相交线与平行线难题汇编含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【答案】A
【解析】
【分析】
由角平分线的定义可得出∠BOC=∠DOC,由CD∥OB,得出∠BOC=∠DCO,进而可证出OD=CD=3.再由角平分线的性质可知 到 的距离是2.4,然后根据三角形的面积公式可求 的面积.
【详解】
证明:∵OC平分∠AOB,
∴∠BOC=∠DOC.
∵CD∥OB,
∴∠BOC=∠DCO,
相交线与平行线难题汇编含答案
一、选择题
1.如图所示,b∥c,a⊥b,∠1=130°,则∠2=().
A.30°B.40°C.50°D.60°
【答案】B
【解析】
【分析】
证明∠3=90°,利用三角形的外角的性质求出∠4即可解决问题.
【详解】
如图,反向延长射线a交c于点M,
∵b∥c,a⊥b,
∴a⊥c,
∴∠3=90°,
【答案】D
【解析】
【分析】
根据内错角、同位角以及同旁内角的定义进行判断即可.
【详解】
解:A、∠2和∠4是内错角,故本选项错误;
B、∠1和∠C是同位角,故本选项错误;
C、∠3和∠4是邻补角,故本选项错误;
D、∠1和∠C是同位角,故本选项正确;
故选:D.
【点睛】
本题考查了同位角、内错角、同旁内角.解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.
【详解】
解:根据∠1=∠F,
可得AB//EF,
故∠2=∠A=50°.
故选A.
【点睛】
本题考查平行线定理:内错角相等,两直线平行.
5.如图,直线AB∥CD,直线EF分别交AB、CD于E、F两点,EG平分∠AEF,如果∠1=32°,那么∠2的度数是()
A.64°B.68°C.58°D.60°
【答案】A
【解析】
∵AC∥DE,AC⊥BC,
∴DE⊥BC,
∴∠DEC=∠CDB=90°,
∴∠3+∠2=90°(∠2和∠3互余),∠2+∠EDB=90°,
∴∠3=∠EDB,故③正确,④错误;
∵AC⊥BC,CD⊥AB,
∴∠ACB=∠CDA=90°,
∴∠A+∠B=90°,∠1+∠A=90°,
∴∠1=∠B,故⑤正确;
即正确的个数是4个,
【分析】
首先根据平行线性质得出∠1=∠AEG,再进一步利用角平分线性质可得∠AEF的度数,最后再利用平行线性质进一步求解即可.
【详解】
∵AB∥CD,
∴∠1=∠AEG.
∵EG平分∠AEF,
∴∠AEF=2∠AEG,
∴∠AEF=2∠1=64°,
∵AB∥CD,
∴∠2=64°.
故选:A.
【点睛】
本题主要考查了角平分线性质以及平行线的性质,熟练掌握相关概念是解题关键.
【答案】C
【解析】
【分析】
根据平行线的判定得出AC∥DE,根据垂直定义得出∠ACB=∠CDB=∠CDA=90°,再根据三角形内角和定理求出即可.
【详解】
∵∠1=∠2,
∴AC∥DE,故①正确;
∵AC⊥BC,CD⊥AB,
∴∠ACB=∠CDB=90°,
∴∠A+∠B=90°,∠3+∠B=90°,
∴∠A=∠3,故②正确;
B、两直线平行,内错角相等,正确;
C、等腰三角形的两个底角相等,正确;
D、若两实数的平方相等,则这两个实数相等或互为相反数,故D错误;
故选:D.
【点睛】
本题考查了判断命题的真假,以及平行四边形的性质、平行线的性质、等腰三角形的性质、乘方的定义,解题的关键是熟练掌握所学的性质进行解题.
16.若∠A与∠B是对顶角且互补,则它们两边所在的直线( )
19.下列说法中错误的个数是( )
(1)过一点有且只有一条直线与已知直线平行;
(2)过一点有且只有一条直线与已知直线垂直;
(3)不相交的两条直线叫做平行线;
(4)有公共顶点且有一条公共边的两个互补的角互为邻补角.
A.1个B.2个C.3个D.4个
【答案】C
【解析】
(1)应强调过直线外一点,故错误;
(பைடு நூலகம்)正确;
【点睛】
此题考查平行线的性质,正确识别“三线八角”中的同位角、内错角、同旁内角是解题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.
4.如图,点 分别在 的边 上,点 在 的内部,若 ,则 的度数是()
A. B. C. D.
【答案】A
【解析】
【分析】
利用平行线定理即可解答.
⑤坐标平面内的点与有序数对是一一对应的.
其中真命题的个数是()
A.2个B.3个C.4个D.5个
【答案】B
【解析】
【分析】
根据平面直角坐标系的概念,在两直线平行的条件下,内错角相等,两个无理数的和可以是无理数也可以是有理数,进行判断即可.
【详解】
①正确;
②在两直线平行的条件下,内错角相等,②错误;
③正确;
11.下列图形中线段PQ的长度表示点P到直线a的距离的是( )
A. B.
C. D.
【答案】C
【解析】
【分析】
根据点到直线的距离的定义,可得答案.
【详解】
由题意得PQ⊥a,
P到a的距离是PQ垂线段的长,
故选C.
【点睛】
本题考查了点到直线的距离,点到直线的距离是解题关键.
12.已知直线m∥n,将一块含30°角的直角三角板按如图所示方式放置(∠ABC=30°),并且顶点A,C分别落在直线m,n上,若∠1=38°,则∠2的度数是()
④反例:两个无理数π和-π,和是0,④错误;
⑤坐标平面内的点与有序数对是一一对应的,正确;
故选:B.
【点睛】
本题考查实数,平面内直线的位置;牢记概念和性质,能够灵活理解概念性质是解题的关键.
14.如图,下列说法一定正确的是( )
A.∠1和∠4是内错角B.∠1和∠3是同位角
C.∠3和∠4是同旁内角D.∠1和∠C是同位角
【答案】D
【解析】
【分析】
由平行线的性质可求得∠C,在△CDE中利用三角形外的性质可求得∠3.
【详解】
解:∵AB∥CD,
∴∠C=∠1=45°,
∵∠3是△CDE的一个外角,
∴∠3=∠C+∠2=45°+35°=80°,
故选:D.
【点睛】
本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a∥b,b∥c⇒a∥c.
【答案】D
【解析】
试题解析:如图,作EF∥AB,
∵AB∥CD,
∴EF∥CD,
∵EF∥AB,
∴∠α+∠AEF=180°,
∵EF∥CD,
∴∠γ=∠DEF,
而∠AEF+∠DEF=∠β,
∴∠α+∠β=180°+∠γ,
即∠α+∠β-∠γ=180°.
故选:D.
10.如图, , 平分 ,且 ,则 与 的关系是()
A.互相垂直B.互相平行
C.既不垂直也不平行D.不能确定
【答案】A
【解析】
∵∠A与∠B是对顶角,
∴∠A=∠B,
又∵∠A与∠B互补,
∴∠A+∠B=180°,
可求∠A=90°.
故选A.
17.如图,直线 相交于点 ,则 的大小是()
A. B. C. D.
【答案】A
【解析】
【分析】
根据对顶角的性质,把 的度数计算出来,再结合 ,即可得到答案.
A. B.
C. D.
【答案】A
【解析】
【分析】
延长 交 的延长线于 ,根据两直线平行,内错角相等可得 ,再根据两直线平行,同位角相等可得 ,然后根据角平分线的定义解答.
【详解】
证明:如图,延长 交 的延长线于 ,





平分 ,
,即 .
故选:A.
【点睛】
本题考查了平行线的性质,角平分线的定义,熟记性质并作辅助线是解题的关键.
A.20°B.22°C.28°D.38°
【答案】B
【解析】
【分析】
过C作CD∥直线m,根据平行线的性质即可求出∠2的度数.
【详解】
解:过C作CD∥直线m,
∵∠ABC=30°,∠BAC=90°,
∴∠ACB=60°,
∵直线m∥n,
∴CD∥直线m∥直线n,
∴∠1=∠ACD,∠2=∠BCD,
∵∠1=38°,
(3)不相交的两条直线叫做平行线,没有说明是否是在同一平面内,所以错误;
(4)有公共顶点且有一条公共边的两个角不一定互为邻补角,角平分线的两个角也满足,但可以不是,故错误.错误的有3个,故选C.
20.如图, 平分 , .若 , 到 的距离是2.4,则 的面积等于()
A.3.6B.4.8C.1.8D.7.2
∴∠ACD=38°,
∴∠2=∠BCD=60°﹣38°=22°,
故选:B.
【点睛】
本题考查了平行线的计算问题,掌握平行线的性质是解题的关键.
13.下列五个命题:
①如果两个数的绝对值相等,那么这两个数的平方相等;
②内错角相等;
③在同一平面内,垂直于同一条直线的两条直线互相平行;
④两个无理数的和一定是无理数;
【详解】
A、∠C=∠ABE不能判断出EB∥AC,故A选项不符合题意;
B、∠A=∠EBD不能判断出EB∥AC,故B选项不符合题意;
C、∠C=∠ABC只能判断出AB=AC,不能判断出EB∥AC,故C选项不符合题意;
D、∠A=∠ABE,根据内错角相等,两直线平行,可以得出EB∥AC,故D选项符合题意.
故选:D.
6.如图 ∥ ,∠ = , 平分∠ ,则∠ 的度数为()
A. B. C. D.
【答案】B
【解析】
∵AD∥BC,
∴∠ADB=∠DBC,
∵DB平分∠ADE,
∴∠ADB=∠ADE,
∵∠B=30°,
∴∠ADB=∠BDE=30°,
则∠DEC=∠B+∠BDE=60°.
故选B.
【点睛】此题主要考查了平行线的性质,正确得出∠ADB的度数是解题关键.
【详解】
解:∵ ,
∴ (对顶角相等),
又∵ ,
∴ ,
∴ ,
故A为答案.
【点睛】
本题主要考查了对顶角的性质(对顶角相等),判断 是对顶角是解题的关键.
18.如图,已知AB∥CD,直线AB,CD被BC所截,E点在BC上,若∠1=45°,∠2=35°,则∠3=( )
A.65°B.70°C.75°D.80°
A.81°B.99°C.108°D.120°
【答案】B
【解析】
试题解析:过B作BD∥AE,
∵AE∥CF,
∴BD∥CF,

∵ ,


故选B.
9.如图,若AB∥CD,则∠α、∠β、∠γ之间关系是()
A.∠α+∠β+∠γ=180°B.∠α+∠β﹣∠γ=360°
C.∠α﹣∠β+∠γ=180°D.∠α+∠β﹣∠γ=180°
∴∠DOC=∠DCO,
∴OD=CD=3.
∵ 到 的距离是2.4,
∴ 到 的距离是2.4,
∴ 的面积= .
故选A.
【点睛】
本题考查了等腰三角形的判定、角平分线的定义、平行线的性质、以及角平分线的性质,利用角平分线的性质得出 到 的距离是2.4是解题的关键.
∴∠1=∠3,
∵CD∥OB,
∴∠1=∠2(两直线平行,内错角相等);
∴∠2=∠3(等量代换);
在Rt△DOF中,∠ODF=90°,∠AOB=35°,
∴∠2=55°;
∴在△DEF中,∠DEB=180°-2∠2=70°.
故选B.
8.如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐弯处的∠A是72°,第二次拐弯处的角是∠B,第三次拐弯处的∠C是153°,这时道路恰好和第一次拐弯之前的道路平行,则∠B等于()
故选:C.
【点睛】
此题考查平行线的判定和性质,三角形内角和定理,垂直定义,能综合运用知识点进行推理是解题的关键.
3.如图,能判定EB∥AC的条件是( )
A.∠C=∠ABEB.∠A=∠EBDC.∠C=∠ABCD.∠A=∠ABE
【答案】D
【解析】
【分析】
在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.
15.下列命题错误的是()
A.平行四边形的对角线互相平分
B.两直线平行,内错角相等
C.等腰三角形的两个底角相等
D.若两实数的平方相等,则这两个实数相等
【答案】D
【解析】
【分析】
根据平行四边形的性质、平行线的性质、等腰三角形的性质、乘方的定义,分别进行判断,即可得到答案.
【详解】
解:A、平行四边形的对角线互相平分,正确;
7.如图所示,∠AOB的两边.OA、OB均为平面反光镜,∠AOB=35°,在OB上有一点E,从E点射出一束光线经OA上的点D反射后,反射光线DC恰好与OB平行,则∠DEB的度数是()
A.35°B.70°C.110°D.120°
【答案】B
【解析】
【分析】
【详解】
解:过点D作DF⊥AO交OB于点F.
∵入射角等于反射角,
∵∠1=90°+∠4,
∴130°=90°+∠4,
∴∠4=40°,
∴∠2=∠4=40°,
故选B.
【点睛】
本题考查平行线的性质,垂线的性质,三角形的外角的性质等知识,解题的关键是熟练掌握基本知识
2.如图,已知 ,若 , , ,下列结论:① ;② ;③ ;④ 与 互补;⑤ ,其中正确的有()
A.2个B.3个C.4个D.5个
相关文档
最新文档