2016新人教版八年级数学上册期末试题
2015-2016学年度人教版八年级上学期数学期末试卷及答案(2套)
2015-2016学年度⼈教版⼋年级上学期数学期末试卷及答案(2套)2015-2016学年度⼋年级上学期数学期末试卷(⼀)⼀、选⼀选, ⽐⽐谁细⼼(本⼤题共12⼩题, 每⼩题3分, 共36分, 在每⼩题给出的四个选项中, 只有⼀项是符合题⽬要求的) 1.计算)A.2B.±2C.-2D.4 2.计算23()ab 的结果是() A.5abB.6abC.35a bD.36a b3,则x 的取值范围是() A.x >5B.x ≥5C.x ≠5D.x ≥04.如图所⽰,在下列条件中,不能..判断△ABD ≌△BAC 的条件是( ) A.∠D =∠C ,∠BAD =∠ABCB.∠BAD =∠ABC ,∠ABD =∠BACC.BD =AC ,∠BAD =∠ABCD.AD =BC ,BD =AC5.如图,六边形ABCDEF 是轴对称图形,CF 所在的直线是它的对称轴,若∠AFE+∠BCD =280°,则∠AFC+∠BCF 的⼤⼩是() A.80°B.140°C.160°D.180°6.下列图象中,以⽅程220y x --=的解为坐标的点组成的图象是()7.任意给定⼀个⾮零实数,按下列程序计算,最后输出的结果是()FEDCBAA.mB.1m +C.1m -D. 2m 8.已知⼀次函数(1)y a x b =-+的图象如图所⽰,那么a 的取值范围是( )A.1a >B.1a <C.0a >D.0a <9.若0a >且2x a =,3y a =,则x ya -的值为()A.1-B.1C.23D.3210.如图,已知△ABC 中,∠ABC=45°,AC=4,H 是⾼AD 和BE 的交点,则线段BH 的长度为()B.C.5D.411.如图,是某⼯程队在“村村通”⼯程中修筑的公路长度y (⽶)与时间x (天)之间的关系图象.根据图象提供的信息,可知该公路的长度是( )⽶. A.504 B.432 C.324 D.72012.直线y=kx+2过点(1,-2),则k 的值是() A .4 B .-4 C .-8 D .8⼆、填⼀填,看看谁仔细(本⼤题共10⼩题,每⼩题3分,共30分,请你将最简答案填在“ ”上)13.⼀个等腰三⾓形的⼀个底⾓为40°,则它的顶⾓的度数是 . 14.观察下列各式:2(1)(1)1x x x -+=-;23(1)(1)1x x x x -++=-;324(1)(1)1x x x x x -+++=-;……(第10题图)(第11题图)根据前⾯各式的规律可得到12(1)(1)n n n x x x x x ---+++++=… .15.计算: -28x 4y 2÷7x 3y =16.如图所⽰,观察规律并填空:.17.若a 42a y=a 19,则 y=_____________. 18.计算:(52)20083(-25)20093(-1)2007=_____________. 19.已知点A (-2,4),则点A 关于y 轴对称的点的坐标为_____________. 20. 2-2的相反数是,绝对值是 .21. 0.01的平⽅根是_____,-27的⽴⽅根是______,1_ _. 22. 16的平⽅根为_________.三、解⼀解,试试谁更棒(本⼤题共9⼩题,共72分.)17.(本题4分)计算:(8)()x y x y --.18.(本题5分)分解因式:3269x x x -+.19.(本题5分)已知:如图,AB=AD,AC=AE,∠BAC=∠DAE.求证:BC=DE.20.(4)先化简在求值,2()()()y x y x y x y x +++--,其中x = -2,y = 12.21.(本题5分)2008年6⽉1⽇起,我国实施“限塑令”,开始有偿使⽤环保购物袋.为了满⾜市场需求,某⼚家⽣产A B ,两种款式的布质环保购物袋,每天共⽣产4500个,两EDCBA种购物袋的成本和售价如下表,设每天⽣产A种购物袋x个,每天共获利y元.(1)求出y与x的函数关系式;(2)如果该⼚每天最多投⼊成本10000元,那么每天最多获利多少元?=的图象l是第⼀、三象限的23.(本题10分)如图,在平⾯直⾓坐标系中,函数y x⾓平分线.实验与探究:由图观察易知A(0,2)关于直线l的对称点A'的坐标为(2,0),请在图中分别标明B(5,3) 、C(-2,5) 关于直线l的对称点B'、C'的位置,并写出它们的坐标: B'、C';归纳与发现:结合图形观察以上三组点的坐标,你会发现:坐标平⾯内任⼀点P(m,n)关于第⼀、三象限的⾓平分线l的对称点P'的坐标为;参考答案及评分标准⼀、选⼀选,⽐⽐谁细⼼(每⼩题3分,共36分)⼆、填⼀填, 看看谁仔细(每⼩题3分,共12分)13. 100°. 14.11n x+-. 15. x >-2 . 16.105°三、解⼀解, 试试谁更棒(本⼤题共9⼩题,共72分)17.解:(8)()x y x y --=2288x xy xy y --+ ……………………………4分 =2298x xy y -+ ……………………………6分18.解:3269x x x -+=2(69)x x x -+ ……………………………3分 =2(3)x x - ……………………………6分 19.证明:∵∠BAD=∠CAE ∴∠BAC=∠DAE ……………………………1分在△BAC 和△DAE 中BA DA BAC DAE AC AE =??∠=∠??=?∴△BAC ≌△DAE …………………………………………………………4分∴BC=DE …………………………………………………………………6分20.解:原式22222x xy y x y x ??=-++-÷?? 222x xy x ??=-÷??22x y =- ………………………………………………5分当11,2x y =-=,原式=-3 ………………………………………………7分 21.解:⑴5152S x =-+ (06)x << ………………………………………4分⑵由515102x -+=,得x=2 ∴P 点坐标为(2,4) …………………………………………………8分22.解:(1)根据题意得:=(2.3-2)(3.53)(4500)y x x +--=0.2+2250x - ………………………………4分(2)根据题意得:23(4500)10000x x +-≤解得3500x ≥元0.20k =-< ,y ∴随x 增⼤⽽减⼩∴当3500x =时,0.2350022501550y =-?+=答:该⼚每天⾄多获利1550元. ………………………………………8分 23.解:(1)如图:(3,5)B ',(5,2)C '- …………………………………2分(2)(n,m) ………………………………………………………………3分 (3)由(2)得,D(0,-3) 关于直线l 的对称点D '的坐标为(-3,0),连接D 'E 交直线l 于点Q ,此时点Q 到D 、E 两点的距离之和最⼩ …………………4分设过D '(-3,0) 、E(-1,-4)的设直线的解析式为b kx y +=,则304k b k b -+=??-+=-?,.∴26k b =-??=-?,.∴26y x =--.由26y x y x =--??=?,.得22x y =-??=-?,.∴所求Q 点的坐标为(-2,-2)………………………………………9分24.解:⑴AFD DCA ∠=∠(或相等) ……………………………………2分(2)AFD DCA ∠=∠(或成⽴) ……………………………………3分理由如下:由△ABC ≌△DEF∴AB DE BC EF ==,,ABC DEF BAC EDF ∠=∠∠=∠,ABC FBC DEF CBF ∴∠-∠=∠-∠ ABF DEC ∴∠=∠在ABF △和DEC △中,AB DE ABF DEC BF EC =??∠=∠??=?,,,ABF DEC BAF EDC ∴∠=∠△≌△,BAC BAF EDF EDC FAC CDF ∴∠-∠=∠-∠∠=∠, AOD FAC AFD CDF DCA ∠=∠+∠=∠+∠AFD DCA ∴∠=∠ ………………………………………………………8分(3)如图,BO AD ⊥. …………………………………………………9分………………………………………………10分25.解:⑴等腰直⾓三⾓形 ………………………………………………1分∵2220a ab b -+= ∴2()0a b -= ∴a b =∵∠AOB=90° ∴△AOB 为等腰直⾓三⾓形 …………………4分⑵∵∠MOA+∠MAO=90°,∠MOA+∠MOB=90° ∴∠MAO=∠MOB ∵AM ⊥OQ ,BN ⊥OQ ∴∠AMO=∠BNO=90°在△MAO 和△BON 中MAO MOB AMO BNO OA OB ∠=∠??∠=∠??=?∴△MAO ≌△NOB ∴OM=BN,AM=ON,OM=BN∴MN=ON-OM=AM-BN=5 ……………………………………8分⑶PO=PD 且PO ⊥PDADO F CB (E ) G如图,延长DP 到点C ,使DP=PC,连结OP 、OD 、OC 、BC在△DEP 和△CBP DP PC DPE CPB PE PB =??∠=∠??=?∴△DEP ≌△CBP ∴CB=DE=DA,∠DEP=∠CBP=135°在△OAD 和△OBC DA CB DAO CBO OA OB =??∠=∠??=?∴△OAD ≌△OBC∴OD=OC,∠AOD=∠COB ∴△DOC 为等腰直⾓三⾓形∴PO=PD ,且PO ⊥PD. ……………………………………………12分2015-2016学年度⼋年级上学期数学期末试卷(⼆)⼀、选择题: 1.在0,31-, π,9这四个数中,是⽆理数的是() A .0 B .-31C. πD. 92.下列乘法中,不能运⽤平⽅差公式进⾏运算的是()A .(x +a )(x -a )B .(a+b )(-a -b )C .(-x -b )(x -b )D .(b +m )(m -b )3.在下列运算中,计算正确的是()A. a a a 326?=B. a a a 824÷=C. ()a a 235=D. ()ab a b 2224= 4. 如图,DEF ABC ??≌,点A 与D ,点B 与E 分别是对应顶点,BC=5cm ,BF=7cm ,则EC 的长为()A. 1cmB. 2cmC. 3cmD. 4cm5、点P (3,2)关于x 轴的对称点'P 的坐标是()A .(3,-2)B .(-3,2)C .(-3,-2)D .(3,2)AD G6.某同学⽹购⼀种图书,每册定价20元,另加书价的5%作为快递运费。
【人教版】2016学年八年级上期末数学试卷(含解析)
八年级(上)期末数学试卷一、选择题:本大题共10小题,每小题4分,共40分1.在实数0,π,,﹣,中,是无理数的有()A.1个B.2个C.3个D.4个2.下列说法不正确的是()A.1的平方根是±1 B.1的立方根是1C.2是的平方根D.﹣是﹣3的立方根3.点P(1,﹣2)关于x轴对称的点的坐标为()A.(1,2)B.(1,﹣2)C.(﹣1,2)D.(﹣1,﹣2)4.下列点不在正比例函数y=﹣2x的图象上的是()A.(5,﹣10)B.(2,﹣1)C.(0,0)D.(1,﹣2)5.如图,在直线l上有三个正方形A,B,C,若正方形A,C的面积分别是8,6,则正方形B的面积为()A.10 B.12 C.14 D.186.如图所示是小明在某条道路统计的某个时段来往车辆的车速情况,下列说法中正确的是()A.这次调查小明统计了25辆车B.众数是8C.中位数是53 D.众数是527.一次函数y=x+1和一次函数y=2x﹣2的图象的交点坐标是(3,4),据此可知方程组的解为()A.B.C.D.8.如图,将一块三角板的直角顶点放在直尺的一边上,若∠2=25°,则∠1的度数为()A.55°B.60°C.65°D.75°9.正比例函数y=kx(k≠0)的图象在第二、四象限,则一次函数y=x+k的图象大致是()A.B.C.D.10.现用190张铁皮制作一批盒子,每张铁皮可做8个盒身或做22个盒底,而一个盒身和两个盒底配成一个完整的盒子.问用多少张白铁皮制盒身、多少张白铁皮制盒底,可以使盒身和盒底正好配套.设用x张铁皮做盒身,y张铁皮做盒底,可以使盒身与盒底正好配套,则可列方程是()A.B.C. D.二、填空题:本答题共4小题,每小题5分,共20分11.将长度分别为1cm,2cm,cm的三条小木棒首尾相连成一个三角形,该三角形是三角形.12.已知a,b为两个连续整数,且,则a+b=.13.如图所示,数轴上的A点表示的数是.14.把厚度相同的字典整齐地叠放在桌面上,已知字典的离地高度与字典本数成一次函数,根据图中所示的信息,给出下列结论:①每本字典的厚度为5cm;②桌子高为90cm;③把11本字典叠成一摞,整齐地放在这张桌面上,字典的离地高度为205cm;④若有x本字典叠成一摞放在这张桌面上,字典的离地高度为y(cm),则y=5x+85.其中说法正确的有(把所有正确结论的序号都填在横线上)三、本大题共2小题,每小题8分,共16分15.计算:(﹣2)×﹣6.16.解方程组:.四、本大题共2小题,每小题8分,共16分17.已知点A(m+2,3)和点B(m﹣1,2m﹣4),且AB∥x轴.(1)求m的值;(2)求AB的长.18.如图,CD平分∠ACB,DE∥BC,∠AED=52°,求∠EDC的度数.五、本大题共2小题,每小题10分,共20分19.如图,在Rt△ABC中,∠C=90°,把AB对折后,点A与点B重合,折痕为DE.(1)若∠A=25°,求∠BDC的度数;(2)若AC=4,BC=2,求BD.20.如图,直线y=与x轴交于点A,与直线y=2x交于点B.(1)求点B的坐标;(2)求△AOB的面积.六、本题满分12分10分制):)甲队成绩的中位数是分,乙队成绩的众数是分.(2)计算甲队的平均成绩和方差.(3)已知乙队成绩的方差是1.4,则成绩较为整齐的是队.七、本题满分12分22.某市因道路建设需要开挖土石方,计划每小时挖掘土石方540m3,现决定向某租赁公司租用甲、租金(单位(1)若租用甲、乙两种型号的挖掘机共8台,恰好完成每小时的挖掘量,则甲、乙两种型号的挖掘机各需多少台?(2)如果每小时支付的租金不超过850元,又恰好完成每小时的挖掘量,那么共有哪几种不同的租用方案?八、本题满分14分23.甲,乙两辆汽车分别从A,B两地同时出发,沿同一条公路相向而行,乙车出发2h后休息,与甲车相遇后,继续行驶.设甲、乙两车与B地的路程分别为y甲(km),y乙(km),甲车行驶的时间为x(h),y甲,y乙与x之间的函数图象如图所示,结合图象解答下列问题:(1)乙车休息了h;(2)求乙车与甲车相遇后y乙与x的函数解析式,并写出自变量x的取值范围;(3)当两车相距40km时,直接写出x的值.2015-2016学年安徽省宿州市埇桥区八年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题4分,共40分1.在实数0,π,,﹣,中,是无理数的有()A.1个B.2个C.3个D.4个【考点】无理数.【专题】计算题.【分析】有理数包括整数,分数,无理数包括无限不循环小数,只有π、是无限不循环小数,是无理数.【解答】解:0为整数,是有理数,π为无理数,是分数是有理数,﹣=﹣2,是整数是有理数,是无理数,故共有2个无理数.故选:B.【点评】题目考查了无理数的定义,无理数是无限不循环小数,学生理解这个知识点,即可以求出此类题目.2.下列说法不正确的是()A.1的平方根是±1 B.1的立方根是1C.2是的平方根D.﹣是﹣3的立方根【考点】立方根;平方根.【分析】分别结合平方根以及立方根的定义分析得出答案.【解答】解:A、1的平方根是±1,正确,不合题意;B、1的立方根是1,正确,不合题意;C、2是4的算术平方根,故此选项错误,符合题意;D、﹣是﹣3的立方根,正确,不合题意.故选:C.【点评】此题主要考查了立方根与平方根,正确把握相关定义是解题关键.3.点P(1,﹣2)关于x轴对称的点的坐标为()A.(1,2)B.(1,﹣2)C.(﹣1,2)D.(﹣1,﹣2)【考点】关于x轴、y轴对称的点的坐标.【专题】数形结合.【分析】根据平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),即横坐标不变,纵坐标变成相反数,即可得出答案.【解答】解:根据关于x轴的对称点横坐标不变,纵坐标变成相反数,∴点P(1,﹣2)关于x轴对称点的坐标为(1,2),故选A.【点评】本题主要考查平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系,难度较小.4.下列点不在正比例函数y=﹣2x的图象上的是()A.(5,﹣10)B.(2,﹣1)C.(0,0)D.(1,﹣2)【考点】一次函数图象上点的坐标特征.【分析】分别把各点代入正比例函数的解析式进行检验即可.【解答】解:A、∵当x=5时,y=﹣10,∴此点在函数图象上,故本选项错误;B、∵当x=2时,y=﹣4≠﹣1,∴此点不在函数图象上,故本选项正确;C、∵当x=0时,y=0,∴此点在函数图象上,故本选项错误;D、∵当x=1时,y=﹣2,∴此点在函数图象上,故本选项错误.故选B.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.5.如图,在直线l上有三个正方形A,B,C,若正方形A,C的面积分别是8,6,则正方形B的面积为()A.10 B.12 C.14 D.18【考点】全等三角形的判定与性质;勾股定理;正方形的性质.【分析】运用正方形边长相等,再根据同角的余角相等可得∠EDF=∠HFG,然后证明△EDF≌△HFG,再结合全等三角形的性质和勾股定理来求解即可.【解答】解:如图,由于A、B、C都是正方形,所以DF=FH,∠DFH=90°;∵∠DFE+∠HF G=∠EDF+∠DFE=90°,即∠EDF=∠HFG,在△DEF和△HGF中,,∴△ACB≌△DCE(AAS),∴DE=FG,EF=HG;在Rt△ABC中,由勾股定理得:DF2=DE2+EF2=DE2+HG2,即S B=S A+S C=8+6=14,故选:C.【点评】此题主要考查全等三角形的判定和性质,和勾股定理,关键是证明△DEF≌△HGF.6.如图所示是小明在某条道路统计的某个时段来往车辆的车速情况,下列说法中正确的是()A.这次调查小明统计了25辆车B.众数是8C.中位数是53 D.众数是52【考点】条形统计图;中位数;众数.【分析】先根据图形确定一定车速的车的数量,再根据中位数和众数的定义求解.【解答】解:小明统计了2+5+8+6+4+2=27辆车,∵将这27个数据按从小到大的顺序排列,其中第14个数是52,∴这些车辆行驶速度的中位数是52.∵在这27个数据中,52出现了8次,出现的次数最多,∴这些车辆行驶速度的众数是52.故选:D.【点评】此题考查条形图,掌握中位数、众数的意义和求法是解决问题的关键.7.一次函数y=x+1和一次函数y=2x﹣2的图象的交点坐标是(3,4),据此可知方程组的解为()A.B.C.D.【考点】一次函数与二元一次方程(组).【分析】由于函数图象交点坐标为两函数解析式组成的方程组的解,因此联立两函数所得方程组的解,即为两函数图象的交点坐标.【解答】解:∵一次函数y=x+1和一次函数y=2x﹣2的图象的交点坐标是(3,4),∴x=3,y=4就同时满足两个函数解析式,则是二元一次方程组即的解.故选A.【点评】此题主要考查了二元一次方程组和一次函数的关系,关键是掌握方程组的解就是两函数图象的交点.8.如图,将一块三角板的直角顶点放在直尺的一边上,若∠2=25°,则∠1的度数为()A.55°B.60°C.65°D.75°【考点】平行线的性质.【分析】根据余角的性质得到∠3=65°,根据平行线的性质得到结论.【解答】解:如图,∵∠2+∠3=90°,∴∠3=65°,∵AB∥CD,∴∠1=∠3=65°.故选C.【点评】本题考查了平行线的性质,直角三角形的性质,余角的性质,熟记平行线的性质是解题的关键.9.正比例函数y=kx(k≠0)的图象在第二、四象限,则一次函数y=x+k的图象大致是()A.B.C.D.【考点】一次函数的图象;正比例函数的图象.【专题】数形结合.【分析】根据正比例函数图象所经过的象限判定k<0,由此可以推知一次函数y=x+k的图象与y轴交于负半轴,且经过第一、三象限.【解答】解:∵正比例函数y=kx(k≠0)的图象在第二、四象限,∴k<0,∴一次函数y=x+k的图象与y轴交于负半轴,且经过第一、三象限.观察选项,只有B选项正确.故选:B.【点评】此题考查一次函数,正比例函数中系数及常数项与图象位置之间关系.解题时需要“数形结合”的数学思想.10.现用190张铁皮制作一批盒子,每张铁皮可做8个盒身或做22个盒底,而一个盒身和两个盒底配成一个完整的盒子.问用多少张白铁皮制盒身、多少张白铁皮制盒底,可以使盒身和盒底正好配套.设用x张铁皮做盒身,y张铁皮做盒底,可以使盒身与盒底正好配套,则可列方程是()A.B.C. D.【考点】由实际问题抽象出二元一次方程组.【分析】由题意可知:制盒身的铁皮+制盒底的铁皮=190张;盒底的数量=盒身数量的2倍.据此可列方程组求解即可.【解答】解:设x张铁皮制盒身,y张铁皮制盒底,由题意得.故选:B.【点评】此题考查从实际问题中抽象出二元一次方程组,找出题目蕴含的数量关系是正确列出方程组的关键.二、填空题:本答题共4小题,每小题5分,共20分11.将长度分别为1cm,2cm,cm的三条小木棒首尾相连成一个三角形,该三角形是直角三角形三角形.【考点】勾股定理的逆定理.【分析】根据勾股定理逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形进行分析即可.【解答】解:∵12+22=()2,∴三角形是直角三角形.故答案为:直角三角形.【点评】此题主要考查了勾股定理逆定理,已知三角形三边的长,只要利用勾股定理的逆定理即可判断是否是直角三角形.12.已知a,b为两个连续整数,且,则a+b=7.【考点】估算无理数的大小.【分析】因为32<13<42,所以3<<4,求得a、b的数值,进一步求得问题的答案即可.【解答】解:∵32<13<42,∴3<<4,即a=3,b=b,所以a+b=7.故答案为:7.【点评】此题考查无理数的估算,利用平方估算出根号下的数值的取值,进一步得出无理数的取值范围,是解决这一类问题的常用方法.13.如图所示,数轴上的A点表示的数是﹣1.【考点】实数与数轴.【分析】根据数轴可以得到BD、DC的长度,根据勾股定理可以得到BC的长度,从而可以得到BA 的长度,进而可以得到点A在数轴上表示的数.【解答】解:如下图所示,BD=3,CD=1,则BC=,∴BA=BC=,点A表示的数是:,故答案为:.【点评】本题考查实数与数轴、勾股定理,解题的关键是明确题意,利用数形结合的思想解答问题.14.把厚度相同的字典整齐地叠放在桌面上,已知字典的离地高度与字典本数成一次函数,根据图中所示的信息,给出下列结论:①每本字典的厚度为5cm;②桌子高为90cm;③把11本字典叠成一摞,整齐地放在这张桌面上,字典的离地高度为205cm;④若有x本字典叠成一摞放在这张桌面上,字典的离地高度为y(cm),则y=5x+85.其中说法正确的有①④(把所有正确结论的序号都填在横线上)【考点】一次函数的应用.【分析】设桌子高度为xcm,每本字典的厚度为ycm根据题意列方程组求得x、y的值,再逐一判断即可.【解答】解:设桌子高度为xcm,每本字典的厚度为ycm,根据题意,,解得:,则每本字典的厚度为5cm,故①正确;桌子的高度为85cm,故②错误;把11本字典叠成一摞,整齐地放在这张桌面上,字典的离地高度为:85+11×5=140cm,故③错误;若有x本字典叠成一摞放在这张桌面上,字典的离地高度y=5x+85,故④正确;故答案为:①④.【点评】本题主要考查二元一次方程组和一次函数的应用能力,根据题意列方程组求得桌子高度和每本字典厚度是解题关键.三、本大题共2小题,每小题8分,共16分15.计算:(﹣2)×﹣6.【考点】实数的运算.【分析】首先根据乘法分配律去括号,然后化简二次根式计算.【解答】解:原式==3﹣6﹣3=﹣6.【点评】此题主要考查了实数的运算.无理数的运算法则与有理数的运算法则是一样的.在进行根式的运算时要先化简再计算可使计算简便.16.解方程组:.【考点】解二元一次方程组.【分析】先把方程组中的方程化为不含分母的方程,再用加减消元法或代入消元法求解即可.【解答】解:原方程组可化为,①+②得,9x=9,解得x=1,把x=1代入①得,5﹣3y=﹣3,解得y=,故方程组的解为.【点评】本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.四、本大题共2小题,每小题8分,共16分17.已知点A(m+2,3)和点B(m﹣1,2m﹣4),且AB∥x轴.(1)求m的值;(2)求AB的长.【考点】坐标与图形性质.【专题】计算题.【分析】(1)由AB∥x轴,可以知道A、B两点纵坐标相等,解关于m的一元一次方程,求出m 的值;(2)由(1)求得m值求出点A、B坐标,由A、B两点横坐标相减的绝对值即为AB的长度.【解答】解:(1)∵A(m+2,3)和点B(m﹣1,2m﹣4),且AB∥x轴,∴2m﹣4=3,∴m=.(2)由(1)得:m=,∴m+2=,m﹣1=,2m﹣4=3,∴A(,3),B(,3),∵﹣=3,∴AB的长为3.【点评】题目考查了平面直角坐标系中图形性质,题目较为简单.学生在解决此类问题时一定要灵活运用点的特征.18.如图,CD平分∠ACB,DE∥BC,∠AED=52°,求∠EDC的度数.【考点】平行线的性质.【分析】根据平行线的性质求出∠ACB,根据角平分线定义求出即可.【解答】解:∵DE∥BC,∠AED=52°,∴∠ACB=∠AED=52°,∵CD平分∠ACB,∴∠ECD=∠ACB=26°,∴∠EDC=26°.【点评】本题考查了平行线的性质和角平分线定义的应用,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,题目比较好,难度适中.五、本大题共2小题,每小题10分,共20分19.如图,在Rt△ABC中,∠C=90°,把AB对折后,点A与点B重合,折痕为DE.(1)若∠A=25°,求∠BDC的度数;(2)若AC=4,BC=2,求BD.【考点】翻折变换(折叠问题).【分析】(1)由翻折的性质可知∠A=∠DBA=25°,由三角形外角的性质可知∠CBD=50°;(2)设BD=x,由翻折的性质可知DA=x,从而求得CD=4﹣x,最后在△BCD中由勾股定理可求得BD的长.【解答】解:(1)由翻折的性质:∠A=∠DBA=25°.∠BDC=∠A+∠ABD=25°+25°=50°.(2)设BD=x.由翻折的性质可知DA=BD=x,则CD=4﹣x.在Rt△BCD中,由勾股定理得;BD2=CD2+BC2,即x2=(4﹣x)2+22.解得:x=2.5.即BD=2.5.【点评】本题主要考查的是翻折的性质,依据勾股定理列出关于x的方程是解题的关键.20.如图,直线y=与x轴交于点A,与直线y=2x交于点B.(1)求点B的坐标;(2)求△AOB的面积.【考点】两条直线相交或平行问题.【分析】(1)联立两个方程进行解答即可;(2)根据三角形的面积公式计算即可.【解答】解:(1)联立两个方程可得:,解得:,所以点B的坐标为(1,2);(2)把y=0代入y=中,可得:x=﹣3,所以△AOB的面积=.【点评】本题主要考查了两条直线相交的问题,关键是根据两条直线相交时交点为方程组的解进行解答.六、本题满分12分10分制):)甲队成绩的中位数是9分,乙队成绩的众数是10分.(2)计算甲队的平均成绩和方差.(3)已知乙队成绩的方差是1.4,则成绩较为整齐的是甲队.【考点】方差;加权平均数;中位数;众数.【分析】(1)利用中位数的定义以及众数的定义分别求出即可;(2)首先求出平均数进而利用方差公式得出即可;(3)根据方差的意义即可得出答案.【解答】解:(1)把这组数据从小到大排列7,8,8,9,9,9,10,10,10,10,甲队成绩的中位数是=9;∵在乙队中,10出现了5次,出现的次数最多,∴乙队成绩的众数是10;故答案为:9,10;(2)甲队的平均成绩是:(7+8+9+10+10+10+10+9+9+8)=9,方差是:[(7﹣9)2+2×(8﹣9)2+3×(9﹣9)2+4×(10﹣9)2]=1.(3)∵乙队成绩的方差是1.4,甲队成绩的方差是1,∴成绩较为整齐的是甲队.故答案为:甲.【点评】本题考查了中位数、方差的定义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.七、本题满分12分22.某市因道路建设需要开挖土石方,计划每小时挖掘土石方540m3,现决定向某租赁公司租用甲、机各需多少台?(2)如果每小时支付的租金不超过850元,又恰好完成每小时的挖掘量,那么共有哪几种不同的租用方案?【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)设甲、乙两种型号的挖掘机各需x台、y台,根据甲、乙两种型号的挖掘机共8台和每小时挖掘土石方540m3,列出方程求解即可;(2)设租用m辆甲型挖掘机,n辆乙型挖掘机,根据题意列出二元一次方程,求出其正整数解;然后分别计算支付租金,选择符合要求的租用方案.【解答】解:设甲、乙两种型号的挖掘机各需x台、y台.依题意得:,解得.答:甲、乙两种型号的挖掘机各需3台、5台;(2)设租用m辆甲型挖掘机,n辆乙型挖掘机.依题意得:80m+60n=540,化简得:4m+3n=27.∴n=9﹣m,∴方程的解为或.当m=3,n=5时,支付租金:120×3+100×5=860元>850元,超出限额;当m=6,n=1时,支付租金:120×6+100×1=820元<850元,符合要求.答:有一种租车方案,即租用6辆甲型挖掘机和1辆乙型挖掘机.【点评】本题考查了一元一次不等式和二元一次方程组的应用.解决问题的关键是读懂题意,依题意列出等式(或不等式)进行求解.八、本题满分14分23.甲,乙两辆汽车分别从A,B两地同时出发,沿同一条公路相向而行,乙车出发2h后休息,与甲车相遇后,继续行驶.设甲、乙两车与B地的路程分别为y甲(km),y乙(km),甲车行驶的时间为x(h),y甲,y乙与x之间的函数图象如图所示,结合图象解答下列问题:(1)乙车休息了0.5h;(2)求乙车与甲车相遇后y乙与x的函数解析式,并写出自变量x的取值范围;(3)当两车相距40km时,直接写出x的值.【考点】一次函数的应用.【专题】数形结合;待定系数法.【分析】(1)根据待定系数法,可得y甲的解析式,根据函数值为200千米时,可得相应自变量的值,根据自变量的差,可得答案;(2)根据待定系数法,可得y乙的函数解析式;(3)分类讨论,0≤x≤2.5,y甲减y乙等于40千米,2.5≤x≤5时,y乙减y甲等于40千米,可得答案.【解答】解:(1)设甲车行驶的函数解析式为y甲=kx+b,(k是不为0的常数)y甲=kx+b图象过点(0,400),(5,0),得,解得,甲车行驶的函数解析式为y甲=﹣80x+400,当y=200时,x=2.5(h),2.5﹣2=0.5(h),故答案为:0.5;(2)设乙车与甲车相遇后y乙与x的函数解析式y乙=kx+b,y乙=kx+b图象过点(2.5,200),(5,400),得,解得,乙车与甲车相遇后y乙与x的函数解析式y乙=80x(2.5≤x≤5);(3)设乙车与甲车相遇前y乙与x的函数解析式y乙=kx,图象过点(2,200),解得k=100,∴乙车与甲车相遇前y乙与x的函数解析式y乙=100x,0≤x≤2.5,y甲减y乙等于40千米,即400﹣80x﹣100x=40,解得x=2;2.5≤x≤5时,y乙减y甲等于40千米,即2.5≤x≤5时,80x﹣(﹣80x+400)=40,解得x=,综上所述:x=2或x=.【点评】本题考查了一次函数的应用,待定系数法是求函数解析式的关键.。
人教版八年级数学上册期末试卷(含答案)
2016~17学年度第1学期期末教学质量检测八年级数学试题完成时间:120分钟满分:150分姓名成绩1A.120°B.115°C.110°D.105°第1题图第2题图第3题图2.小明不小心把一块三角形形状的玻璃打碎成了三块,如图①②③,他想要到玻璃店去配一块大小形状完全一样的玻璃,你认为应带()A.①B.②C.③D.①和②3.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是()A.8 B.6 C.4 D.24.如图,把一个正方形三次对折后沿虚线剪下,则所得图形大致是()第4题图第5题图第6题图5.如图,在△ABC中,∠BAC=90°,AB=3,AC=4,BC=5,EF垂直平分BC,点P为直线EF上的任一点,则AP+BP的最小值是()A.3 B.4 C.5 D.66.如图所示,△ABC是等边三角形,且BD=CE,∠1=15°,则∠2的度数为()A.15°B.30°C.45°D.60°7.平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()A.5 B.6 C.7 D.88.下列等式从左到右的变形,属于因式分解的是(B)A.a(x-y)=ax-ay B.x2-1=(x+1)(x-1)C.(x+1)(x+3)=x2+4x+3 D.x2+2x+1=x(x+2)+19.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图1),把余下的部分拼成一个矩形(如图2),根据两个图形中阴影部分的面积相等,可以验证()A.222()2a b a ab b+=++B.222()2a b a ab b-=-+C.22()()a b a b a b-=+-D.22(2)()2a b a b a ab b+-=+-10.某工厂现在平均每天比原计划每天多生产50台机器,现在生产800台机器所需时间与原计划生产600台机器所需时间相同,设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()A.800x+50=600x B.800x-50=600xC.800x=600x+50D.800x=600x-50二、填空题:(每小题4分,共20分)11.将一副直角三角板按如图所示叠放在一起,则图中∠α的度数是.第11题图第12题图第13题图12.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D,若BC=15,且BD∶DC=3∶2,则D到边AB的距离是.13.如图所示,顶角A为120°的等腰△ABC中,DE垂直平分AB于D,若DE=2,则EC=.14.已知x2-2(m+3)x+9是一个完全平方式,则m=.15.已知1a+1b=3,求5a+7ab+5ba-6ab+b=.三、解答题:(共90分)16.(1)计算:1002-992+982-972+962-952+…+22-1;(8分)(2)计算:(1+1m +1)÷m 2-4m 2+m .(8分)(3)因式分解:-4a 2b +24ab -36b. (6分)17.(6分)作图题(不写作图步骤,保留作图痕迹).已知:如图,求作点P ,使点P 到A 、B 两点的距离相等, 且P 到∠MON 两边的距离也相等.18.(8分)如图1是一个长为2m 、宽为2n 的长方形,沿图中虚线用剪刀平均分成4个小长方形,然后按图2的形状拼成一个正方形.(1)图2中阴影部分的面积为 ;(2)观察图2,请你写出式子(m +n)2,(m -n)2,mn 之间的等量关系: ;(3)若x +y =-6,xy =2.75,则x -y = ;(4)实际上有许多恒等式可以用图形的面积来表示,如图3,它表示等式: . 19.(8分)一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,求原多边形的边数. 20.(10分)如图,在等边△ABC 中,点E 为边AB 上任意一点,点D 在边CB 的延长线上,且ED =EC.(1)当点E 为AB 的中点时(如图1),则有AE DB(填“>”“<”或“=”); (2)猜想AE 与DB 的数量关系,并证明你的猜想. 21.(10分)如图,在△ABC 中,AD 平分∠BAC , ∠C =2∠B ,试判断AB ,AC ,CD 三者之间的数量 关系,并说明理由.(想一想,你会几种方法)22.(12分)已知:如图,AD ,AE 分别是△ABC 和△ABD 的中线,且BA =BD. 求证:AE =12AC. 23.(14分)某商场用24000元购入一批空调,然后以每台3000元的价格销售,因天气炎热,空调很快售完;商场又以52000元的价格再次购入该种型号的空调,数量是第一次购入的2倍,但购入的单价上调了200元,售价每台也上调了200元. (1)商场第一次购入的空调每台进价是多少元?(2)商场既要尽快售完第二次购入的空调,又要在这两次空调销售中获得的利润率不低于22%,打算将第二次购入的部分空调按每台九五折出售,最多可将多少台空调打折出售?2016~17学年度第1学期期末教学质量检测八年级数学试题参考答案完成时间:120分钟满分:150分姓名成绩1A.120°B.115°C.110°D.105°第1题图第2题图第3题图2.小明不小心把一块三角形形状的玻璃打碎成了三块,如图①②③,他想要到玻璃店去配一块大小形状完全一样的玻璃,你认为应带()A.①B.②C.③D.①和②3.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是()A.8 B.6 C.4 D.24.如图,把一个正方形三次对折后沿虚线剪下,则所得图形大致是()第4题图第5题图第6题图5.如图,在△ABC中,∠BAC=90°,AB=3,AC=4,BC=5,EF垂直平分BC,点P为直线EF上的任一点,则AP+BP的最小值是()A.3 B.4 C.5 D.66.如图所示,△ABC是等边三角形,且BD=CE,∠1=15°,则∠2的度数为()A.15°B.30°C.45°D.60°7.平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()A.5 B.6 C.7 D.88.下列等式从左到右的变形,属于因式分解的是(B)A.a(x-y)=ax-ay B.x2-1=(x+1)(x-1)C.(x+1)(x+3)=x2+4x+3 D.x2+2x+1=x(x+2)+19.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图1),把余下的部分拼成一个矩形(如图2),根据两个图形中阴影部分的面积相等,可以验证()A.222()2a b a ab b+=++B.222()2a b a ab b-=-+C.22()()a b a b a b-=+-D.22(2)()2a b a b a ab b+-=+-10.某工厂现在平均每天比原计划每天多生产50台机器,现在生产800台机器所需时间与原计划生产600台机器所需时间相同,设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()A.800x+50=600x B.800x-50=600xC.800x=600x+50D.800x=600x-50二、填空题:(每小题4分,共20分)11.将一副直角三角板按如图所示叠放在一起,则图中∠α的度数是75°.第11题图第12题图第13题图12.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D,若BC=15,且BD∶DC=3∶2,则D到边AB的距离是6.13.如图所示,顶角A为120°的等腰△ABC中,DE垂直平分AB于D,若DE=2,则EC=8.14.已知x2-2(m+3)x+9是一个完全平方式,则m=-6或0.15.已知1a+1b=3,求5a+7ab+5ba-6ab+b=-223.三、解答题:(共90分)16.(1)计算:1002-992+982-972+962-952+…+22-1;(8分)解:原式=(1002-992)+(982-972)+(962-952)+…+(22-1)=(100+99)+(98+97)+(96+95)+…+(2+1)=(100+1)+(99+2)+(98+3)+(97+4)+…+(51+50)=50×(100+1) =5050.(2)计算:(1+1m+1)÷m2-4m2+m.(8分)解:原式=m+2m+1·m(m+1)(m+2)(m-2)=mm-2(3)因式分解:-4a2b+24ab-36b. (6分)解:原式=-4b (a2-6a+9)=-4b (a-3)2.17.(6分)作图题(不写作图步骤,保留作图痕迹).已知:如图,求作点P,使点P到A、B两点的距离相等,且P到∠MON两边的距离也相等.18.(8分)如图1是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀平均分成4个小长方形,然后按图2的形状拼成一个正方形.(1)图2中阴影部分的面积为(m-n)2;(2)观察图2,请你写出式子(m+n)2,(m-n)2,mn之间的等量关系:(m+n)2-(m-n)2=4mn;(3)若x+y=-6,xy=2.75,则x-y=±5;(4)实际上有许多恒等式可以用图形的面积来表示,如图3,它表示等式:(2a+b)(a+b)=2a2+3ab+b2.19.(8分)一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,求原多边形的边数.解:设切去一角后的多边形为n边形.根据题意有(n-2)·180°=1080°.解得n=8.因为一个多边形切去一个角后形成的多边形边数有三种可能:比原多边形边数小1、相等、大1,所以原多边形的边数可能为7、8或9.20.(10分)如图,在等边△ABC中,点E为边AB上任意一点,点D在边CB的延长线上,且ED=EC.(1)当点E为AB的中点时(如图1),则有AE =DB(填“>”“<”或“=”);(2)猜想AE与DB的数量关系,并证明你的猜想.解:当点E为AB上任意一点时,AE与DB的大小关系不会改变.理由如下:过E作EF∥BC交AC于F,∵△ABC是等边三角形,∴∠ABC=∠ACB=∠A=60°,AB=AC=BC.∴∠AEF=∠ABC=60°,∠AFE=∠ACB=60°,即∠AEF=∠AFE=∠A=60°. ∴△AEF是等边三角形.∴AE=EF=AF.∵∠ABC=∠ACB=∠AFE=60°,∴∠DBE=∠EFC=120°,∠D+∠BED=∠FCE+∠ECD=60°.∵DE=EC,∴∠D=∠ECD.∴∠BED=∠ECF.在△DEB和△ECF中,⎩⎨⎧∠DEB=∠ECF,∠DBE=∠EFC,DE=EC,∴△DEB≌△ECF(AAS).∴BD=EF=AE,即AE=BD.21.(10分)如图,在△ABC中,AD平分∠BAC,∠C=2∠B,试判断AB,AC,CD三者之间的数量关系,并说明理由.(想一想,你会几种方法)解:AB=AC+CD.理由:方法1:在AB 上截取AE =AC ,连接DE. 易证△AED ≌△ACD(SAS ), ∴ED =CD ,∠AED =∠C.∵∠AED =∠B +∠EDB , ∴∠C =∠AED =∠B +∠EDB. 又∵∠C =2∠B , ∴∠B =∠EDB. ∴BE =DE.∴AB =AE +BE =AC +DE =AC +CD.方法2:延长AC 到点F ,使CF =CD ,连接DF. ∵CF =CD , ∴∠CDF =∠F.∵∠ACB =∠CDF +∠F , ∴∠ACB =2∠F. 又∵∠ACB =2∠B , ∴∠B =∠F.又∵∠BAD =∠FAD ,AD =AD , ∴△ABD ≌△AFD(AAS ).∴AB =AF =AC +CF =AC +CD. 22.(12分)已知:如图,AD ,AE 分别是△ABC 和△ABD 的中线,且BA =BD.求证:AE =12AC.证明:延长AE 至F ,使EF =AE ,连接DF. ∵AE 是△ABD 的中线, ∴BE =DE.∵∠AEB =∠FED , ∴△ABE ≌△FDE.∴∠B =∠BDF ,AB =DF. ∵BA =BD ,∴∠BAD =∠BDA ,BD =DF.∵∠ADF =∠BDA +∠BDF ,∠ADC =∠BAD +∠B , ∴∠ADF =∠ADC.∵AD 是△ABC 的中线, ∴BD =CD. ∴DF =CD. 又∵AD =AD ,∴△ADF ≌△ADC(SAS ).∴AC =AF =2AE ,即AE =12AC.23.(14分)某商场用24000元购入一批空调,然后以每台3000元的价格销售,因天气炎热,空调很快售完;商场又以52000元的价格再次购入该种型号的空调,数量是第一次购入的2倍,但购入的单价上调了200元,售价每台也上调了200元. (1)商场第一次购入的空调每台进价是多少元?(2)商场既要尽快售完第二次购入的空调,又要在这两次空调销售中获得的利润率不低于22%,打算将第二次购入的部分空调按每台九五折出售,最多可将多少台空调打折出售?解:(1)设第一次购入的空调每台进价是x 元,依题意,得52 000x +200=2×24 000x ,解得x =2 400.经检验,x =2 400是原方程的解.答:第一次购入的空调每台进价是2 400元.(2)由(1)知第一次购入空调的台数为24 000÷2 400=10(台), 第二次购入空调的台数为10×2=20(台). 设第二次将y 台空调打折出售,由题意,得3 000×10+(3 000+200)×0.95·y +(3 000+200)·(20-y)≥(1+22%)×(24 000+52 000),解得y≤8.答:最多可将8台空调打折出售.。
2016年人教版八年级上册期末数学试卷(解析版)
2016年人教版八年级上册期末数学试卷一、选择题(共8小题,每小题3分,满分24分)1.下列每组数分别表示三根木棒的长度,将它们首尾连接后,能摆成三角形的一组是()A.1,2,6 B.2,2,4 C.1,2,3 D.2,3,42.若一个三角形三个内角度数的比为2:3:4,那么这个三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形3.如图,在△ABC中,D是BC延长线上一点,∠B=40°,∠ACD=120°,则∠A等于()A.60°B.70°C.80°D.90°4.观察下列图形,从图案看是轴对称图形的有()A.1个B.2个C.3个D.4个5.分式的值为0,则()A.x=﹣2 B.x=±2 C.x=2 D.x=06.若方程有增根,则增根可能为()A.0 B. 2 C.0或2 D. 17.如图,已知△ABC的六个元素,则下列甲、乙、丙三个三角形中和△ABC全等的图形是()A.甲B.乙C.丙D.乙与丙8.英国曼彻斯热大学的两位科学家因为成功地从石墨中分离出石墨烯,荣获诺贝尔物理学奖.石墨烯目前是世界上最薄却也是最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅0.000000000034米,将这个数用科学记数法表示为()A.0.34×10﹣5B. 3.4×10﹣4C. 3.4×10﹣14D. 3.4×10﹣11二、填空题(共8小题,每小题3分,满分24分)9.在△ABC中,AB=AC,AB的垂直平分线与AC所在的直线相交所得到锐角为40°,则∠B=.10.(3a﹣2b)()=4b2﹣9a2.11.甲从A地到B地,去时步行,返回时坐车,共用小时,若他往返都坐车,则全程只需小时,若他往返都步行,则需小时.(用a与x表示).12.一个多边形中,除一个内角外,其余各内角和是1200°,则这个角的度数是.13.若m+n=1,mn=2,则的值为.14.已知实数x,y满足|x﹣4|+(y﹣8)2=0,则以x,y的值为两边长的等腰三角形的周长是.15.三个等边三角形的位置如图所示,若∠3=50°,则∠1+∠2=°.16.观察下列各式:,,,…,根据观察计算:=(n为正整数).三、解答题(共7小题,满分72分)17.计算:(1)()100×(1)100×()2013×42014.(2)(1+)(1+)(1+)(1+)+.18.解分式方程:+=1.19.因式分解(1)n3(m﹣2)+n(2﹣m).(2)(x﹣a)(x﹣3a)+a2.20.如图,在△ABC中,AB=AC,点D、E、F分别在BC、AB、AC边上,且BE=CF,AD+EC=AB.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数.21.从甲地到乙地共50千米,其中开始的10千米是平路,中间的20千米是上坡路,余下的20千米又是平路,小明骑自行车从甲地出发,经过2小时10分钟到达甲、乙两地的中点,再经过1小时50分钟到达乙地,求小明在平路上的速度?(假设小明在平路上和上坡路上保持匀速)22.作图题(不写作法)已知:如下图所示,①作出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1三个顶点的坐标.②在x轴上确定点P,使PA+PC最小.23.已知:在△ABC中,AC=BC,∠ACB=90°,过点C作CD⊥AB于点D,点E是AB 边上一动点(不含端点A、B),连接CE,过点B作CE的垂线交直线CE于点F,交直线CD于点G(如图①).(1)求证:AE=CG;(2)若点E运动到线段BD上时(如图②),试猜想AE、CG的数量关系是否发生变化,请直接写出你的结论;(3)过点A作AH垂直于直线CE,垂足为点H,并交CD的延长线于点M(如图③),找出图中与BE相等的线段,并证明.参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.下列每组数分别表示三根木棒的长度,将它们首尾连接后,能摆成三角形的一组是()A.1,2,6 B.2,2,4 C.1,2,3 D.2,3,4考点:三角形三边关系.分析:根据三角形的三边关系:三角形两边之和大于第三边,计算两个较小的边的和,看看是否大于第三边即可.解答:解:A、1+2<6,不能组成三角形,故此选项错误;B、2+2=4,不能组成三角形,故此选项错误;C、1+2=3,不能组成三角形,故此选项错误;D、2+3>4,能组成三角形,故此选项正确;故选:D.点评:此题主要考查了三角形的三边关系,关键是掌握三角形的三边关系定理.2.若一个三角形三个内角度数的比为2:3:4,那么这个三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形考点:三角形内角和定理.分析:根据三角形的内角和定理和三个内角的度数比,即可求得三个内角的度数,再根据三个内角的度数进一步判断三角形的形状.解答:解:∵三角形三个内角度数的比为2:3:4,∴三个内角分别是180°×=40°,180°×=60°,180°×=80°.所以该三角形是锐角三角形.故选B.点评:三角形按边分类:不等边三角形和等腰三角形(等边三角形);三角形按角分类:锐角三角形,钝角三角形,直角三角形.3.如图,在△ABC中,D是BC延长线上一点,∠B=40°,∠ACD=120°,则∠A等于()A.60°B.70°C.80°D.90°考点:三角形的外角性质.分析:根据三角形的一个外角等于与它不相邻的两个内角的和,知∠ACD=∠A+∠B,从而求出∠A的度数.解答:解:∵∠ACD=∠A+∠B,∴∠A=∠ACD﹣∠B=120°﹣40°=80°.故选:C.点评:本题主要考查三角形外角的性质,解答的关键是沟通外角和内角的关系.4.观察下列图形,从图案看是轴对称图形的有()A.1个B.2个C.3个D.4个考点:轴对称图形.分析:分别沿一条直线将每个图形对折,看直线两旁的部分能否重合.解答:解:图1没有对称轴,不是轴对称图形;图2有两条对称轴,是轴对称图形;图3有两条对称轴,是轴对称图形;图4有一条对称轴,是轴对称图形.故选C.点评:本题主要考查轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称.5.分式的值为0,则()A.x=﹣2 B.x=±2 C.x=2 D.x=0考点:分式的值为零的条件.分析:分式的值为零:分子等于零,且分母不等于零.解答:解:由题意,得x2﹣4=0,且x+2≠0,解得x=2.故选:C.点评:本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.6.若方程有增根,则增根可能为()A.0 B. 2 C.0或2 D. 1考点:分式方程的增根.专题:计算题.分析:增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.本题的最简公分母是x(x﹣2),方程有增根,那么最简公分母为0,进而舍去不合题意的解即可.解答:解:∵最简公分母是x(x﹣2),方程有增根,则x(x﹣2)=0,∴x=0或x=2.去分母得:3x=a(x﹣2)+4当x=0时,﹣2a=4,a=﹣2;当x=2时,3x=4,此时x=≠2,∴增根只能为x=0,故选A.点评:增根是使分式方程的分母为0的根.所以判断增根只需让分式方程的最简公分母为0;注意应舍去不合题意的解.7.如图,已知△ABC的六个元素,则下列甲、乙、丙三个三角形中和△ABC全等的图形是()A.甲B.乙C.丙D.乙与丙考点:全等三角形的判定.分析:首先观察图形,然后根据三角形全等的判定方法(AAS与SAS),即可求得答案.解答:解:如图:在△ABC和△MNK中,,∴△ABC≌△MNK(AAS);在△ABC和△HIG中,,∴△ABC≌△HIG(SAS).∴甲、乙、丙三个三角形中和△ABC全等的图形是:乙或丙.故选D.点评:此题考查了全等三角形的判定.此题难度不大,解题的关键是注意掌握判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意数形结合思想的应用.8.英国曼彻斯热大学的两位科学家因为成功地从石墨中分离出石墨烯,荣获诺贝尔物理学奖.石墨烯目前是世界上最薄却也是最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅0.000000000034米,将这个数用科学记数法表示为()A.0.34×10﹣5B. 3.4×10﹣4C. 3.4×10﹣14D. 3.4×10﹣11考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.000000000034=3.4×10﹣11,故选:D.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.二、填空题(共8小题,每小题3分,满分24分)9.在△ABC中,AB=AC,AB的垂直平分线与AC所在的直线相交所得到锐角为40°,则∠B=65°或25°.考点:线段垂直平分线的性质;等腰三角形的性质.专题:分类讨论.分析:根据△ABC中∠A为锐角与钝角分为两种情况解答.解答:解:(1)当AB的中垂线MN与AC相交时,∵∠AMD=90°,∴∠A=90°﹣40°=50°,∵AB=AC,∴∠B=∠C=(180°﹣∠A)=65°;(2)当AB的中垂线MN与CA的延长线相交时,∴∠DAB=90°﹣40°=50°,∵AB=AC,∴∠B=∠C=∠DAB=25°.故答案为65°或25°.点评:本题考查的是线段垂直平分线的性质以及等腰三角形的性质,此类题需要注意的是要分两种情况解答,考生在考虑问题时要全面.10.(3a﹣2b)(﹣2b﹣3a)=4b2﹣9a2.考点:平方差公式.专题:计算题.分析:原式利用平方差公式的结构特征判断即可.解答:解:原式=(3a﹣2b)(﹣2b﹣3a)=4b2﹣9a2.故答案为:﹣2b﹣3a.点评:此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.11.甲从A地到B地,去时步行,返回时坐车,共用小时,若他往返都坐车,则全程只需小时,若他往返都步行,则需小时.(用a与x表示).考点:列代数式(分式).分析:根据往返都坐车,全程只需小时,可得走一趟用的时间;让去时步行,返回时坐车,用的小时减去走一趟坐车用的时间即为步行一趟用的时间,再乘以2即为往返都步行需要的时间.解答:解:(﹣×)×2=.故答案为:.点评:此题考查行程问题中的列代数式知识,得到步行一趟用的时间是解决本题的关键.12.一个多边形中,除一个内角外,其余各内角和是1200°,则这个角的度数是60°.考点:多边形内角与外角.分析:根据n边形的内角和公式,则内角和应是180°的倍数,且每一个内角应大于0°而小于180°,根据这些条件进行分析求解即可.解答:解:∵1200°÷180°=6…120°,∴该内角应是180°﹣120°=60°.故答案为60°.点评:此题主要考查多边形的内角和定理.同时要注意每一个内角都应当大于0°而小于180°.13.若m+n=1,mn=2,则的值为.考点:分式的加减法.专题:计算题.分析:原式通分并利用同分母分式的加法法则计算,将m+n与mn的值代入计算即可求出值.解答:解:∵m+n=1,mn=2,∴原式==.故答案为:点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.14.已知实数x,y满足|x﹣4|+(y﹣8)2=0,则以x,y的值为两边长的等腰三角形的周长是20.考点:等腰三角形的性质;非负数的性质:绝对值;非负数的性质:偶次方.分析:先根据非负数的性质列式求出x、y的值,再分4是腰长与底边两种情况讨论求解.解答:解:根据题意得,x﹣4=0,y﹣8=0,解得x=4,y=8,①4是腰长时,三角形的三边分别为4、4、8,∵4+4=8,∴不能组成三角形,②4是底边时,三角形的三边分别为4、8、8,能组成三角形,周长=4+8+8=20,所以,三角形的周长为20.故答案为:20;点评:本题考查了等腰三角形的性质,绝对值非负数,算术平方根非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0求出x、y的值是解题的关键,难点在于要分情况讨论并且利用三角形的三边关系进行判断.15.三个等边三角形的位置如图所示,若∠3=50°,则∠1+∠2=130°.考点:等边三角形的性质;三角形内角和定理.分析:先根据图中是三个等边三角形可知三角形各内角等于60°,用∠1,∠2,∠3表示出△ABC各角的度数,再根据三角形内角和定理即可得出结论.解答:解:∵图中是三个等边三角形,∠3=50°,∴∠ABC=180°﹣60°﹣50°=70°,∠ACB=180°﹣60°﹣∠2=120°﹣∠2,∠BAC=180°﹣60°﹣∠1=120°﹣∠1,∵∠ABC+∠ACB+∠BAC=180°,∴70°+(120°﹣∠2)+(120°﹣∠1)=180°,∴∠1+∠2=130°.故答案为:130.点评:本题考查的是等边三角形的性质,熟知等边三角形各内角均等于60°是解答此题的关键.16.观察下列各式:,,,…,根据观察计算:=(n为正整数).考点:分式的加减法.专题:压轴题;规律型.分析:根据已知条件,将每一个分数分解成两个负数,寻找抵消规律求解.解答:解:原式=(1﹣+﹣+﹣+…+﹣)=(1﹣)=.点评:本题考查的是分式的加减法,根据题意找出规律是解答此题的关键.三、解答题(共7小题,满分72分)17.计算:(1)()100×(1)100×()2013×42014.(2)(1+)(1+)(1+)(1+)+.考点:平方差公式;幂的乘方与积的乘方.专题:计算题.分析:(1)原式逆用积的乘方运算法则计算即可得到结果;(2)原式变形后,利用平方差公式计算即可得到结果.解答:解:(1)原式=(×××4)100×4=4;(2)原式=2(1﹣)(1+)(1+)(1+)(1+)+=2(1﹣)(1+)(1+)(1+)+=2(1﹣)(1+)(1+)+=2(1﹣)(1+)+=2(1﹣)+=2.点评:此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.18.解分式方程:+=1.考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:2+x(x+2)=x2﹣4,解得:x=﹣3,经检验x=﹣3是分式方程的解.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.19.因式分解(1)n3(m﹣2)+n(2﹣m).(2)(x﹣a)(x﹣3a)+a2.考点:提公因式法与公式法的综合运用.专题:计算题.分析:(1)原式提取公因式后,利用平方差公式分解即可;(2)原式整理后,利用完全平方公式分解即可.解答:解:(1)原式=n(m﹣2)(n+1)(n﹣1);(2)原式=x2﹣4a+4a2=(x﹣2a)2.点评:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.20.如图,在△ABC中,AB=AC,点D、E、F分别在BC、AB、AC边上,且BE=CF,AD+EC=AB.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数.考点:全等三角形的判定与性质;等腰三角形的判定与性质.分析:(1)通过全等三角形的判定定理SAS证得△DBE≌△ECF,由“全等三角形的对应边相等”推知DE=EF,所以△DEF是等腰三角形;(2)由等腰△ABC的性质求得∠B=∠C=(180°﹣40°)=70°,所以根据三角形内角和定理推知∠BDE+∠DEB=110°;再结合△DBE≌△ECF的对应角相等:∠BDE=∠FEC,故∠FEC+∠DEB=110°,易求∠DEF=70°.解答:(1)证明:∵AB=AC,∴∠B=∠C.∵AB=AD+BD,AB=AD+EC,∴BD=EC.在△DBE和△ECF中,,∴△DBE≌△ECF(SAS)∴DE=EF,∴△DEF是等腰三角形;(2)解:∵∠A=40°,∴∠B=∠C=(180°﹣40°)=70°,∴∠BDE+∠DEB=110°.又∵△DBE≌△ECF,∴∠BDE=∠FEC,∴∠FEC+∠DEB=110°,∴∠DEF=70°.点评:本题考查了全等三角形的判定与性质,等腰三角形的判定与性质.等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.21.从甲地到乙地共50千米,其中开始的10千米是平路,中间的20千米是上坡路,余下的20千米又是平路,小明骑自行车从甲地出发,经过2小时10分钟到达甲、乙两地的中点,再经过1小时50分钟到达乙地,求小明在平路上的速度?(假设小明在平路上和上坡路上保持匀速)考点:分式方程的应用.分析:设小明在平路上的速度为x千米/小时,上坡时的速度为y千米/小时,根据前半段路程走了2小时10分钟,后半段路程走了1小时50分钟,列方程求解.解答:解:设小明在平路上的速度为x千米/小时,上坡时的速度为y千米/小时,由题意得,,解得:.经检验,x=15和y=10是原分式方程的解.答:小明在平路上的速度为15千米/小时,上坡时的速度为10千米/小时.点评:本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.22.作图题(不写作法)已知:如下图所示,①作出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1三个顶点的坐标.②在x轴上确定点P,使PA+PC最小.考点:作图-轴对称变换;轴对称-最短路线问题.分析:(1)得出△ABC关于y轴对称的△A1B1C1,对应点的坐标,进而连接各点得出即可;(2)作A关于x轴的对称点A′,进而连接A′C交x轴于点P,P点即为所求.解答:解:(1)如图所示:△A1B1C1为所求,△A1B1C1三个顶点的坐标为:A1(﹣4,3),B1(﹣3,1),C1(﹣1,2).(2)如图所示:P点即为所求.点评:此题主要考查了轴对称最短路线以及作轴对称图形,正确得出各对应点坐标是解题关键.23.已知:在△ABC中,AC=BC,∠ACB=90°,过点C作CD⊥AB于点D,点E是AB 边上一动点(不含端点A、B),连接CE,过点B作CE的垂线交直线CE于点F,交直线CD于点G(如图①).(1)求证:AE=CG;(2)若点E运动到线段BD上时(如图②),试猜想AE、CG的数量关系是否发生变化,请直接写出你的结论;(3)过点A作AH垂直于直线CE,垂足为点H,并交CD的延长线于点M(如图③),找出图中与BE相等的线段,并证明.考点:全等三角形的判定与性质;线段垂直平分线的性质;等腰三角形的性质.分析:(1)如图①,根据等腰直角三角形的性质可以得出∠BCD=∠ACD=45°,根据直角三角形的三角形的性质就可以得出∠CBF=∠ACE,由ASA就可以得出△BCG≌△CAE,就可以得出结论;(2)如图②,根据等腰直角三角形的性质可以得出∠BCD=∠ACD=45°,根据直角三角形的三角形的性质就可以得出∠CBF=∠ACE,由ASA就可以得出△BCG≌△CAE,就可以得出结论;(3)如图③,根据等腰直角三角形的性质可以得出∠BCD=∠ACD=45°,根据直角三角形的三角形的性质就可以得出∠CBF=∠ACE,由ASA就可以得出△BCG≌△CAE,就可以得出结论;解答:解:(1)∵AC=BC,∴∠ABC=∠CAB.∵∠ACB=90°,∴∠ABC=∠A=45°,∠ACE+∠BCE=90°.∵BF⊥CE,∴∠BFC=90°,∴∠CBF+∠BCE=90°,∴∠ACE=∠CBF∵在RT△ABC中,CD⊥AB,AC=BC,∴∠BCD=∠ACD=45°∴∠A=∠BCD.在△BCG和△ACE中,∴△BCG≌△ACE(ASA),∴AE=CG;(2)不变.AE=CG.理由:∵AC=BC,∴∠ABC=∠CAB.∵∠ACB=90°,∴∠ABC=∠A=45°,∠ACE+∠BCE=90°.∵BF⊥CE,∴∠BFC=90°,∴∠CBF+∠BCE=90°,∴∠ACE=∠CBF∵在RT△ABC中,CD⊥AB,AC=BC,∴∠BCD=∠ACD=45°∴∠A=∠BCD.在△BCG和△ACE中,∴△BCG≌△ACE(ASA),∴AE=CG;(3)BE=CM,:∵AC=BC,∴∠ABC=∠CAB.∵∠ACB=90°,∴∠ABC=∠A=45°,∠ACE+∠BCE=90°.∵AH⊥CE,∴∠AHC=90°,∴∠HAC+∠ACE=90°,∴∠BCE=∠HAC.∵在RT△ABC中,CD⊥AB,AC=BC,∴∠BCD=∠ACD=45°∴∠ACD=∠ABC.在△BCE和△CAM中,∴△BCE≌△CAM(ASA),∴BE=CM.点评:本题考查了等腰直角三角形的性质的运用,等式的性质的运用,线段垂直平分线的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.。
人教版八年级数学上 学期期末考试.docx
初中数学试卷桑水出品2015—2016学年度上学期期末考试八年级数学试题 2016.01注意事项:1.答题前,请先将自己的姓名、考场、考号在卷首的相应位置填写清楚;2.选择题答案涂在答题卡上,非选择题用蓝色、黑色钢笔或圆珠笔直接写在试卷上.第Ⅰ卷(选择题共36分)一、选择题(每小题3分,共36分)请将唯一正确答案的代号填涂在答题卡...上1.下列交通标志图案是轴对称图形的是2. 当x_______时,分式21+-xx有意义A.1≠x B.2-=x C.2-≠x D.0≠x3. 下列各式运算中,正确的是A.22aaa=⋅ B.532)(aa= C.632aaa=⋅ D.24224)2(baba=-4. 利用平方差公式计算(2x-5)(-2x-5)的结果正确的是A.25-4x2B.4x2-25 C.4x2-5 D.4x2+255.如图所示,ABE∆≌ACD∆,若︒=∠︒=∠75,70AEBB,则CAE∠为A.︒75 B.︒70 C.︒35 D.︒56. 下列各式中,是完全平方式的是A .m 2-mn +n 2B .x 2-2x -1C .41b 2-ab +a 2D .x 2+2x +41 7. 如图AB =AC ,∠AEB =∠ADC =90°,则判断△ABE ≌△ACD 的方法是A .AASB .HLC .SSSD .SAS8. 如图,在△ABC 中,已知∠ABC =46°,∠ACB =80°,延长BC 至D ,使CD =CA ,连接AD ,则∠BAD 的度数A .︒54B .︒100C .︒94D .︒40 9. 下列各种说法正确的是A .面积相等的两个三角形一定全等B .周长相等的两个三角形一定全等C .顶角相等的两个等腰三角形一定全等D .底边相等的两个等腰直角三角形一定全等10. 多项式1)1)(1(-+-+m m m 提取公因式后,余下的部分是A .1+mB .2+mC .2D .m 211. 当3=a 时,化简121112+-÷⎪⎭⎫ ⎝⎛-+a a a a 的结果是 A. 2 B. 3 C. 4 D. 5 12. 对于非零实数a 、b ,规定11a b b a ⊗=-.若2(21)1x ⊗-=,则x 的值为 A.21- B.65 C.65- D.56- 第Ⅱ卷(非选择题 共84分)题号 二 三Ⅱ卷总分20 2122 23 24 25 26 得分二、填空题(本题共7个小题,每小题3分,共21分)请将答案直接写在题中横线上13. 若1)4(0=+a ,则实数a 的取值范围是__________________________.14.计算:342______.a a -⋅= 15的实际时刻是__________.16. 等边ABC ∆的两条角平分线BD 和CE 交于点O ,则BOC ∠等于_______度.(第4题图)(第4题图)(第5题图) (第7题图) (第8题图)(第4题图)(第15题图)17. 化简:=--ab ab b a 22______________ . 18. 如图(1)是一个长为2m ,宽为2n (m >n )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是 .19.如图,在△ABC 中,P 、Q 分别是BC 、AC 上的点,作PR ⊥AB ,PS ⊥AC ,垂足分别为R 、S ,若AQ =PQ ,PR =PS ,则下列四个结论:①PA 平分∠BAC ;②AS =AR ;③QP ∥AR ;④△BRP ≌△CSP ,其中结论正确的的序号为 (请将你认为正确的序号都填上)三、解答题(本题共7个小题,共63分)20.(本题满分8分) 分解因式:(1))(4)(922x y b y x a -+-;(2)xy y x y x 4423+-.21.(本题满分8分) 如图,在平面直角坐标系中完成下列各题:(不写作法,保留作图痕迹) (1)在图1中作出ABC ∆关于y 轴对称的111C B A ∆,并写出1A 、1B 、1C 的坐标;(2)在图2中x 轴上画出点P ,使PB PA +的值最小.得分 评卷人得分 评卷人(第19题图)(第18题图)22.(本题满分8分) 计算:(1))2)(2()(2x y x y y x -+--;(2)化简:2211()a a a a a+-+÷.23.(本题满分8分) 解分式方程:xx x -=--+13211小明遇到这样一个问题:如图1,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB,试判断BC和AC、AD之间的数量关系.小明发现,利用轴对称做一个变化,在BC上截取CA′=CA,连接DA′,得到一对全等的三角形,从而将问题解决(如图2).(1)求证:△ADC≌△A′DC;(2)试猜想写出BC和AC、AD之间的数量关系,并给出证明.得分评卷人(第24题图)某超市用3000元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克.(1)该种干果的第一次进价是每千克多少元?(2)如果超市按每千克9元的价格出售,当大部分干果售出后,余下的600千克按售价的8折售完,超市销售这种干果共盈利多少元?得分评卷人26. (本题满分12分)已知,△ABC是边长为4cm的等边三角形,点P,Q分别从顶点A,B同时出发,沿线段AB,BC运动,且它们的速度均为1cm/s.当点P到达点B时,P、Q两点停止运动.设点P的运动时间为t(s).(1)如图1,连接AQ、CP,相交于点M,则点P,Q在运动的过程中,∠CMQ会变化吗?若变化,则说明理由;若不变,请求出它的度数.(2)如图2,当t为何值时,△PBQ是直角三角形?(3)如图3,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,请直接写出∠CMQ度数.(第26题图)2015-2016学年度上学期期末考试八年级数学参考答案一、选择题(每小题3分,共36分)1~5BCDAD 6~10 CACDB 11~12 AB二、填空题(每小题3分,共21分)13.4-≠a 14.a 2-15. 15:01 16.120 17.ab - 18.2)(n m - 19.①②③ 三、解答题(共计63分) 20.(1))49)(()(4)(92222b a y x x y b y x a --=-+-…………………………2分 )23)(23)((b a b a y x -+-=………………………4分)44(44223+-=+-x x xy xy y x y x …………………2分2)2(-=x xy ……………………4分21.画图正确各2分……………………4分由图可知,A 1(-1,2),B 1(-3,1),C 1(2,-1);(写对1个得1分)………7分 正确标出P 点位置1分……………………8分22.解:(1))2)(2()(2x y x y y x -+-- )4(22222x y y xy x --+-=.....................................................2分222242x y y xy x +-+-=xy x 252-=....................................4分 )1)1()1(1)12(222-+⨯+=-÷++a a a a a a a a a a ()解:(.........................2分11-+=a a ............................4分 23.解: 方程两边同乘以)1(-x ,得 3)1(21-=--+x x ……………2分解得:6=x ……………………6分检验:当6=x 时,05161≠=-=-x ,…………7分所以6=x 是原方程的解…………8分24.解:(1)证明:∵CD 平分∠ACB , ∴∠ACD =∠A′CD ,...................1分在△ADC 和△A′DC 中,,...................3分∴△ADC ≌△A′DC (SAS );...................4分(2)BC=AC+AD ;...................5分 理由如下:由(1)得:△ADC ≌△A′DC ,∴DA′=DA ,∠CA′D=∠A=60°,...................6分∵∠ACB=90°, ∴∠B=90°﹣∠A=30°,∵∠CA′D=∠B+∠BDA′,∠BDA′=30°=∠B ,∴DA′=BA′,∴BA′=AD ,...................8分∴BC=CA′+BA′=AC+AD ;...................9分25.(本小题满分10分)解:(1)设该种干果的第一次进价是每千克x 元,则第二次进价是每千克(1+20%)x 元,....................................................................1分由题意,得30030002%)201(9000+⨯=+xx ,................................3分 解得x =5,........................................................................................4分经检验x =5是方程的解................................................................5分答:该种干果的第一次进价是每千克5元;.................................................6分(2)[600%)201(5900053000-+⨯+]×9+600×9×80%-(3000+9000)....8分 =(600+1500-600)×9+4320-12000—————————— 新学期 新成绩 新目标 新方向 ——————————桑水 =5820(元).答:超市销售这种干果共盈利5820元......................................................10分26. (本小题满分12分)解:(1)不变. ………………………………………………………1分在△ABQ 与△CAP 中,∴△ABQ ≌△CAP(SAS) ……………………2分∴∠BAQ =∠ACP , …………………3分∴∠CMQ =∠ACP +∠C A M=∠BAQ +∠CAM =∠BAC =60°.……………4分(2)设时间为t ,则AP =BQ =t ,PB=4﹣t①当∠PQB =90°时,∵∠B =60°,∴PB =2BQ , ………………………………………………5分 ∴4﹣t=2t ,43t ; ………………………………………………7分 ②当∠BPQ =90°时,∵∠B=60°,∴BQ =2BP , ………………………………………………8分 ∴ t=2(4﹣t ),t=83; ………………………………………………10分 ∴当第43秒或第83秒时,△PBQ 为直角三角形. ……………………………11分 (3)∠CMQ =120°. ……………………………………………………12分。
度人教版数学八年级上学期期末考试试题
四川省内江市2015-2016学年度八年级数学上学期期末考试试题第Ⅰ卷(选择题 共48分)一、选择题(本大题共12小题,每小题4分,共48分,在每小题给出的A 、B 、C 、D 四个选项中,只有一项是符合题目要求的)A .±3 B.3 C. ±9 D.9 2.下列计算正确的是A.224)8a a =(B.236326a a a ⋅=C.3864)()a a =(D.32()()a a a -÷-=3.下列四组线段中,可以构成直角三角形的是A.4,5,6B.13 C.2,3,4 D.1.5,2,2.54.下列各式不能分解因式的是A.224x x -B.21m - C.214x x ++D.229x y +5.下列各命题中,逆命题是真命题的是A.全等三角形的对应角相等B.如果两个数相等,那么它们的绝对值相等C.有理数是实数D.直角三角形的两个锐角互余 6.如图,△ABC 和△DEF 中,AB =DE ,∠B =∠DEF ,添加下列哪一个条件无法证明△ABC ≌△DEF A.AC ∥DF B. ∠A =∠D C.AC =DF D. ∠ACB =∠F 7.某棉纺厂为了解一批棉花的质量,从中随机抽取了20根棉花纤维进行测量,其长度x (单位:mm )的数据分布如下表,则棉花纤维长度的数据在8≤x <32这个范围的频率为A.0.8B.0.7C.0.4D.0.28.计算20132012201121 1.53-⨯-⨯()()的结果是 A.23- B.23 C.32D.32-9.有一个数值转换器,程序如图所示,当输入的数为81时,输出的数y 的值是A.9B.3FE D B A10.已知2a b +=,则224a b b -+的值是 A.2 B.4 C.3 D.611.请你计算:21)(1),(1)(1)x x x x x -+-++(···,猜想21)(1)n x x x x -+++⋅⋅⋅+(的结果是A.11n x ++B.1n x -C.1n x +D.11n x +- 12.如图,在长方形ABCD 中,AB =1,E ,F 分别为AD 、CD 的中点,沿BE 将△ABE 折叠,若点A 恰好落在BF 上,则AD 的长度为 A.32第Ⅱ卷(非选择题 共72分)二、填空题(本大题4小题,每小题4分,共16分,请将最后答案直接填在题中横线上)的值为_________;14.分解因式:2221632x xy y -+=____________________________;15.若a 、b 、c 是△ABC 的三边,且5a cm =,12b cm =,13c cm =则△ABC 最大边上的高为_____cm .16.如图所示,点P 1、P 2、···P 8在∠A 的边上,若AP 1=P 1P 2=P 2P 3=···=P 6P 7=P 7P 8=P 8A ,则∠A 的度数是_______.三、解答题(本大题共有6个小题,共56分,解答时应写出必要的文字说明或演算步骤)17.(本小题满分8分)(1)计算:2322332)()()42m n mn mn ⋅-÷-((2)先化简,再求值:2(2)(2)(2)4x y x y x y xy +--+-,其中2015,1x y ==-A ′FE D CBA P 8P 7P 6P 5P 4P 3P 2P 1A18.(本小题满分8分)如图,在离水面高度为5米的岸上,有人用绳子拉船靠岸,开始时绳子BC 的长为13米,此人以0.5米每秒的速度收绳,10秒后船移动到点D 的位置,问船向岸边移动了多少米?(假设绳子是直的,结果保留根号)19.(本小题满分8分)目前“校园手机”现象越来越受到社会关注,针对这种现象,某中学八年级数学兴趣小组的同学随机调查了学校若干名家长对“中学生带手机”现象的看法,统计整理并制作了如下的统计图:(1)求这次调查的家长总数为多少?家长表示“不赞同”的人数为多少?(2)求图○2中表示家长“无所谓”的扇形圆心角的度数.很赞同20%无 所 谓不赞同赞同60%赞同所谓同赞同○1 ○220.(本小题满分10分)如图,△ABC 中,AB =BC ,BE ⊥AC 于点E ,AD ⊥BC 于点D ,∠BAD =45°,AD 与BE 交于点F .(1)求证:△ADC ≌△BDF ;(2)求证:BF =2AE .21.(本小题满分10分)22222222222234=586=10158=172410=26++++ ···(1)请你按以上规律写出接下来的第五个式子;(2)以22(1),2,(1)n n n -+(其中n >1)为三边长的三角形是否为直角三角形?请说明理由.22.(本小题满分12分)如图,已知Rt △ABC 中,∠C =90°,∠A =60°,AB =6cm ,AC =3cm ,点P 在线段AC 上以1cm /s 的速度由点C 向点A 运动,同时,点Q 在线段AB 上以2cm /s 的速度由点A 向点B 运动,设运动时间为t (s ).(1)当t =1时,判断△APQ 的形状;(可直接写出结论)(2)是否存在时刻t ,使△APQ 与△CQP 全等?若存在,请求出t 的值,并加以证明;若不F EDA B C存在,请说明理由;(3)若点P 、Q 以原来的运动速度分别从点C 、A 出发,都顺时针沿△ABC 三边运动,则经过几秒后(结果可带根号),点P 与点Q 第一次在哪一边上相遇?并求出在这条边的什么位置.备用图P A BC。
人教版数学八年级上册期末考试试卷附答案
人教版数学八年级上册期末考试试题一、选择题(每小题只有一个正确答案。
每小题2分,共12分)1.(2分)下列平面图形中,不是轴对称图形的是()A.B.C.D.2.(2分)计算(﹣2x2y)3的结果是()A.﹣2x5y3B.﹣8x6y3C.﹣2x6y3D.﹣8x5y33.(2分)如果代数式有意义,那么x的取值范围是()A.x≥0B.x≠1C.x>0D.x≥0且x≠1 4.(2分)一个三角形的三条边长分别为1、2、x,则x的取值范围是()A.1≤x≤3B.1<x≤3C.1≤x<3D.1<x<3 5.(2分)如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A.180°B.220°C.240°D.300°6.(2分)如图,已知∠1=∠2,∠B=∠C,下列结论:(1)AB=AC;(2)∠BAE=∠CAD;(3)BE=DC;(4)AD=DE.中正确的个数是()A.1B.2C.3D.4二、填空题(每小题3分,共24分)7.(3分)芝麻作为食品和药物,均广泛使用.经测算,一粒芝麻约有0.00000201千克,用科学记数法表示为.8.(3分)因式分解:ax2﹣ay2=.9.(3分)已知等腰三角形两边的长分别是9和4,则它的周长为.10.(3分)如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,需添加一个条件是.(只需添加一个条件即可)11.(3分)如图是某超市一层到二层滚梯示意图.其中AB、CD分别表示超市一层、二层滚梯口处地面的水平线,∠ABC=150°,BC的长约为12米,则乘滚梯从点B到点C上升的高度h约为米.12.(3分)将一副直角三角板如图摆放,点C在EF上,AC经过点D.已知∠A=∠EDF =90°,AB=AC.∠E=30°,∠BCE=40°,则∠CDF=.13.(3分)计算+的结果是.14.(3分)如图,在△ABC中,CD是它的角平分线,DE⊥AC于点E.若BC=6cm,DE =2cm,则△BCD的面积为cm2.三、解答题(每题5分,共20分)15.(5分)计算:(π﹣3.14)0+()﹣1﹣|﹣2|﹣(﹣1)2020.16.(5分)计算:(a+3)(a﹣1)+a(a﹣2)17.(5分)已知一个多边形的内角和与外角和之比为9:2,求它的边数.18.(5分)解分式方程:﹣=1.四、解答题(每小题7分,共28分)19.(7分)如图,在平面直角坐标系中.(1)请画出△ABC关于y轴对称的△AB1C1,并写出B1、C1的坐标;=;(2)直接写出△ABC的面积:S△ABC(3)在x轴上找到一点P,使PA+PC的值最小,请标出点P在坐标轴上的位置.20.(7分)如图,已知点A、F、E、C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.21.(7分)已知:a+b=4,ab=2,求下列式子的值:①a2+b2②(a﹣b)222.(7分)如图所示,在△ABC中,BO,CO分别平分∠ABC和∠ACB;BD、CD分别平分∠ABC和∠ACB的外角.(1)若∠BAC=70°,求:∠BOC的度数;(2)探究∠BDC与∠A的数量关系.(直接写出结论,无需说明理由)五、解答题(每小题8分,共16分)23.(8分)学校在假期内对教室内的黑板进行整修,需在规定日期内完成.如果由甲工程小组做,恰好按期完成;如果由乙工程小组做,则要超过规定日期3天.结果两队合作了2天,余下部分由乙组独做,正好在规定日期内完成,问规定日期是几天?24.(8分)如图1,等边△ABC中,AD是BC边上的中线,E为AD上一点(点E与点A 不重合),以CE为一边且在CE下方作等边△CEF,连接BF.(1)猜想线段AE,BF的数量关系:(不必证明);(2)当点E为AD延长线上一点时,其它条件不变.①请你在图2中补全图形;②(1)中结论成立吗?若成立,请证明;若不成立请说明理由.六、解答题(每小题10分,共20分)25.(10分)如图①所示,从边长为a的正方形纸片中剪去一个边长为b的小正方形,再沿虚线AB剪开,把剪成的两张纸片拼成如图②所示的等腰梯形.(1)设图①中阴影部分的面积为S1,图②中阴影部分面积为S2,请直接用含a,b的式子表示S1和S2.(2)请写出上述过程中所揭示的乘法公式;(3)用这个乘法公式计算:①(x﹣)(x+)(x2+);②107×93.26.(10分)在△ABC中,AB=AC=2,∠B=40°,D是线段BC上一动点(不与B、C 两点重合),且∠ADE=40°.(1)若∠BDA=115°,则∠CDE=,∠AED=;(2)当DC等于多少时,△ABD≌△DCE?试说明理由;(3)在D点运动过程中,能使△ADE是等腰三角形吗?若能,请求出使△ADE是等腰三角形时的∠ADB的度数;若不能,请说明理由.答案与解析一、单项选择题1.(2分)下列平面图形中,不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析.【解答】解:A、是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项不合题意;C、不是轴对称图形,故此选项符合题意;D、是轴对称图形,故此选项不合题意;故选:C.【点评】此题主要考查了轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.(2分)计算(﹣2x2y)3的结果是()A.﹣2x5y3B.﹣8x6y3C.﹣2x6y3D.﹣8x5y3【分析】积的乘方法则,把每一个因式分别乘方,再把所得的幂相乘,据此求解即可.【解答】解:(﹣2x2y)3=(﹣2)3(x2)3y3=﹣8x6y3.故选:B.【点评】本题主要考查了幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键.3.(2分)如果代数式有意义,那么x的取值范围是()A.x≥0B.x≠1C.x>0D.x≥0且x≠1【分析】代数式有意义的条件为:x﹣1≠0,x≥0.即可求得x的范围.【解答】解:根据题意得:x≥0且x﹣1≠0.解得:x≥0且x≠1.故选:D.【点评】式子必须同时满足分式有意义和二次根式有意义两个条件.分式有意义的条件为:分母≠0;二次根式有意义的条件为:被开方数≥0.此类题的易错点是忽视了二次根式有意义的条件,导致漏解情况.4.(2分)一个三角形的三条边长分别为1、2、x,则x的取值范围是()A.1≤x≤3B.1<x≤3C.1≤x<3D.1<x<3【分析】已知两边,则第三边的长度应是大于两边的差而小于两边的和,这样就可求出第三边长的范围.【解答】解:根据题意得:2﹣1<x<2+1,即1<x<3.故选:D.【点评】考查了三角形三边关系,本题需要理解的是如何根据已知的两条边求第三边的范围.5.(2分)如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A.180°B.220°C.240°D.300°【分析】本题可先根据等边三角形顶角的度数求出两底角的度数和,然后在四边形中根据四边形的内角和为360°,求出∠α+∠β的度数.【解答】解:∵等边三角形的顶角为60°,∴两底角和=180°﹣60°=120°;∴∠α+∠β=360°﹣120°=240°;故选:C.【点评】本题综合考查等边三角形的性质及三角形内角和为180°,四边形的内角和是360°等知识,难度不大,属于基础题6.(2分)如图,已知∠1=∠2,∠B=∠C,下列结论:(1)AB=AC;(2)∠BAE=∠CAD;(3)BE=DC;(4)AD=DE.中正确的个数是()A.1B.2C.3D.4【分析】先证AB=AC,再证△ABE≌△ACD(AAS)得AD=AE,BE=CD,∠BAE =∠CAD,即可得出结论.【解答】解:∵∠B=∠C,∴AB=AC,故(1)正确;在△ABE和△ACD中,,∴△ABE≌△ACD(AAS),∴AD=AE,BE=CD,∠BAE=∠CAD,故(2)(3)正确,(4)错误,正确的个数有3个,故选:C.【点评】本题考查了全等三角形的判定与性质、等腰三角形的判定等知识,熟练掌握全等三角形的判定与性质是本题的关键.二、填空题(每小题3分,共24分)7.(3分)芝麻作为食品和药物,均广泛使用.经测算,一粒芝麻约有0.00000201千克,用科学记数法表示为 2.01×10﹣6.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000201=2.01×10﹣6.故答案为:2.01×10﹣6.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.(3分)因式分解:ax2﹣ay2=a(x+y)(x﹣y).【分析】首先提取公因式a,再利用平方差公式分解因式得出答案.【解答】解:ax2﹣ay2=a(x2﹣y2)=a(x+y)(x﹣y).故答案为:a(x+y)(x﹣y).【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用平方差公式是解题关键.9.(3分)已知等腰三角形两边的长分别是9和4,则它的周长为22.【分析】因为等腰三角形的两边分别为4和9,但没有明确哪是底边,哪是腰,所以有两种情况,需要分类讨论.【解答】解:当4为底时,其它两边都为9,即:9、9、4可以构成三角形,周长为22;当4为腰时,其它两边为9和4,因为4+4=8<9,所以不能构成三角形,故舍去.所以答案只有22.故答案为:22.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.10.(3分)如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,需添加一个条件是∠D=∠B.(只需添加一个条件即可)【分析】利用全等三角形的判定与性质进而得出当∠D=∠B时,△ADF≌△CBE.【解答】解:当∠D=∠B时,在△ADF和△CBE中∵,∴△ADF≌△CBE(SAS),故答案为:∠D=∠B.(答案不唯一)11.(3分)如图是某超市一层到二层滚梯示意图.其中AB、CD分别表示超市一层、二层滚梯口处地面的水平线,∠ABC=150°,BC的长约为12米,则乘滚梯从点B到点C上升的高度h约为6米.【分析】先过点C作CE⊥AB,交AB的延长线于E,易求∠CBE=30°,在Rt△BCE中可知CE=BC,进而可求CE.【解答】解:过点C作CE⊥AB,交AB的延长线于E,如右图,∵∠ABC=150°,∴∠CBE=30°,在Rt△BCE中,∵BC=12,∠CBE=30°,∴CE=BC=6.故答案是6.【点评】本题考查了含30°角的直角三角形的性质,解题的关键是作辅助线构造直角三角形.12.(3分)将一副直角三角板如图摆放,点C在EF上,AC经过点D.已知∠A=∠EDF =90°,AB=AC.∠E=30°,∠BCE=40°,则∠CDF=25°.【分析】由∠A=∠EDF=90°,AB=AC.∠E=30°,∠BCE=40°,可求得∠ACE的度数,又由三角形外角的性质,可得∠CDF=∠ACE﹣∠F=∠BCE+∠ACB﹣∠F,继而求得答案.【解答】解:∵AB=AC,∠A=90°,∴∠ACB=∠B=45°,∵∠EDF=90°,∠E=30°,∴∠F=90°﹣∠E=60°,∵∠ACE=∠CDF+∠F,∠BCE=40°,∴∠CDF=∠ACE﹣∠F=∠BCE+∠ACB﹣∠F=45°+40°﹣60°=25°.故答案为:25°.13.(3分)计算+的结果是.【分析】利用分式加减法的计算方法进行计算即可.【解答】解:原式=﹣===,故答案为:.14.(3分)如图,在△ABC中,CD是它的角平分线,DE⊥AC于点E.若BC=6cm,DE =2cm,则△BCD的面积为6cm2.【分析】作DF⊥BC于F,根据角平分线的性质求出DF,根据三角形的面积公式计算即可.【解答】解:作DF⊥BC于F,∵CD是它的角平分线,DE⊥AC,DF⊥BC,∴DF=DE=2,∴△BCD的面积=×BC×DF=6(cm2),故答案为:6.【点评】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.三、解答题(每题5分,共20分)15.(5分)计算:(π﹣3.14)0+()﹣1﹣|﹣2|﹣(﹣1)2020.【分析】先算零指数幂、负整数指数幂、绝对值、乘方,再算加减法即可求解.【解答】解:(π﹣3.14)0+()﹣1﹣|﹣2|﹣(﹣1)2020=1+2﹣2﹣1=0.【点评】考查了实数的运算,解决此类题目的关键是熟练掌握零指数幂、负整数指数幂、绝对值、乘方等知识点的运算.16.(5分)计算:(a+3)(a﹣1)+a(a﹣2)【分析】根据整式混合运算的顺序和法则分别进行计算,再把所得结果合并即可.【解答】解:(a+3)(a﹣1)+a(a﹣2)=a2+2a﹣3+a2﹣2a=2a2﹣3;【点评】此题考查了整式的混合运算,在计算时要注意混合运算的顺序和法则以及运算结果的符号,是一道基础题.17.(5分)已知一个多边形的内角和与外角和之比为9:2,求它的边数.【分析】根据多边形的内角和与外角和之间的关系列出有关边数n的方程求解即可.【解答】解:设该多边形的边数为n则(n﹣2)×180°:360=9:2,解得:n=11.故它的边数为11.【点评】本题考查了多边形的内角与外角,解题的关键是牢记多边形的内角和公式与外角和定理.18.(5分)解分式方程:﹣=1.【分析】先去分母,再解整式方程,一定要验根.【解答】解:﹣=1(x+1)2﹣4=x2﹣1x2+2x+1﹣4=x2﹣1x=1,检验:把x=1代入x2﹣1=1﹣1=0,∴x=1不是原方程的根,原方程无解.【点评】本题考查了解分式方程,掌握分式方程一定要验根是解题的关键.四、解答题(每小题7分,共28分)19.(7分)如图,在平面直角坐标系中.(1)请画出△ABC关于y轴对称的△AB1C1,并写出B1、C1的坐标;=5;(2)直接写出△ABC的面积:S△ABC(3)在x轴上找到一点P,使PA+PC的值最小,请标出点P在坐标轴上的位置.【分析】(1)利用关于y轴对称的点的坐标特征写出B1、C1的坐标,然后描点即可;(2)用一个矩形的面积分别减去三个直角三角形的面积去计算△ABC的面积;(3)作A点关于x轴的对称点A′,然后连接A′C交x轴于P点.【解答】解:(1)如图,△AB1C1为所作,B1(﹣2,﹣4),C1(﹣4,﹣1);=3×4﹣×2×2﹣×2×3﹣×4×1=5;(2)S△ABC故答案为5;(3)如图,点P为所作.【点评】本题考查了作图﹣轴对称变换:几何图形都可看做是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的.也考查了最短路径问题.20.(7分)如图,已知点A、F、E、C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.【分析】(1)根据题目所给条件可分析出△ABE≌△CDF,△AFD≌△CEB;(2)根据AB∥CD可得∠1=∠2,根据AF=CE可得AE=FC,然后再证明△ABE≌△CDF即可.【解答】解:(1)△ABE≌△CDF,△AFD≌△CEB;(2)∵AB∥CD,∴∠1=∠2,∵AF=CE,∴AF+EF=CE+EF,即AE=FC,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS).【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.21.(7分)已知:a+b=4,ab=2,求下列式子的值:①a2+b2;②(a﹣b)2.【分析】①根据(a+b)2=a2+2ab+b2,可得a2+b2=(a+b)2﹣2ab,再把a+b=4,ab=2代入计算即可;②根据(a﹣b)2=a2﹣2ab+b2=(a+b)2﹣4ab,再把a+b=4,ab=2代入计算即可.【解答】解:∵a+b=4,ab=2,∴①a2+b2=(a+b)2﹣2ab=42﹣2×2=16﹣4=12;②(a﹣b)2=a2﹣2ab+b2=(a+b)2﹣4ab=42﹣4×2=16﹣8=8.【点评】本题考查完全平方公式的应用,根据题中条件,变换形式即可.22.(7分)如图所示,在△ABC中,BO,CO分别平分∠ABC和∠ACB;BD、CD分别平分∠ABC和∠ACB的外角.(1)若∠BAC=70°,求:∠BOC的度数;(2)探究∠BDC与∠A的数量关系.(直接写出结论,无需说明理由)【分析】(1)根据三角形的角平分线定义和三角形的内角和定理求出∠OBC+∠OCB的度数,再根据三角形的内角和定理即可求出∠BOC的度数;(2)根据三角形外角平分线的性质可得∠BCD=(∠A+∠ABC)、∠DBC=(∠A+∠ACB);根据三角形内角和定理可得∠BDC=90°﹣∠A.【解答】解:(1)∵OB、OC分别是∠ABC和∠ACB的角平分线,∴∠OBC+∠OCB=∠ABC+∠ACB=(∠ABC+∠ACB),∵∠A=70°,∴∠OBC+∠OCB=(180°﹣70°)=55°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣55°=125°;(2)∠BDC=90°﹣∠A.理由如下:∵BD、CD为△ABC两外角∠ABC、∠ACB的平分线,∴∠BCD=(∠A+∠ABC)、∠DBC=(∠A+∠ACB),由三角形内角和定理得,∠BDC=180°﹣∠BCD﹣∠DBC,=180°﹣[∠A+(∠A+∠ABC+∠ACB)],=180°﹣(∠A+180°),=90°﹣∠A;【点评】本题考查的是三角形内角和定理,涉及到三角形内角与外角的关系,角平分线的性质,三角形内角和定理,结合图形,灵活运用基本知识解决问题.五、解答题(每小题8分,共16分)23.(8分)学校在假期内对教室内的黑板进行整修,需在规定日期内完成.如果由甲工程小组做,恰好按期完成;如果由乙工程小组做,则要超过规定日期3天.结果两队合作了2天,余下部分由乙组独做,正好在规定日期内完成,问规定日期是几天?【分析】由题意可知甲的工作效率=1÷规定日期,乙的工作效率=1÷(规定日期+3);根据“结果两队合作了2天,余下部分由乙组独做,正好在规定日期内完成”可知甲做两天的工作量+乙做规定日期的工作量=1,由此可列出方程.【解答】解:设规定日期为x天,根据题意,得2(+)+×(x﹣2)=1解这个方程,得x=6经检验,x=6是原方程的解.∴原方程的解是x=6.答:规定日期是6天.【点评】找到关键描述语,找到等量关系是解决问题的关键.本题主要考查的等量关系为:工作时间=工作总量÷工作效率,当题中没有一些必须的量时,为了简便,应设其为1.24.(8分)如图1,等边△ABC中,AD是BC边上的中线,E为AD上一点(点E与点A 不重合),以CE为一边且在CE下方作等边△CEF,连接BF.(1)猜想线段AE,BF的数量关系:AE=BF(不必证明);(2)当点E为AD延长线上一点时,其它条件不变.①请你在图2中补全图形;②(1)中结论成立吗?若成立,请证明;若不成立请说明理由.【分析】(1)利用等边三角形的性质得出AC=BC,CE=CF,∠ACB=∠ECF=60°,进而得出∠ACE=∠BCF,进而判断出△ACE≌△BCF,即可得出结论;(2)①由题意补全图形,即可得出结论;②同(1)的方法,即可得出结论.【解答】解:(1)AE=BF,理由:∵△ABC和△CEF是等边三角形,∴AC=BC,CE=CF,∠ACB=∠ECF=60°,∴∠ACB﹣∠BCE=∠ECF﹣∠BCE,∴∠ACE=∠BCF,在△ACE和△BCF中,,∴△ACE≌△BCF(SAS),∴AE=BF,故答案为:AE=BF;(2)①补全图形如图2所示;②AE=BF仍然成立,理由:∵△ABC和△CEF是等边三角形,∴AC=BC,CE=CF,∠ACB=∠ECF=60°,∴∠ACB+∠BCE=∠ECF+∠BCE,∴∠ACE=∠BCF,在△ACE和△BCF中,,∴△ACE≌△BCF(SAS),∴AE=BF.【点评】此题是三角形综合题,主要考查了等边三角形的性质,全等三角形的判定和性质,判断出△ACE≌△BCF是解本题的关键.六、解答题(每小题10分,共20分)25.(10分)如图①所示,从边长为a的正方形纸片中剪去一个边长为b的小正方形,再沿虚线AB剪开,把剪成的两张纸片拼成如图②所示的等腰梯形.(1)设图①中阴影部分的面积为S1,图②中阴影部分面积为S2,请直接用含a,b的式子表示S1和S2.(2)请写出上述过程中所揭示的乘法公式;(3)用这个乘法公式计算:①(x﹣)(x+)(x2+);②107×93.【分析】(1)图①中的阴影部分的面积为两个正方形的面积差,图②中的阴影部分是上底为2b,下底为2a,高为a﹣b的梯形,利用梯形面积公式可得答案;(2)图①、图②面积相等可得等式;(3)①连续两次利用平方差公式可求结果;②将107×93转化为(100+7)(100﹣7),即可利用平方差公式求出结果.【解答】解:(1)S1=a2﹣b2,S2=(2a+2b)(a﹣b)=(a+b)(a﹣b);(2)a2﹣b2=(a+b)(a﹣b);(3)①原式=(x2﹣)(x2+)=x4﹣;②107×93=(100+7)(100﹣7)=1002﹣72=10000﹣49=9951.【点评】本题考查平方差公式的几何背景,掌握平方差公式的结构特征是解决问题的关键.26.(10分)在△ABC中,AB=AC=2,∠B=40°,D是线段BC上一动点(不与B、C 两点重合),且∠ADE=40°.(1)若∠BDA=115°,则∠CDE=25°,∠AED=65°;(2)当DC等于多少时,△ABD≌△DCE?试说明理由;(3)在D点运动过程中,能使△ADE是等腰三角形吗?若能,请求出使△ADE是等腰三角形时的∠ADB的度数;若不能,请说明理由.【分析】(1)利用等腰三角形的性质和三角形的外角性质解答即可;(2)先求出∠ADB=∠DEC,再由∠B=∠C,AB=DC=2,即可得出△ABD≌△DCE (AAS);(3)分两种情况讨论即可.【解答】解:(1)∵AB=AC,∴∠B=∠C=∠40°,∵∠BDA=115°,∴∠ADC=180°﹣115°=65°,∴∠CDE=∠ADC﹣∠ADE=65°﹣40°=25°,∴∠AED=∠CDE+∠C=25°+40°=65°,故答案为:25°,65°;(2)当DC=2时,△ABD≌△DCE,理由如下:∵∠C=40°,∴∠DEC+∠EDC=140°,∵∠ADE=40°,∴∠ADB+∠EDC=140°,∴∠ADB=∠DEC,在△ABD和△DCE中,,∴△ABD≌△DCE(AAS);(3)△ADE能成为等腰三角形,理由如下:∵∠ADE=∠C=40°,∠AED>∠C,∴△ADE为等腰三角形时,只能是AD=DE或AE=DE,当AD=DE时,∠DAE=∠DEA=(180°﹣40°)=70°,∴∠EDC=∠AED﹣∠C=70°﹣40°=30°,∴∠ADB=180°﹣40°﹣30°=110°;当EA=ED时,∠ADE=∠DAE=40°,∴∠AED=180°﹣40°﹣40°=100°,∴∠EDC=∠AED﹣∠C=100°﹣40°=60°,∴∠ADB=180°﹣40°﹣60°=80°;综上所述,当∠ADB的度数为110°或80°时,△ADE是等腰三角形.【点评】此题考查了等腰三角形的判定与性质,全等三角形的判定与性质,三角形外角的性质等知识点,此题涉及到的知识点较多,综合性较强.21。
2016-2017学年最新人教版第一学期八年级数学(上册)期末测试卷(有答案)
2016-2017学年八年级(上)期末数学试卷一、选择题(共10个小题,每小题只有一个正确选项,每小题3分,满分30分)1.下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个2.下列运算中,正确的是()A.2a+3b=5ab B.3x2÷2x=x C.2=x2+y43.若分式有意义,则a的取值范围是()A.a=0 B.a=1 C.a≠1 D.a≠﹣14.等腰三角形的周长是18cm,其中一边长为4cm,其它两边长分别为()A.4cm,10cm B.7cm,7cmC.4cm,10cm或7cm,7cm D.无法确定5.在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若BC=32,且BD:DC=9:7,则点D到AB边的距离为()A.18 B.16 C.14 D.126.已知x2+kxy+16y2是一个完全平方式,则k的值是()A.8 B.±8 C.16 D.±167.随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x千米,根据题意可列方程为()A.B.C.D.8.如图,把矩形纸片ABCD纸沿对角线折叠,设重叠部分为△EBD,那么下列说法错误的是()A.△EBD是等腰三角形,EB=EDB.折叠后∠ABE和∠CBD一定相等C.折叠后得到的图形是轴对称图形D.△EBA和△EDC一定是全等三角形9.把分式方程的两边同时乘以(x﹣2),约去分母,得()A.1﹣(1﹣x)=1 B.1+(1﹣x)=1 C.1﹣(1﹣x)=x﹣2 D.1+(1﹣x)=x﹣210.若关于x的方程=+1无解,则a的值为()A.1 B.2 C.1或2 D.0或2二、填空题(共10个小题,每小题3分,满分30分)11.已知分式,当x=时,分式没有意义;当x=时,分式的值为0;当x=2时,分式的值为.12.(﹣)﹣1﹣(﹣2)0=.13.当a=时,关于x的方程=的解是x=1.14.用科学记数法表示0.0000002016=.15.已知x+=5,那么x2+=.16.若=3,则=.17.如图,点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1,P2,连接P1P2交OA于M,交OB于N,P1P2=20,则△PMN的周长为.18.小明沿倾斜角为30°的山坡从山脚步行到山顶,共走了200米,则山的高度为米.19.一个多边形的每一个外角都等于40°,则该多边形的内角和等于.20.如图所示,AB=AC,点D,E分别在AC,AB上,AF⊥CE,AG⊥BD,垂足分别为F,G,AF=AG,下列结论:①∠B=∠C;②∠EAF=∠DAG;③AD=AE;④BE=CD其中正确的是(只填序号)三、解答题(共8个小题,满分60分)21.先化简(1+)÷,再从1,2中选取一个适当的数代入求值.22.先化简,再求值:[(x+2y)(x﹣2y)﹣(x+2y)2]÷2y,其中x=5,y=2.23.已知a﹣b=4,ab=3,求a3b﹣2a2b2+ab3的值.24.某学校学生进行急行军训练,预计行72km的路程在下午5时到达,后来由于把速度加快20%,结果于下午4时到达,求原计划行军的速度.25.如图:画出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1各点的坐标.26.如图所示,在△ABE和△ACD中,给出以下四个论断:(1)AB=AC;(2)AD=AE;(3)AM=AN;(4)∠DAM=∠EAN,以其中三个论断为题设,填人下面的“已知”栏中,一个论断为结论,填人下面的“求证”栏中,使之组成一个正确的命题,并写出证明过程.已知:;求证:.27.如图,△ABC中,∠A=40°,∠B=72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE交CE于F,求∠CDF的度数.28.某一工程进行招标时,接到了甲、乙两个工程队的投标书,施工1天需付甲工程队工程款1.5万元,付乙工程队工程款1.1万元,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案:方案(1):甲工程队单独完成这项工程,刚好如期完成;方案(2):乙工程队单独完成这项工程,要比规定日期多5天;方案(3):若甲、乙两队合作4天,余下的工程由乙工程队单独做,也正好如期完成;在不耽误工期的情况下,你觉得哪种方案最省钱?请说明理由.2016-2017学年中八年级(上)期末数学试卷参考答案与试题解析一、选择题(共10个小题,每小题只有一个正确选项,每小题3分,满分30分)1.下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.【解答】解:图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;图(3)有二条对称轴,是轴对称图形,符合题意;图(3)有五条对称轴,是轴对称图形,符合题意;图(3)有一条对称轴,是轴对称图形,符合题意.故轴对称图形有4个.故选C.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.下列运算中,正确的是()A.2a+3b=5ab B.3x2÷2x=x C.2=x2+y4【考点】整式的混合运算.【分析】根据合并同类项,单项式的除法,幂的乘方,完全平方公式进行计算,再选择即可.【解答】解:A、2a+3b不能合并,故错误;B、3x2÷2x=1.5x,故错误;C、(x2)3=x6,故正确;D、(x+y2)2=x2+2xy2+y4,故错误;故选C.【点评】本题考查了整式的混合运算,是各地中考题中常见的题型.涉及知识:合并同类项;单项式的除法;幂的乘方;完全平方公式.3.若分式有意义,则a的取值范围是()A.a=0 B.a=1 C.a≠1 D.a≠﹣1【考点】分式有意义的条件.【分析】根据分式有意义的条件:分母≠0即可求解.【解答】解:根据题意得:a﹣1≠0,解得:a≠1.故选C.【点评】本题考查了分式有意义的条件:分母≠0,理解分式有意义的条件是关键.4.等腰三角形的周长是18cm,其中一边长为4cm,其它两边长分别为()A.4cm,10cm B.7cm,7cmC.4cm,10cm或7cm,7cm D.无法确定【考点】等腰三角形的性质;三角形三边关系.【分析】由于长为4的边可能为腰,也可能为底边,故应分两种情况讨论.【解答】解:当腰为4时,另一腰也为4,则底为18﹣2×4=10,∵4+4=8<10,∴这样的三边不能构成三角形.当底为4时,腰为(18﹣4)÷2=7,∵0<7<7+4=11,∴以4,7,7为边能构成三角形.故选B.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.5.在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若BC=32,且BD:DC=9:7,则点D到AB边的距离为()A.18 B.16 C.14 D.12【考点】角平分线的性质.【分析】过点D作DE⊥AB于E,根据比例求出CD的长,再根据角平分线上的点到角的两边的距离相等可得DE=CD,得到答案.【解答】解:过点D作DE⊥AB于E,∵BC=32,BD:CD=9:7,∴CD=32×=14,∵∠C=90°,DE⊥AB,AD平分∠BAC,∴DE=CD=14,即D到AB的距离为14.故选:C.【点评】本题主要考查的是角平分线的性质,掌握角平分线上的点到角的两边的距离相等是解题的关键.6.已知x2+kxy+16y2是一个完全平方式,则k的值是()A.8 B.±8 C.16 D.±16【考点】完全平方式.【分析】这里首末两项是x和4y这两个数的平方,那么中间一项为加上或减去x和4y积的2倍.【解答】解:∵x2+kxy+16y2是一个完全平方式,∴±2×x×4y=kxy,∴k=±8.故选B.【点评】本题考查的是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.7.随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x千米,根据题意可列方程为()A.B.C.D.【考点】由实际问题抽象出分式方程.【分析】根据乘私家车平均速度是乘公交车平均速度的2.5倍,乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,利用时间得出等式方程即可.【解答】解:设乘公交车平均每小时走x千米,根据题意可列方程为:=+,故选:D.【点评】此题主要考查了由实际问题抽象出分式方程,解题关键是正确找出题目中的相等关系,用代数式表示出相等关系中的各个部分,把列方程的问题转化为列代数式的问题.8.如图,把矩形纸片ABCD纸沿对角线折叠,设重叠部分为△EBD,那么下列说法错误的是()A.△EBD是等腰三角形,EB=EDB.折叠后∠ABE和∠CBD一定相等C.折叠后得到的图形是轴对称图形D.△EBA和△EDC一定是全等三角形【考点】翻折变换(折叠问题);矩形的性质.【专题】证明题.【分析】对翻折变换及矩形四个角都是直角和对边相等的性质的理解及运用.【解答】解:∵ABCD为矩形∴∠A=∠C,AB=CD∵∠AEB=∠CED∴△AEB≌△CED(故D选项正确)∴BE=DE(故A选项正确)∠ABE=∠CDE(故B选项不正确)∵△EBA≌△EDC,△EBD是等腰三角形∴过E作BD边的中垂线,即是图形的对称轴.(故C选项正确)故选:B.【点评】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.9.把分式方程的两边同时乘以(x﹣2),约去分母,得()A.1﹣(1﹣x)=1 B.1+(1﹣x)=1 C.1﹣(1﹣x)=x﹣2 D.1+(1﹣x)=x﹣2 【考点】解分式方程.【分析】分母中x﹣2与2﹣x互为相反数,那么最简公分母为(x﹣2),乘以最简公分母,可以把分式方程转化成整式方程.【解答】解:方程两边都乘(x﹣2),得:1+(1﹣x)=x﹣2.故选:D.【点评】找到最简公分母是解答分式方程的最重要一步;注意单独的一个数也要乘最简公分母;互为相反数的两个数为分母,最简公分母为其中的一个,另一个乘以最简公分母后,结果为﹣1.10.若关于x的方程=+1无解,则a的值为()A.1 B.2 C.1或2 D.0或2【考点】分式方程的解.【分析】分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0.【解答】解:方程去分母得:ax=4+x﹣2解得:(a﹣1)x=2,∴当a﹣1=0即a=1时,整式方程无解,分式方程无解;当a≠1时,x=x=2时分母为0,方程无解,即=2,∴a=2时方程无解.故选:C.【点评】本题考查了分式方程无解的条件,是需要识记的内容.二、填空题(共10个小题,每小题3分,满分30分)11.已知分式,当x=﹣2时,分式没有意义;当x=﹣时,分式的值为0;当x=2时,分式的值为.【考点】分式有意义的条件;分式的值为零的条件;分式的值.【分析】根据分式没有意义的条件,分式等于0的条件以及把x=2代入分式求值即可.【解答】解:当分式没有意义时,x+2=0,解得:x=﹣2;当分式的值是0时,2x+1=0,解得:x=﹣;当x=2时,原式==.故答案是:﹣2;﹣;.【点评】本题考查了分式有意义的条件,当分母等于0时,分式无意义,分式有意义的条件是:分母≠0.12.(﹣)﹣1﹣(﹣2)0=﹣4.【考点】负整数指数幂;零指数幂.【专题】计算题;推理填空题.【分析】首先根据负整指数幂的运算方法,求出(﹣)﹣1的值是多少;然后根据零指数幂的运算方法,求出(﹣2)0的值是多少;最后根据有理数减法的运算方法,求出算式的值是多少即可.【解答】解:(﹣)﹣1﹣(﹣2)0=﹣3﹣1=﹣4.故答案为:﹣4.【点评】(1)此题主要考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a﹣p=(a≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.13.当a=﹣9时,关于x的方程=的解是x=1.【考点】一元一次方程的解.【专题】计算题;一次方程(组)及应用.【分析】把x=1代入方程计算即可求出a的值.【解答】解:把x=1代入方程得:=,去分母得:4a+6=3a﹣3,解得:a=﹣9,经检验a=﹣9是原方程的解,故答案为:﹣9【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.14.用科学记数法表示0.0000002016= 2.16×10﹣7.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000002016=2.16×10﹣7.故答案为:2.16×10﹣7.【点评】本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.15.已知x+=5,那么x2+=23.【考点】完全平方公式.【专题】计算题.【分析】所求式子利用完全平方公式变形后,将已知等式代入计算即可求出值.【解答】解:∵x+=5,∴x2+=(x+)2﹣2=25﹣2=23.故答案为:23.【点评】此题考查了完全平方公式,熟练掌握公式是解本题的关键.16.若=3,则=.【考点】比例的性质;分式的值.【分析】根据等式的性质,可用b表示a,根据分式的性质,可得答案.【解答】解:由=3,得a=3b.===.故答案为:.【点评】本题考查了比例的性质,利用等式的性质得出a=3b是解题关键.17.如图,点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1,P2,连接P1P2交OA于M,交OB于N,P1P2=20,则△PMN的周长为20.【考点】轴对称的性质.【分析】根据轴对称的性质可得PM=P1M,PN=P2N,然后求出△PMN的周长=P1P2.【解答】解:∵点P关于OA、OB的对称点P1、P2,∴PM=P1M,PN=P2N,∴△PMN的周长=PM+MN+PN=P1M+MN+P2N=P1P2,∵P1P2=20,∴△PMN的周长=20.故答案为:20.【点评】本题考查轴对称的性质,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.18.小明沿倾斜角为30°的山坡从山脚步行到山顶,共走了200米,则山的高度为100米.【考点】解直角三角形的应用-坡度坡角问题.【分析】此题实际上是在直角三角形中,已知斜边,求30度所对的直角边.【解答】解:由题意得,AB=200米,∠A=30°,故可得BC=100米.故答案为:100.【点评】本题考查了坡度及坡角的知识,本题涉及的角度比较特殊,所以我们可以直接利用含30°角的直角三角形的性质求解.19.一个多边形的每一个外角都等于40°,则该多边形的内角和等于1260°.【考点】多边形内角与外角.【分析】先利用360°÷40°求出多边形的边数,再根据多边形的内角和公式(n﹣2)180°计算即可求解.【解答】解:多边形的边数是:360°÷40°=9,则内角和是:(9﹣2)180°=1260°.故答案是:1260°.【点评】本题主要考查了正多边形的外角与边数的关系,求出多边形的边数是解题的关键.20.如图所示,AB=AC,点D,E分别在AC,AB上,AF⊥CE,AG⊥BD,垂足分别为F,G,AF=AG,下列结论:①∠B=∠C;②∠EAF=∠DAG;③AD=AE;④BE=CD其中正确的是①②③④(只填序号)【考点】全等三角形的判定与性质.【分析】根据HL可证Rt△AGB≌Rt△AFC,从而得出∠B=∠C,进而得出∠EAF=∠DAG,再利用ASA证明△AEF≌△AGD,从而得出AD=AE,BE=CD.【解答】解:∵AG⊥BD,AF⊥CE,∴△AGB和△AFC是直角三角形,在Rt△AGB和Rt△AFC中,,∴Rt△AGB≌Rt△AFC(HL),∴∠B=∠C,∠BAG=∠CAF,故①正确;又∵∠BAG=∠EAF+∠FAG,∠CAF=∠DAG+∠FAG,∴∠EAF=∠DAG,故②正确;在△AFE和△AGD中,,∴△AFE≌△AGD(ASA),∴AD=AE,故③正确;∵AB=AC,∴AB﹣AE=AC﹣AD,∴BE=CD,故④正确.故答案为:①②③④.【点评】本题主要考查了直角三角形全等的判定与性质;熟练掌握全等三角形的判定方法,证明三角形全等是解决问题的关键.三、解答题(共8个小题,满分60分)21.先化简(1+)÷,再从1,2中选取一个适当的数代入求值.【考点】分式的化简求值.【专题】计算题;分式.【分析】首先根据分式化简的方法,把(1+)÷化简;然后把a=2代入化简后的算式,求出算式的值是多少即可.【解答】解:(1+)÷=÷=×=﹣当a=2时,原式=﹣=﹣.【点评】此题主要考查了分式的化简求值问题,要熟练掌握,解答此题的关键是要明确:分式的化简求值,一般是先化简为最简分式或整式,再代入求值.化简时不能跨度太大,而缺少必要的步骤.22.先化简,再求值:[(x+2y)(x﹣2y)﹣(x+2y)2]÷2y,其中x=5,y=2.【考点】整式的混合运算—化简求值.【分析】直接利用乘法公式去括号,进而合并同类项,再利用整式除法运算法则化简,进而得出答案.【解答】解:[(x+2y)(x﹣2y)﹣(x+2y)2]÷2y=[x2﹣4y2﹣(x2+4y2+4xy)]÷2y=(﹣8y2﹣4xy)÷2y=4y+2x,将x=5,y=2代入上式得:原式=4×2+2×5=18.【点评】此题主要考查了整式的混合运算,正确应用乘法公式是解题关键.23.已知a﹣b=4,ab=3,求a3b﹣2a2b2+ab3的值.【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式ab,进而分解因式,再将已知代入求出答案.【解答】解:∵a3b﹣2a2b2+ab3=ab(a2﹣2ab+b2)=ab(a﹣b)2,∴将a﹣b=4,ab=3代入上式可得:原式=3×42=48.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确分解因式是解题关键.24.某学校学生进行急行军训练,预计行72km的路程在下午5时到达,后来由于把速度加快20%,结果于下午4时到达,求原计划行军的速度.【考点】分式方程的应用.【分析】首先设原计划行军的速度为xkm/时,则加速后的速度为(1+20%)xkm/时,根据题意可得等量关系:原计划所用时间﹣实际所用时间=1小时,根据等量关系列出方程,再解即可.【解答】解:设原计划行军的速度为xkm/时,由题意得:﹣=1,解得:x=12,经检验:x=12是原分式方程的解,答:原计划行军的速度为12km/时.【点评】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.25.如图:画出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1各点的坐标.【考点】作图-轴对称变换.【分析】利用关于y轴对称点的性质进而得出各点坐标,进而画出图形即可.【解答】解:如图所示:△A1B1C1各点的坐标分别为:A1(3,2),B1(4,﹣3),C1(1,﹣1).【点评】此题主要考查了轴对称变换,得出对应点位置是解题关键.26.如图所示,在△ABE和△ACD中,给出以下四个论断:(1)AB=AC;(2)AD=AE;(3)AM=AN;(4)∠DAM=∠EAN,以其中三个论断为题设,填人下面的“已知”栏中,一个论断为结论,填人下面的“求证”栏中,使之组成一个正确的命题,并写出证明过程.已知:在△ABE和△ACD中,AD=AE,AM=AN,∠DAM=∠EAN;求证:AB=AC.【考点】全等三角形的判定与性质;命题与定理.【分析】本题是开放题,应先确定选择哪对三角形,再对应三角形全等条件证明全等.利用全等三角形对应角,对应边相等解题.【解答】解:已知:在△ABE和△ACD中,AD=AE,AM=AN,∠DAM=∠EAN,求证:AB=AC.证明:在△ADM与△AEN中,∵,∴△ADM≌△AEN(SAS),∴∠D=∠E.∵∠DAM=∠EAN,∴∠DAC=∠EAB.在△ABE和△ACD中,∵,∴△ABE≌△ACD(ASA),∴AB=AC.故答案为:在△ABE和△ACD中,AD=AE,AM=AN,∠DAM=∠EAN;AB=AC.【点评】本题考查全等三角形的判定与性质,在解答此题时要注意SAS、ASA定理的应用,此题属开放性题目,答案不唯一.27.如图,△ABC中,∠A=40°,∠B=72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE交CE于F,求∠CDF的度数.【考点】三角形的外角性质;角平分线的定义;三角形内角和定理.【分析】首先根据三角形的内角和定理求得∠ACB的度数,再根据CE平分∠ACB求得∠ACE的度数,则根据三角形的外角的性质就可求得∠CED=∠A+∠ACE,再结合CD⊥AB,DF⊥CE就可求解.【解答】解:∵∠A=40°,∠B=72°,∴∠ACB=180°﹣40°﹣72°=68°,∵CE平分∠ACB,∴∠ACE=∠BCE=34°,∴∠CED=∠A+∠ACE=74°,∴∠CDE=90°,DF⊥CE,∴∠CDF+∠ECD=∠ECD+∠CED=90°,∴∠CDF=74°.【点评】此题主要考查了三角形的内角和定理、三角形的外角的性质、以及角平分线定义和垂直定义.28.某一工程进行招标时,接到了甲、乙两个工程队的投标书,施工1天需付甲工程队工程款1.5万元,付乙工程队工程款1.1万元,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案:方案(1):甲工程队单独完成这项工程,刚好如期完成;方案(2):乙工程队单独完成这项工程,要比规定日期多5天;方案(3):若甲、乙两队合作4天,余下的工程由乙工程队单独做,也正好如期完成;在不耽误工期的情况下,你觉得哪种方案最省钱?请说明理由.【考点】分式方程的应用.【分析】根据方案(1)的叙述可知:甲工程队单独完成时的时间=工期;由方案(2)可得:乙工程队单独完成这项工程时,所用的天数﹣5天=工期;可以设出工期是x天,即可表示出甲、乙单独完成这项工程时所需要的天数,即可表示出各自的工作效率,根据方案(3)即可列方程求得工期,进而计算方案(1)(3)各自需要的工程款,即可作出比较.【解答】解:设工期是x天,即可表示出甲、乙单独完成这项工程时所需要的天数是x天,(x+5)天.根据题意得:4(+)+=1,解得:x=20,经检验x=20是原方程的解.则甲、乙单独完成这项工程时所需要的天数是20天,25天.则方案(1)的工程款是:20×1.5=30万元;方案(3)的工程款是:1.5×4+1.1×20=28(万元).综上所述,可知在保证正常完工的前提下,应选择第三种方案:甲、乙两队合作4天,剩下的工程由乙队独做.答:方案(3)比较省钱.【点评】本题主要考查了分式方程的应用,正确理解工作时间、工作效率、工作量之间的关系是解题的关键.。
2016-2017学年初二人教版数学上册期末考试试题及答案word版
D CAB2016-2017学年初二人教版数学上册期末考试试题总分:150 时间:120分钟一、选择题(每小题有且只有一个答案正确,每小题4分,共40分) 1、如图,两直线a ∥b ,与∠1相等的角的个数为( ) A 、1个 B 、2个 C 、3个 D 、4个 2、不等式组x>3x<4⎧⎨⎩的解集是( ) A 、3<x<4 B 、x<4 C 、x>3 D 、无解 3、如果a>b ,那么下列各式中正确的是( ) A 、a 3<b 3-- B 、a b<33C 、a>b --D 、2a<2b -- 4、如图所示,由∠D=∠C,∠BAD=∠ABC 推得△ABD ≌△BAC ,所用的的判定定理的简称是( ) A 、AAS B 、ASA C 、SAS D 、SSS5、将五边形纸片ABCDE 按如图所示方式折叠,折痕为AF ,点E 、D 分别落在E ′,D ′,已知∠AFC=76°, 则∠CFD ′等于( )A .31°B .28°C .24°D .22° 6、下列说法错误的是( )A 、长方体、正方体都是棱柱;B 、三棱住的侧面是三角形;C 、六棱住有六个侧面、侧面为长方形;D 、球体的三种视图均为同样大小的图形;7、下列各组中的两个根式是同类二次根式的是( )A.和B.和C.和D.和8、如果不等式组⎩⎨⎧><mx x 5有解,那么m 的取值范围是 ( ).A . m >5B . m ≥5C . m<5D . m ≤8C9、的整数部分为,的整数部分为,则的值是( )A. 1B. 2C. 4D. 91abABDFABO CD 10、一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?设江水的流速为x 千米/时,则可列方程( )A .x x -=+306030100B .306030100-=+x xC .x x +=-306030100D .306030100+=-x x二、填空题(每小题4分,共32分)11、不等式2x-1>3的解集是__________________; 12、已知,则.13、在实数范围内因式分解 . 14、计算22142a a a -=-- .15、如图,已知∠B=∠DEF ,AB=DE ,请添加一个条件使△ABC ≌△DEF ,则需添加的条件是__________; 16、如图,AD 和BC 相交于点O ,OA=OD ,OB=OC ,若∠B=40°,∠AOB=110°,则∠D=________度;17、若不等式组121x m x m <+⎧⎨>-⎩无解,则m 的取值范围是_______.第15题图 第16题图18、如果记 221x y x =+ =f(x),并且f(1)表示当x=1时y 的值,即f(1)=2211211=+;f(12)表示当x=12时y 的值,即f(12)=221()12151()2=+;……那么f(1)+f(2)+f(12)+f(3)+f(13)+…+f(n)+f(1n)= (结果用含n 的代数式表示).三、解答题(共78分)19、(8分)解不等式x+1(x 1)12--≤,并把解集在数轴上表示出来。
2016年人教版八年级数学上学期期末试卷【解析版】
2016年人教版八年级数学上学期期末试卷一、精心选一选(本大题共8小题,每小题3分,共24分,每小题给出的4个选项中只有一个符合题意,请将所选项的字母代号写在题后的括号里)1.下列运算正确的是()A.a3•a3=2a3 B.b4•b4=b16 C.(x5)2=x10 D.(﹣a2b3)2=a4b62.若分式有意义,则a的取值范围是()A.a=0 B.a=1 C.a≠﹣1 D.a≠03.以下列各组线段为边,能组成三角形的是()A.1cm,2cm,4cm B.4cm,6cm,8cm C.5cm,6cm,12cm D.2cm,3cm,5cm4.如图,AE∥FD,AE=FD,要使△EAC≌△FDB,需要添加下列选项中的()A.AB=BC B.EC=BF C.∠A=∠D D.AB=CD5.若一个多边形的内角和等于1080°,则这个多边形的边数是()A.9 B.8 C.7 D. 66.分式方程=有增根,则m的值为()A.0 B. 2 C.﹣2 D.17.如图所示的正方形网格中,网格线的交点称为格点,已知A、B 两点为格点,如果C也是图中的格点,则满足△ABC为等腰三角形的点C的个数为()A.6个B.7个C.8个D.9个8.如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM 上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为()A.6 B.12 C.32 D.64二、细心填一填(本大题共8小题,每小题3分,满分24分,请把答案直接写在题中的横线上)9.若a m=3,a n=2,则a m+n=.10.因式分解:3x2﹣6x+3=.11.等腰三角形的两边长分别为4和9,则这个三角形的周长为.12.已知点A(1﹣a,5)与点B(3,b)关于y轴对称,则a﹣b的值是.13.如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB,若EC=1,则EF=.14.÷的结果为.15.如图,AE是∠BAC的角平线,AE是中垂线PF交BC的延长线于点F,若∠CAF=50°,则∠B=.16.如图,D为等腰Rt△ABC的斜边AB的中点,E为BC边上一点,连接ED并延长交CA 的延长线于点F,过D作DH⊥EF交AC于G,交BC的延长线于H,则以下结论:①DE=DG,②BE=CG,③DF=DH,④BH=CF.其中正确的是.三、专心解一解(本大题共8小题,满分72分,请认真读题,冷静思考,解答题应写出文字说明、证明过程或演算步骤)17.先化简,再求值:(2x+3y)2﹣(2x+y)(2x﹣y),其中x=,y=.(2)因式分解:(p2﹣16)(p2+1)+15p2.18.解方程:=119.先化简,然后从1、2、﹣1中选取一个你认为合适的数作为a的值代入求值.20.如图,已知△ABC中,∠C=90°,AD平分∠BAC交BC于D,DE⊥AB于E,点F在AC上,且BD=FD,求证:AE﹣BE=AF.21.温泉国际旅游节前夕,市政工程建设处对某工程进行招投标,接到了甲、乙两个工程对的投标书,为了保证工程如期完工,市政处根据甲乙两队工程队的投标书进行了测算,甲队单独施工恰好如期完成,乙队单独施工要比规定日期多5天,若甲乙合作4天,余下的工程由乙队单独施工,也正好如期完工,问规定日期为多少天?22.如图,已知A(0,4),B(﹣2,﹣2),C(3,0).(1)作出△ABC关于x轴对称的△A1B1C1;(2)写出点A1、B1、C1的坐标A1(),B1(),C1();(3)计算△A1B1C1的面积.23.请先阅读下列一段文字,然后解答问题:有这样一段叙述:“要比较a与b的大小,可以先求出a与b的差,再看这个差是正数、负数还是零,”由此可见,要判断两个代数式值的大小,只要考虑它们的差就可以.问题:甲、乙两人两次同时在同一粮店购买粮食(假设两次购买粮食的单价不相同)甲每次购买粮食100kg,乙每次购粮用去100元.(1)设第一、第二次购粮单价分别为x元/kg和y元/kg,用含x、y的代数式表示:甲两次购买粮食共需付粮款元,乙两次共购买kg粮食.若甲两次购粮的平均单价为每千克q1元,乙两次购粮的平均单价和每千克q2元,则q1=,q2=.(2)若规定:谁两次购粮的平均单价低,谁的购粮方式就更合算,请你判断甲、乙两人的购粮方式哪一个更合算,并说明理由.24.问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.参考答案与试题解析一、精心选一选(本大题共8小题,每小题3分,共24分,每小题给出的4个选项中只有一个符合题意,请将所选项的字母代号写在题后的括号里)1.下列运算正确的是()A.a3•a3=2a3 B.b4•b4=b16 C.(x5)2=x10 D.(﹣a2b3)2=a4b6考点:幂的乘方与积的乘方;同底数幂的乘法.分析:根据同底数幂的乘法、幂的乘方和积的乘方,即可解答.解答:解:A、.a3•a3=a6,故错误;B、b4•b4=b8,故错误;C、正确;D,(﹣a2b3)2=a4b6,正确;故选:C,D点评:本题考查了同底数幂的乘法、幂的乘方和积的乘方,解决本题的关键是熟记同底数幂乘法、幂的乘方和积的乘方的法则.2.若分式有意义,则a的取值范围是()A.a=0 B.a=1 C.a≠﹣1 D.a≠0考点:分式有意义的条件.专题:计算题.分析:根据分式有意义的条件进行解答.解答:解:∵分式有意义,∴a+1≠0,∴a≠﹣1.故选C.点评:本题考查了分式有意义的条件,要从以下两个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;3.以下列各组线段为边,能组成三角形的是()A.1cm,2cm,4cm B.4cm,6cm,8cm C.5cm,6cm,12cm D.2cm,3cm,5cm考点:三角形三边关系.分析:根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析即可.解答:解:根据三角形的三边关系,知A、1+2<4,不能组成三角形;B、4+6>8,能够组成三角形;C、5+6<12,不能组成三角形;D、2+3=5,不能组成三角形.故选B.点评:此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.4.如图,AE∥FD,AE=FD,要使△EAC≌△FDB,需要添加下列选项中的()A.AB=BC B.EC=BF C.∠A=∠D D.AB=CD考点:全等三角形的判定.分析:添加条件AB=CD可证明AC=BD,然后再根据AE∥FD,可得∠A=∠D,再利用SAS定理证明△EAC≌△FDB即可.解答:解:∵AE∥FD,∴∠A=∠D,∵AB=CD,∴AC=BD,在△AEC和△DFB中,∴△EAC≌△FDB(SAS),故选:D.点评:此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.5.若一个多边形的内角和等于1080°,则这个多边形的边数是()A.9 B.8 C.7 D. 6考点:多边形内角与外角.分析:多边形的内角和可以表示成(n﹣2)•180°,依此列方程可求解.解答:解:设所求正n边形边数为n,则1080°=(n﹣2)•180°,解得n=8.故选:B.点评:本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.6.分式方程=有增根,则m的值为()A.0 B.2 C.﹣2 D.1考点:分式方程的增根.分析:增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x﹣2=0,得到x=2,然后代入化为整式方程的方程算出m的值.解答:解:方程两边都乘(x﹣2),得x﹣1=m.∵原方程有增根,∴最简公分母x﹣2=0,解得x=2,当x=2时,m=2﹣1=1,故选:D.点评:本题考查了分式方程的增根,增根问题可按如下步骤进行:让最简公分母为0确定增根;化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值.7.如图所示的正方形网格中,网格线的交点称为格点,已知A、B 两点为格点,如果C也是图中的格点,则满足△ABC为等腰三角形的点C的个数为()A.6个B.7个C.8个D.9个考点:等腰三角形的判定;勾股定理.专题:网格型.分析:根据题意,结合图形,分两种情况讨论:①AB为等腰△ABC底边;②AB为等腰△ABC其中的一条腰.解答:解:如上图:分情况讨论.①AB为等腰△ABC底边时,符合条件的C点有4个;②AB为等腰△ABC其中的一条腰时,符合条件的C点有4个.故选:C.点评:本题考查了等腰三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解.数形结合的思想是数学解题中很重要的解题思想.8.如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM 上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为()A.6 B.12 C.32 D.64考点:等边三角形的性质;含30度角的直角三角形.专题:压轴题;规律型.分析:根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2…进而得出答案.解答:解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°,又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=16,以此类推:A6B6=32B1A2=32.故选:C.点评:此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2进而发现规律是解题关键.二、细心填一填(本大题共8小题,每小题3分,满分24分,请把答案直接写在题中的横线上)9.若a m=3,a n=2,则a m+n=6.考点:同底数幂的乘法.分析:先根据同底数幂的乘法法则把代数式化为已知的形式,再把已知代入求解即可.解答:解:∵a m•a n=a m+n,∴a m+n=a m•a n=3×2=6.点评:解答此题的关键是熟知同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,即a m•a n=a m+n.10.因式分解:3x2﹣6x+3=3(x﹣1)2.考点:提公因式法与公式法的综合运用.分析:先提取公因式3,再对余下的多项式利用完全平方公式继续分解.解答:解:3x2﹣6x+3,=3(x2﹣2x+1),=3(x﹣1)2.点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.11.等腰三角形的两边长分别为4和9,则这个三角形的周长为22.考点:等腰三角形的性质.分析:求等腰三角形的周长,即是确定等腰三角形的腰与底的长求周长;题目给出等腰三角形有两条边长为4cm和9cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.解答:解:(1)若4为腰长,9为底边长,由于4+4<9,则三角形不存在;(2)若9为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为9+9+4=22.故填22.点评:本题考查了等腰三角形的性质和三角形的三边关系;题目从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.12.已知点A(1﹣a,5)与点B(3,b)关于y轴对称,则a﹣b的值是﹣1.考点:关于x轴、y轴对称的点的坐标.分析:根据两点关于y轴对称的点的坐标的特点列出有关a、b的方程求解即可求得a﹣b 的值.解答:解:∵点A(1﹣a,5)与点B(3,b)关于y轴对称,∴1﹣a=﹣3,b=5∴a=4,b=5∴a﹣b=4﹣5=﹣1故答案为﹣1.点评:本题考查了关于坐标轴对称的点的坐标的知识,牢记点的坐标的变化规律是解决此类题目的关键.13.如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB,若EC=1,则EF=2.考点:角平分线的性质;含30度角的直角三角形.分析:作EG⊥OA于F,根据角平分线的性质得到EG的长度,再根据平行线的性质得到∠OEF=∠COE=15°,然后利用三角形的外角和内角的关系求出∠EFG=30°,利用30°角所对的直角边是斜边的一半解题.解答:解:作EG⊥OA于G,∵EF∥OB,∴∠OEF=∠COE=15°,∵∠AOE=15°,∴∠EFG=15°+15°=30°,∵EG=CE=1,∴EF=2×1=2.故答案为2.点评:本题考查了角平分线的性质和含30°角的直角三角形,综合性较强,是一道好题.14.÷的结果为x﹣1.考点:分式的混合运算.专题:计算题.分析:原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形约分即可得到结果.解答:解:原式=•=•=x﹣1.故答案为:x﹣1.点评:此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.15.如图,AE是∠BAC的角平线,AE是中垂线PF交BC的延长线于点F,若∠CAF=50°,则∠B=500.考点:线段垂直平分线的性质.分析:根据线段垂直平分线得出AF=EF,推出∠FAE=∠FEA,根据角平分线得出∠BAE=∠CAE,根据三角形外角性质推出即可.解答:解:∵AE是中垂线PF交BC的延长线于点F,∴AF=EF,∴∠FAE=∠FEA,∵∠FAE=∠FAC+∠CAE,∠FEA=∠B+∠BAE,∵AE平分∠BAC,∴∠BAE=∠CAE,∴∠FAC=∠B=50°.故答案为:50°.点评:本题考查了三角形的外角性质,角平分线定义,线段垂直平分线性质等知识点的运用,关键是推出∠FAD=∠FDA,培养了学生综合运用性质进行推理的能力.16.如图,D为等腰Rt△ABC的斜边AB的中点,E为BC边上一点,连接ED并延长交CA 的延长线于点F,过D作DH⊥EF交AC于G,交BC的延长线于H,则以下结论:①DE=DG,②BE=CG,③DF=DH,④BH=CF.其中正确的是①②③④.考点:等腰直角三角形.专题:证明题.分析:连接CD.欲证线段相等,就证它们所在的三角形全等.证明△DBE≌△DCG,△DCH ≌△DAF.解答:解:连接CD.∵BD=AD=DC,CD⊥AB,∴∠BDE=∠CDG,∠DBE=∠DCE=45°∴△DBE≌△DCG,∴DE=DG;BE=CG.同理可证△DCH≌△DAF,∴DF=DH;AF=CH.∵BC=AC,CH=AF,∴BH=CF.故填:①②③④.点评:本题重点考查了对三角形全等的判定定理和等腰直角三角形的理解和掌握,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS.三、专心解一解(本大题共8小题,满分72分,请认真读题,冷静思考,解答题应写出文字说明、证明过程或演算步骤)17.先化简,再求值:(2x+3y)2﹣(2x+y)(2x﹣y),其中x=,y=.(2)因式分解:(p2﹣16)(p2+1)+15p2.考点:整式的混合运算—化简求值;因式分解-运用公式法.分析:(1)先算乘法,再合并同类项,最后代入求出即可;(2)先展开,合并后根据平方差公式分解即可.解答:解:(1)(2x+3y)2﹣(2x+y)(2x﹣y)=4x2+12xy+9y2﹣4x2+y2=12xy+10y2,当x=,y=时,原式=12××(﹣)+10×(﹣)2=;(2)(p2﹣16)(p2+1)+15p2=p4﹣15p2﹣16+15p2=p4﹣16=(p2+4)(p2﹣4)=(p2+4)(p+2)(p﹣2).点评:本题考查了整式的混合运算和求值,分解因式的应用,能正确运用整式的运算法则进行化简和能选择适当的方法分解因式是解此题的关键,难度适中.18.解方程:=1考点:解分式方程.专题:计算题.分析:本题的最简公分母是(2x﹣5)(2x+5),方程两边都乘最简公分母,可把分式方程转换为整式方程求解.解答:解:去分母,方程两边都乘最简公分母(2x﹣5)(2x+5),得2x(2x+5)﹣2(2x﹣5)=(2x﹣5)(2x+5),整理得,6x=﹣35,∴x=﹣.经检验,x=﹣是原分式方程的解.点评:(1)解分式方程的基本思想是“转化思想”,方程两边都乘最简公分母,把分式方程转化为整式方程求解.(2)解分式方程一定注意要代入最简公分母验根.(3)本题需注意单独的一个数也应乘最简公分母.19.先化简,然后从1、2、﹣1中选取一个你认为合适的数作为a的值代入求值.考点:分式的化简求值.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a=2代入计算即可求出值.解答:解:原式=•=,当a=2时,原式=2.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.20.如图,已知△ABC中,∠C=90°,AD平分∠BAC交BC于D,DE⊥AB于E,点F在AC上,且BD=FD,求证:AE﹣BE=AF.考点:角平分线的性质;全等三角形的判定与性质.专题:证明题.分析:根据角平分线的性质得出DC=DE,再根据全等三角形的判定得出△ACD≌△AED,△FCD≌△BED,进而得出AC=AE,CF=BE,最后利用线段的和差解答即可.解答:证明:∵AD平分∠BAC交BC于D,DE⊥AB于E,∠C=90°,∴DC=DE,在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL),同理可得Rt△FCD和Rt△BED,∴AC=AE,CF=BE,∴AE﹣BE=AF.点评:本题考查了角平分线的性质,关键是根据全等三角形的判定和性质证明.21.温泉国际旅游节前夕,市政工程建设处对某工程进行招投标,接到了甲、乙两个工程对的投标书,为了保证工程如期完工,市政处根据甲乙两队工程队的投标书进行了测算,甲队单独施工恰好如期完成,乙队单独施工要比规定日期多5天,若甲乙合作4天,余下的工程由乙队单独施工,也正好如期完工,问规定日期为多少天?考点:分式方程的应用.分析:设规定日期为x天,则乙队单独完成的时间是(x+5)天,根据工程问题的数量关系建立方程求出其解即可.解答:解:设规定日期为x天,则乙队单独完成的时间是(x+5)天,由题意,得4(+)+=1,解得:x=20.经检验,x=20是原方程的解.答:规定日期为20天.点评:本题考查了工程问题的数量关系的运用,列分式方程解实际问题的运用,分式方程的解法的运用,解答时根据工程问题的数量关系建立方程是关键.22.如图,已知A(0,4),B(﹣2,﹣2),C(3,0).(1)作出△ABC关于x轴对称的△A1B1C1;(2)写出点A1、B1、C1的坐标A1(0,﹣4),B1(﹣3,﹣3),C1(3,0);(3)计算△A1B1C1的面积.考点:作图-轴对称变换.分析:(1)分别作出点A、B、C关于x轴对称的点,然后顺次连接;(2)根据直角坐标系的特点写出各点的坐标;(3)用△ABC所在的矩形的面积减去三个三角形的面积即可求解.解答:解:(1)所作图形如图所示:(2)A1(0,﹣4),B1(﹣3,﹣3),C1(3,0);(3)△A1B1C1的面积=4×6﹣×2×6﹣×2×3﹣×3×4=9.故答案为:0,﹣4,﹣3,﹣3,3,0.点评:本题考查了根据轴对称变换作图,解答本题的关键是根据网格结构找出各点的对应位置,然后顺次连接.23.请先阅读下列一段文字,然后解答问题:有这样一段叙述:“要比较a与b的大小,可以先求出a与b的差,再看这个差是正数、负数还是零,”由此可见,要判断两个代数式值的大小,只要考虑它们的差就可以.问题:甲、乙两人两次同时在同一粮店购买粮食(假设两次购买粮食的单价不相同)甲每次购买粮食100kg,乙每次购粮用去100元.(1)设第一、第二次购粮单价分别为x元/kg和y元/kg,用含x、y的代数式表示:甲两次购买粮食共需付粮款(100x+100y)元,乙两次共购买kg粮食.若甲两次购粮的平均单价为每千克q1元,乙两次购粮的平均单价和每千克q2元,则q1=,q2=.(2)若规定:谁两次购粮的平均单价低,谁的购粮方式就更合算,请你判断甲、乙两人的购粮方式哪一个更合算,并说明理由.考点:分式的加减法.专题:阅读型.分析:本题需用到的等量关系为:总价=单价×数量,则数量=总价÷数量,平均单价=总价÷数量.解答:解:(1)甲两次购买粮食共需付粮款(100x+100y)元,乙两次共购买kg 粮食.q1=,q2=100×2÷()=200÷=.(2)q1﹣q2==,故乙的购粮方式合算.点评:本题考查了总价=单价×数量以及它的变式的等量关系,在通常情况下:判断两个代数式值的大小,只要考虑它们的差就可以.24.问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是EF=BE+DF;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.考点:全等三角形的判定与性质.专题:压轴题;探究型.分析:问题背景:根据全等三角形对应边相等解答;探索延伸:延长FD到G,使DG=BE,连接AG,根据同角的补角相等求出∠B=∠ADG,然后利用“边角边”证明△ABE和△ADG全等,根据全等三角形对应边相等可得AE=AG,∠BAE=∠DAG,再求出∠EAF=∠GAF,然后利用“边角边”证明△AEF和△GAF全等,根据全等三角形对应边相等可得EF=GF,然后求解即可;实际应用:连接EF,延长AE、BF相交于点C,然后求出∠EOF=∠AOB,判断出符合探索延伸的条件,再根据探索延伸的结论解答即可.解答:解:问题背景:EF=BE+DF;探索延伸:EF=BE+DF仍然成立.证明如下:如图,延长FD到G,使DG=BE,连接AG,∵∠B+∠ADC=180°,∠ADC+∠ADG=180°,∴∠B=∠ADG,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△GAF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;实际应用:如图,连接EF,延长AE、BF相交于点C,∵∠AOB=30°+90°+(90°﹣70°)=140°,∠EOF=70°,∴∠EOF=∠AOB,又∵OA=OB,∠OAC+∠OBC=(90°﹣30°)+(70°+50°)=180°,∴符合探索延伸中的条件,∴结论EF=AE+BF成立,即EF=1.5×(60+80)=210海里.答:此时两舰艇之间的距离是210海里.点评:本题考查了全等三角形的判定与性质,读懂问题背景的求解思路,作辅助线构造出全等三角形并两次证明三角形全等是解题的关键,也是本题的难点.。
2015-2016学年新课标人教版八年级上期末数学试卷(有答案)
2015-2016学年八年级(上)期末数学试卷一、选择题(本题共有10小题,每小题3分,共30分,每小题有四个选项,其中有几个选项符合题意,选错、不选、多选或涂改不清的均不给分)1.在下列四个轴对称图形中,对称轴的条数最多的是( )A.等腰三角形B.等边三角形C.圆D.正方形2.下面有4个汽车标志图案,其中不是轴对称图形的是( )A. B.C.D.3.若分式的值为零,则x的值为( )A.±1 B.﹣1 C.1 D.不存在4.下列运算错误的是( )A.x2•x4=x6B.(﹣b)2•(﹣b)4=﹣b6C.x•x3•x5=x9D.(a+1)2(a+1)3=(a+1)55.下列各因式分解中,结论正确的是( )A.x2﹣5x﹣6=(x﹣2)(x﹣3)B.x2+x﹣6=(x+2)(x﹣3)C.ax+ay+1=a(x+y)+1 D.ma2b+mab2+ab=ab(ma+mb+1)6.如图,在△ABC中,若AB=AC,∠A=30°,DE垂直平分AC,则∠BCD的度数是( )A.45°B.40°C.35°D.30°7.到三角形三条边的距离都相等的点是这个三角形的( )A.三条中线的交点B.三条高的交点C.三条边的垂直平分线的交点 D.三条角平分线的交点8.若等腰三角形的两条边的长分别为3cm和7cm,则它的周长是( )A.10cm B.13cm C.17cm D.13cm或17cm9.如图,若AB=AC,BE=CF,CF⊥AB,BE⊥AC,则图中全等的三角形共有( )对.A.5对B.4对C.3对D.2对10.如图是屋架设计图的一部分,点D是斜梁AB的AB的中点,立柱BC、DE垂直于横梁AF.已知AB=12m,∠ADE=60°,则DE等于( )A.3m B.2m C.1m D.4m二、填空题(本题共有6小题,每小题3分,共18分)11.要使分式有意义,那么x必须满足__________.12.已知一个n边形的内角和是其外角和的5倍,则n=__________.13.如图,已知△ABC≌△AFE,若∠ACB=65°,则∠EAC等于__________度.14.如图,若AB=AC,BD=CD,∠B=20°,∠BDC=120°,则∠A等于__________度.15.如图,已知BD是∠ABC的角平分线,DE⊥AB于E点,AB=6cm,BC=4cm,S△ABC=10cm2,则DE=__________cm.16.如图,已知射线OC上的任意一点到∠AOB的两边的距离都相等,点D、E、F分别为边OC、OA、OB上,如果要想证得OE=OF,只需要添加以下四个条件中的某一个即可,请写出所有可能的条件的序号__________.①∠ODE=∠ODF;②∠OED=∠OFD;③ED=FD;④EF⊥OC.三、解答题(本题共有7小题,共72分)17.完成下列运算(1)计算:7a2•(﹣2a)2+a•(﹣3a)3(2)计算:(a+b+1)(a﹣b+1)+b2﹣2a.18.(14分)完成下列运算(1)先化简,再求值:(2x﹣y)(y+2x)﹣(2y+x)(2y﹣x),其中x=1,y=2(2)先化简,再求值:,其中x=1,y=3.19.如图,在△ABC中,AC=BC,AD平分∠BAC,∠ADC=60°,求∠C的度数.20.如图,已知AB=AC,D是BC边的中点,DE和DF分别平分∠ADB和∠ADC,求证:DE=DF.21.客车和货车同时分别从甲乙两城沿同一公路相向而行,相遇时客车比货车多行驶了180千米,相遇后,客车再经过4小时到达乙城,货车再经过9小时到达甲城,求客车、货车的速度和甲乙两城间的路程.22.如图,已知AC∥BD,EA、EB分别平分∠CAB和∠DBA,CD过点E,求证:AB=AC+BD.23.在等腰直角三角形AOB中,已知AO⊥OB,点P、D分别在AB、OB上,(1)如图1中,若PO=PD,∠OPD=45°,证明△BOP是等腰三角形.(2)如图2中,若AB=10,点P在AB上移动,且满足PO=PD,DE⊥AB于点E,试问:此时PE的长度是否变化?若变化,说明理由;若不变,请予以证明.2015-2016学年八年级(上)期末数学试卷一、选择题(本题共有10小题,每小题3分,共30分,每小题有四个选项,其中有几个选项符合题意,选错、不选、多选或涂改不清的均不给分)1.在下列四个轴对称图形中,对称轴的条数最多的是( )A.等腰三角形B.等边三角形C.圆D.正方形【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、有1条对称轴;B、有3条对称轴;C、有无数条对称轴;D、有4条对称轴.故选C.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.下面有4个汽车标志图案,其中不是轴对称图形的是( )A. B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,故错误;B、是轴对称图形,故错误;C、是轴对称图形,故错误;D、不是轴对称图形,故正确.故选D.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.若分式的值为零,则x的值为( )A.±1 B.﹣1 C.1 D.不存在【考点】分式的值为零的条件.【分析】根据分式的值为零的条件可以求出x的值.【解答】解:由分式的值为零的条件得,|x|﹣1=0,且x﹣1≠0,解得x=﹣1.故选:B.【点评】本题考查了分式为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.4.下列运算错误的是( )A.x2•x4=x6B.(﹣b)2•(﹣b)4=﹣b6C.x•x3•x5=x9D.(a+1)2(a+1)3=(a+1)5【考点】同底数幂的乘法.【分析】根据同底数幂的乘法,底数不变指数相加,可得答案.【解答】解:A、底数不变指数相加,故A正确;B、底数不变指数相加,故B错误;C、底数不变指数相加,故C正确;D、底数不变指数相加,故D正确;故选:B.【点评】本题考查了同底数幂的乘法,同底数幂的乘法底数不变指数相加是解题关键.5.下列各因式分解中,结论正确的是( )A.x2﹣5x﹣6=(x﹣2)(x﹣3)B.x2+x﹣6=(x+2)(x﹣3)C.ax+ay+1=a(x+y)+1 D.ma2b+mab2+ab=ab(ma+mb+1)【考点】因式分解-十字相乘法等;因式分解-提公因式法.【专题】计算题.【分析】原式各项分解因式得到结果,即可做出判断.【解答】解:A、原式=(x﹣6)(x+1),错误;B、原式=(x﹣2)(x+3),错误;C、原式不能分解,错误;D、原式=ab(ma+mb+1),正确,故选D【点评】此题考查了因式分解﹣十字相乘法与提公因式法,熟练掌握因式分解的方法是解本题的关键.6.如图,在△ABC中,若AB=AC,∠A=30°,DE垂直平分AC,则∠BCD的度数是( )A.45°B.40°C.35°D.30°【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】首先利用线段垂直平分线的性质推出∠DAC=∠DCA,根据等腰三角形的性质可求出∠ABC=∠ACB,易求∠BCD的度数.【解答】解:∵AB=AC,∠A=30°,∴∠ABC=∠ACB=75°.∵DE垂直平分AC,∴AD=CD,∴∠A=∠ACD=30°∴∠BCD=∠ACB﹣∠ACD=45°.故选A.【点评】本题考查的是线段垂直平分线的性质,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.7.到三角形三条边的距离都相等的点是这个三角形的( )A.三条中线的交点B.三条高的交点C.三条边的垂直平分线的交点 D.三条角平分线的交点【考点】角平分线的性质.【专题】几何图形问题.【分析】因为角的平分线上的点到角的两边的距离相等,所以到三角形的三边的距离相等的点是三条角平分线的交点.【解答】解:∵角的平分线上的点到角的两边的距离相等,∴到三角形的三边的距离相等的点是三条角平分线的交点.故选:D.【点评】该题考查的是角平分线的性质,因为角的平分线上的点到角的两边的距离相等,所以到三角形的三边的距离相等的点是三条角平分线的交点,易错选项为C.8.若等腰三角形的两条边的长分别为3cm和7cm,则它的周长是( )A.10cm B.13cm C.17cm D.13cm或17cm【考点】等腰三角形的性质;三角形三边关系.【分析】等腰三角形两边的长为3cm和7cm,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.【解答】解:①当腰是3cm,底边是7cm时:不满足三角形的三边关系,因此舍去.②当底边是3cm,腰长是7cm时,能构成三角形,则其周长=3+7+7=17(cm).故选C.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.9.如图,若AB=AC,BE=CF,CF⊥AB,BE⊥AC,则图中全等的三角形共有( )对.A.5对B.4对C.3对D.2对【考点】全等三角形的判定.【分析】利用全等三角形的判定方法,利用HL、ASA进而判断即可.【解答】解:由题意可得出:△ABE≌△ACF(HL),△ADF≌△ADE(HL),△ABD≌△ACD (SAS),△BFD≌△CED(ASA).故选:B.【点评】本题考查三角形全等的判定方法及等腰三角形的性质;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.10.如图是屋架设计图的一部分,点D是斜梁AB的AB的中点,立柱BC、DE垂直于横梁AF.已知AB=12m,∠ADE=60°,则DE等于( )A.3m B.2m C.1m D.4m【考点】含30度角的直角三角形.【专题】应用题.【分析】由于BC、DE垂直于横梁AC,可得BC∥DE,而D是AB中点,可知AB=BD,利用平行线分线段成比例定理可得AE:CE=AD:BD,从而有AE=CE,即可证DE是△ABC的中位线,可得DE=BC,在Rt△ABC中易求BC,进而可求DE.【解答】解:如右图所示,∵立柱BC、DE垂直于横梁AC,∴BC∥DE,∵D是AB中点,∴AD=BD,∴AE:CE=AD:BD,∴AE=CE,∴DE是△ABC的中位线,∴DE=BC,在Rt△ABC中,∵∠ADE=60°,∴∠A=30°,∴BC=AB=6m,∴DE=3m.故选A.【点评】本题考查了平行线分线段成比例定理、三角形中位线定理、直角三角形30°的角所对的边等于斜边的一半.解题的关键是证明DE是△ABC的中位线.二、填空题(本题共有6小题,每小题3分,共18分)11.要使分式有意义,那么x必须满足x≠2.【考点】分式有意义的条件.【分析】根据分母不等于0列式求解即可.【解答】解:由题意得,x﹣2≠0,解得x≠2.故答案为:x≠2.【点评】从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.12.已知一个n边形的内角和是其外角和的5倍,则n=12.【考点】多边形内角与外角.【分析】利用多边形的内角和公式和外角和公式,根据一个n边形的内角和是其外角和的5倍列出方程求解即可.【解答】解:多边形的外角和是360°,根据题意得:180°•(n﹣2)=360°×5,解得n=12.故答案为:12.【点评】本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.13.如图,已知△ABC≌△AFE,若∠ACB=65°,则∠EAC等于50度.【考点】全等三角形的性质.【分析】根据全等三角形对应角相等可得∠ACB=∠AEF=65°,然后在△EAC中利用三角形内角和定理即可求出求出∠EAC的度数.【解答】解:∵△ABC≌△AFE,∴∠ACB=∠AEF=65°,∴∠EAC=180°﹣∠ACB﹣∠AEF=50°.故答案为50.【点评】本题考查了全等三角形的性质,三角形内角和定理,熟记性质并准确识图是解题的关键.14.如图,若AB=AC,BD=CD,∠B=20°,∠BDC=120°,则∠A等于80度.【考点】全等三角形的判定与性质.【分析】根据SSS证△BAD≌△CAD,根据全等得出∠BAD=∠CAD,∠B=∠C=20°,根据三角形的外角性质得出∠BDF=∠B+∠BAD,∠CDF=∠C+∠CAD,求出∠BDC=∠B+∠C+∠BAC,代入求出即可.【解答】解:过D作射线AF,在△BAD和△CAD中,,∴△BAD≌△CAD(SSS),∴∠BAD=∠CAD,∠B=∠C=20°,∵∠BDF=∠B+∠BAD,∠CDF=∠C+∠CAD,∴∠BDF+∠CDF=∠B+∠BAD+∠C+∠CAD,∴∠BDC=∠B+∠C+∠BAC,∵∠C=∠B=20°,∠BDC=120°,∴∠BAC=80°.故答案为:80.【点评】本题考查了全等三角形的性质和判定,三角形的外角性质的应用,解此题的关键是求出∠BDC=∠B+∠C+∠BAC和∠C的度数,难度适中.15.如图,已知BD是∠ABC的角平分线,DE⊥AB于E点,AB=6cm,BC=4cm,S△ABC=10cm2,则DE=2cm.【考点】角平分线的性质.【分析】过D作DF⊥BC于F,根据角平分线性质求出DE=DF,根据三角形的面积公式得出关于DE的方程,求出方程的解即可.【解答】解:过D作DF⊥BC于F,∵BD是∠ABC的角平分线,DE⊥AB,∴DF=DE,∵S△ABC=10cm2,AB=6cm,BC=4cm,∴×BC×DF+×AB×DE=10,∴×4×DE+×6×DE=10,∴DE=2,故答案为:2.【点评】本题考查了三角形的面积,角平分线性质的应用,注意:角平分线上的点到角的两边的距离相等.16.如图,已知射线OC上的任意一点到∠AOB的两边的距离都相等,点D、E、F分别为边OC、OA、OB上,如果要想证得OE=OF,只需要添加以下四个条件中的某一个即可,请写出所有可能的条件的序号①②④.①∠ODE=∠ODF;②∠OED=∠OFD;③ED=FD;④EF⊥OC.【考点】角平分线的性质;全等三角形的判定与性质.【分析】由射线OC上的任意一点到∠AOB的两边的距离都相等,根据角平分线的判定定理可知OC平分∠AOB.要得到OE=OF,就要让△ODE≌△ODF,①②④都行,只有③ED=FD不行,因为证明三角形全等没有边边角定理.【解答】解:∵射线OC上的任意一点到∠AOB的两边的距离都相等,∴OC平分∠AOB.①若①∠ODE=∠ODF,根据ASA定理可求出△ODE≌△ODF,由三角形全等的性质可知OE=OF.正确;②若∠OED=∠OFD,根据AAS定理可得△ODE≌△ODF,由三角形全等的性质可知OE=OF.正确;③若ED=FD条件不能得出.错误;④若EF⊥OC,根据ASA定理可求出△OGE≌△OGF,由三角形全等的性质可知OE=OF.正确.故答案为①②④.【点评】本题主要考查了角平分线的判定,三角形全等的判定与性质;由求线段相等转化为添加条件使三角形全等是正确解答本题的关键.三、解答题(本题共有7小题,共72分)17.完成下列运算(1)计算:7a2•(﹣2a)2+a•(﹣3a)3(2)计算:(a+b+1)(a﹣b+1)+b2﹣2a.【考点】整式的混合运算.【分析】(1)先算乘方,再算乘法,最后算加减,合并同类项即可;(2)先用平方差公式计算,再用完全平方公式计算,然后合并同类项即可.【解答】解:(1)原式=7a2•4a2+a•(﹣27a3)=28a4﹣27a4=a4;(2)原式=(a+1)2﹣b2+b2﹣2a=a2+2a+1﹣2a=a2+1.【点评】本题考查了整式的混合运算:先算乘方,再算乘法,最后算加减;注意乘法公式的运用.18.(14分)完成下列运算(1)先化简,再求值:(2x﹣y)(y+2x)﹣(2y+x)(2y﹣x),其中x=1,y=2(2)先化简,再求值:,其中x=1,y=3.【考点】分式的化简求值;整式的混合运算—化简求值.【分析】(1)先根据整式混合运算的法则把原式进行化简,再把x=1,y=2代入进行计算即可;(2)先根据分式混合运算的法则把原式进行化简,再把x=1,y=3代入进行计算即可.【解答】解:(1)原式=4x2﹣y2﹣4y2+x2=5(x2﹣y2),当x=1,y=2时,原式=5×(1﹣4)=﹣15;(2)原式=﹣•=+===,当x=1,y=3,∴原式=3.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.19.如图,在△ABC中,AC=BC,AD平分∠BAC,∠ADC=60°,求∠C的度数.【考点】等腰三角形的性质.【分析】设∠BAD=x.由AD平分∠BAC,得出∠CAD=∠BAD=x,∠BAC=2∠BAD=2x.由AC=BC,得出∠B=∠BAC=2x.根据三角形外角的性质得出∠ADC=∠B+∠BAD=60°,即2x+x=60°,求得x=20°,那么∠B=∠BAC=40°.然后在△ABC中,根据三角形内角和定理得出∠C=180°﹣∠B﹣∠BAC=100°.【解答】解:设∠BAD=x.∵AD平分∠BAC,∴∠CAD=∠BAD=x,∠BAC=2∠BAD=2x.∵AC=BC,∴∠B=∠BAC=2x.∵∠ADC=∠B+∠BAD=60°,∴2x+x=60°,∴x=20°,∴∠B=∠BAC=40°.在△ABC中,∵∠BAC+∠B+∠C=180°,∴∠C=180°﹣∠B﹣∠BAC=100°.【点评】本题考查了等腰三角形的性质,角平分线定义,三角形内角和定理,三角形外角的性质,难度适中.设∠BAD=x,利用∠ADC=60°列出关于x的方程是解题的关键.20.如图,已知AB=AC,D是BC边的中点,DE和DF分别平分∠ADB和∠ADC,求证:DE=DF.【考点】全等三角形的判定与性质;等腰三角形的性质.【专题】证明题.【分析】利用等腰三角形的性质和全等三角形的判定定理ASA证得△AED≌△AFD,则由该全等三角形的对应边相等得到DE=DF.【解答】证明:∵AB=AC,D是BC边的中点,∴AD⊥BC,∠EAD=∠FAD.又∵DE和DF分别平分∠ADB和∠ADC,∴∠EDA=∠FDA=45°.在△AED与△AFD中,,∴△AED≌△AFD(ASA),∴DE=DF.【点评】本题考查了全等三角形的判定与性质和等腰三角形的性质.此题利用了等腰三角形“三线合一”的性质推知来证明三角形全等的对应角.21.客车和货车同时分别从甲乙两城沿同一公路相向而行,相遇时客车比货车多行驶了180千米,相遇后,客车再经过4小时到达乙城,货车再经过9小时到达甲城,求客车、货车的速度和甲乙两城间的路程.【考点】分式方程的应用.【分析】可设客车的速度是x千米/小时,则货车的速度是千米/小时,以相遇时时间相等作为等量关系,列出方程求解即可.【解答】解:设客车的速度是x千米/小时,则货车的速度是千米/小时,依题意有=,解得x1=90,x2=﹣18(不合题意舍去),经检验,x=90是原方程的解,==60,90×4+60×9=360+540=900(千米).答:客车的速度是90千米/小时,则货车的速度是60千米/小时,甲乙两城间的路程是900千米.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.注意分式方程要验根.22.如图,已知AC∥BD,EA、EB分别平分∠CAB和∠DBA,CD过点E,求证:AB=AC+BD.【考点】全等三角形的判定与性质.【专题】证明题.【分析】在AB上取一点F,使A F=AC,连结EF,就可以得出△ACE≌△AFE,就有∠C=∠AFE.由平行线的性质就有∠C+∠D=180°,由∠AFE+∠EFB=180°得出∠EFB=∠D,在证明△BEF≌△BED就可以得出BF=BD,进而就可以得出结论.【解答】证明:在AB上取一点F,使AF=AC,连结EF.∵EA、EB分别平分∠CAB和∠DBA,∴∠CAE=∠FAE,∠EBF=∠EBD.∵AC∥BD,∴∠C+∠D=180°.在△ACE和△AFE中,,∴△ACE≌△AFE(SAS),∴∠C=∠AFE.∵∠AFE+∠EFB=180°,∴∠EFB=∠D.在△BEF和△BED中,,∴△BEF≌△BED(AAS),∴BF=BD.∵AB=AF+BF,∴AB=AC+BD.【点评】本题考查了平行线的性质的运用,角平分线的性质的运用,全等三角形的判定与性质的运用,解答时证明三角形全等是关键.23.在等腰直角三角形AOB中,已知AO⊥OB,点P、D分别在AB、OB上,(1)如图1中,若PO=PD,∠OPD=45°,证明△BOP是等腰三角形.(2)如图2中,若AB=10,点P在AB上移动,且满足PO=PD,DE⊥AB于点E,试问:此时PE的长度是否变化?若变化,说明理由;若不变,请予以证明.【考点】全等三角形的判定与性质;等腰三角形的判定与性质;等腰直角三角形.【专题】证明题;探究型.【分析】(1)由PO=PD,利用等边对等角和三角形内角和定理可求得∠POD=67.5°,∠OPB=67.5°,然后利用等角对等边可得出结论;(2)过点O作OC⊥AB于C,首先利用等腰直角三角形的性质可以得到∠COB=∠B=45°,OC=5,然后证得∠POC=∠DPE,进而利用AAS证明△POC≌△DPE,再根据全等三角形的性质可得OC=PE.【解答】(1)证明:∵PO=PD,∠OPD=45°,∴∠POD=∠PDO==67.5°,∵等腰直角三角形AOB中,AO⊥OB,∴∠B=45°,∴∠OPB=180°﹣∠POB﹣∠B=67.5°,∴∠POD=∠OPB,∴BP=BO,即△BOP是等腰三角形;(2)解:PE的值不变,为PE=5,证明如下:如图,过点O作OC⊥AB于C,∵∠AOB=90°,AO=BO,∴△BOC是等腰直角三角形,∠COB=∠B=45°,点C为AB的中点,∴OC=AB=5,∵PO=PD,∴∠POD=∠PDO,又∵∠POD=∠COD+∠POC=45°+∠POC,∠PDO=∠B+∠DPE=45°+∠DPE,∴∠POC=∠DPE,在△POC和△DPE中,,∴△POC≌△DPE(AAS),∴OC=PE=5,∴PE的值不变,为5.【点评】本题考查了等腰三角形的判定与性质,全等三角形的判定与性质,等腰直角三角形等知识,解答(2)的关键是正确作出辅助线,并利用AAS证得△POC≌△DPE.。
2016-2017学年第一学期人教版八年级上册期末数学试卷含答案
2016-2017学年八年级(上)期末数学试卷一、选择题(共8小题,每小题3分,满分24分)1.计算(a2)3的结果是( )A.a5B.a6C.a8D.3a22.把x3﹣2x2y+xy2分解因式,结果正确的是( )A.x(x+y)(x﹣y)B.x(x2﹣2xy+y2)C.x(x+y)2D.x(x﹣y)23.解分式方程+=3时,去分母后变形为( )A.2+(x+2)=3(x﹣1)B.2﹣x+2=3(x﹣1) C.2﹣(x+2)=3(1﹣x) D.2﹣(x+2)=3(x﹣1)4.如图,△ABC和△DEF中,AC=DE,∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF( )A.AC∥DF B.∠A=∠D C.AB=DE D.∠ACB=∠F5.如图,在△ABC中,∠A=50°,∠ABC=70°,BD平分∠ABC,则∠BDC的度数是( )A.85°B.80°C.75°D.70°6.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC.将仪器上的点A与∠PRQ 的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是( )A.SAS B.ASA C.AAS D.SSS7.若3x=4,9y=7,则3x﹣2y的值为( )A.B.C.﹣3 D.8.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有( )A.1个B.2个C.3个D.4个二、填空题(共7小题,每小题3分,满分21分)9.计算:+=__________.10.若ab=2,a﹣b=﹣1,则代数式a2b﹣ab2的值等于__________.11.如图,点D在△ABC边BC的延长线上,CE平分∠ACD,∠A=80°,∠B=40°,则∠ACE 的大小是__________度.12.已知一个等腰三角形的一边长4,一边长5,则这个三角形的周长为__________.13.如图:△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm,则△ABC 的周长为__________.14.如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB,若EC=2,则EF=__________.15.将一张宽为6cm的长方形纸片(足够长)折叠成如图所示图形,重叠部分是一个三角形,则这个三角形面积的最小值是__________cm2.三、解答题(共8小题,满分75分)16.利用图形面积可以证明乘法公式,也可以解释代数中恒等式的正确性.(1)首先请同学们观察用硬纸片拼成的图形(如图1),根据图形的面积,写出它能说明的乘法公式__________;(2)请同学们观察用硬纸片拼成的图形(如图2),根据图形的面积关系,写出一个代数恒等式.17.先化简,再求值:(x+y)(x﹣y)+(x﹣y)2+2xy,其中x=(3﹣π)0.y=2.18.先化简:÷(﹣),再从﹣2<x<3的范围内选取一个你最喜欢的值代入,求值.19.如图,AD,AE分别是△ABC的高和角平分线.(1)已知∠B=40°,∠C=60°,求∠DAE的度数;(2)设∠B=α,∠C=β(α<β).请直接写出用α、β表示∠DAE的关系式__________.20.如图,点B、D、C、F在一条直线上,且BC=FD,AB=EF.(1)请你只添加一个条件(不再加辅助线),使△ABC≌△EFD,你添加的条件是__________;(2)添加了条件后,证明△ABC≌△EFD.21.如图,在等边△ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F,(1)求∠F的度数;(2)若CD=3,求DF的长.22.随着城际铁路的正式开通,从甲市经丙市到乙市的高铁里程比普快里程缩短了90km,运行时间减少了8h,已知甲市到乙市的普快列车里程为1220km.高铁平均时速是普快平均时速的2.5倍.(1)求高铁列车的平均时速;(2)某日王先生要从甲市去距离大约780km的丙市参加14:00召开的会议,如果他买到当日9:20从甲市到丙市的高铁票,而且从丙市火车站到会议地点最多需要1小时.试问在高铁列车准点到达的情况下,它能否在开会之前20分钟赶到会议地点?23.如图,等腰Rt△ABC中,∠ABC=90°,AB=BC,点A、B分别在坐标轴上.(1)如图①,若点C的横坐标为5,直接写出点B的坐标__________;(提示:过C作CD⊥y 轴于点D,利用全等三角形求出OB即可)(2)如图②,若点A的坐标为(﹣6,0),点B在y轴的正半轴上运动时,分别以OB、AB为边在第一、第二象限作等腰Rt△OBF,等腰Rt△ABE,连接EF交y轴于点P,当点B在y轴的正半轴上移动时,PB的长度是否发生改变?若不变,求出PB的值.若变化,求PB的取值范围.2016-2017学年八年级(上)期末数学试卷一、选择题(共8小题,每小题3分,满分24分)1.计算(a2)3的结果是( )A.a5B.a6C.a8D.3a2【考点】幂的乘方与积的乘方.【分析】根据幂的乘方,底数不变,指数相乘,计算后直接选取答案.【解答】解:(a2)3=a6.故选:B.【点评】本题考查了幂的乘方的性质,熟练掌握性质是解题的关键.2.把x3﹣2x2y+xy2分解因式,结果正确的是( )A.x(x+y)(x﹣y)B.x(x2﹣2xy+y2)C.x(x+y)2D.x(x﹣y)2【考点】提公因式法与公式法的综合运用.【分析】此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有3项,可采用完全平方公式继续分解.【解答】解:x3﹣2x2y+xy2,=x(x2﹣2xy+y2),=x(x﹣y)2.故选D.【点评】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.3.解分式方程+=3时,去分母后变形为( )A.2+(x+2)=3(x﹣1)B.2﹣x+2=3(x﹣1) C.2﹣(x+2)=3(1﹣x) D.2﹣(x+2)=3(x﹣1)【考点】解分式方程.【分析】本题考查对一个分式确定最简公分母,去分母得能力.观察式子x﹣1和1﹣x互为相反数,可得1﹣x=﹣(x﹣1),所以可得最简公分母为x﹣1,因为去分母时式子不能漏乘,所以方程中式子每一项都要乘最简公分母.【解答】解:方程两边都乘以x﹣1,得:2﹣(x+2)=3(x﹣1).故选D.【点评】考查了解分式方程,对一个分式方程而言,确定最简公分母后要注意不要漏乘,这正是本题考查点所在.切忌避免出现去分母后:2﹣(x+2)=3形式的出现.4.如图,△ABC和△DEF中,AC=DE,∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF( )A.AC∥DF B.∠A=∠D C.AB=DE D.∠ACB=∠F【考点】全等三角形的判定.【分析】根据全等三角形的判定定理,即可得出结论.【解答】解:∵AC=DF,∠B=∠DEF,∴添加AC∥DF,得出∠ACB=∠F,即可证明△ABC≌△DEF,故A、D都正确;当添加∠A=∠D时,根据AAS,也可证明△ABC≌△DEF,故B正确;但添加AB=DE时,没有SSA定理,不能证明△ABC≌△DEF,故C不正确;故选:C.【点评】本题考查了全等三角形的判定定理,证明三角形全等的方法有:SSS,SAS,ASA,AAS,还有直角三角形全等的HL定理.5.如图,在△ABC中,∠A=50°,∠ABC=70°,BD平分∠ABC,则∠BDC的度数是( )A.85°B.80°C.75°D.70°【考点】三角形内角和定理.【分析】先根据∠A=50°,∠ABC=70°得出∠C的度数,再由BD平分∠ABC求出∠ABD的度数,再根据三角形的外角等于和它不相邻的内角的和解答.【解答】解:∵∠ABC=70°,BD平分∠ABC,∴∠ABD=70°×=35°,∴∠BDC=50°+35°=85°,故选:A.【点评】本题考查的是三角形的外角和内角的关系,熟知三角形的外角等于和它不相邻的内角的和是解题的关键.6.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC.将仪器上的点A与∠PRQ 的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是( )A.SAS B.ASA C.AAS D.SSS【考点】全等三角形的应用.【分析】在△ADC和△ABC中,由于AC为公共边,AB=AD,BC=DC,利用SSS定理可判定△ADC≌△ABC,进而得到∠DAC=∠BAC,即∠QAE=∠PAE.【解答】解:在△ADC和△ABC中,,∴△ADC≌△ABC(SSS),∴∠DAC=∠BAC,即∠QAE=∠PAE.故选:D.【点评】本题考查了全等三角形的应用;这种设计,用SSS判断全等,再运用性质,是全等三角形判定及性质的综合运用,做题时要认真读题,充分理解题意.7.若3x=4,9y=7,则3x﹣2y的值为( )A.B.C.﹣3 D.【考点】同底数幂的除法;幂的乘方与积的乘方.【分析】由3x=4,9y=7与3x﹣2y=3x÷32y=3x÷(32)y,代入即可求得答案.【解答】解:∵3x=4,9y=7,∴3x﹣2y=3x÷32y=3x÷(32)y=4÷7=.故选A.【点评】此题考查了同底数幂的除法与幂的乘方的应用.此题难度适中,注意将3x﹣2y变形为3x÷(32)y是解此题的关键.8.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有( )A.1个B.2个C.3个D.4个【考点】全等三角形的判定.【分析】根据全等三角形的判定得出点P的位置即可.【解答】解:要使△ABP与△ABC全等,点P到AB的距离应该等于点C到AB的距离,即3个单位长度,故点P的位置可以是P1,P3,P4三个,故选C【点评】此题考查全等三角形的判定,关键是利用全等三角形的判定进行判定点P的位置.二、填空题(共7小题,每小题3分,满分21分)9.计算:+=2.【考点】分式的加减法.【专题】计算题.【分析】原式利用同分母分式的加法法则计算,约分即可得到结果.【解答】解:原式===2,故答案为:2【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.10.若ab=2,a﹣b=﹣1,则代数式a2b﹣ab2的值等于﹣2.【考点】因式分解-提公因式法.【专题】因式分解.【分析】首先提取公因式ab,进而将已知代入求出即可.【解答】解:∵ab=2,a﹣b=﹣1,∴a2b﹣ab2=ab(a﹣b)=2×(﹣1)=﹣2.故答案为:﹣2.【点评】此题主要考查了提取公因式法分解因式,正确提取公因式是解题关键.11.如图,点D在△ABC边BC的延长线上,CE平分∠ACD,∠A=80°,∠B=40°,则∠ACE 的大小是60度.【考点】三角形的外角性质.【分析】由∠A=80°,∠B=40°,根据三角形任意一个外角等于与之不相邻的两内角的和得到∠ACD=∠B+∠A,然后利用角平分线的定义计算即可.【解答】解:∵∠ACD=∠B+∠A,而∠A=80°,∠B=40°,∴∠ACD=80°+40°=120°.∵CE平分∠ACD,∴∠ACE=60°,故答案为60【点评】本题考查了三角形的外角定理,关键是根据三角形任意一个外角等于与之不相邻的两内角的和.12.已知一个等腰三角形的一边长4,一边长5,则这个三角形的周长为13或14.【考点】等腰三角形的性质;三角形三边关系.【分析】分4是腰长和底边两种情况讨论,再利用三角形的任意两边之和大于第三边判断是否能组成三角形解答.【解答】解:①若4是腰长,则三角形的三边分别为4、4、5,能组成三角形,周长=4+4+5=13,②若4是底边,则三角形的三边分别为4、5、5,能组成三角形,周长=4+5+5=14,综上所述,这个三角形周长为13或14.故答案为:13或14.【点评】本题考查了等腰三角形的性质,三角形的三边关系,难点在于分情况讨论并利用三角形的三边关系判断是否能组成三角形.13.如图:△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm,则△ABC 的周长为19.【考点】线段垂直平分线的性质.【分析】由已知条件,利用线段的垂直平分线的性质,得到AD=CD,AC=2AE,结合周长,进行线段的等量代换可得答案.【解答】解:∵DE是AC的垂直平分线,∴AD=CD,AC=2AE=6cm,又∵△ABD的周长=AB+BD+AD=13cm,∴AB+BD+CD=13cm,即AB+BC=13cm,∴△ABC的周长=AB+BC+AC=13+6=19cm.故答案为19.【点评】此题主要考查了线段垂直平分线的性质(垂直平分线上任意一点,到线段两端点的距离相等),进行线段的等量代换是正确解答本题的关键.14.如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB,若EC=2,则EF=4.【考点】含30度角的直角三角形;角平分线的性质.【分析】作EG⊥OA于F,根据角平分线的性质得到EG的长度,再根据平行线的性质得到∠OEF=∠COE=15°,然后利用三角形的外角和内角的关系求出∠EFG=30°,利用30°角所对的直角边是斜边的一半解题.【解答】解:作EG⊥OA于G,如图所示:∵EF∥OB,∠AOE=∠BOE=15°∴∠OEF=∠COE=15°,EG=CE=2,∵∠AOE=15°,∴∠EFG=15°+15°=30°,∴∴EF=2EG=4.故答案为:4.【点评】本题考查了角平分线的性质、平行线的性质、含30°角的直角三角形的性质;熟练掌握角平分线的性质,证出∠EFG=30°是解决问题的关键.15.将一张宽为6cm的长方形纸片(足够长)折叠成如图所示图形,重叠部分是一个三角形,则这个三角形面积的最小值是18cm2.【考点】翻折变换(折叠问题).【分析】当AC⊥AB时,重叠三角形面积最小,此时△ABC是等腰直角三角形,利用三角形面积公式即可求解.【解答】解:如图,当AC⊥AB时,三角形面积最小,∵∠BAC=90°∠ACB=45°∴AB=AC=4cm,∴S△ABC=×6×6=18cm2.故答案是:18.【点评】本题考查了折叠的性质,发现当AC⊥AB时,重叠三角形的面积最小是解决问题的关键.三、解答题(共8小题,满分75分)16.利用图形面积可以证明乘法公式,也可以解释代数中恒等式的正确性.(1)首先请同学们观察用硬纸片拼成的图形(如图1),根据图形的面积,写出它能说明的乘法公式(a+b)2=a2+2ab+b2;(2)请同学们观察用硬纸片拼成的图形(如图2),根据图形的面积关系,写出一个代数恒等式.【考点】完全平方公式的几何背景.【分析】(1)图中可以得出,大正方形的边长为a+b,大正方形的面积就为(a+b)2,2个矩形的边长相同,且长为a,宽为b,则2个矩形的面积为2ab,空白的是两个正方形,较大的正方形的边长为a,面积等于a2,小的正方形边长为b,面积等于b2,大正方形面积减去2个阴影矩形的面积就等于空白部分的面积.(2)图中可以得出,大正方形的边长为a+b,大正方形的面积就为(a+b)2,4个矩形的边长相同,且长为a,宽为b,则4个矩形的面积为4ab,中间空心的正方形的边长为a﹣b,面积等于(a﹣b)2,大正方形面积减去4个阴影矩形的面积就等于中间空白部分的面积.【解答】解:(1)∵阴影部分都是全等的矩形,且长为a,宽为b,∴2个矩形的面积为2ab,∵大正方形的边长为a+b,∴大正方形面积为(a+b)2,∴空白正方形的面积为a2和b2,∴(a+b)2=a2+2ab+b2.故答案为(a+b)2=a2+2ab+b2.(2)∵四周阴影部分都是全等的矩形,且长为a,宽为b,∴四个矩形的面积为4ab,∵大正方形的边长为a+b,∴大正方形面积为(a+b)2,∴中间小正方形的面积为(a+b)2﹣4ab,∵中间小正方形的面积也可表示为:(a﹣b)2,∴(a﹣b)2=(a+b)2﹣4ab.【点评】本题考查了完全平方公式的几何意义,用不同的方法表示相应的面积是解题的关键.17.先化简,再求值:(x+y)(x﹣y)+(x﹣y)2+2xy,其中x=(3﹣π)0.y=2.【考点】整式的混合运算—化简求值;零指数幂.【专题】计算题;整式.【分析】原式利用平方差公式,完全平方公式化简,去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=x2﹣y2+x2﹣2xy+y2+2xy=2x2,当x=(3﹣π)0=1时,原式=2.【点评】此题考查了整式的混合运算﹣化简求值,以及零指数幂,熟练掌握运算法则是解本题的关键.18.先化简:÷(﹣),再从﹣2<x<3的范围内选取一个你最喜欢的值代入,求值.【考点】分式的化简求值.【专题】计算题.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=÷=•=,当x=2时,原式=4.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.如图,AD,AE分别是△ABC的高和角平分线.(1)已知∠B=40°,∠C=60°,求∠DAE的度数;(2)设∠B=α,∠C=β(α<β).请直接写出用α、β表示∠DAE的关系式(β﹣α).【考点】三角形内角和定理.【分析】(1)根据三角形内角和定理求出∠BAC,再根据角平分线的定义求出∠BAE,根据直角三角形两锐角互余求出∠BAD,然后求解即可.(2)同(1)即可得出结果.【解答】解:(1)∵∠B=40°,∠C=60°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣40°﹣60°=80°,∵AE是角平分线,∴∠BAE=∠BAC=×80°=40°,∵AD是高,∴∠BAD=90°﹣∠B=90°﹣40°=50°,∴∠DAE=∠BAD﹣∠BAE=50°﹣40°=10°;(2)∵∠B=α,∠C=β(α<β),∴∠BAC=180°﹣(α+β),∵AE是角平分线,∴∠BAE=∠BAC=90°﹣(α+β),∵AD是高,∴∠BAD=90°﹣∠B=90°﹣α,∴∠DAE=∠BAD﹣∠BAE=90°﹣α﹣[90°﹣(α+β)]=(β﹣α);故答案为:(β﹣α).【点评】本题考查了三角形的内角和定理,三角形的角平分线、高线的定义,直角三角形两锐角互余的性质,熟记定理并准确识图是解题的关键.20.如图,点B、D、C、F在一条直线上,且BC=FD,AB=EF.(1)请你只添加一个条件(不再加辅助线),使△ABC≌△EFD,你添加的条件是∠B=∠F 或AB∥EF或AC=ED;(2)添加了条件后,证明△ABC≌△EFD.【考点】全等三角形的判定.【专题】证明题;开放型.【分析】(1)本题要判定△ABC≌△EFD,已知BC=DF,AB=EF,具备了两组边对应相等,故添加∠B=∠F或AB∥EF或AC=ED后可分别根据SAS、AAS、SSS来判定其全等;(2)因为AB=EF,∠B=∠F,BC=FD,可根据SAS判定△ABC≌△EFD.【解答】解:(1)∠B=∠F或AB∥EF或AC=ED;(2)证明:当∠B=∠F时在△ABC和△EFD中∴△ABC≌△EFD(SAS).【点评】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.21.如图,在等边△ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F,(1)求∠F的度数;(2)若CD=3,求DF的长.【考点】等边三角形的判定与性质.【分析】(1)根据平行线的性质可得∠EDC=∠B=60°,根据三角形内角和定理即可求解;(2)易证△EDC是等边三角形,再根据直角三角形的性质即可求解.【解答】解:(1)∵△ABC是等边三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°;(2)∵∠ACB=60°,∠EDC=60°,∴△EDC是等边三角形.∴ED=DC=3,∵∠DEF=90°,∠F=30°,∴DF=2DE=6.【点评】本题考查了等边三角形的判定与性质,以及直角三角形的性质,30度的锐角所对的直角边等于斜边的一半.22.随着城际铁路的正式开通,从甲市经丙市到乙市的高铁里程比普快里程缩短了90km,运行时间减少了8h,已知甲市到乙市的普快列车里程为1220km.高铁平均时速是普快平均时速的2.5倍.(1)求高铁列车的平均时速;(2)某日王先生要从甲市去距离大约780km的丙市参加14:00召开的会议,如果他买到当日9:20从甲市到丙市的高铁票,而且从丙市火车站到会议地点最多需要1小时.试问在高铁列车准点到达的情况下,它能否在开会之前20分钟赶到会议地点?【考点】分式方程的应用.【分析】(1)设普快的平均时速为x千米/小时,高铁列车的平均时速为2.5x千米/小时,根据题意可得,高铁走(1220﹣90)千米比普快走1220千米时间减少了8小时,据此列方程求解;(2)求出王先生所用的时间,然后进行判断.【解答】解:(1)设普快的平均时速为x千米/小时,高铁列车的平均时速为2.5x千米/小时,由题意得,﹣=8,解得:x=96,经检验,x=96是原分式方程的解,且符合题意,则2.5x=240,答:高铁列车的平均时速为240千米/小时;(2)780÷240=3.25,则坐车共需要3.25+1=4.25(小时),从9:20到下午1:40,共计4小时>4.25小时,故王先生能在开会之前到达.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.23.如图,等腰Rt△ABC中,∠ABC=90°,AB=BC,点A、B分别在坐标轴上.(1)如图①,若点C的横坐标为5,直接写出点B的坐标(0,2);(提示:过C作CD⊥y 轴于点D,利用全等三角形求出OB即可)(2)如图②,若点A的坐标为(﹣6,0),点B在y轴的正半轴上运动时,分别以OB、AB为边在第一、第二象限作等腰Rt△OBF,等腰Rt△ABE,连接EF交y轴于点P,当点B在y轴的正半轴上移动时,PB的长度是否发生改变?若不变,求出PB的值.若变化,求PB的取值范围.【考点】全等三角形的判定与性质;坐标与图形性质;等腰直角三角形.【分析】(1)作CD⊥BO,易证△ABO≌△BCD,根据全等三角形对应边相等的性质即可解题;(2)作EG⊥y轴,易证△BAO≌△EBG和△EGP≌△FBP,可得BG=AO和PB=PG,即可求得PB=AO,即可解题.【解答】解:(1)如图1,作CD⊥BO于D,∵∠CBD+∠ABO=90°,∠ABO+∠BAO=90°,∴∠CBD=∠BAO,在△ABO和△BCD中,,∴△ABO≌△BCD(AAS),∴CD=BO=2,∴B点坐标(O,2);故答案为:(0,2);(2)如图3,作EG⊥y轴于G,∵∠BAO+∠OBA=90°,∠OBA+∠EBG=90°,∴∠BAO=∠EBG,在△BAO和△EBG中,,∴△BAO≌△EBG(AAS),∴BG=AO,EG=OB,∵OB=BF,∴BF=EG,在△EGP和△FBP中,,∴△EGP≌△FBP(AAS),∴PB=PG,∴PB=BG=AO=3.【点评】本题考查了勾股定理、角平分线的性质、相似三角形的判定与性质,熟练掌握三角形全等的证明是解本题的关键.。
人教版2016八年级数学上期末试卷【精选3套】
八年级数学上册期末考试试卷一一、选择题(本大题共有8题,每题3分,共24分)1、已知6x y+=,2xy=-,则2211x y+=.2、以下五家银行行标中,是轴对称图形的有()A、1个 B. 2个 C. 3个 D. 4个3、下列条件中,不能确定....△ABC≌△CBA'''的是()A、BC= B'C',AB=A'B',∠B=∠B'B、∠B=∠B'AC=A'C'AB= A'B'C、∠A=∠A',AB= A'B', ∠C=∠C'D、BC= B'C'4、若等腰三角形的周长为26cm,一边为11cm,则腰长为()A.11㎝B.7.5㎝C. 11㎝或7.5㎝D.以上都不对5、下列计算中正确的是()A、a2+a3=a5 B.a4÷a=a4 C.a2×a4=a8 D.(—a2)3=—a66、△ABC中,∠A:∠B:∠C=1:2:3,最小边BC=3cm,最长边AB的长为()A.9cmB. 8 cmC. 7 cmD.6 cm7、在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪拼成一个矩形(如图),通过计算图形(阴影部分)的面积,验证了一个等式,则这个等式是()A.a2-b2=(a+b)(a-b)B. (a+b)2=a+2ab+b2C.(a-b)2=a2-2ab+b2D.a2-ab=a(a-b)8、.若关于x的分式方程233x mmx x-=--无解,则m的值为.二、填空题(本大题共6题,每题3分,共18分,请将正确答案直接写在题后的横线上。
)9、若1=x,21=y,则2244yxyx++的值是()A.2 B.4 C.23D.2110、把多项式322x x x-+分解因式结果正确的是()A.2(2)x x x-B.2(2)x x-C.(1)(1)x x x+-D.2(1)x x-11、如图,在△ABC中,∠C=900,AD平分∠ABC, BC=10cm,BD=6cm,则点D到AB的距离是______。
人教版八年级数学上度第一学期期末考试.docx
初中数学试卷桑水出品2015-2016学年度第一学期期末考试八年级数学试题(时间:110分钟 满分:100分)注意事项:1.本试题分第I 卷和第Ⅱ卷两部分,共8页.第I 卷第1页至第2页为选择题,30分;第Ⅱ卷第3页至第8页为非选择题,70分;共100分.2.答卷前务必将自己的姓名、考号等填写在装订线内规定位置.第Ⅰ卷 (选择题 共30分)一.精心选一选(本大题共10小题,每题3分,共30分. 在每题所给出的四个选项中,只有一项是符合题意的, 把所选项前的字母代号填在卷Ⅱ的答题栏内.相信你一定能选对!)1.下列图形具有稳定性的是( )A. 三角形B. 四边形C. 五边形D. 六边形 2.已知△ABC ≌△DEF ,∠A=50°,∠E=60°.那么∠C 等于( )A. 30°B. 50°C. 60°D. 70° 3.把分式yx x+中的x 、y 都扩大3倍,那么分式的值是( ) A. 扩大3倍 B. 缩小3倍 C. 不变 D. 缩小原来的61 4.下列各式正确的是( )A. 55b b b =⋅B. 2222)(b a b a = C. 236a a a =÷ D. a a a 32=+5.如图1,点A 和点D 都在线段BC 的垂直平分线上.连接AB,AC,DB,DC.如果∠1=20°,∠2=50°. 那么∠BAC比∠BDC()A. 大40°B. 小40°C. 大30°D. 小30°6.下列分式中,是最简分式的是( )A. a 36B. 3232yy x C. x x x -2 D. b a b a ++2 7.一个多边形的外角和与它的内角和的比为1:3,这个多边形的边数是( )A. 9B. 8C. 7D. 6 8.如果492+-ka a 是完全平方式,那么k 的值是( )A. -12B. 6C. ±12D. ±6 9.已知分式xx 1+-.下列分式中与其相等的是( ) A. x x 1-- B. xx 1+- C. x x --1 D. 12++-x x10.在一次数学课上,李老师出示一道题目:如图2,在△ABC 中,AC=BC ,AD=BD ,∠A=30°. 在线段AB 上求作两点P ,Q ,使AP=CP=CQ=BQ.明明作法:分别作∠ACD 和∠BCD 的平分线,交AB 于点P ,Q.点P ,Q 就是所求作的点. 晓晓作法:分别作AC 和BC 的垂直平分线,交AB 于点P ,Q.点P ,Q 就是所求作的点. 你认为明明和晓晓作法正确的是( )A. 明明B. 晓晓C. 两人都正确D. 两人都错误第Ⅱ卷 (非选择题 共70分)一、精心选择题(答题栏)(每小题3分,共30分)二、细心填一填(本大题共有5小题,每题3分,共15分.请把结果直接填在题中的横线上.只要你仔细运算,积极思考,相信你一定能填对!)11.一个三角形的三边长分别是3,6,x .那么整数x 可能是 .(填一种情况即可)12.齐鲁网2015年12月7日讯,中国科学院和中国工程院院士增选名单正式出炉,中国海洋大学山东微山县籍宋微波教授,当选中国科学院生命科学和医学学部院士,他主要从事海洋纤毛虫领域的研究.纤毛虫作为原生动物中特化程度最高且最为复杂的一个门,是单细胞真核生物,具有高度的形态和功能多样性,其最小个体大约有0.00002米.那么其中数据0.00002用科学计数法表示为 .13.已知一个等腰三角形的一个角是80°.那么它的顶角度数是 .14.若)3)(5(2-+=++x x c bx x ,则点P (b,c )关于y 轴对称点的坐标是 . 15.如果xxm x -+=+-2121的解为正数,那么m 的取值范围是 . 三、认真答一答(本大题共7题,满分55分. 只要你认真审题, 细心运算, 一定能解答正确!解答应写出文字说明、证明过程或推演过程.)16.(本小题 6分)计算:(1)111---x x x ; (2)32246ba ab ⋅⎪⎪⎭⎫ ⎝⎛;(3)()2214.3---π.17.(本小题8分)(1)化简:()()()y x y x y x 2232-+--;(2)先化简分式:1339692222---+-÷++-a a a aa a a a a ,然后在0,1,2,3中选择一个你喜欢的a 值,代入求值.18.(本小题8分)如图3,在△ABC 中,AD ,CE 是高线,AF 是角平分线,∠BAC=∠AFD=80°.(1)求∠BCE 的度数;(2)如果AD=6,BE=5.求△ABC 的面积. 得分 评卷人得分 评卷人19.(本小题7分)作图与证明:(1)读下列语句,作出符合题意的图形(要求:使用直尺和圆规作图,保留作图痕迹).①作线段AB ;②分别以A ,B 为圆心,以AB 长为半径作弧,两弧在线段AB 的同侧交于点C ; ③连接AC ,以点C 为圆心,以AB 长为半径作弧,交AC 延长线于点D ; ④连接BD ,得△ABD.(2)求证:△ABD 是直角三角形.画图区20.(本小题 8分)本学期马上就要结束了,班主任刘老师打算花50元买笔记本,花150元买钢笔,用来奖励本学期综合表现较好的前若干名同学.已知钢笔每只比笔记本每本贵16元,刘老师能买到相同数量的笔记本和钢笔吗?班委会上,班长和团支部书记都帮助刘老师进行了计算,他们假设刘老师能买到相同数量的笔记本和钢笔,分别设未知数并列出了方程:班 长:xx 1501650=-; 团支部书记:yy 1501650=+. (1)填空:班长所列方程中x 的实际意义是 ; 团支部书记所列方程中y的实际意义是 .(2)你认为刘老师能买到相同数量的笔记本和钢笔吗?请说明理由.21.(本小题8分)先阅读下面的内容,然后再解答问题.例:已知0122222=+-++n n mn m .求m 和n 的值.解:∵0122222=+-++n n mn m ,∴0122222=+-+++n n n mn m . ∴()()0122=-++n n m .∴⎩⎨⎧=-=+010n n m .解这个方程组,得:⎩⎨⎧=-=11n m .解答下面的问题:(1)如果04110822=++-+y x y x 成立.求()2016y x +的值;(2)已知a ,b ,c 为△ABC 的三边长,若ca bc ab c b a ++=++222,试判断△ABC的形状,并证明.得分评卷人22.(本小题10分)已知:在△ABC中,∠ACB=90°,AC=BC,点D是AB的中点,点E是AB边上一点.(1)直线BF垂直于CE于点F,交CD于点G(如图4-1).求证:AE=CG;(2)直线AH垂直于CE,垂足为H,交CD的延长线于点M(如图4-2).那么图中是否存在与AM相等的线段?若存在,请写出来并证明;若不存在,请说明理由.2015-2016学年度第一学期期末考试八年级数学试题参考答案二、细心填一填(本大题共有5小题,每题3分,共15分.)11.4(或5,6,7,8);12.2×510-;13. 80°或20°;14.(-2,-15);15. m <1且m ≠-3.三、认真答一答(本大题共7题,满分55分.) 16.(本小题 6分)解:(1)111---x x x =11--x x …………………………………………1分=1 ………………………………………………2分(2)32246b a a b ⋅⎪⎪⎭⎫ ⎝⎛=324436baa b ⋅ ……………………………………3分 =ab9 ……………………………………………4分 (3)()2214.3---π=1-221…………………………………………5分 =43………………………………………………6分 17.(本小题8分)解:(1)()()()y x y x y x 2232-+--=()()222224223y xy xy xyxy x -+--+- ………………………………2分=2253y xy x +-.………………………………………………………………4分(2)1339692222---+-÷++-a a a aa a a a a =()()()()()11333332----+⋅+-+a a a a a a a a a …………5分 =()a a -- ………………………………………6分=a 2 ………………………………………………7分当a =2时,原式=2×2=4. ……………………………………8分(只能选择a =2)18.(本小题8分)如图3.解:(1)∵AD ,CE 是高线,∴∠BEC=∠ADB=∠ADC=90°.∴∠DAF=90°-∠AFD=90°-80°=10°. ………………………1分∵AF 平分∠BAC ,∴∠BAF=21∠BAC=21×80°=40°. ……………………………2分 ∴∠BAD=∠BAF-∠DAF=40°-10°=30°. ………………………3分∵∠BAD+∠B=90°,∠BCE+∠B=90°,∴∠BCE=∠BAD=30°. ……………………………………………4分(2)在Rt △BCE 中,∠BCE=30°,∴BC=2BE=2×5=10. ………………………………………………6分∴ABC △S =21BC ·AD=21×10×6=30. ……………………………8分 19.(本小题7分)(1)作△ABD 如图所示. ………………………3分(2)证明:连接BC.由作图可知:AB=AC=BC=CD.∴∠ABC=∠BCA=60°,∠DBC=∠BDC. …………………4分∵∠BCA=∠DBC+∠BDC ,∴∠DBC=21∠BCA =21×60° =30°. ……………………5分∴∠ABD=∠ABC+∠DBC=60°+30°=90°. ……………………6分∴△ABD 是直角三角形. …………7分20.(本小题 8分)(1)钢笔的单价; ………………………………………………………………1分所买笔记本的本数.(或所买钢笔的只数)………………………………2分(只要考生表述正确即可得分)(2)解:假设刘老师能买到相同数量的笔记本和钢笔.设笔记本每本z 元,则钢笔每只(z +16)元.根据题意,得 ……3分1615050+=z z . …………………………………………………………4分 解这个方程,得z =8. …………………………………………………5分经检验z =8是所列方程的解.…………………………………………6分 ∴25.685050==z ,而笔记本的本数必须为整数, ∴z =8不符合实际题意.………………………………………………7分∴刘老师不能买到相同数量的笔记本和钢笔.………………………………8分(其它方法参照赋分)21.(本小题8分)解:(1)∵04110822=++-+y x y x ,∴0251016822=++++-y y x x .∴()()05422=++-y x .…………………………………………1分 ∴04=-x 且05=+y . …………………………………………2分∴4=x ,5-=y .…………………………………………………3分∴()2016y x +=()[]201654-+=1.……………………………………4分 (2)∵ca bc ab c b a ++=++222, ∴ca bc ab c b a 222222222++=++.∴022*******=+-++-++-a ca c c bc b b ab a .∴()()()0222=-+-+-a c c b b a (5)分∴0=-b a 且0=-c b 且0=-a c (6)分∴c b a ==. (7)分∴△ABC 是等边三角形. (8)分22.(本小题10分)证明:(1)∵点D 是AB 的中点,AC=BC ,∠ACB=90°,∴CD ⊥AB ,∠ACD=∠BCD=45°,∠CAD=∠CBD=45°.∴∠CAE=∠BCG .………………………………………………1分∵BF ⊥CE ,∴∠CBG+∠BCF=90°.…………………………………………2分∵∠ACE+∠BCF=90°,∴∠ACE=∠CBG .………………………………………………3分 在△AEC 和△CGB 中,∠CAE=∠BCGAC=BC∠ACE=∠CBG∴△AEC ≌△CGB (ASA ).………………………………………4分∴AE=CG .…………………………………………………………5分(2)答:图中存在与AM 相等的线段,AM=CE. …………………………………6分证明:∵CH ⊥HM ,CD ⊥ED ,∴∠CMA+∠MCH=90°,∠BEC+∠MCH=90°.………………………………7分∴∠CMA=∠BEC .………………………………………………………………8分∵AC=BC ,∠ACM=∠CBE=45°,在△CAM 和△BCE 中∠CMA=∠BEC∠ACM=∠CBEAC=BC∴△CAM ≌△BCE (AAS ).……………………………………………………9分∴AM=CE. ……………………………………………………………………10分(其它方法参照赋分)。
2016年人教版八年级上学期期末数学试卷(解析版)
2016年人教版八年级上学期期末数学试卷一、单项选择题(每小题3分,共9分).1.(3分)的值等于()A.3B.﹣3 C.±3 D.2.(3分)下列运算正确的是()A.a3•a2=a6B.(x3)3=x6C.x5+x5=x10D.(﹣ab)5÷(﹣ab)2=﹣a3b33.(3分)以下列各组数据为边组成的三角形,不是直角三角形的是()A.3,3,5 B.1,1,C.5,4,3 D.5,12,13二、填空题(每小题4分,共28分).4.(4分)﹣27的立方根是.5.(4分)比较大小:3.6.(4分)用科学记数法表示:0.0000314=.7.(4分)计算:(5ax2+15x)÷5x=.8.(4分)当x时,分式有意义.9.(4分)化简:=.10.(4分)已知数据:,,,π,﹣2,其中无理数出现的频率是.三、解答题(每小题9分,共36分).11.(9分)因式分解:(1)25x2﹣16y2(2)2a2+4ab+2b2.12.(9分)先化简,再求值:(x+3)(x﹣3)﹣x(x﹣2),其中x=4.13.(9分)如图,已知:△ABC中,AB=AC,M是BC的中点,D、E分别是AB、AC边上的点,且BD=CE.求证:MD=ME.14.(9分)今年以来,我国持续大面积的雾霾天气让环保和健康问题成为焦点.为了调查学生对雾霾天气知识的了解程度,某校在学生中做了一次抽样调查,调查结果共分为四个等级:A.非常了解;B.比较了解;C.基本了解;D.不了解.根据调查统计结果,绘制了不完整的三种统计图表.对雾霾了解程度的统计表:对雾霾的了解程度百分比A.非常了解5%B.比较了解mC.基本了解45%D.不了解n请结合统计图表,回答下列问题.(1)本次参与调查的学生共有人,m=,n=;(2)图2所示的扇形统计图中D部分扇形所对应的圆心角是多少度;(3)请补全条形统计图.一、单项选择题(每小题3分,共9分).15.(3分)等腰三角形的顶角为80°,那么它的一个底角的大小为()A.20°B.50°C.80°D.50°或20°16.(3分)下列各式,正确的是()A.=0 B.C.=1 D.17.(3分)如图,在△ABC中,AB=AC,AE是∠BAC的平分线,点D是AE上的一点,则下列结论错误的是()A.A E⊥BC B.△BED≌△CED C.△BAD≌△CAD D.∠ABD=∠DBE二、填空题(每小题4分,共8分).18.(4分)命题“全等三角形的对应角相等”的逆命题是,这个逆命题是(填“真”或“假”).19.(4分)如图,在△ABC中,已知边AC的垂直平分线DE交BC于点D,连结AD,AD=3,BD=4,则BC=.三、解答题(每小题9分,共27分).20.(9分)计算:+﹣20150.21.(9分)解分式方程:=.22.(9分)如图,将长为2.5米长的梯子AB斜靠在墙上,BC长为0.7米.(1)求梯子上端A到墙的底端C的距离(即AC的长);(2)如果梯子的顶端A沿墙下滑0.4米(即AA′=0.4米),则梯脚B将外移(即BB′的长)多少米?一、选择题(每小题3分,共3分).23.(3分)如图所示,将四张全等的长方形硬纸片围成一个正方形,根据图形阴影部分面积的关系,可以直观地得到一个关于a、b的恒等式为()A.a2﹣b2=(a+b)(a﹣b)B.(a+b)2=a2+2ab+b2C.(a﹣b)2=(a+b)2﹣4ab D.a2+ab=a(a+b)二、填空题(每小题4分,共4分).24.(4分)如图是一个长为4cm,宽为3cm,高为5cm的长方体纸箱,则AC=cm.若一只蚂蚁要从A点沿纸箱外表面爬行到B点,那么它所行走的最短路径的长是cm.(保留根号)三、解答题(共26分).25.(12分)如图,在四边形ABCD中,AD∥BC,∠B=90°,AD=3,BC=4,点E在AB 边上,BE=3,∠CED=90°.(1)求CE的长度;(2)求证:△ADE≌△BEC;(3)设点P是线段AB上的一个动点,求DP+CP的最小值是多少?26.(14分)在△ABC中,D是边BC的中点.(1)①如图1,求证:△ABD和△ACD的面积相等;②如图2,延长AD至E,使DE=AD,连结CE,求证:AB=EC.(2)当∠BAC=90°时,可以结合利用以上各题的结论,解决下列问题:①求证:AD=BC(即:直角三角形斜边上的中线等于斜边的一半);②已知BC=4,将△ABD沿AD所在直线翻折,得到△ADB′,若△ADB′与△ABC重合部分的面积等于△ABC面积的,请画出图形(草图)并求出AC的长度.参考答案与试题解析一、单项选择题(每小题3分,共9分).1.(3分)的值等于()A.3B.﹣3 C.±3 D.考点:算术平方根.分析:此题考查的是9的算术平方根,需注意的是算术平方根必为非负数.解答:解:∵=3,故选A.点评:此题主要考查了算术平方根的定义,一个正数只有一个算术平方根,0的算术平方根是0.2.(3分)下列运算正确的是()A.a3•a2=a6B.(x3)3=x6C.x5+x5=x10D.(﹣ab)5÷(﹣a b)2=﹣a3b3考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据合并同类项、幂的乘方与积的乘方、同底数幂的除法与乘法等知识点进行作答即可求得答案.解答:解:A、a3•a2=a5,故A错误;B、(x3)3=x9,故B错误;C、x5+x5=2x5,故C错误;D、(﹣ab)5÷(﹣ab)2=﹣a5b5÷a2b2=﹣a3b3,故D正确.故选:D.点评:本题考查了合并同类项,同底数的幂的除法与乘法,积的乘方等多个运算性质,需同学们熟练掌握.3.(3分)以下列各组数据为边组成的三角形,不是直角三角形的是()A.3,3,5 B.1,1,C.5,4,3 D.5,12,13考点:勾股定理的逆定理.专题:计算题.分析:根据勾股定理的逆定理对四个选项进行逐一判断即可.解答:解:A、32+32=18≠52=25,不符合勾股定理的逆定理,故本选项错误;B、12+12=2=()2,符合勾股定理的逆定理,故本选项正确;C、32+42=25=(5)2,符合勾股定理的逆定理,故本选项正确;D、52+122=169=132,符合勾股定理的逆定理,故本选项正确.故选A.点评:本题考查的是勾股定理的逆定理,即如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.二、填空题(每小题4分,共28分).4.(4分)﹣27的立方根是﹣3.考点:立方根.分析:根据立方根的定义求解即可.解答:解:∵(﹣3)3=﹣27,∴=﹣3故答案为:﹣3.点评:此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.5.(4分)比较大小:>3.考点:实数大小比较.分析:先求出3=,再比较即可.解答:解:∵32=9<10,∴>3,故答案为:>.点评:本题考查了实数的大小比较和算术平方根的应用,用了把根号外的因式移入根号内的方法.6.(4分)用科学记数法表示:0.0000314=3.14×10﹣5.考点:科学记数法—表示较小的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:0.0000314=3.14×10﹣5.故答案为:3.14×10﹣5.点评:此题主要考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.(4分)计算:(5ax2+15x)÷5x=ax+3.考点:整式的除法.分析:运用整式的除法法则求解即可.解答:解:(5ax2+15x)÷5x=ax+3.故答案为:ax+3.点评:本题主要考查了整式的除法,解题的关键是熟记整式的除法法则.8.(4分)当x≠﹣2时,分式有意义.考点:分式有意义的条件.分析:根据分式的意义的条件:分母不等于0,就可以求解.解答:解:根据题意得:x+2≠0,解得:x≠﹣2,故答案是:≠﹣2.点评:本题主要考查了分式有意义的条件是分母不等于0.9.(4分)化简:=1.考点:分式的加减法.专题:计算题.分析:同分母分式相加,分母不变,分子相加,然后约分即可.解答:解:=.故答案为:1.点评:分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.10.(4分)已知数据:,,,π,﹣2,其中无理数出现的频率是0.6.考点:频数与频率.分析:直接利用无理数的定义结合频率的求法得出答案.解答:解:∵数据:,,,π,﹣2,其中无理数有:,,π,∴无理数出现的频率是:=0.6.故答案为:0.6.点评:此题主要考查了频率的求法以及无理数的定义,正确把握无理数的定义是解题关键.三、解答题(每小题9分,共36分).11.(9分)因式分解:(1)25x2﹣16y2(2)2a2+4ab+2b2.考点:提公因式法与公式法的综合运用.专题:计算题.分析:(1)原式利用平方差公式分解即可;(2)原式提取2,再利用完全平方公式分解即可.解答:解:(1)原式=(5x+4y)(5x﹣4y);(2)原式=2(a2+2ab+b2)=2(a+b)2.点评:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.(9分)先化简,再求值:(x+3)(x﹣3)﹣x(x﹣2),其中x=4.考点:整式的混合运算—化简求值.专题:探究型.分析:先把整式进行化简,再把x=4代入进行计算即可.解答:解:原式=x2﹣9﹣x2+2x=2x﹣9,当x=4时,原式=2×4﹣9=﹣1.点评:本题考查的是整式的混合运算﹣化简求值,在有乘方、乘除的混合运算中,要按照先乘方后乘除的顺序运算,其运算顺序和有理数的混合运算顺序相似.13.(9分)如图,已知:△ABC中,AB=AC,M是BC的中点,D、E分别是AB、AC边上的点,且BD=CE.求证:MD=ME.考点:全等三角形的判定与性质;等腰三角形的性质.专题:证明题.分析:根据等腰三角形的性质可证∠DBM=∠ECM,可证△BDM≌△CEM,可得MD=ME,即可解题.解答:证明:△ABC中,∵AB=AC,∴∠DBM=∠ECM,∵M是BC的中点,∴BM=CM,在△BDM和△CEM中,,∴△BDM≌△CEM(SAS),∴MD=ME.点评:本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质.14.(9分)今年以来,我国持续大面积的雾霾天气让环保和健康问题成为焦点.为了调查学生对雾霾天气知识的了解程度,某校在学生中做了一次抽样调查,调查结果共分为四个等级:A.非常了解;B.比较了解;C.基本了解;D.不了解.根据调查统计结果,绘制了不完整的三种统计图表.对雾霾了解程度的统计表:对雾霾的了解程度百分比A.非常了解5%B.比较了解mC.基本了解45%D.不了解n请结合统计图表,回答下列问题.(1)本次参与调查的学生共有400人,m=15%,n=35%;(2)图2所示的扇形统计图中D部分扇形所对应的圆心角是多少度;(3)请补全条形统计图.考点:条形统计图;扇形统计图.专题:图表型.分析:(1)用A的人数除以所占的百分比,计算即可求出被调查学生总人数,用B的人数除以被调查的学生总人数计算即可求出m,再根据各部分的百分比的和等于1计算即可求出n;(2)用D的百分比乘360°计算即可得解;(3)求出D的学生人数,然后补全统计图即可.解答:解:(1)20÷5%=400,×100%=15%,1﹣5%﹣15%﹣45%=35%,故答案为:400;15%;35%;(2)360°×35%=126°;(3)∵D等级的人数为:400×35%=140,∴补全条形统计图如图所示.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.一、单项选择题(每小题3分,共9分).15.(3分)等腰三角形的顶角为80°,那么它的一个底角的大小为()A.20°B.50°C.80°D.50°或20°考点:等腰三角形的性质.分析:由已知顶角为80°,根据等腰三角形的两底角相等的性质及三角形内角和定理,即可求出它的一个底角的值.解答:解:∵等腰三角形的顶角为80°,∴它的一个底角为(180°﹣80°)÷2=50°.故选B.点评:此题主要考查了等腰三角形的性质及三角形内角和定理.通过三角形内角和,列出方程求解是正确解答本题的关键.16.(3分)下列各式,正确的是()A.=0 B.C.=1 D.考点:分式的基本性质.分析:根据分式的基本性质作答.解答:解:A、只有当分子为0,分式才为0,题中没有这个条件,故A错误;B、当分子分母异号时,两边都平方等式不成立,故B错误;C、不能约分,故C错误;D、,故D正确.故选D.点评:本题主要考查了分式的基本性质,需要熟练掌握分式的基本性质.17.(3分)如图,在△ABC中,AB=AC,AE是∠BAC的平分线,点D是AE上的一点,则下列结论错误的是()A.A E⊥BC B.△BED≌△CED C.△BAD≌△CAD D.∠ABD=∠DBE考点:等腰三角形的性质;全等三角形的判定与性质.分析:根据等腰三角形顶角的平分线也是底边的中线即可确定正确的结论.解答:解:∵在△ABC中,AB=AC,AE是∠BAC的平分线,∴AE垂直平分BC,∴A、B、C正确,∵点D为AE上的任一点,∴∠ABD=∠DBE不正确,故选D.点评:本题考查了等腰三角形的性质及全等三角形的判定与性质,属于等腰三角形的基础题,比较简单.二、填空题(每小题4分,共8分).18.(4分)命题“全等三角形的对应角相等”的逆命题是对应角相等的三角形是全等三角形,这个逆命题是假(填“真”或“假”).考点:命题与定理.分析:根据逆命题的概念,交换原命题的题设与结论即可的出原命题的逆命题,进而判断它的真假.解答:解:命题“全等三角形对应角相等”的题设是“全等三角形”,结论是“对应角相等”,故其逆命题是对应角相等的三角形是全等三角形,它是一个假命题.故答案为:对应角相等的三角形是全等三角形,假.点评:此题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.19.(4分)如图,在△ABC中,已知边AC的垂直平分线DE交BC于点D,连结AD,AD=3,BD=4,则BC=7.考点:线段垂直平分线的性质.分析:根据线段垂直平分线求出AD=DC=3,代入BC=BD+DC求出即可.解答:解:∵边AC的垂直平分线DE,AD=3,∴AD=DC=3,∵BD=4,∴BC=BD+DC=4+3=7,故答案为:7.点评:本题考查了线段垂直平分线性质的应用,解此题的关键是得出AD=DC,注意:线段垂直平分线上的点到线段两个端点的距离相等.三、解答题(每小题9分,共27分).20.(9分)计算:+﹣20150.考点:实数的运算;零指数幂.专题:计算题.分析:原式第一项利用立方根定义计算,第二项利用平方根定义计算,最后一项利用零指数幂法则计算即可得到结果.解答:解:原式=﹣2+4﹣1=1.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.21.(9分)解分式方程:=.考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得2(2x+1)=3(x﹣1),去括号得:4x+2=3x﹣3,解得:x=﹣5,检验:当x=﹣5时,(x﹣1)(2x+1)≠0,则原方程的解为x=﹣5.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.22.(9分)如图,将长为2.5米长的梯子AB斜靠在墙上,BC长为0.7米.(1)求梯子上端A到墙的底端C的距离(即AC的长);(2)如果梯子的顶端A沿墙下滑0.4米(即AA′=0.4米),则梯脚B将外移(即BB′的长)多少米?考点:勾股定理的应用.分析:(1)在Rt△ABC中利用勾股定理求出AC的长即可;(2)由(1)可以得出梯子的初始高度,下滑0.4米后,可得出梯子的顶端距离地面的高度,再次使用勾股定理,已知梯子的底端距离墙的距离为0.7米,可以得出,梯子底端水平方向上滑行的距离.解答:解:(1)在Rt△ABC中,∠C=90°,AC==2.4(米);(2)∵A′C=AC﹣AA′=2.4﹣0.4=2(米),A′B′=2.5(米),∴B′C==1.5(米),∴B′B=B′C﹣BC=1.5﹣0.7=0.8(米)答:梯脚B将外移(即BB′的长)0.8米.点评:本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.一、选择题(每小题3分,共3分).23.(3分)如图所示,将四张全等的长方形硬纸片围成一个正方形,根据图形阴影部分面积的关系,可以直观地得到一个关于a、b的恒等式为()A.a2﹣b2=(a+b)(a﹣b)B.(a+b)2=a2+2ab+b2C.(a﹣b)2=(a+b)2﹣4ab D.a2+ab=a(a+b)考点:完全平方公式的几何背景.分析:用两种方法正确的表示出阴影部分的面积,再根据图形阴影部分面积的关系,即可直观地得到一个关于a、b的恒等式.解答:解:方法一阴影部分的面积为:(a﹣b)2,方法二阴影部分的面积为:(a+b)2﹣4ab,所以根据图形阴影部分面积的关系,可以直观地得到一个关于a、b的恒等式为(a﹣b)2=(a+b)2﹣4ab.故选:C.点评:本题主要考查了完全平方公式的几何背景,解题的关键是用两种方法正确的表示出阴影部分的面积.二、填空题(每小题4分,共4分).24.(4分)如图是一个长为4cm,宽为3cm,高为5cm的长方体纸箱,则AC=5cm.若一只蚂蚁要从A点沿纸箱外表面爬行到B点,那么它所行走的最短路径的长是cm.(保留根号)考点:平面展开-最短路径问题.分析:先根据勾股定理求出AC的长,再将纸箱平面展开,利用勾股定理求解即可.解答:解:∵长方体纸箱的长是4cm,宽是3cm,∴AC==5(cm).当如图1所示时,AB==(cm);,当如图2所示时,AB==(cm),∵<,∴它所行走的最短路径的长是cm.故答案为:5,.点评:本题考查的是平面展开﹣最短路径问题,此类问题应先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.三、解答题(共26分).25.(12分)如图,在四边形ABCD中,AD∥BC,∠B=90°,AD=3,BC=4,点E在AB 边上,BE=3,∠CED=90°.(1)求CE的长度;(2)求证:△ADE≌△BEC;(3)设点P是线段AB上的一个动点,求DP+CP的最小值是多少?考点:全等三角形的判定与性质;勾股定理;轴对称-最短路线问题.分析:(1))由∠B=90°,BC=4,BE=3,根据勾股定理求出CE;(2)先证出∠DEA=∠ECB,即可证明△ADE≌△BEC;(3)作点D关于AB的对称点F,连接CF交AB于点P,再用勾股定理求出CF的长即为DP+CP的最小值.解答:解:(1)∵∠B=90°,BC=4,BE=3,根据勾股定理可得:;(2)∵∠CED=90°,∴∠CEB+∠DEA=90°,∵∠B=90°,∴∠CEB+∠ECB=90°,∴∠DEA=∠ECB,∵AD∥BC,∠B=90°,∴∠A=∠B=90°,在△ADE和△BEC中,∴△ADE≌△BEC(AAS);(3)延长DA至F,使得AD=AF,并连接CF,此时CF与AB的交点为点P,连接PD;∵AB⊥AD,且AD=AF,∴△DFP是等腰三角形,∴DP=FP,∴DP+CP的最小值为CF,过点F作FH垂直CB的长线,垂足为H,如图所示:根据题意得:CH=7,FH=7,根据勾股定理可得,CF=,即DP+CP的最小值为.点评:本题考查了勾股定理、轴对称以及最短路线问题;熟练掌握勾股定理和最短路线的作图是解决问题的关键.26.(14分)在△ABC中,D是边BC的中点.(1)①如图1,求证:△ABD和△ACD的面积相等;②如图2,延长AD至E,使DE=AD,连结CE,求证:AB=EC.(2)当∠BAC=90°时,可以结合利用以上各题的结论,解决下列问题:①求证:AD=BC(即:直角三角形斜边上的中线等于斜边的一半);②已知BC=4,将△ABD沿AD所在直线翻折,得到△ADB′,若△ADB′与△ABC重合部分的面积等于△ABC面积的,请画出图形(草图)并求出AC的长度.考点:全等三角形的判定与性质;直角三角形斜边上的中线;翻折变换(折叠问题).分析:(1)如图,作辅助线;运用三角形的面积公式即可解决问题;(2)①证明△ABD≌△ECD,即可解决问题.②画出图形,运用分类讨论的数学思想,逐一分类解析,即可解决问题.解答:解:(1)证明:①过点A作AH⊥BC,垂足为H,则S△ABD=BD•AH,S△ACD=CD•AH,∵点D是BC中点,∴BD=CD,∴△ABD和△ACD的面积相等.②在△ABD和△ECD中,,∴△ABD≌△ECD(SAS),∴AB=EC.(2)①∵△ABD≌△ECD(已证)∴∠B=∠ECD;∵∠B+∠ACB=90°,∴∠ECD+∠ACB=90°,∴∠ACE=∠BAC=90°;在△ABC与△CEA中,,∴△ABC≌△CEA(SAS),∴BC=AE;∵AD=AE,∴AD=BC.②画草图如下:(Ⅰ)当AB>AC时,如图3,由△ADB′与△ABC重合部分的面积等于△ABC面积的,结合(1)①题的结论,可以得到点O既即是ABˊ的中点,也是CD的中点,故四边形ADB′C为平行四边形,∴AC=BˊD=BD=BC=2.(Ⅱ)当AB<AC时,如图4,类比第(Ⅰ)题,同理可证△AOBˊ≌△COD,∴ABˊ=CD=2,∠Bˊ=∠CDO,又∵∠Bˊ=∠B,∴∠B=∠CDO,∴AB∥OD,∴∠COD=∠A=90°,又∵DO=OBˊ=1,由勾股定理可得CO=,∴AC=2CO=.(Ⅲ)当AB=AC时,由等腰三角形的性质可知,折叠后重合的面积等于△ABC面积的,不可能等于,所以不合题意,舍去.综上所述:AC=2或2.点评:该题主要考查了直角三角形的性质、全等三角形的判定及其性质的应用等几何知识点问题;牢固掌握全等三角形的判定定理是解题的关键.。
2015—2016新人教版八年级数学(上)期末试卷及答案
2015~2016学年(下)初二年级期末调研测试数学试题注 意 事 项考生在答题前请认真阅读本注意事项:1.本试卷共6页,满分为100分,考试时间为120分钟.考试结束后,请将本试卷和答题卡一并交回. 2.答题前,请务必将自己的姓名、考试证号用毫米黑色字迹的签字笔填写在试卷及答题卡上指定的位置.3.答案必须按要求填涂、书写在答题卡上,在试卷、草稿纸上答题一律无效.一、选择题(本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答.题卡相应位置......上.) 1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是2.下列计算正确的是 A .2(2)-=-2 B .a 2+a 5=a 7 C .(a 2)5=a 10D .6525⨯=1253.若分式11a +有意义,则a 的取值范围是 A .a >-1 B .a ≠-1 C .a <0 D .a ≠0 4.如图,已知AB =AD ,那么添加下列一个条件后,仍无法判定△ABC ≌△ADC 的是 A .CB =CD B .∠BAC =∠DAC C .∠BCA =∠DCA D .∠B =∠D =90° 5.下列二次根式,不能与3合并的是 A .48 B .18 C .113D .75-6.如图,在△ABC 中,AB =AC ,BD 平分∠ABC 交AC 于点D ,AE ∥BD 交CB 的延长线 于点E .若∠E =35°,则∠BAC 的度数为A .40°B .45°C .60°D .70°A .B .C .D .(第4题)DCBA7.如图,直角坐标系中,点A (-2,2)、B (0,1)点P 在x 轴上,且△P AB 是等腰三角形,则满足条件的点P 共有A .2个B .3个C .4个D .5个8.某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问计划每天加工服装多少套?在这个问题中,设计划每天加工x 套服装,则根据题意可得方程为 A .16040016018(120%)x x -+=+ B .16040018(120%)x x +=+ C .1604001601820%x x-+=D .40040016018(120%)x x-+=+ 9.如图,在△ABC 中,∠C =90°,AC =2,点D 在BC 上,∠ADC =2∠B ,AD, 则BC 的长为A1 B1 C-1D+110.由于某产品的原料提价,因而厂家决定对产品进行提价,现有四种方案:方案1:第一次提价p %,第二次提价q %;方案2:第一次提价q %,第二次提价p %; 方案3:第一、二次提价均为2p q+%;方案4. 其中, p 、q 是不相等的正数,则四种方案中提价最多的为A .方案1B .方案2C .方案3D .方案4二、填空题(本大题共8小题,每小题2分,共16分.不需写出解答过程,请把答案直接 填写在答题卡相应位置.......上.) 11.有意义,x 的取值范围是 ▲ .12.计算:202-(-)= ▲ .13.分解因式:2a 2-12a +18= ▲ .14.如图,△ABC 是等边三角形,∠CBD =90º,BD =BC ,则∠1的度数是 ▲ .A B DC(第9题)A EBCD (第6题)15.若a +b =2,则a 2+4b -b 2值为 ▲ .16.在△ABC 中,AB =13,BC =10,BC 边上的中线AD =12.则AC 的长为 ▲ .17.如图,从一个大正方形中截去面积为14cm 2和24cm 2的两个小正方形,则留下部分(阴影部分)的面积为 ▲ cm 2.18.如图,Rt △ABC 中,∠ACB =90°,AC =3,BC =6,将边AC 沿CE 翻折,使点A落在AB 上的点D 处,再将边BC 沿CF 翻折,使点B 落在CD 的延长线上的点B ′处, 两条折痕与斜边AB 分别交于点E 、F ,则线段B ′F 的长为 ▲ .三、解答题(本大题共10小题,共64分.请在答题卡指定区域.......内作答,解答时应写出文 字说明、证明过程或演算步骤.) 19.(本题8分)计算:(1)(1242-)-(168+); (2)4(x +1)2-(2x +5)(2x -5).20.(本题5分)先化简,再求值:22214()244a a a a a a a a+---÷--+,其中a =2-2.21.(本题6分)如图,在由边长为1的单位正方形组成的网格中,△ABC 的各顶点均在格 点上,且点A 、C 的坐标分别为(-3,0)、(-2,3). (1)画出平面直角坐标系xOy ;(2)画出格点△ABC 关于y 轴对称的△A 1B 1C 1; (3)在y 轴上画出点Q ,使△QAB 的周长最小.14cm 224cm 2(第17题)ACB1D(第14题)ABC(第18题)ACBB ′F ED22.(本题5分)如图,CA =CD ,∠1=∠2,BC =EC .求证:AB =DE .23.(本题5分)甲、乙两名学生练习计算机打字,甲打一篇1000字的文章与乙打一篇900 字的文章所用的时间相同.已知甲每分钟比乙每分钟多打5个字.甲、乙两人每分钟 各打多少字?24.(本题5分)如图,已知在等边△ABC 中,D 是AC 的中点,E 为BC 延长线上一点, 且CE =CD ,DM ⊥BC ,垂足为M .求证:M 是BE 的中点.25.(本题7分)设y =kx (x >0,y >0),是否存在实数k ,使得代数式+能化简为x ?若能,请求出所有满足条件的k 的 值;若不能,请说明理由.26.(本题7分)我们学习了勾股定理后,都知道“勾三、股四、弦五”.ABCDE 12AB CDEM观察:3、4、5; 5、12、13; 7、24、25; 9、40、41;…, 发现这些勾股数的勾都是奇数,且从3起就没有间断过. (1)请你根据上述的规律写出下一组勾股数;(2)若第一个数用字母n (n 为奇数,且n ≥3)表示,请写出这一组勾股数,并证明.27.(本题8分)如图1,将两个完全相同的直角三角形纸片ABC 和DEC 如图放置,其中 ∠DCE =∠ACB =90°,∠B =∠E =30°.(1)如图2,当点D 在边AB 上时,填空: ①线段DE 与AC 的位置关系是 ▲ ;②设△BDC 的面积为S 1,△AEC 的面积为S 2,则S 1与S 2的数量关系是 ▲ .(2)当点D 在图3所示的位置时,(1)中S 1与S 2的数量关系是否仍然成立,请证明 你的猜想.28.(本题8分)如图,点A (1,1),B (2,0),点C 是x 轴的负半轴上一点,连接AC , 作AD ⊥AC 交y 轴于点D . (1)求∠ABC 的度数;(2)求证:OC 2+OD 2=2AD 2;图3ABCDEACBDE图2ACBDE图1(3)若DO 平分∠ADC ,求点D 的坐标.八年级数学参考答案与评分标准(仅供参考,其它解法,参照给分)一、选择题(每小题2分,共20分)二、填空题(每小题2分,共16分)11.x ≤3 12.34- 13.2(x -3)2 14.75º15.416.1317. 18.2三、解答题(共64分)19.(1)原式= ---------------------------------------3分4分 (2)原式=4(x 2+2x +1)-(4x 2-25) ------------------------------------- 6分 =4x 2+8x +4-4x 2+25---------------------------------------- 7分 =8x +29 ---------------------------------------------------- 8分20.解:22214()244a a a a a a a a+---÷--+ =221[](2)(2)4a a aa a a a +----- --------------------------------------- 1分 =2(2)(2)(1)(2)4a a a a aa a a +----- ------------------------------------- 2分=2224(2)4a a a aa a a --+-- -------------------------------------------- 3分=24(2)4a aa a a ---=21(2)a - ----------------------------------------------------- 4分当a =2时,21(2)a -12-------------------------- 5分1)坐标系; --------------------------- 2分 2)如图 -------------------------------- 4分 3)如图Q 点; ------------------------- 6分22.证明:∵∠1=∠2 ∴∠1+∠ACE =∠2+∠ACE即∠ACB =∠DCE -------------------------------------------------------- 1分 在△ACB 与△DCE 中∴△ACB ≌△DCE (SAS ) ------------------------------------------------ 4分 ∴AB =DE -------------------------------------------------------------- 5分 23.解:设乙每分钟打x 个字,则甲每分钟打(x +5)个字.由题意得,10009005x x=+, ------------------------------------------- 2分 解得:x =45, ----------------------------------------------------- 3分 经检验:x =45是原方程的解. -------------------------------------- 4分 答:甲每人每分钟打50个字,乙每分钟打45个字. -------------------- 5分 24.证明:连结BD∵△ABC 是等边三角形,D 是AC 的中点 ∴∠1=12∠ABC 又∵CE =CD ,∴∠CDE =∠E ∴∠ACB =2∠E即∠1=∠E --------------------------------------------------------- 3分 ∴BD =BE ,又DM ⊥BC ,垂足为M∴M 是BE 的中点. -------------------------------------------------- 5分25.+=-CA =CD CA =CD∠ACB =∠DCE ABC DEM 1=2 ------------------------------------------------------- 1分若2=x,则-------------------------------------------- 3分 ∴y =9x 或y =25x . ------------------------------------------------- 6分∵y =kx (x >0,y >0),∴k =9或k =25. -------------------------------------------------- 7分 26.(1)11,60,61----------------------------------------------------- 2分(2)这一组勾股数为n ,212n -和212n + --------------------------------- 4分∵2424222212121()244n n n n n n n --+++++==,2422121()24n n n +++=, ∴2222211()()22n n n -++=. 又∵3n ≥,且n 为奇数,∴由n ,212n -,212n +三个数组成的数是勾股数. ------------------- 7分27.(1)①平行; ------------------------------------------------------- 1分 ②S 1=S 2. ------------------------------------------------------ 3分 (2)成立. --------------------------------------------------------- 4分 理由:过A 作AF ⊥CE 交EC 延长线于点F ,过D 作DG ⊥BC 交BC 于点G . ∴∠AFC =∠DGC =90º.∵△ACB ≌△DCE ,∴AC =CD ,BC =CE . ∵∠BCA =∠DCF =90º, ∴∠ACF =∠DCG . 在△ACF 与△DCG 中∴△ACF ≌△DCG (AAS )---------------------------------------- 6分 ∴AF =DG .∵S 1=12CE ∙AF ,S 2=12BC ∙DG ,CE =BC ,AF =DG , ∴S 1=S 2. ------------------------------------------------------ 8分28.(1)作AH ⊥x 轴于H .G图3ABC DEF ∠AFC =DGC CA =CD∠ACF =∠DCG∵A (1,1), ∴OH =AH =1. ∵B (2,0) ∴BH =OH =AH =1 ∵∠AHB =90º,∴∠ABH =∠HAB =45º --------------------------------------------------- 2分 (2)连接OA , ∵AH ⊥OB ,OH =BH∴OA =AB ,∠AOB =∠ABO =45º,∠OAB =90º ∠DOA =45º ∴∠DOA =∠AOC ∵∠DAC =∠OAB =90º ∴∠DAO =∠CAB 在△DOA 与△CBA 中∴△DOA ≌△CBA (AAS ) ------------------------------------------------ 3分 ∴AC =AD ∵AD ⊥AC ∴AD 2+AC 2=DC 2∴DC 2=2AD 2在Rt △DOC 中,OC 2+OD 2=2AD 2----------------------------------------- 5分 (3)∵DO 平分∠ADC ,∠ADC =45º, ∴∠ODC =∠ADO º ∵∠AOB =∠AOD =45º ∴∠DAO =180ºº-45ºº ∴∠CAO =∠OAD -∠CAD º ∵∠AOB =∠ACO +∠CAO =45º, ∴∠ACO =∠CAO º ∴OC =OA ∵OA =AB∠DAO =∠CAB OA =AB∠DOA =∠ABC∴OC∴CB2----------------------------------------------------------- 6分由(2)可知,△DOA≌△CBA∴OD=CB+2------------------------------------------------------ 7分∴点D的坐标为(0+2)-------------------------------------------- 8分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新版人教版八年级数学(上)期末试题
班 级 姓 名 得 分
一.选择题(每小题3分,共36分)
1.如图,羊字象征吉祥和美好,下图的图案与羊有关,其中是轴对称图形的有 ( )
A .1个
B .4个
C .3个
D .2个
2.下列式子中,从左到右的变形是因式分解的是( )
A 、(x -1)(x -2)=x 2
-3x +2 B 、x2-3x +2=(x -1)(x -2) C 、x2+4x +4=x(x 一4)+4 D 、x2+y2=(x +y)(x —y) 3. 已知点P (3,-1),那么点P 关于y 轴对称的 P '的坐标是 ( )
A. P '(-3,-1) B . P '(3,-1) C. P '(-3,1) D. P '(3, 1) 4.下列各式:①a 0=1 ② 2
﹣2
= ﹣ ③a 2•a 3=a 5 ④(a 2b)3=a 2·b 3 ⑤x 2+x 2=2x 2
其中计算正确的序号是( ) A . ①③④ B .
①③⑤ C .
③⑤ D .
②③⑤
5.下列各式中,正确的是( ).
A .
3355x x
y y
--
=- B .
a b a b c c +-+-
=C . a b a b c c ---=- D . a a
b a a b -=--
6.化简
的结果是( )
A . x +1
B . x ﹣1
C . ﹣x
D . x
7.王师傅用4根木条钉成一个四边形木架,如图.要使这个木架不变形,他至少还要再钉上( )几根木条
A . 0根
B . 1根
C . 2根
D . 3根
第7题图 第8题图 第11题图
8.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β等于( )
A .180°
B .220°
C .240°
D .300°
9.如图,正方形网格中的△ABC ,若小方格边长为1,则△ABC 的形状为
A .锐角三角形
B .直角三角形
C .钝角三角形
D .以上答案都不对
10. A 、B 、C 三个村庄连成一个三角形区域,某地区决定在这个三角形区域内修建一个集贸市b 场,要使集贸市场到三个村庄的距离相等,
则这个集贸市场应建在( ).
A .在AC 、BC 两边高线的交点处
B .在A
C 、BC 两边中线的交点处 C .在∠A 、∠B 两内角平分线的交点处
D .在AC 、BC 两边垂直平分线的交点处
11.如图,在等腰直角三角形ABC 中,∠BAC =90°,在BC 上截取BD =BA ,作∠ABC 的平分线与AD 相交于点P ,连结PC ,若△ABC 的面积为
22cm ,则△BPC 的面积为( ). C
B
A
第9题图 P
B
D
A .20.5cm
B . 21cm
C .21.5cm
D . 22cm
12.随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x 千米,根据题意可列方程为( )
A .
B .
C .
D .
二.填空题(每小题3分,共30分)
13.若分式 有意义,则x 的取值范围是
14.分解因式:x 3﹣4x 2+4x = 15.若分式方程:
有增根,则k= .
16.如图所示,已知点A 、D 、B 、F 在一条直线上,AC=EF ,AD=FB ,要使△ABC ≌△FDE ,还需添加一个条件,这个条件可以是 .(只需填一个即可)
第16题 第17题 第18题
17.如图,在等腰△ABC 中,∠BAC=120º,DE 是AC 的垂直平分线,DE=1cm ,则BD 的长 18.如图,边长为m+4的正方形纸片剪出一个边长为m 的正方形之后,剩余部分可剪拼成 一个矩形,若拼成的矩形一边长为4,则另一边长为
19.若等腰三角形腰上的高是腰长的一半,则这个等腰三角形的底角是
20.如右图,∠BAC =30°,P 是∠BAC 平分线上一点,PM ∥AC ,PD ⊥AC ,PD =30 ,
则AM =
第20题
三.解答题(8+8+8+8+8+10+10=分)
21.先化简,再求值:先化简,再求值:2
112(
)3369
m
m m m m +÷-+-+,其中9m =.
22.分解因式(1)2
34
1x x x -+ (2)4481m n -
23.解方程:
.
2
3x x x 122
+--M
D
P B
C
A
A
B
D
E C
A
B
C
D
E
24.已知:如图,△ABC 和△DBE 均为等腰直角三角形。
(1) 求证:AD=CE ;
(2)猜想:AD 和CE 是否垂直?若垂直,请说明理由;
若不垂直,则只要写出结论,不用写理由。
25.如图,已知点M 、N 和∠AOB ,
求作一点P ,使P 到点M 、N 的距离相等,• 且到∠AOB 的两边的距离相等. (保留作图痕迹,不写作法)
.某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天.
(1)这项工程的规定时间是多少天?
(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程
指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?
7.如图在Rt △ABC 中,AB=AC ,∠BAC=90°,O 为BC 的中点. (1)写出点O 到△ABC 的三个顶点A 、B 、C 的距离的大小关系.
(2)如果点M 、N 分别在线段AB 、AC 上移动,移动中保持AN=BM ,请判断△OMN 的形状,并证明你的结论. (3)当点M 、N 分别在AB 、AC 上运动时,四边形AMON 的面积是否发生变化?说明理由.
27题
N
C
B。