利用高温高压的水溶液使那些在大气条 件下不溶或难溶的物质溶解,或反应生成该物 质的溶解产物,通过控制高压釜内溶液的温差 使产生对流以形成过饱和状态而析出生长晶体 的方法。
3、水热法合成水晶的工作条件和工艺参数
(1)温度和压力(Tg=330-3500C,Td=360-3800C, Δ≤500C ,P=1.1-1.6*108Pa,) (2)高压釜(43CrNi2MoV钢材) (3)矿化剂(NaCO3,NaOH,NaCO3+NaOH) 填加剂(LiF、LiNO3、Li2CO3) 充填度——80%-86% (4)种晶(⊥Z轴,//Y轴,X+50,VO.A=700,YZ,厚度 1.5~2.0mm) (5)培养料 (熔炼石英,粒度2cm左右,质地均匀) (6)生长速率(//Z轴≈0.6-1.2mm/day,受种晶取向、充填 度、温差、结晶温度、溶液浓度、种晶面积等因素影响)
3、水热法宝石晶体生长的分类
(1)等温法
等温法主要利用物质 的溶解度差异来生产晶体。 所用原料为亚稳定相物质, 籽晶为稳定相物质。高压 釜内上、下无温差,是这 一方法的特色。此法的缺 点是无法生长出晶形完整 的大晶体。
水热法
1.1试剂与zno纳米棒制备所用试剂醋酸锌(Zn( CH3C00)2 " 2H20),硝酸钵(Ce(N03)3.6玩。
),氢氧化钠(NaOH ),无水乙醇(C珑CH20H)均为分析纯.首先将醋酸锌和硝酸饰按一定的配比溶子无水乙醇中,再将溶解氢氧化钠的无水乙醇溶液倒人其中,混合搅拌10 min后倒人高压反应釜中,将密封好的高压反应釜放人反应炉中150℃条件下反应24 h后取出.晾至室温后,将生成的沉淀用去离子水和无水乙醇反复离心清洗,置于反应炉中印℃干燥即可.实验中所用到的试剂均为分析纯,未经进一步提纯.实验用水为一次去离子水.样品制备是结合文献D }l的水热过程,将0.005 mol"L-‘的NaOH 乙醇溶液缓慢滴加到含有0.005 mol " L-‘的Zn (N03)= " 6H=O乙醇溶液中.将混合溶液转移至高压反应釜中,在130 0C卜反应12h,将反应产物经一次去离子水、乙醇等洗涤后,在130 0C卜干燥,即可获得纯Zn0纳米棒.为了得到ZnO:Co纳米棒,将一定量的Co (N03)=6H,0加入到Zn(N03)=" 6H=O乙醇溶液中分散均匀,其余制备过程与纯Zn0纳米棒制备过程相同.所用试剂均为分析纯且在使用时未作进一步提纯,实验用水为自制去离子水。
固定每次所配混合溶液的Zn2+浓度为0. 5 mol/L。
称取计算量的ZnCI:和SnC14 " SH20与去离子水配成n( Sn4+):n ( Zn2 +)=1: 100,2: 100的混合溶液,在溶解过程中,滴人几滴盐酸。
取10 mL配制的上述溶液于烧杯中,加人35 mL去离子水,在50 ℃恒温水浴和磁力搅拌条件下缓慢滴加2 mol/L 氢氧化钠至溶液pH值约为9.0(前驱液),继续搅拌陈化0.5 h,然后超声分散10 min后立即移人聚四氟乙烯衬里的反应釜,填充度为80%。
水热法ppt课件
Zr(OH)2为前驱体,水热反应制备 ZrO2粉体
9
TiO2与Ba(OH)2· H2O水热反应制备 钛酸钡粉体
10
3 晶粒的聚集生长 水热条件下晶粒的聚集生长分为两种类型: 第一类聚集生长和第二类聚集生长。 第一类聚集生长:物料从小尺寸晶粒向大 尺寸晶粒运输的重结晶过程; 第二类聚集生长:聚集的小晶粒之间由于 暴露的晶面结构相容而在一定条件下配向 生长的过程。 它们的热力学驱动力都是晶粒平均粒度的 增大降低了体系的总表面自由能。
2 为什么要采用水热法?
• 中低温实现晶体的形成和生长,避免高温处理带 来的种种缺陷; • 应用一些溶解度低的原料,也降低了原料成本; • 具有比其他液相方法更快的晶体生长速率; • 可以生长产生各种不同的晶体形貌; • 反应温度相对较低,可以得到一些低温同质异构 体; • 可以方便地控制反应器内的反应气氛。
水热法
1 什么是水热法? 2 为什么要采用水热法? 3 应用中出现的一些现象的解释 4 水热法应用 5 水热法的缺陷 6 几个例子
2
1 什么是水热法
• 在特制的密闭反应容器里,采用水溶液作 为反应介质,通过对反应容器加热,创造 出一个高温、高压反应环境,使通常难溶 或不溶的物质溶解并且重结晶。
3
11
12
13
2.2 前驱体的溶解
化合物在水热溶液里的溶解度的温度特性分 三种情况: 1 正温度系数 2 负温度系数 3 部分温度范围内正温度系数,部分温度范 围内负温度系数。
14
负温度系数化合物
磷酸铝在磷酸 水溶液中的溶 解: 随着温度升高, 和压力降低, 溶解度降低。
15
变温度系数化合物
17
一般的矿化剂可以分为下面5类: 1 金属及铵的卤化物 2 碱金属的氢氧化物 3 弱酸与碱金属形成的盐类 4 强酸的盐类 5 酸类(一般为无机酸)
水热与溶剂热合成方法的概念水热法ppt课件
“溶解-结晶”机制
所谓“溶解”是指水热反应初期,前驱物微粒之 间的团聚和联接遭到破坏,从而使微粒自身在水 热介质中溶解,以离子或离子团的形式进入溶 液,进而成核、结晶而形成晶粒;
16
“结晶”是指当水热介质中溶质的浓度高于晶粒 的成核所需要的过饱和度时,体系内发生晶粒的 成核和生长,随着结晶过程的进行,介质中用于 结晶的物料浓度又变得低于前驱物的溶解度,这 使得前驱物的溶解继续进行。如此反复,只要反 应时间足够长,前驱物将完全溶解,生成相应的 晶粒。
13
水热生长体系中的晶粒形成可分为三种类型:
“均匀溶液饱和析出”机制 “溶解-结晶”机制
“原位结晶”机制
14
“均匀溶液饱和析出”机制
由于水热反应温度和体系压力的升高,溶质在 溶液中溶解度降低并达到饱和,以某种化合物结 晶态形式从溶液中析出。当采用金属盐溶液为前 驱物,随着水热反应温度和体系压力的增大,溶 质(金属阳离子的水合物)通过水解和缩聚反应 ,生成相应的配位聚集体(可以是单聚体,也可 以是多聚体)当其浓度达到过饱和时就开始析出 晶核,最终长大成晶粒。
• 用这种方法可以合成水晶、刚玉(红宝石、蓝宝石)、绿柱
石(祖母绿、海蓝宝石)、及其它多种硅酸盐和钨酸盐等上 百种晶体。
绿柱石(铍铝硅酸盐矿物) 石榴子石(A3B2[SiO4]3 7
水热法(hydrothermal)(高压溶液法)
8
溶剂热合成方法的发展
1985年,Bindy首次在“Nature”杂志上发表文章报道了高
31
热处理反应
利用水热条件处理一般晶体
而得到具有特定性晶体的反 应。
利用水热条件下物质热
力学和动力学稳定性差 异进行的反应。
转晶反应
课件:水热法
水热法生长祖母绿的鉴别
(1)折射率、双折射率和相对密度:水热法合成祖母 绿与天然祖母绿相同。
(2)查尔斯滤色镜:通常显强红色,但也有些变色效 应较弱,如俄罗斯的呈弱红色。
水热法合成祖母绿
水热法生长红色绿柱石的鉴别 吸收光谱
合成红色绿柱石为钴(Co²+)谱与天然红色绿 柱石明显不同,即530-590nm之间几个模糊到清晰 的吸收带。而天然红色绿柱石是Mn致色,为 450nm以下和540-580nm之间的宽的吸收。
强红色荧光,滤色镜下强红色 黑色底衬下,强光照射会出现红色
如何鉴别? 4. 水热法生长宝石晶体的鉴定特征? 5. 影响水热法生长宝石晶体的因素是什么?
水热法
水热法是利用高温高压的水溶液溶解矿物质, 控制高压釜内溶液的温差产生对流和形成过 饱和状态,使溶解在溶液中的矿物质在种晶 上析出,生长成较大的晶体。 自然界热液成矿就是在一定的温度和压力下, 成矿热液中成矿物质从溶液中析出的过程。 水热法合成宝石就是模拟自然界热液成矿过 程中晶体的生长。
⑤ 面包屑状包裹体:在暗域下呈白色,形态上 与面包屑相似的包裹体,较小而且通常数量不 多。 ⑥ 尘埃状包裹体和种晶残余:尘埃状包裹体成 片地分布在无色种晶片与橙红色部分的交界面 上。
§5 水热法生长祖母绿晶体与鉴别
1960年澳大利亚人约翰.莱奇特纳首次获得 成功,后被林德公司购买了销售权
1969-1970年达高峰期,年产量2万克拉 我国1987年开始研究,1989年获得成功,
色绿柱石等其它颜色绿柱石及合成刚玉也纷纷面市。 因此,水热法合成的宝石品种有:
水热与溶剂热合成法
强烈对流,在生长区(低温
区)形成过饱和溶液
成核
形核
9
5.2 纳米晶粒的形成过程 (p7) (1)生长基元与晶核的形成
满足线度和几何构型要求时,生成晶核 (2)生长基元在固-液生长界面上的吸附与运动
生长基元运动到固-液生长界面并被吸附, 在界面上迁移运动 (3)生长基元在界面上的结晶或脱附
10
5.3 水热反应的成核特征 1、成核速率随着过冷程度即亚稳性的增加而增加 2、存在一个诱导期,在此期间不能检测出成核 3、组成的微小变化可引起诱导期的显著变化 4、成核反应的发生与体系的早期状态有关
单晶培育: 从籽晶培养大单晶。
7
【例】水热法制备Ag纳米粒子
5ml 0.02M AgNO3 ag和5mL 0.02M NaCl ag,加入到30mL 蒸馏水中,搅拌生成AgCl胶体,然后将0.2mmol的葡萄糖 溶在上述胶体溶液中,移入内衬Teflon的50mL合成弹中, 在加热炉中180°C下保持一段时间,空气中冷却至室温, 蒸馏水和酒精冲洗银灰色沉淀,真空60 °C干燥2小时。
第三章 水热与溶剂热合成法
1
第一节 水热合成法合成原理
p19
一、水热合成的概念 (Hydrothermal Synthesis)
1.1 原理
在特制的密闭反应容器里,采用水溶液作为反应
介质,对反应容器加热,创造一个高温、高压的
反应环境,使通常难溶或不溶的物质溶解并重结
晶。
2
1.2 水热合成的温度范围 常温~1100°C;压强范围: 1~500MPa
(1)低温水热合成:100°C以下; 沸石的合成
(2)中温水热合成:100—300°C; 经济有效的合成区域
(3)高温高压水热合成:300°C以上; 单晶生长、特种结构的化合物
第三章-水热法PPT课件
页面 8
-
2021/2/3
➢ 另外,物相的形成,粒径的大小、过溶剂热合成出的纳米粉末,能 够有效的避免表面羟基的存在,使得产物能稳 定存在。
➢ 作为反应物的盐的结晶水和反应生成的水,相 对于大大过量的有机溶剂,水的量小得可以忽 略。
页面 9
第二章 水热与溶剂热合成
主要内容
• 2.1 水热与溶剂热合成方法的发展 • 2.2 水热与溶剂热合成方法原理 • 2.3 水热与溶剂热合成工艺 • 2.4 水热与溶剂热合成方法应用实例
页面 2
-
2021/2/3
水热合成方法的发展
➢ 最 早 采 用 水 热 法 制 备 材 料 的 是 1845 年 K.F. Eschafhautl以硅酸为原料在水热条件下制备石 英晶体
页面 6
-
2021/2/3
溶剂热合成方法的发展
➢ 1985年,Bindy首次在“Nature”杂志上发表文 章报道了高压釜中利用非水溶剂合成沸石的方 法,拉开了溶剂热合成的序幕。
➢ 到目前为止,溶剂热合成法已得到很快的发 展,并在纳米材料制备中具有越来越重要的作 用。在溶剂热条件下,溶剂的物理化学性质如 密度、介电常数、粘度、分散作用等相互影 响,与通常条件下相差很大。
➢ 一些地质学家采用水热法制备得到了许多矿 物,到1900年已制备出约80种矿物,其中经鉴 定确定有石英,长石,硅灰石等
➢ 1900年以后,G.W. Morey和他的同事在华盛顿 地球物理实验室开始进行相平衡研究,建立了 水热合成理论,并研究了众多矿物系统。
页面 3
-
2021/2/3
水热法一直主要用于地球科学研究,二战以后 才逐渐用于单晶生长等材料的制备领域,此后,随 着材料科学技术的发展,水热法在制备超细颗粒, 无机薄膜,微孔材料等方面都得到了广泛应用。
第三章-水热与溶剂热合成法
2.5 SCW的扩散系数D:
D 1
高密度水:T D , p D 低密度水:T D , p D
SCW的扩散系数比普通水高10~100倍 流动性、渗透性和传递性能好,利于传质和热交换
20
三、超临界水的特点: ①完全溶解有机物 ②完全溶解空气或氧气 ③完全溶解气相反应的产物 ④对无机物溶解度不高 ⑤具有很好的传质、传热性能
压 强 0.101 0.476 1.555 3.977 8.593 ( Mpa )
350 374.15
16.535 22.120
12
(2)离子积变高的影响
离子反应
化学反应
自由基反应
d ln k E dT RT 2
导致水热反应加剧的主要原因是水的电离常数随水 热反应温度的上升而增加
13
(3)高温高压下水的作用:
加快成核速率有以下两条途径:
升高温度、增加成核反应物浓度
11
六、反应介质的性质
(1)随着温度的升高水的性质将产生下列变化:
1.蒸汽压变高; 2.密度变小;
3.表面张力变低; 4.粘度变低;
5.离子积变高
6.热扩散系数变高
水的温度与饱和蒸汽压的关系
温 度 100 150 200 250 300 (oC)
五水热法合成原理51反应过程的驱动力可溶的前驱体中间产物与最终稳定产物之间的溶解度差反应物质溶解后以离子分子团的形式进入溶液强烈对流在生长区低温区形成过饱和溶液成核52纳米晶粒的形成过程p71生长基元与晶核的形成满足线度和几何构型要求时生成晶核2生长基元在固液生长界面上的吸附与运动生长基元运动到固液生长界面并被吸附在界面上迁移运动3生长基元在界面上的结晶或脱附1053水热反应的成核特征1成核速率随着过冷程度即亚稳性的增加而增加2存在一个诱导期在此期间不能检测出成核3组成的微小变化可引起诱导期的显著变化4成核反应的发生与体系的早期状态有关11加快成核速率有以下两条途径
第三章水热法
反应时间
原料浓度可以影响反应速率和生成物的性质,进而影响材料的性能。
原料浓度
水热法的工艺流程和技术参数
03
水热法的工艺流程
选择合适的原材料,进行破碎、磨细等预处理
准备阶段
合成阶段
分离和洗涤阶段
干燥和包装阶段
将原料按一定比例混合,加入适量的水,放入高压反应釜中,在一定温度和压力下进行合成反应
反应结束后,将产物从反应釜中取出,进行分离和洗涤,得到最终产物
水热法在陶瓷行业的应用
水热法可以用来制备各种有色的金属,如铜、镍、钴等。通过水热还原反应,可以将金属氧化物还原成金属单质,并分离出来。
有色金属制备
水热法可以用来制备钢铁材料,通过将铁矿石和碳混合,再加入水蒸气,在高温高压下反应,可制备出优质的钢铁材料。
钢铁工业
水热法在冶金行业的应用
废水处理
水热法可以用来处理工业废水,通过将废水中的有害物质在密封的压力容器中加热到一定温度,并进行压力分解,可将其中的有害物质分解成无害物质,达到废水处理的目的。
材料合成
水热法可以用来合成各种无机非金属材料,如水晶、宝石等。通过控制反应条件,可以得到不同颜色、不同形状、不同光学性能的材料。
ห้องสมุดไป่ตู้
水热法在其他领域的应用
THANKS
感谢观看
水热法是合成新型功能材料和无机晶体材料的重要手段之一。例如,水热法可以合成各种类型的氧化物、硫化物、碳化物等材料,这些材料在光学、电子、催化等领域具有广泛的应用前景。
水热法的应用领域
水热法在处理环境污染和废弃物资源化方面也有广泛应用。例如,利用水热法可以将含重金属离子的废水转化为沉淀物,从而达到废水处理的目的。同时,水热法可以将废弃物资源转化为具有使用价值的材料,如将废玻璃转化为陶瓷材料等。
水热法与溶剂热法PPT课件
第47页/共48页
感谢您的观看!
48
第48页/共48页
目
录
Hale Waihona Puke 1. 水热与溶剂热合成方法的发展 2. 水热与溶剂热合成方法原理
水热与溶剂热合成工艺
3.
水热与溶剂热合成方法应用实例
4.
1
第1页/共48页
1.1水热合成方法的发展
最 早 采 用 水 热 法 制 备 材 料 的 是 1845 年 K.F. Eschafhautl以硅酸为原料在水热条件下制备石英晶体 ;
30
第30页/共48页
加入PAM的量不同的Pd/C核壳结构在200的TEM图(a)0, (b)0.1, (c)0.3, (d)0.4g
31
第31页/共48页
加入PdCl2的量不同的Pd/C核壳结构在200的TEM图 (a) 10*105, (b) 15*105mol
32
第32页/共48页
在不同的反应时间下的Pd/C核 壳结构在200的TEM图 (a) 1, (b) 2,(c)3h
无法观察晶体生长和材料合成的过程,不直观。 设备要求高耐高温高压的钢材,耐腐蚀的内衬、 技术难度大温压控制严格、成本高。 安全性差,加热时密闭反应釜中流体体积膨胀, 能够产生极大的压强,存在极大的安全隐患。
15
第15页/共48页
16
第16页/共48页
水热与溶剂热合成的生产设备
高压釜是进行高温高压水热与溶剂热合成的 基本设备;
高压容器一般用特种不锈钢制成,釜内衬有化学惰性 材料,如Pt、Au等贵金属和聚四氟乙烯等耐酸碱材 料。
17
第17页/共48页
简易高压反应釜实物图
18
第18页/共48页
水热法ppt课件
21
水在水热反应釜内的初始临界填充度为32%。 初始填充度小于32%的情况下,温度上升 时,气液相的界面稍有上升,随着温度的 继续增加到一定温度时,液面就转而下降, 直到临界温度374℃,液相全部消失。如果 初始填充度高于32%,那么温度高于临界温 度时,气液相界面迅速升高,直到充满反 应容器。
22
17
一般的矿化剂可以分为下面5类: 1 金属及铵的卤化物 2 碱金属的氢氧化物 3 弱酸与碱金属形成的盐类 4 强酸的盐类 5 酸类(一般为无机酸)
18
有机物的溶解
有些有机物在常温下不溶于水,但是在 水热条件下迅速溶解或者分解。可用 于对有毒物质的去除。
19
20
2.3 较快的晶体生长速率
高温高压下水的特性: 水分子为四面体结构缔合方式, 结构排列紧凑,组成聚合式时, 犹如紧密排列的固体晶相。 其堆积密度随着温度和压力的 变化而不同。
43
44
4.3 水热法薄膜制备技术
A 水热法单晶外延膜制备技术
45
B 水热法多晶薄膜制备技术
46
47
5 水热法的缺陷
A 反应周期长 B 应用范围有局限性 晶体生长需要晶体的溶解度对温度非常敏 感; 合成的粉体中大都含有氧元素。 C 很多具有高温高压步骤,因此对设备要求 高 D 体系密闭,不方便中途控制
2
1 什么是水热法
• 在特制的密闭反应容器里,采用水溶液作 为反应介质,通过对反应容器加热,创造 出一个高温、高压反应环境,使通常难溶 或不溶的物质溶解并且重结晶。
3
2 为什么要采用水热法?
• 中低温实现晶体的形成和生长,避免高温处理带 来的种种缺陷; • 应用一些溶解度低的原料,也降低了原料成本; • 具有比其他液相方法更快的晶体生长速率; • 可以生长产生各种不同的晶体形貌; • 反应温度相对较低,可以得到一些低温同质异构 体; • 可以方便地控制反应器内的反应气氛。
水热法与溶剂热法PPT课件
产物Pd/C的XRD图(左)和Raman光谱(右)
29
产物Pd/C的XPS图谱(左) 和FT-IR图谱(右)
30
(a,b)为低倍数(c,d)为高分辨的TEM像,其中d的插图给出了Pd的电 子衍射图
31
Pd/C复合材料在不同温度下的 TEM像, (a)140,(b)160,(c)180 ℃
13
2.2.3 反应机理-“原位结晶’’”
前驱物脱去 羟基或脱水 原子原位重排
结晶态
14
2.3水热与溶剂热合成方法的适用范围
低温生长单晶 制备薄膜
合成新材料、新结构和亚稳相
制备超细(纳米)粉末
15
2.4水热与溶剂热合成存在的问题
无 法 观察 晶 体生 长 和材 料 合成 的 过程 , 不 直 观。 设 备 要求 高 耐高 温 高压 的 钢材 , 耐腐 蚀 的 内 衬、技术难度大温压控制严格、成本高。 安 全 性差 , 加热 时 密闭 反 应釜 中 流体 体 积 膨 胀,能够产生极大的压强,存在极大的安全隐 患。
32
加入PAM的量不同的Pd/C核壳结构在200的TEM图(a)0, (b)0.1, (c)0.3, (d)0.4g
33
加入PdCl2的量不同的Pd/C核壳结构在200的TEM图 (a) 10*105, (b) 15*105mol
34
在不同的反应时间下的Pd/C核 壳结构在200的TEM图 (a) 1, (b) 2,(c)3h
27
Kang Wenjun等主要采用PdCl2、聚丙烯酰胺(PAM) 抗坏血酸和α-乳糖单水合物(α-LM)等合成Pd/C.
合成工艺:0.2gPAM溶解在35ml去离子水中,开始 搅拌,然后9mg PdCl2和0.5g α-LM分别加入到溶 液中。经过一段时间的搅拌后,把混合液转移到 50ml的聚四氟乙烯内衬的不锈钢反应釜内,200 ℃ 下保温6h,反应釜冷却后,产物离心用去离子水和 无水乙醇洗涤数次,获得最终产物。
水热法与溶剂热法PPT课件
第20页/共48页
所谓相似相容原理就是“溶质分子若与溶剂 分子的组成结构、物理性质及化学性质相近 则其溶解度大
21
第21页/共48页
当溶解于溶剂的溶质以离子状态存在时
离子晶体
必须克服离子晶格中的正负 离子间的作用力
共价化合物
必须使共价键发生异裂作用
这两种作用都必须消耗很大的能量,因此溶质和 溶剂的作用必须很大才能使溶质溶解于溶剂,这 种溶质和溶剂的相互作用就是溶剂化能。
36
第36页/共48页
填充度与反应速率的关系,一定温度下,晶体生长速率与填充度成正比
37
第37页/共48页
38
第38页/共48页
a b
a 反应温度 140 b 反应温度 160 棒状 b 反应温度 180 针簇状
39
c
第39页/共48页
采用溶剂热法合成ZnO 晶体,以乙醇(40ml)为溶剂. 加入1.487 g(0.005 mol) Zn(NO3)2⋅6H2O 前驱体, 搅拌20 min,加入氢氧化钠调节PH分别为3,10, 13.将混合物转入内衬聚四氟乙烯的容积为60 mL 的 反应釜中,混合均匀,密封. 将反应釜放入电子炉内, 恒定温度200℃,保温12 h,取出反应釜,自然冷却 至室温后,将产物离心分离得到白色沉淀. 沉淀用去 离子水和无水乙醇清洗数次,于60℃真空干燥,得 到ZnO 样品.
47
第47页/共48页
感谢您的观看!
48
第48页/共48页
当反应物的浓度增大到0.77mol/L时,从图可见,样品H3中含有许多长度为几 百µm的杂乱的长棒状
44
第44页/共48页
反应时间对产物的影响
45
第45页/共48页
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
➢ 1900年以后,G.W. Morey和他的同事在华盛顿 地球物理实验室开始进行相平衡研究,建立了 水热合成理论,并研究了众多矿物系统。
页面 3
--
2020/7/9
水热法一直主要用于地球科学研究,二战以后 才逐渐用于单晶生长等材料的制备领域,此后,随 着材料科学技术的发展,水热法在制备超细颗粒, 无机薄膜,微孔材料等方面都得到了广泛应用。
第二章 水热与溶剂热合成
主要内容
• 2.1 水热与溶剂热合成方法的发展 • 2.2 水热与溶剂热合成方法原理 • 2.3 水热与溶剂热合成工艺 • 2.4 水热与溶剂热合成方法应用实例
页面 2
--
2020/7/9
水热合成方法的发展
➢ 最 早 采 用 水 热 法 制 备 材 料 的 是 1845 年 K.F. Eschafhautl以硅酸为原料在水热条件下制备石 英晶体
➢ 1944~1960年间, 化学家致力于低 温水热合成,美 国联合碳化物林 德分公司开发了 林德A型沸石 (图2.1)。
图2.1 林德A型沸石的结构
页面 4
--
2020/7/9
水热法制备出的粉体
• 简单的氧化物: ZrO2、Al2O3、SiO2、CrO2、 Fe2O3 、 MnO2 、 MoO3 、 TiO2 、 HfO2 、 UO2 、 Nb2O5、CeO2等;
• 混 合 氧 化 物 : ZrO2-SiO2 、 ZrO2-HfO2 、 UO2ThO2 等;
• 复 合 氧 化 物 : BaFe12O19 、 BaZrO3 、 CaSiO3 、 PbTiO3、LaFeO3、LaCrO3、NaZrP3O12等;
页面 5
--
2020/7/9
• 羟基化合物、羟基金属粉:Ca10(PO4)6(OH)2、 羟基铁、羟基镍;
页面 7
--
2020/7/9
➢ 相应的,它不但使反应物(通常是固体)的溶 解、分散过程及化学反应活性大大增强,使得 反应能够在较低的温度下发生,而且由于体系 化学环境的特殊性,可能形成以前在常规条件 下无法得到的亚稳相。
➢ 该过程相对简单、易于控制,并且在密闭体系 中可以有效地防止有毒物质的挥发和制备对空 气敏感的前驱体和目标产物;
➢超临界水热合成法
➢微波水热法
页面 13
--
2020/7/9
1.超临界水热合成
超临界流体(SCF)是指温度及压力都处于临界 温度和临界压力之上的流体。
在超临界状态下,物质有近于液体的溶解特性以 及气体的传递特性:
➢粘度约为普通液体的0.1~0.01; ➢扩散系数约为普通液体的10~100倍; ➢密度比常压气体大102~103倍。
页面 14
--
2020/7/9
超临界流体拥有一般溶剂所不具备的很多重要 特性。SCF的密度、溶剂化能力、粘度、介电常数 、扩散系数等物理化学性质随温度和压力的变化 十分敏感,即在不改变化学组成的情况下,其性 质可由压力来连续调节。能被用作SCF溶剂的物质 很多,如二氧化碳、水、一氧化氮、乙烷、庚烷 、氨等。超临界流体相图,如图2.2。
--
2020/7/9
与水热法相比,溶剂热法具有以下优点:
✓ 在有机溶剂中进行的反应能够有效地抑制产 物的氧化过程或水中氧的污染;
✓ 非水溶剂的采用使得溶剂热法可选择原料的
范围大大扩大,比如氟化物,氮化物,硫化
合物等均可作为溶剂热反应的原材料;同
时,非水溶剂在亚临界或超临界状态下独特
的物理化学性质极大地扩大了所能制备的目
页面 11
--
2020/7/9
✓ 非水溶剂的种类繁多,其本身的一些特 性,如极性与非极性、配位络合作用、 热稳定性等,为我们从反应热力学和动 力学的角度去认识化学反应的实质与晶 体生长的特性,提供了研究线索。
页面 12
--
2020/7/9
尽管水热合成的技术优势很显著,国 内外也取得了很多研究成果,但它的缺陷 也比较明显的,其中最为突出的是反应周 期长。故近年来在水热合成技术上发展了 几种新技术。
页面 6
--
2020/7/9
溶剂热合成方法的发展
➢ 1985年,Bindy首次在“Nature”杂志上发表文 章报道了高压釜中利用非水溶剂合成沸石的方 法,拉开了溶剂热合成的序幕。
➢ 到目前为止,溶剂热合成法已得到很快的发 展,并在纳米材料制备中具有越来越重要的作 用。在溶剂热条件下,溶剂的物理化学性质如 密度、介电常数、粘度、分散作用等相互影 响,与通常条件下相差很大。
• 复合材料粉体:ZrO2-C、ZrO2-CaSiO3、TiO2C、TiO2-Al2O3等。
• 某些种类的粉体的水热法制备已实现工业化生 产 :日本 Showa Denko K.K 生产的Al2O3粉, Chichibu Cement Co. Ltd生产的 ZrO2粉体和 Sakai Chemical Co.Ltd生产的BaTiO3粉体,美国 Cabot Corp生产的介电陶瓷粉体 ,日本Sakai Chem.Corp和NEC生产的PZT粉体等。
页面 15
--
2020/7/9
P 固
B 超临界 流体
液
C
A 气
O
T
图 2.2 超临界流体相图
页面 16
--
2020/7/9
超临界水(SCW)是指温度和压力分别高于其临 界温度(647K)和临界压力(22.1MPa),而密度 高于其临界密度(0.32g/cm3)的水。
标产物的范围;
页面 10
--
2020/7/9
✓ 由于有机溶剂的低沸点,在同样的条件下, 它们可以达到比水热合成更高的气压,从而 有利于产物的结晶;
✓ 由于较低的反应温度,反应物中结构单元可 以保留到产物中,且不受破坏,同时,有机 溶剂官能团和反应物或产物作用,生成某些 新型在催化和储能方面有潜在应用2020/7/9
➢ 另外,物相的形成,粒径的大小、形态也能够 有效控制,而且产物的分散性好。
➢ 更重要的是通过溶剂热合成出的纳米粉末,能 够有效的避免表面羟基的存在,使得产物能稳 定存在。
➢ 作为反应物的盐的结晶水和反应生成的水,相 对于大大过量的有机溶剂,水的量小得可以忽 略。
页面 9